JPH10214868A - Evaluation of cmp treatment - Google Patents

Evaluation of cmp treatment

Info

Publication number
JPH10214868A
JPH10214868A JP1523197A JP1523197A JPH10214868A JP H10214868 A JPH10214868 A JP H10214868A JP 1523197 A JP1523197 A JP 1523197A JP 1523197 A JP1523197 A JP 1523197A JP H10214868 A JPH10214868 A JP H10214868A
Authority
JP
Japan
Prior art keywords
probe
wafer
sample
cmp
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1523197A
Other languages
Japanese (ja)
Inventor
Hiromasa Maruno
浩昌 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1523197A priority Critical patent/JPH10214868A/en
Publication of JPH10214868A publication Critical patent/JPH10214868A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To priovde a method for evaluating a chemimechanical polishing(CMP) process, which can measure a surface roughness of a wafer after subjected to the CMP treatment in a non-destructive inspection to realize an inline sequence of evaluation of the CMP process. SOLUTION: A specimen S is brought into contact with a probe 1a arranged opposing thereto, the probe 1a and specimen S are relatively scanned to detect a physical quantity generated by an interaction between the probe 1a and a surface of the specimen. In this connection, a scanning probe microscope (AFM) is used for measuring the form of the specimen surface at an atomic level of resolution on the basis of the detected physical quantity. A wafer to be measured is positioned under the probe 1a, the probe 1a is linearly scanned under a condition that the probe 1a is located at a predetermined position (measurement point) of the wafer, to measure a surface form of the wafer in a non-destructive inspection and to judge whether or not the CMP process has been properly carried out on the basis of its measurement result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スにおいてCMP処理を行ったウエハを評価する方法に
関する。
The present invention relates to a method for evaluating a wafer subjected to a CMP process in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】VLSIデバイスの高微細化・高密度化
に対応して、様々な微細加工技術が開発されており、そ
の一つとしてCMP(Chemical Mechanical Polishing
;化学的機械研磨)技術が最近急速に注目されてきて
いる。
2. Description of the Related Art Various microfabrication techniques have been developed in response to the increase in the size and density of VLSI devices. One of them is CMP (Chemical Mechanical Polishing).
Chemical-mechanical polishing) technology has recently received a great deal of attention.

【0003】このCMP技術は、高微細・高密度加工を
行う半導体製造プロセスにおいて、デバイス表面に段差
・凹凸が存在すると、ステッパ等の焦点深度の関係上、
フォトリソグラフィや配線パターン形成などの際に十分
な解像度が得られなくなってしまうことから、そのデバ
イス表面の段差・凹凸の解消のために、デバイス表面を
平坦化(グローバル平坦化)する技術で、特に、多層配
線構造を必要とするデバイスの生産において、その重要
性が注目されている。
In the semiconductor manufacturing process for performing high-precision and high-density processing, this CMP technology is not suitable for the step depth due to the presence of steps and unevenness on the device surface.
Since sufficient resolution cannot be obtained during photolithography or wiring pattern formation, etc., this technology is used to flatten the device surface (global flattening) in order to eliminate steps and irregularities on the device surface. In the production of devices requiring a multi-layer wiring structure, its importance is attracting attention.

【0004】そして、このような半導体製造プロセスに
おいて実施されるCMP処理の評価には、現在、走査型
電子顕微鏡(以下、SEMと称する)や光学的手法が採
用されている。
At present, a scanning electron microscope (hereinafter, referred to as SEM) and an optical method are employed for evaluating the CMP processing performed in such a semiconductor manufacturing process.

