JPH10214869A - Method for evaluating crystallized thin film - Google Patents

Method for evaluating crystallized thin film

Info

Publication number
JPH10214869A
JPH10214869A JP3135097A JP3135097A JPH10214869A JP H10214869 A JPH10214869 A JP H10214869A JP 3135097 A JP3135097 A JP 3135097A JP 3135097 A JP3135097 A JP 3135097A JP H10214869 A JPH10214869 A JP H10214869A
Authority
JP
Japan
Prior art keywords
thin film
crystallized
crystallization
amorphous
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135097A
Other languages
Japanese (ja)
Inventor
Shigeki Maekawa
茂樹 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3135097A priority Critical patent/JPH10214869A/en
Publication of JPH10214869A publication Critical patent/JPH10214869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate a crystallized thin film non-destructively and on the spot of a crystallization process by applying light for measuring the transmission factor of a specific wavelength on a crystallized crystallization thin film and measuring the transmission of the crystallized thin film. SOLUTION: In a crystallization process for forming a crystallized Si thin film by applying an energy beam 7 for crystallization to an amorphous Si thin film 6 on a light transmission substrate 5, a beam 8 for measuring a transmission factor with a wavelength of 380-650nm is applied to the crystallized Si thin film 9 to measure the transmission factor of the crystallized Si thin film. Then, the transmission factor applying the energy beam 7 for crystallization, namely the transmission factor of the beam 8 in the state of the amorphous Si thin film 6, is measured by a photo detector 10 and then the energy beam 7 for crystallization is applied to the amorphous Si thin film 6, thus measuring the transmission factor of the beam 8 for measuring the transmission factor of a part that turns to the crystallized Si thin film 9 with the photo detector 10 and both values are compared, thus detecting the change in the transmission factor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置用の
薄膜トランジスタ,イメージセンサ,SRAM等の製造
工程に用いられる結晶化薄膜の評価方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a crystallized thin film used in a manufacturing process of a thin film transistor, an image sensor, an SRAM, etc. for a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶表示装置は大画面化や高精細
化がますます進んでおり、駆動素子としての薄膜トラン
ジスタの高性能化が必須のものとなっている。
2. Description of the Related Art In recent years, a liquid crystal display device has been increasing in size and definition more and more, and it is indispensable to improve the performance of a thin film transistor as a driving element.

【0003】現在、液晶表示装置に用いられる薄膜トラ
ンジスタの主流は非晶質Si薄膜トランジスタである
が、素子性能の向上や基板内蔵化が可能等の利点がある
多結晶Si薄膜トランジスタへと移行しつつある。
At present, the mainstream of thin film transistors used in liquid crystal display devices is amorphous Si thin film transistors, but they are shifting to polycrystalline Si thin film transistors which have advantages such as improvement in element performance and incorporation of a substrate.

【0004】そしてその多結晶薄膜形成技術としては、
使用可能な基板が石英基板に制限される従来の高温形成
技術に比較して、安価な低歪点のガラス基板を用いるこ
とができる低温(約600℃以下)形成技術の開発が盛
んである。特に、基板への熱ダメージが小さく、非晶質
薄膜を溶融結晶化して高品質な多結晶薄膜が得られるエ
キシマレーザーアニールは最も実用化に近い技術であ
る。
[0004] As the polycrystalline thin film forming technology,
Compared with the conventional high-temperature forming technique in which usable substrates are limited to quartz substrates, low-temperature (about 600 ° C. or lower) forming techniques that can use inexpensive low-strain-point glass substrates have been actively developed. In particular, excimer laser annealing, which has a small thermal damage to a substrate and melts and crystallizes an amorphous thin film to obtain a high-quality polycrystalline thin film, is a technique which is most practically used.

【0005】図5はエキシマレーザーアニールによる非
晶質Si薄膜の結晶化工程の一例を説明する工程模式図
であり、1は透光性基板2上に形成された非晶質Si薄
膜、3a,3b,3c,3dはエキシマレーザービーム
4により照射され、非晶質Si薄膜1の領域から変化し
た結晶化薄膜である。図5に示すように、まず、エキシ
マレーザービーム4を透光性基板2上に形成された非晶
質Si薄膜1に1回(1パルス)照射する。照射された
領域のSiは約100nsの溶融固化過程を経ることに
より、結晶化したSi薄膜の領域、即ち、結晶化薄膜3
aができる。次に、エキシマレーザービーム4を、前回
照射領域の一部分と重なるように透光性基板2上の非晶
質Si薄膜1に対して相対的に移動させた後、1回照射
する。この時点で、新たに周囲と異なる結晶化したSi
薄膜の領域、即ち、結晶化薄膜3bが形成される。以下
同様の手順を繰り返すことによって結晶化したSi薄膜
の領域、即ち、結晶化薄膜3c,3dが形成される。
FIG. 5 is a schematic diagram illustrating an example of a process of crystallizing an amorphous Si thin film by excimer laser annealing. Reference numeral 1 denotes an amorphous Si thin film formed on a transparent substrate 2; Reference numerals 3b, 3c, and 3d denote crystallized thin films irradiated with the excimer laser beam 4 and changed from the region of the amorphous Si thin film 1. As shown in FIG. 5, first, an excimer laser beam 4 is irradiated once (one pulse) on the amorphous Si thin film 1 formed on the light transmitting substrate 2. The Si in the irradiated area undergoes a melt-solidification process of about 100 ns to form a crystallized Si thin film area, that is, a crystallized thin film 3.
a. Next, the excimer laser beam 4 is moved once relative to the amorphous Si thin film 1 on the translucent substrate 2 so as to overlap a part of the previous irradiation area, and then irradiated once. At this point, the newly crystallized Si
A thin film region, that is, a crystallized thin film 3b is formed. Thereafter, by repeating the same procedure, regions of the crystallized Si thin film, that is, crystallized thin films 3c and 3d are formed.

【0006】このようなエキシマレーザーアニールによ
って得られる結晶化薄膜3a,3b,3c,3dは非晶
質Si薄膜1の膜厚バラツキやエキシマレーザービーム
4のパルスのバラツキ等の不安定要因が考えられるた
め、安定した結晶化薄膜を得るためには、結晶化薄膜の
適切な評価方法の確立が重要である。
The crystallized thin films 3a, 3b, 3c and 3d obtained by such excimer laser annealing may be caused by instability factors such as variations in the thickness of the amorphous Si thin film 1 and variations in the pulse of the excimer laser beam 4. Therefore, in order to obtain a stable crystallized thin film, it is important to establish an appropriate evaluation method for the crystallized thin film.

【0007】一般に、結晶化薄膜の評価方法としては、
ラマン分光法,X線回折法,透過型電子顕微鏡で直接観
察する方法等が用いられている。
In general, as a method for evaluating a crystallized thin film,
Raman spectroscopy, X-ray diffraction, direct observation with a transmission electron microscope, and the like are used.

【0008】しかし、いずれの方法も高価な設備が必要
であったり、評価分析に長時間を要するものが多く簡便
な方法とは言えない。
However, all of these methods require expensive equipment and require a long time for evaluation and analysis, and thus cannot be said to be simple methods.

【0009】一方、簡易的な評価方法の一つとして、紫
外域の分光反射スペクトルを分析する方法がある。図6
はエキシマレーザーアニールにより結晶化したSi薄膜
の紫外域の分光反射スペクトル図であり、横軸は反射光
の波長(nm)、縦軸は結晶化Si薄膜の反射率
(%)、図中、点線は非晶質Si薄膜の反射特性曲線、
実線は結晶化Si薄膜の反射特性曲線を示す。図6か
ら、Si薄膜の結晶化が進むにつれて反射光の波長が約
270nmを中心とした帯域の反射率が増大することが
わかる。この反射率の変化を検出することによって結晶
化薄膜の評価を行うことができる。しかし、このような
紫外域の波長の光では主に薄膜表面において反射するた
め、薄膜の深さ方向の結晶性を評価するには適していな
い。紫外域の分光反射スペクトルによる結晶化薄膜の評
価方法については、例えば、ジャパニーズ・アプライド
・フィジックス VOL.25, No.2(1986
年)第L121頁〜第L123頁(Japanese
Journal of Applied Physic
s Vol.25, No.2(1986)pp.L1
21〜L123)に報告されている。
On the other hand, as one of simple evaluation methods, there is a method of analyzing a spectral reflection spectrum in an ultraviolet region. FIG.
Is a spectral reflection spectrum diagram in the ultraviolet region of a Si thin film crystallized by excimer laser annealing, in which the horizontal axis represents the wavelength of reflected light (nm), the vertical axis represents the reflectance (%) of the crystallized Si thin film, and the dotted line in the figure. Is the reflection characteristic curve of the amorphous Si thin film,
The solid line shows the reflection characteristic curve of the crystallized Si thin film. FIG. 6 shows that as the crystallization of the Si thin film progresses, the reflectance of the band around the wavelength of about 270 nm of the reflected light increases. The crystallized thin film can be evaluated by detecting the change in the reflectance. However, such light having a wavelength in the ultraviolet region is mainly reflected on the surface of the thin film, and is not suitable for evaluating the crystallinity in the depth direction of the thin film. For a method of evaluating a crystallized thin film using a spectral reflection spectrum in the ultraviolet region, see, for example, Japanese Applied Physics VOL. 25, No. 2 (1986
Year) L121 page to L123 page (Japanese)
Journal of Applied Physic
s Vol. 25, No. 2 (1986) pp. L1
21 to L123).