【0005】[0005]

【発明が解決しようとする課題】ところで、CMP処理
による表面凹凸の平坦化は、凹凸値を数100nm〜数
1000nmのオーダーにまで仕上げる処理であること
から、SEMや光学的手法を用いた観察では、焦点深度
の問題から試料の表面形状を真上から捉えることが不可
能で、従って、評価を行うウエハの一部分を破壊して試
料を作製し、その断面をSEMで観察するという方法を
採らざるを得ない。
By the way, the flattening of the surface unevenness by the CMP process is a process of finishing the unevenness value to the order of several hundred nm to several thousand nm. Therefore, observation using an SEM or an optical method is difficult. Because of the problem of the depth of focus, it is impossible to grasp the surface shape of the sample from directly above. Therefore, a method of destroying a part of the wafer to be evaluated to produce the sample and observing the cross section with an SEM is not adopted. Not get.

【0006】このように現状では、非破壊(ウエハを割
らない)で評価する方法がなく、このことが、CMP処
理の評価を半導体製造プロセスにおいてインラインで実
施する上での妨げとなっていた。
As described above, at present, there is no non-destructive (non-crackable) evaluation method, which hinders the in-line evaluation of the CMP process in the semiconductor manufacturing process.

【0007】本発明はそのような実情に鑑みてなされた
もので、CMP処理後のウエハの表面凹凸を非破壊で測
定するすることができ、もってCMP処理の評価の、プ
ロセスへのインライン化を実現することが可能なCMP
処理の評価方法の提供を目的とする。
The present invention has been made in view of such circumstances, and it is possible to non-destructively measure the surface unevenness of a wafer after a CMP process, thereby enabling inline evaluation of the CMP process to the process. CMP that can be realized
The purpose is to provide a method for evaluating processing.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のCMP処理の評価方法は、試料とこれに対
向配置した探針とを近接させ、その探針及び試料を相対
的に走査することにより、探針と試料表面との間の相互
作用により生じる物理量を検出して試料表面の形状を原
子レベルの分解能で測定する走査型プローブ顕微鏡(A
FM;Atomic Force Microscope )を用い、測定対象と
なるウエハを、上記探針下に配置するとともに、そのウ
エハの所定位置(例えば、デバイス配線パターンの形成
部P1 ・・P5 ;図2参照)に探針を位置合わせした状態
で、当該探針を線状に走査してウエハの表面形状を測定
し、その測定結果からCMP処理の良否を判定すること
によって特徴づけられる。
Means for Solving the Problems To achieve the above object, the present invention provides a method for evaluating a CMP process, in which a sample and a probe arranged opposite to the sample are brought close to each other, and the probe and the sample are relatively moved. By scanning, a scanning probe microscope (A) that detects a physical quantity generated by an interaction between the probe and the sample surface and measures the shape of the sample surface at an atomic level resolution.
Using an FM (Atomic Force Microscope), a wafer to be measured is arranged below the probe and searched at a predetermined position of the wafer (for example, device wiring pattern forming portions P1,..., P5; see FIG. 2). In a state where the needles are aligned, the probe is linearly scanned to measure the surface shape of the wafer, and the quality of the CMP process is determined from the measurement result.

【0009】本発明は、走査型プローブ顕微鏡の利点、
すなわち原子レベルの分解能で試料の表面形状を測定で
きる点に着目し、このような走査型プローブ顕微鏡を用
いることで、CMP処理を行った後のウエハでも、その
表面の段差・凹凸を、ウエハを破壊することなく非破壊
で測定できるようにする。しかも、本発明の評価方法で
は、この種の走査型プローブ顕微鏡において、通常実施
されている2次元走査を行うのではなく、表面凹凸が存
在する部分、例えばデバイス配線パターンの形成部を線
状に走査することによってその部分の表面凹凸を測定す
るので、短時間での観察が可能となる結果、CMP処理
の評価をプロセスラインに組み込むことが可能となる。
The present invention provides the advantages of a scanning probe microscope,
In other words, focusing on the fact that the surface shape of a sample can be measured with atomic-level resolution, the use of such a scanning probe microscope allows even the wafer after CMP processing to remove steps and irregularities on the surface of the wafer. Enable non-destructive measurement without destruction. In addition, in the evaluation method of the present invention, in a scanning probe microscope of this type, a portion having surface irregularities, for example, a portion where a device wiring pattern is formed is linearly formed instead of performing a two-dimensional scan which is usually performed. Since the surface unevenness of the portion is measured by scanning, observation in a short time becomes possible. As a result, it becomes possible to incorporate the evaluation of the CMP process into the process line.

【0010】[0010]

【発明の実施の形態】図1は、本発明のCMP処理の評
価方法の実施に用いる走査型プローブ顕微鏡の構成を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration of a scanning probe microscope used for carrying out a method for evaluating a CMP process according to the present invention.

【0011】この図1に示す走査型プローブ顕微鏡の機
構部は、先端に探針1aをもつカンチレバー1、その探
針1aをZ軸方向に駆動するZ軸微動機構(PZT)
2、探針1aをX,Y方向に走査するXY微動機構(P
ZT)3、及び、測定対象となる試料SつまりCMP処
理後のウエハの積載が可能な構造で、その試料Sの任意
の位置を探針1a下へ移動・配置するXY粗動ステージ
4を主として構成されている。
The mechanism of the scanning probe microscope shown in FIG. 1 is a cantilever 1 having a probe 1a at the tip, and a Z-axis fine movement mechanism (PZT) for driving the probe 1a in the Z-axis direction.
2. An XY fine movement mechanism (P) for scanning the probe 1a in the X and Y directions.
ZT) 3 and a XY coarse movement stage 4 which has a structure capable of loading a sample S to be measured, that is, a wafer after the CMP process, and moves and arranges an arbitrary position of the sample S under the probe 1a. It is configured.

【0012】走査型プローブ顕微鏡の制御系は、Z軸微
動機構2を駆動するZ軸ドライバ2a、XY微動機構3
を駆動するXY走査ドライバ3a、及びXY粗動ステー
ジ4を駆動するXY粗動ドライバ4a、並びに、そのX
Y走査ドライバ3aとXY粗動ドライバ4aに駆動指令
信号を供給する制御手段8によって構成されている。
The control system of the scanning probe microscope includes a Z-axis driver 2 a for driving the Z-axis fine movement mechanism 2, an XY fine-motion mechanism 3
XY scanning driver 3a for driving the XY coarse movement driver 4a for driving the XY coarse movement stage 4, and its X
The control unit 8 supplies a drive command signal to the Y scanning driver 3a and the XY coarse movement driver 4a.

【0013】また、検出系は、探針1aの変位を検出す
る変位検出器5、その変位検出器5の出力信号に基づい
て、探針1aの位置を一定にすべくZ軸ドライバ2aに
制御駆動信号を供給するサーボ機構6によって構成され
ており、このサーボ機構6の駆動制御信号(電流信号)
が、A/D変換部7によってデジタル信号に変換されて
制御手段8に入力される。
The detection system controls a Z-axis driver 2a to keep the position of the probe 1a constant based on an output signal of the displacement detector 5 for detecting the displacement of the probe 1a. The servo mechanism 6 supplies a drive signal, and a drive control signal (current signal) of the servo mechanism 6 is provided.
Is converted into a digital signal by the A / D converter 7 and input to the control means 8.

【0014】そして、以上の構造の走査型プローブ顕微
鏡では、上記したサーボ機構6によるZ軸微動機構2の
駆動制御により、探針1aのZ軸における位置を一定に
制御しつつ、試料Sの各測定ポイントP1 ・・P5 (図2
参照)を線状に走査(ラインスキャン)する、といった
動作での測定が可能で、このような走査過程においてサ
ーボ機構6がZ軸微動機構2を駆動制御する量が、試料
Sの表面形状を表すデータとなり、その表面形状データ
が記録装置9に各ラインスキャンごとに格納されてゆ
く。また、その記録装置9に格納された表面形状データ
は、図4に例示するような形態で表示装置10に表示さ
れる。
In the scanning probe microscope having the above structure, the position of the probe 1a in the Z-axis is controlled to be constant by the drive control of the Z-axis fine movement mechanism 2 by the servo mechanism 6 described above. Measurement points P1 ... P5 (Fig. 2
) Can be measured by an operation such as linear scanning (line scanning) of the sample S. In such a scanning process, the amount by which the servo mechanism 6 drives and controls the Z-axis fine movement mechanism 2 determines the surface shape of the sample S. The surface shape data is stored in the recording device 9 for each line scan. Further, the surface shape data stored in the recording device 9 is displayed on the display device 10 in a form illustrated in FIG.