【0010】また一方で、分光透過スペクトルを分析す
る方法がある。図7は非晶質Si薄膜をエキシマレーザ
ーアニールにより結晶化した場合の分光透過スペクトル
図であり、横軸は透過光の波長(nm)、縦軸は基板及
びSi薄膜の透過率(%)、図中、点線は非晶質Si薄
膜の透過特性曲線、実線aはレーザー強度400mJ/
cm2 で結晶化した場合の結晶化Si薄膜の透過特性曲
線、実線bはレーザー強度250mJ/cm2 で結晶化
した場合の結晶化Si薄膜の透過特性曲線を示す。図7
から、結晶化するSi薄膜の光学吸収端が短波長側にシ
フトするため、例えば、400nmにおける透過率は非
晶質の状態から結晶化が進むにつれて増大することがわ
かる。この分光透過スペクトルを分析する方法は薄膜の
表面から底面まで透過した光を検出するために、薄膜全
体を平均化して評価するのに適した方法である。
On the other hand, there is a method of analyzing a spectral transmission spectrum. FIG. 7 is a spectral transmission spectrum diagram when the amorphous Si thin film is crystallized by excimer laser annealing. The horizontal axis is the wavelength of transmitted light (nm), the vertical axis is the transmittance of the substrate and the Si thin film (%), In the figure, the dotted line indicates the transmission characteristic curve of the amorphous Si thin film, and the solid line a indicates the laser intensity of 400 mJ /.
The transmission characteristic curve of the crystallized Si thin film when crystallized at cm 2 , and the solid line b shows the transmission characteristic curve of the crystallized Si thin film when crystallized at a laser intensity of 250 mJ / cm 2 . FIG.
This indicates that the optical absorption edge of the Si thin film to be crystallized shifts to the shorter wavelength side, so that, for example, the transmittance at 400 nm increases as the crystallization proceeds from the amorphous state. This method of analyzing the spectral transmission spectrum is a method suitable for averaging and evaluating the entire thin film in order to detect light transmitted from the surface to the bottom surface of the thin film.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の分光反射スペクトルを分析する方法及び分光
透過スペクトルを分析する方法はいずれにおいても、結
晶化工程とは別に結晶化薄膜の評価のための検査の時間
を要し、しかも多くの分光分析機器においては被測定対
象物として数十mm平方の大きさに切断しなければなら
ないため、薄膜トランジスタアレイ等の量産ライン検査
工程へ導入する結晶化薄膜の評価方法としてはあまり適
さなかった。
However, in both of the conventional methods of analyzing a spectral reflection spectrum and a method of analyzing a spectral transmission spectrum, the conventional methods for evaluating a crystallized thin film separately from the crystallization step. Inspection time is required, and many spectrometers have to be cut into several tens of mm squares as objects to be measured. It was not very suitable as an evaluation method.