【0015】次に、以上の走査プローブ顕微鏡を用い
て、図2に示すウエハを測定対象試料Sとして本発明の
評価方法を実施する場合の例を、以下、図3のフローチ
ャートを参照しつつ説明する。
Next, an example in which the evaluation method of the present invention is performed using the above-described scanning probe microscope with the wafer shown in FIG. 2 as a sample S to be measured will be described with reference to the flowchart of FIG. I do.

【0016】まず、図2に示すウエハは、VLSIの製
造プロセスにおいてCMP処理が行われたもので、この
例ではマトリクス状に並ぶVLSIデバイスD・・Dのう
ち、上下左右及び中央部の5箇所に位置するデバイスD
の配線パターン形成部を測定点P1 ・・P5 とする。ま
た、この例のウエハの各デバイスD・・Dの配線パターン
はY方向に平行に形成されているものとする。
First, the wafer shown in FIG. 2 has been subjected to a CMP process in a VLSI manufacturing process. In this example, five VLSI devices D,. Device D located at
Are defined as measurement points P1... P5. The wiring pattern of each device D,... D of the wafer in this example is formed in parallel with the Y direction.

【0017】さて、試料SをXY粗動ステージ4上に載
置して、走査プローブ顕微鏡による観察を開始すると、
制御手段8によるXY粗動ステージ4の駆動制御によ
り、まず、試料Sの測定点P1 の位置が探針1aの下方
に位置決めされる。
Now, when the sample S is mounted on the XY coarse movement stage 4 and observation with a scanning probe microscope is started,
By the drive control of the XY coarse movement stage 4 by the control means 8, first, the position of the measurement point P1 of the sample S is positioned below the probe 1a.

【0018】次に、XY微動機構3の駆動制御により、
探針1aがX方向(デバイス配線パターンと垂直方向)
に沿ってラインスキャンされ、この走査過程においてサ
ーボ機構6からの駆動制御信号が、A/D変換部7によ
って所定の微小時間ごとに刻々とデジタル化された後、
そのデータは制御手段8を経由して記録装置9に、試料
Sの表面形状データとして格納されてゆく。なお、この
ときのX軸の走査距離及び次のY軸の走査距離はともに
100μm程度である。
Next, by controlling the driving of the XY fine movement mechanism 3,
Probe 1a is in X direction (perpendicular to device wiring pattern)
After the drive control signal from the servo mechanism 6 is digitized by the A / D converter 7 every predetermined minute time in this scanning process,
The data is stored in the recording device 9 via the control means 8 as surface shape data of the sample S. At this time, the scanning distance on the X axis and the scanning distance on the next Y axis are both about 100 μm.

【0019】次いで、XY粗動ステージ4の駆動によ
り、探針1aの試料Sに対する位置が測定点P1 のY方
向の走査位置に位置決めされ、この状態で、XY微動機
構3の駆動制御により、探針1aがY方向(デバイス配
線パターンと平行方向)にラインスキャンされて、その
走査過程において採取された表面形状データが記録装置
9に格納される。
Then, by driving the XY coarse movement stage 4, the position of the probe 1a with respect to the sample S is positioned at the scanning position of the measurement point P1 in the Y direction. The needle 1a is line-scanned in the Y direction (a direction parallel to the device wiring pattern), and the surface shape data collected in the scanning process is stored in the recording device 9.