【0012】本発明は、結晶化薄膜を非破壊で、かつ、
結晶化工程その場で評価する結晶化薄膜の評価方法を提
供することを目的とするものである。
According to the present invention, a crystallized thin film is non-destructively and
It is an object of the present invention to provide a method for evaluating a crystallized thin film to be evaluated in-situ in a crystallization step.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明は、透光性基板上の非晶質薄膜に対して結
晶化用エネルギービームを照射して結晶化薄膜とする結
晶化の工程で、結晶化した結晶化薄膜上に波長380〜
650nmの透過率測定用の光を照射して結晶化薄膜の
透過率を測定する結晶化薄膜の評価方法であり、結晶化
薄膜とする結晶化の工程その場で、結晶化薄膜を切断す
ることなく非破壊状態で結晶化薄膜の評価ができる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for irradiating an amorphous thin film on a transparent substrate with a crystallization energy beam to form a crystallized thin film. Wavelength of 380 on the crystallized crystallized thin film
This is a method of evaluating a crystallized thin film by measuring the transmittance of the crystallized thin film by irradiating light for transmittance measurement at 650 nm, and cutting the crystallized thin film in-situ in the crystallization step of forming the crystallized thin film. The crystallized thin film can be evaluated in a non-destructive state.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、透光性基板上の非晶質薄膜に対して結晶化用エネル
ギービームを照射して結晶化薄膜とする結晶化の工程
で、結晶化した結晶化薄膜上に波長380〜650nm
の透過率測定用の光を照射して結晶化薄膜の透過率を測
定する結晶化薄膜の評価方法であり、結晶化薄膜とする
結晶化の工程その場で、結晶化薄膜上に透過率測定用の
光を照射して結晶化薄膜の透過率を測定するものである
ので、透過率測定のために結晶化工程とは別に検査の時
間を要することがなく、しかも結晶化薄膜を切断するこ
となく非破壊状態で結晶化薄膜の評価ができる。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, there is provided a crystallization step of irradiating an amorphous thin film on a light-transmitting substrate with a crystallization energy beam to form a crystallized thin film. At a wavelength of 380 to 650 nm on the crystallized thin film.
This is a method for evaluating the crystallized thin film by measuring the transmittance of the crystallized thin film by irradiating light for measuring the transmittance of the crystallized thin film. Since the transmittance of the crystallized thin film is measured by irradiating the crystallized thin film, the inspection time is not required separately from the crystallization step for the transmittance measurement, and the crystallized thin film is cut. The crystallized thin film can be evaluated in a non-destructive state.

【0015】本発明の請求項2に記載の発明は、非晶質
薄膜の結晶化用エネルギービームが波長180〜320
nmの紫外線レーザービームである請求項1記載の結晶
化薄膜の評価方法であり、波長180〜320nmの紫
外線レーザービームを用いることにより、非晶質薄膜を
形成した透光性基板にガラス基板を用いた場合、ガラス
は紫外光に対して透過率が低いため、透光性基板の背後
に設けたフォトディテクタに特別な高耐光性の紫外遮光
フィルターを必要としない。
According to a second aspect of the present invention, the energy beam for crystallization of the amorphous thin film has a wavelength of 180 to 320.
2. The method for evaluating a crystallized thin film according to claim 1, wherein the glass substrate is used as a light-transmitting substrate on which an amorphous thin film is formed by using an ultraviolet laser beam having a wavelength of 180 to 320 nm. In this case, since the glass has a low transmittance to ultraviolet light, a photodetector provided behind the light-transmitting substrate does not require a special high light-resistance ultraviolet light shielding filter.

【0016】本発明の請求項3に記載の発明は、紫外線
レーザービームがエキシマレーザービームである請求項
2記載の結晶化薄膜の評価方法であり、エキシマレーザ
ービームを用いることにより、非晶質薄膜を形成した透
光性基板にガラス基板を用いた場合、ガラスは紫外光に
対して透過率が低いため、透光性基板の背後に設けたフ
ォトディテクタに特別な高耐光性の紫外遮光フィルター
を必要としない。
The invention according to claim 3 of the present invention is the method for evaluating a crystallized thin film according to claim 2, wherein the ultraviolet laser beam is an excimer laser beam. When a glass substrate is used as the light-transmitting substrate on which the glass is formed, the glass has a low transmittance for ultraviolet light, so a special high light-resistance ultraviolet light-shielding filter is required for the photodetector provided behind the light-transmitting substrate. And not.

【0017】本発明の請求項4に記載の発明は、非晶質
薄膜に対する結晶化用エネルギービームの照射領域と、
結晶化した結晶化薄膜上に照射する透過率測定用の光の
照射領域が少なくとも一部分が重なっており、結晶化薄
膜及び透光性基板を透過する光を検出して結晶化薄膜の
透過率を測定する請求項1記載の結晶化薄膜の評価方法
であり、結晶化用エネルギービームの照射領域と透過率
測定用の光の照射領域が少なくとも一部分が重なってお
り、その状態で結晶化薄膜及び透光性基板を透過する透
過率測定用の光を用いているため、透過率測定用の光を
測定するために別の装置を必要としない。
According to a fourth aspect of the present invention, there is provided an irradiation region of an amorphous thin film with a crystallization energy beam,
At least a part of the irradiation area of the light for transmittance measurement irradiated on the crystallized crystallized thin film overlaps, and the light transmitted through the crystallized thin film and the light transmitting substrate is detected to reduce the transmittance of the crystallized thin film. The method for evaluating a crystallized thin film according to claim 1, wherein the irradiation region of the energy beam for crystallization and the irradiation region of the light for transmittance measurement are at least partially overlapped with each other. Since the light for transmittance measurement transmitted through the optical substrate is used, another device is not required for measuring the light for transmittance measurement.

【0018】本発明の請求項5に記載の発明は、非晶質
薄膜がSi(シリコン)を主成分とする請求項1記載あ
るいは請求項2記載あるいは請求項3記載あるいは請求
項4記載の結晶化薄膜の評価方法である。
According to a fifth aspect of the present invention, there is provided the crystal according to the first, second, third, or fourth aspect, wherein the amorphous thin film mainly comprises Si (silicon). This is a method for evaluating a thin film.

【0019】以下、本発明の結晶化薄膜の評価方法の実
施の形態について図面を参照して説明する。
An embodiment of the method for evaluating a crystallized thin film according to the present invention will be described below with reference to the drawings.

【0020】(実施の形態1)図1は本発明の実施の形
態1における結晶化薄膜の評価方法の評価工程説明図、
図2は図1の評価工程説明図の一部平面図であり、透光
性基板5上の非晶質Si薄膜6に対して、エキシマレー
ザーよりなる結晶化用エネルギービーム7と、He−N
eレーザービーム(波長633nm)よりなる透過率測
定用の光8を同一光軸に沿って照射し、結晶化用エネル
ギービーム7の照射により変化した透光性基板5上の結
晶化Si薄膜9の部分と同じ部分を透過率測定用の光8
で照射し、結晶化Si薄膜9と透光性基板5を透過した
透過率測定用の光8をフォトディテクタ10に入射し、
透過率を測定する。
(Embodiment 1) FIG. 1 is an explanatory view of an evaluation process of an evaluation method of a crystallized thin film according to Embodiment 1 of the present invention.
FIG. 2 is a partial plan view of the explanatory view of the evaluation step of FIG. 1, in which a crystallization energy beam 7 composed of an excimer laser and a He-N
A light 8 for transmittance measurement composed of an e-laser beam (wavelength 633 nm) is irradiated along the same optical axis, and the crystallized Si thin film 9 on the light-transmitting substrate 5 changed by the irradiation of the energy beam 7 for crystallization. The same part as the light 8 for transmittance measurement
And the light 8 for transmittance measurement transmitted through the crystallized Si thin film 9 and the translucent substrate 5 is incident on the photodetector 10,
Measure the transmittance.

【0021】このような構成にすることにより、予め、
結晶化用エネルギービーム7の照射前の透過率、即ち、
非晶質Si薄膜6の状態における透過率測定用の光8の
透過率をフォトディテクタ10で測定しておき、次に、
結晶化用エネルギービーム7を非晶質Si薄膜6に照射
することにより結晶化Si薄膜9となった部分の透過率
測定用の光8の透過率をフォトディテクタ10で測定し
て、両者の値を比較することにより、結晶化前後のSi
薄膜の透過率変化を検出することができる。ここで、S
i薄膜の透過率は、図7の分光透過スペクトル図に示す
ように、結晶化用エネルギービーム7の照射前の非晶質
の状態の透過率から、照射後の結晶化の状態の透過率は
増大する。
With such a configuration,
The transmittance before irradiation of the energy beam 7 for crystallization, that is,
The transmittance of the light 8 for transmittance measurement in the state of the amorphous Si thin film 6 is measured by the photodetector 10, and then,
By irradiating the amorphous Si thin film 6 with the energy beam 7 for crystallization, the transmittance of the light 8 for transmittance measurement in the portion that has become the crystallized Si thin film 9 is measured by a photodetector 10 and the values of both are measured. By comparison, the Si before and after crystallization
A change in the transmittance of the thin film can be detected. Where S
As shown in the spectral transmission spectrum diagram of FIG. 7, the transmittance of the i thin film is determined from the transmittance in the amorphous state before irradiation with the energy beam for crystallization 7 to the transmittance in the crystallized state after irradiation. Increase.