【0020】以上と同様な試料Sの位置決め、及びX,
Y方向のラインスキャンを、試料Sの測定点S2 ・・S5
に対して順次に実行してゆき、全ての測定点S1 ・・S5
のX,Y方向のラインスキャンが完了した後、その各測
定点S1 ・・S5 ごとに、表面形状データを表示装置10
に表示する(図4の表示例参照)。
Positioning of the sample S in the same manner as described above, and X,
The line scan in the Y direction is performed at the measurement points S2,.
For all measurement points S1... S5
After the line scan in the X and Y directions is completed, the surface shape data is displayed for each of the measurement points S1.
(See display example in FIG. 4).

【0021】そして、表示装置10に表示されたX軸及
びY軸の凹凸の値(図4参照)を、あらかじめ設定した
上限値(例えば数100nm)と比較検討し、CMP処
理の良否を判定する。
Then, the values of the concavities and convexities on the X axis and the Y axis (see FIG. 4) displayed on the display device 10 are compared with a preset upper limit value (for example, several hundred nm) to judge the quality of the CMP process. .

【0022】なお、以上の実施の形態では、1つの測定
点に対しX方向とY方向のラインスキャンが終了した
後、次の測定点のラインスキャンを実行するという手順
を採っているが、全ての測定点S1 〜S5 に対して、先
にX方向のラインスキャンのみを実行し、次いで各測定
点S1 〜S5 のY方向のラインスキャンを実行するとい
った手順を採用してもよい。
In the above-described embodiment, a procedure is adopted in which after the line scan in the X and Y directions is completed for one measurement point, the line scan for the next measurement point is executed. For the measurement points S1 to S5, only a line scan in the X direction may be performed first, and then a line scan in the Y direction at each measurement point S1 to S5 may be performed.

【0023】また、以上の実施の形態において、Xまた
はY軸のいずれか一方の軸方向に、配線パターンによる
表面凹凸が存在しないことが、デバイスの設計内容等に
よりあらかじめ分かっている場合(例えば図4に示すよ
うな場合)には、表面凹凸が存在する方向(例えばX軸
方向)のラインスキャンのみを実行すればよい。
In the above embodiment, it is known in advance from the design of the device that there is no surface unevenness due to the wiring pattern in either the X or Y axis direction (for example, FIG. 4), only the line scan in the direction in which the surface unevenness exists (for example, the X-axis direction) may be performed.

【0024】さらに、以上の実施の形態では、X,Y軸
の各方向に対し1回のラインスキャンを実行する例を示
しているが、各軸に対して所定ピッチで複数回のライン
スキャンを実行して、各測定点を帯状の走査により観察
するという手法を採用してもよく、この場合、試料Sの
表面形状をより詳しく測定することが可能になり、評価
の信頼性を高めることも可能になる。
Further, in the above embodiment, an example is shown in which one line scan is executed in each direction of the X and Y axes, but a plurality of line scans are executed at a predetermined pitch for each axis. Alternatively, a method of observing each measurement point by a band-like scan may be adopted. In this case, the surface shape of the sample S can be measured in more detail, and the reliability of the evaluation can be improved. Will be possible.

【0025】ここで、以上の実施の形態において、走査
型プローブ顕微鏡のXY粗動ステージ4への試料(CM
P処理ウエハ)の搬送・セット・リセット等を自動的に
行うハンドリング装置等をラインに組み込みこんでおけ
ば、CMP処理の評価を含めたプロセス全体の自動化を
達成することが可能となる。
Here, in the above embodiment, the sample (CM) is transferred to the XY coarse movement stage 4 of the scanning probe microscope.
If a handling device for automatically carrying, setting, and resetting a P-processed wafer) is incorporated in the line, automation of the entire process including evaluation of the CMP process can be achieved.