【0022】(実施の形態2)図3は本発明の実施の形
態2における結晶化薄膜の評価方法の評価工程説明図、
図4は図3の評価工程説明図の一部平面図であり、図
3,図4が実施の形態1を示す図1,図2と異なるとこ
ろは、エキシマレーザーよりなる結晶化用エネルギービ
ームが非晶質Si薄膜上をスキャン照射することによ
り、結晶化Si薄膜となった部分が非晶質Si薄膜上を
帯状となって伸びている点だけであり、それ以外は同じ
であるので、図1,図2と同じ部分には同じ符号を付し
説明は省略する。11は透光性基板5上の非晶質Si薄
膜6を走査して照射するエキシマレーザーよりなる結晶
化用エネルギービームであり、この照射により非晶質S
i薄膜6上には帯状に変化した結晶化Si薄膜12が形
成される。なおこの場合、結晶化用エネルギービーム1
1の走査は相対的に走査できればよいので、透光性基板
5あるいは結晶化用エネルギービーム11のどちらを走
査してもよい。また、結晶化Si薄膜12及び透光性基
板5を通過した透過率測定用の光8の入射されるフォト
ディテクタ10は透過率測定用の光8に対して相対的に
静止していなければならない。
(Embodiment 2) FIG. 3 is an explanatory view of an evaluation process of a method for evaluating a crystallized thin film according to Embodiment 2 of the present invention.
FIG. 4 is a partial plan view of the evaluation step explanatory view of FIG. 3, and FIG. 3 and FIG. 4 are different from FIG. 1 and FIG. 2 showing the first embodiment in that a crystallization energy beam composed of an excimer laser is used. By scanning and irradiating the amorphous Si thin film, only the portion that has become the crystallized Si thin film extends in a band shape on the amorphous Si thin film, and the other points are the same. 1 and FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. Numeral 11 denotes a crystallization energy beam composed of an excimer laser for scanning and irradiating the amorphous Si thin film 6 on the translucent substrate 5.
On the i thin film 6, a crystallized Si thin film 12 changed into a band shape is formed. In this case, the energy beam for crystallization 1
Since it is only necessary that the scanning of 1 can be performed relatively, either the translucent substrate 5 or the energy beam 11 for crystallization may be scanned. Further, the photodetector 10 on which the light 8 for transmittance measurement that has passed through the crystallized Si thin film 12 and the light transmitting substrate 5 must be relatively stationary with respect to the light 8 for transmittance measurement.

【0023】Si薄膜の透過率評価に関しては実施の形
態1と同様、結晶化Si薄膜12及び透光性基板5を通
過した透過率測定用の光8をフォトディテクタ10で検
出して透過率を測定するものである。
As in the first embodiment, the transmittance of the Si thin film is measured by detecting the light 8 for transmittance measurement that has passed through the crystallized Si thin film 12 and the translucent substrate 5 with the photodetector 10 as in the first embodiment. Is what you do.

【0024】上記の実施の形態1,2においては、透過
率測定用の光8の照射領域は、非晶質Si薄膜6に対す
る結晶化用エネルギービーム7,11の照射領域と少な
くとも一部分が重なっており、同一光軸に沿って照射し
ているが、透過率測定用の光8と結晶化用エネルギービ
ーム7,11は、その照射領域の方は一部分重なる必要
があっても、同一光軸,同一断面形状である必要はな
い。
In the first and second embodiments, the irradiation area of the transmittance measuring light 8 at least partially overlaps the irradiation area of the crystallization energy beams 7 and 11 on the amorphous Si thin film 6. Although the irradiation is performed along the same optical axis, the light 8 for transmittance measurement and the energy beams 7 and 11 for crystallization have the same optical axis even if their irradiation areas need to partially overlap. It is not necessary that they have the same cross-sectional shape.

【0025】また、一般に、透光性基板5としてガラス
基板を用いているが、ガラスは紫外光に対して透過率が
低いため、結晶化用エネルギービーム7,11のエキシ
マレーザービームを連続繰り返し照射する場合において
も、フォトディテクタ10までの光路上に特別な高耐光
性の紫外遮光フィルターを必要としない。
In general, a glass substrate is used as the translucent substrate 5. However, since glass has a low transmittance with respect to ultraviolet light, excimer laser beams of the crystallization energy beams 7, 11 are continuously and repeatedly irradiated. In this case, no special high lightfast ultraviolet light shielding filter is required on the optical path to the photodetector 10.

【0026】さらに、ビームの断面形状としては特に限
定されず、例えば、断面が線状(片軸のビーム幅がもう
一方の軸のビーム幅に対して極端に短いもの)のビーム
でも構わない。
Further, the cross-sectional shape of the beam is not particularly limited. For example, a beam having a linear cross section (a beam width of one axis is extremely shorter than the beam width of the other axis) may be used.

【0027】また、結晶化薄膜としてSi薄膜について
述べたが、他の結晶化薄膜、例えばGe薄膜でも同様で
ある。
Although the Si thin film has been described as a crystallized thin film, the same applies to other crystallized thin films, for example, a Ge thin film.

【0028】[0028]

【発明の効果】以上のように、本発明の結晶化薄膜の評
価方法によれば、結晶化工程その場での評価が可能であ
るため、後検査工程が省略され生産性向上に有効であ
る。また、抜き取り評価ではなく、全数評価も可能であ
り、歩留まり向上に有効である。また、非破壊評価であ
るので生産性向上という有利な効果が得られる。
As described above, according to the method for evaluating a crystallized thin film of the present invention, the on-site evaluation of the crystallization step is possible, and the post-inspection step is omitted, which is effective for improving the productivity. . In addition, it is possible to evaluate not only the sampling but also the total number, which is effective for improving the yield. Further, since the evaluation is non-destructive, an advantageous effect of improving productivity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における結晶化薄膜の評
価方法の評価工程説明図
FIG. 1 is an explanatory view of an evaluation step of an evaluation method of a crystallized thin film according to a first embodiment of the present invention.

【図2】図1の評価工程説明図の一部平面図FIG. 2 is a partial plan view of the evaluation step explanatory view of FIG. 1;

【図3】本発明の実施の形態2における結晶化薄膜の評
価方法の評価工程説明図
FIG. 3 is an explanatory view of an evaluation step of an evaluation method of a crystallized thin film according to the second embodiment of the present invention.

【図4】図3の評価工程説明図の一部平面図FIG. 4 is a partial plan view of the evaluation step explanatory view of FIG. 3;

【図5】非晶質Si薄膜の結晶化工程の一例を説明する
工程模式図
FIG. 5 is a schematic process diagram illustrating an example of a crystallization process of an amorphous Si thin film.

【図6】Si薄膜の紫外域の分光反射スペクトル図FIG. 6 is a spectral reflection spectrum diagram of a Si thin film in an ultraviolet region.

【図7】非晶質Si薄膜をエキシマレーザーアニールに
より結晶化した場合の分光透過スペクトル図
FIG. 7 is a spectral transmission spectrum diagram when an amorphous Si thin film is crystallized by excimer laser annealing.

【符号の説明】[Explanation of symbols]

1,6 非晶質Si薄膜 2,5 透光性基板 3a,3b,3c,3d 結晶化薄膜 4 エキシマレーザービーム 7,11 結晶化用エネルギービーム 8 透過率測定用の光 9,12 結晶化Si薄膜 10 フォトディテクタ 1,6 Amorphous Si thin film 2,5 Transparent substrate 3a, 3b, 3c, 3d Crystallized thin film 4 Excimer laser beam 7,11 Energy beam for crystallization 8 Light for transmittance measurement 9,12 Crystallized Si Thin film 10 Photodetector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/336 H01L 29/78 627G ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/336 H01L 29/78 627G

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板上の非晶質薄膜に対して結晶
化用エネルギービームを照射して結晶化薄膜とする結晶
化の工程で、結晶化した結晶化薄膜上に波長380〜6
50nmの透過率測定用の光を照射して結晶化薄膜の透
過率を測定する結晶化薄膜の評価方法。
In a crystallization step of irradiating an amorphous thin film on a light-transmitting substrate with a crystallization energy beam to form a crystallized thin film, a wavelength of 380-6 is applied to the crystallized crystallized thin film.
A method for evaluating a crystallized thin film in which the transmittance of the crystallized thin film is measured by irradiating light for measuring the transmittance of 50 nm.
【請求項2】 非晶質薄膜の結晶化用エネルギービーム
が波長180〜320nmの紫外線レーザービームであ
る請求項1記載の結晶化薄膜の評価方法。
2. The method for evaluating a crystallized thin film according to claim 1, wherein the energy beam for crystallization of the amorphous thin film is an ultraviolet laser beam having a wavelength of 180 to 320 nm.
【請求項3】 紫外線レーザービームがエキシマレーザ
ービームである請求項2記載の結晶化薄膜の評価方法。
3. The method according to claim 2, wherein the ultraviolet laser beam is an excimer laser beam.
【請求項4】 非晶質薄膜に対する結晶化用エネルギー
ビームの照射領域と、結晶化した結晶化薄膜上に照射す
る透過率測定用の光の照射領域が少なくとも一部分が重
なっており、結晶化薄膜及び透光性基板を透過する光を
検出して結晶化薄膜の透過率を測定する請求項1記載の
結晶化薄膜の評価方法。
4. The crystallization energy beam irradiation region on the amorphous thin film and the transmittance measurement light irradiation region irradiated on the crystallized crystallized thin film at least partially overlap each other. The method for evaluating a crystallized thin film according to claim 1, wherein the transmittance of the crystallized thin film is measured by detecting light transmitted through the translucent substrate.
【請求項5】 非晶質薄膜がSi(シリコン)を主成分
とする請求項1記載あるいは請求項2記載あるいは請求
項3記載あるいは請求項4記載の結晶化薄膜の評価方
法。
5. The method for evaluating a crystallized thin film according to claim 1, wherein the amorphous thin film mainly comprises Si (silicon).
JP3135097A 1997-01-30 1997-01-30 Method for evaluating crystallized thin film Pending JPH10214869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135097A JPH10214869A (en) 1997-01-30 1997-01-30 Method for evaluating crystallized thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135097A JPH10214869A (en) 1997-01-30 1997-01-30 Method for evaluating crystallized thin film