【0026】さらに、この場合、探針1aのラインスキ
ャンによって得られる表面形状データが、あらかじめ設
定した上限値(図4参照)内に入っているか、否かを判
定する機能を制御手段8に持たせておき、その上限値を
超える場合つまりCMP処理が不良である場合には、そ
の旨を知らせる警報等を発生する、といった構成を採用
すれば、オペレータらが表示装置10を監視する必要が
なくなり、更なる自動化・省力化をはかることができ
る。
Further, in this case, the control means 8 has a function of determining whether or not the surface shape data obtained by the line scan of the probe 1a is within a preset upper limit value (see FIG. 4). However, if the upper limit is exceeded, that is, if the CMP processing is defective, an alarm or the like is generated to notify the user of the failure, so that the operator does not need to monitor the display device 10. In addition, further automation and labor saving can be achieved.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
試料の表面形状を原子レベルの分解能で測定することが
可能な走査型プローブ顕微鏡を用いて、試料表面を線状
走査するといった手法を採用しているので、CMP処理
を行ったウエハの表面形状を非破壊でかつ短時間で測定
することができる。その結果、CMP処理の良否を、半
導体デバイス製造プロセスにおいてインラインでモニタ
・管理することが可能になる。
As described above, according to the present invention,
The method uses a scanning probe microscope that can measure the surface shape of the sample with atomic-level resolution, such as linear scanning of the sample surface. It can be measured nondestructively and in a short time. As a result, the quality of the CMP process can be monitored and managed inline in the semiconductor device manufacturing process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCMP処理の評価方法の実施に用いる
走査型プローブ顕微鏡の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of a scanning probe microscope used for carrying out a CMP processing evaluation method of the present invention.

【図2】評価を行う試料(CMP処理ウエハ)の例を示
す図
FIG. 2 is a diagram showing an example of a sample (CMP-processed wafer) to be evaluated.

【図3】本発明において実施する評価手順の例を示すフ
ローチャート
FIG. 3 is a flowchart illustrating an example of an evaluation procedure performed in the present invention.

【図4】試料Sの表面形状データの表示例を示す図FIG. 4 is a diagram showing a display example of surface shape data of a sample S;

【符号の説明】 1 カンチレバー 1a 探針 2 Z軸微動機構 3 XY微動機構 4 XY粗動ステージ 5 変位検出器 6 サーボ機構 7 A/D変換部 8 制御手段 9 記録装置 10 表示装置 S 試料(CMP処理ウエハ)[Description of Signs] 1 Cantilever 1a Probe 2 Z-axis fine movement mechanism 3 XY fine movement mechanism 4 XY coarse movement stage 5 Displacement detector 6 Servo mechanism 7 A / D converter 8 Control means 9 Recording device 10 Display device S Sample (CMP) Processing wafer)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造プロセスにおいてCMP処理
を行ったウエハを評価する方法であって、 試料とこれに対向配置した探針とを近接させ、その探針
及び試料を相対的に走査することにより、探針と試料表
面との間の相互作用により生じる物理量を検出して試料
表面の形状を原子レベルの分解能で測定する走査型プロ
ーブ顕微鏡を用い、測定対象となるウエハを上記探針下
に配置するとともに、そのウエハの所定位置に探針を位
置合わせした状態で、当該探針を線状に走査してウエハ
の表面形状を測定し、その測定結果からCMP処理の良
否を判定することを特徴とする、CMP処理の評価方
法。
1. A method for evaluating a wafer which has been subjected to a CMP process in a semiconductor manufacturing process, comprising: bringing a sample and a probe arranged opposite to the sample close to each other, and relatively scanning the probe and the sample. Using a scanning probe microscope that detects the physical quantity generated by the interaction between the probe and the sample surface and measures the shape of the sample surface with atomic-level resolution, the wafer to be measured is placed below the probe. While the probe is positioned at a predetermined position on the wafer, the probe is linearly scanned to measure the surface shape of the wafer, and the quality of the CMP process is determined from the measurement result. Evaluation method of CMP processing.
JP1523197A 1997-01-29 1997-01-29 Evaluation of cmp treatment Pending JPH10214868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1523197A JPH10214868A (en) 1997-01-29 1997-01-29 Evaluation of cmp treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1523197A JPH10214868A (en) 1997-01-29 1997-01-29 Evaluation of cmp treatment

Publications (1)

Publication Number Publication Date
JPH10214868A true JPH10214868A (en) 1998-08-11

Family

ID=11883101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1523197A Pending JPH10214868A (en) 1997-01-29 1997-01-29 Evaluation of cmp treatment

Country Status (1)

Country Link
JP (1) JPH10214868A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329563A (en) * 2002-05-16 2003-11-19 Seiko Instruments Inc Scanning probe microscope
KR100720456B1 (en) 2004-12-30 2007-05-22 동부일렉트로닉스 주식회사 Method and Apparatus for Automatic Aiming Laser Beam of AFM
WO2010147296A1 (en) * 2009-06-17 2010-12-23 (주)나노포커스 Afm measuring method and system thereof
US7869966B2 (en) 2001-09-13 2011-01-11 Hitachi, Ltd. Inspection method and its apparatus, inspection system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869966B2 (en) 2001-09-13 2011-01-11 Hitachi, Ltd. Inspection method and its apparatus, inspection system
JP2003329563A (en) * 2002-05-16 2003-11-19 Seiko Instruments Inc Scanning probe microscope
KR100720456B1 (en) 2004-12-30 2007-05-22 동부일렉트로닉스 주식회사 Method and Apparatus for Automatic Aiming Laser Beam of AFM
WO2010147296A1 (en) * 2009-06-17 2010-12-23 (주)나노포커스 Afm measuring method and system thereof
KR101045059B1 (en) 2009-06-17 2011-06-29 (주)나노포커스 Afm scanning method and afm scanning system
US8434159B2 (en) 2009-06-17 2013-04-30 Nanofocus, Inc. AFM measuring method and system thereof

Similar Documents

Publication Publication Date Title
TWI426271B (en) Method and apparatus of scanning a sample using a scanning probe microscope
RU2703496C1 (en) Integrated system and method for three-axis scanning in situ and detection of defects in object during static and cyclic test
JP2003227788A (en) Scanning probe microscope and measuring method of surface structure of sample
JP2609594B2 (en) Defect inspection equipment
KR20090018023A (en) Method and apparatus for characterizing a probe tip
JP5823662B2 (en) Scanning probe microscopy and apparatus utilizing sample pitch
JPH0783884A (en) Flaw examination method, flow examination device and flaw examination sensor
US20060289749A1 (en) Method for determining material interfacial and metrology information of a sample using atomic force microscopy
KR20110048080A (en) Method for inspection of defects on substrate
JPH10214868A (en) Evaluation of cmp treatment
US20140096293A1 (en) Method and apparatus for inspecting thermal assist type magnetic head
JPH0982771A (en) Method and apparatus for evaluating semiconductor material
JPH07134137A (en) Probe microscope device, and method for measuring probe-to-probe distance
JP2001024038A (en) Probe positioning method and apparatus and method of evaluating member using the same
US11289367B2 (en) Method, atomic force microscopy system and computer program product
JPH05347338A (en) Device for inspecting operation state of fine circuit
JPH03122514A (en) Observing apparatus for surface
JP2001165844A (en) Scan probe microscope
TWI785152B (en) Atomic force microscopy system, method for mapping one or more subsurface structures located in a semiconductor device or for monitoring lithographic parameters in a semiconductor device and use of such an atomic force microscopy system
JPH0293304A (en) Microscopic device
JP2022153337A (en) Atomic force microscope probe evaluation method, and measurement sample surface shape measurement method
JP2007046974A (en) Displacement quantity measuring instrument using multiprobe and displacement quantity measuring method using it
JPH0480604A (en) Scanning tunneling microscope and through-hole plating inspection device including same
JPH07198372A (en) Method and apparatus for evaluation of probe for scanning probe microscope
JPH11174065A (en) Latent image detecting method and exposure condition detecting method