Publications (1)

Publication Number Publication Date
JPH10214869A true JPH10214869A (en) 1998-08-11

Family

ID=12328788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135097A Pending JPH10214869A (en) 1997-01-30 1997-01-30 Method for evaluating crystallized thin film

Country Status (1)

Country Link
JP (1) JPH10214869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109902A (en) * 2001-10-02 2003-04-11 Hitachi Ltd Method of forming polysilicon film
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer
KR20200044910A (en) 2017-09-06 2020-04-29 브이 테크놀로지 씨오. 엘티디 Crystallization monitoring method, laser annealing device, and laser annealing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109902A (en) * 2001-10-02 2003-04-11 Hitachi Ltd Method of forming polysilicon film
US6806099B2 (en) 2001-10-02 2004-10-19 Hitachi, Ltd. Process for producing polycrystalline silicon film by crystallizing on amorphous silicon film by light irradiation
KR100833761B1 (en) * 2001-10-02 2008-05-29 가부시키가이샤 히타치세이사쿠쇼 Process for producing polysilicon film
US7413604B2 (en) 2001-10-02 2008-08-19 Hitachi, Ltd. Process for producing polysilicon film
JP2007285810A (en) * 2006-04-14 2007-11-01 Mitsubishi Heavy Ind Ltd Device and method for evaluating photoelectric conversion layer
KR20200044910A (en) 2017-09-06 2020-04-29 브이 테크놀로지 씨오. 엘티디 Crystallization monitoring method, laser annealing device, and laser annealing method

Similar Documents

Publication Publication Date Title
KR101519527B1 (en) Methods for determining wafer temperature
KR930020203A (en) Method for Forming Polycrystalline Silicon Film in LCD Manufacturing Processor
CN113167744B (en) Scattering measurement-based method and system for strain measurement in semiconductor structures
US6788405B2 (en) Nonlinear optical system for sensing the presence of contamination on a semiconductor wafer
US7542152B2 (en) Method for measuring thickness of thin film, method for forming polycrystal semiconductor thin film, method for manufacturing semiconductor device, apparatus for manufacturing the same, and method for manufacturing image display device
US6815377B2 (en) Laser annealing method and apparatus for determining laser annealing conditions
JP2000031229A (en) Inspection method of semiconductor thin film and manufacture of semiconductor thin film by use thereof
US8717555B2 (en) Device and method for inspecting polycrystalline silicon layer
JP2916452B1 (en) Evaluation method of crystalline semiconductor thin film and laser annealing apparatus
JPH10214869A (en) Method for evaluating crystallized thin film
JPH09243569A (en) Apparatus and method for evaluating semiconductor substrate
US6455853B2 (en) Determination of thickness and impurity profiles in thin membranes utilizing spectorscopic data obtained from ellipsometric investigation of both front and back surfaces
JP5301770B2 (en) Thin film semiconductor crystallinity measuring apparatus and method
KR102342848B1 (en) Laser annealing apparatus
JP3433856B2 (en) Amorphous thin film crystallization method
US9976969B1 (en) Monitoring method and apparatus for excimer-laser annealing process
JP2010182841A (en) Method of forming semiconductor thin film and inspection device for semiconductor thin film
JPH0620938A (en) Quick thermal oxidizing apparatus for semiconductor substrate
JPH0625740B2 (en) Method for detecting defects in thin film layer of crystal substrate
JP2000097642A (en) Film thickness monitor
KR200207691Y1 (en) Wafer inspection system
Mikla et al. Introduction to Raman Measurements and Spectra: From Fundamentals to Applications in Materials, Sensing and Medicine
JPH1140635A (en) Method for evaluating layer thickness of semiconductor multilayered film
KR20240111553A (en) Terahertz(THz) signal-based measuring apparatus and measuring method
George et al. Infrared wire grid polarizers: metrology and modeling