JPH10212297A - Active oxygen free radical eliminator - Google Patents

Active oxygen free radical eliminator

Info

Publication number
JPH10212297A
JPH10212297A JP1833797A JP1833797A JPH10212297A JP H10212297 A JPH10212297 A JP H10212297A JP 1833797 A JP1833797 A JP 1833797A JP 1833797 A JP1833797 A JP 1833797A JP H10212297 A JPH10212297 A JP H10212297A
Authority
JP
Japan
Prior art keywords
fraction
whey
molecular weight
active oxygen
soybean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1833797A
Other languages
Japanese (ja)
Inventor
Hussein Fusuniza
フセイン フスニザ
Masaaki Kawane
政昭 川根
Yumiko Yoshiki
由美子 吉城
Kazuyoshi Okubo
一良 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP1833797A priority Critical patent/JPH10212297A/en
Publication of JPH10212297A publication Critical patent/JPH10212297A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an active oxygen free radical eliminator useful for oils and fats and a food for utilizing oils and fats as an antioxidant, comprising a specific fraction in a soybean whey as an active ingredient. SOLUTION: This medicine comprises a water-soluble component as an active ingredient obtained by removing oils and fats, acid precipitable protein, a water- insoluble component (usually called bean-curd refuse), etc., from soybean. The medicine comprises especially a fraction having 94KDa molecular weight and/or a fraction having 30KDa molecular weight in a soybean whey and preferably synergistically increases active oxygen free radical eliminating action by further using gallic acid. The fraction having 94KDa molecular weight and the fraction having 30KDa molecular weight in a soybean whey are obtained by a known fraction means of a soybean whey such as gel filtration fraction or membrane fraction. The soybean whey component is usable as an antioxidation promoter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大豆ホエー中の特
定画分を有効成分とする活性酸素ラジカル消去剤に関す
る。
The present invention relates to an active oxygen radical scavenger containing a specific fraction in soybean whey as an active ingredient.

【0002】[0002]

【従来の技術】本発明者等は、これまでの一連の研究
で、非酵素系であるX(活性酸素種)、Y(触媒種)お
よびZ(受容種)存在下での微弱発光現象をみつけ、フ
ラボノイド等の天然ラジカルスカベンジャーでの速度論
的解析でこのXYZ系が活性酸素ラジカル消去系である
ことを明らかにすることができた((1)Yoshiki Y, Okub
oK, Onuma S and Igarashi Y(1995): Chemiluminescenc
e of benzoic acid andcinnamic acid, and flavonoids
in the presence of aldehyde and hydrogenperoxide
or hydroxyl radical by Fenton reaction. Phytoche
mistry, 39, 225-229、(2) Yoshiki Y and Okubo K(199
5) : Oxygen radical scavenging activity of DDMP
(2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-on
e) conjugated saponin in soybean seed. Biosci. Bio
tech. Biochem., 59, 1556-1557、(3)Yoshiki Y , Okub
o K and Igarashi K(1995): Chemiluminescence of an
thocyanins in the presence of aldehyde and tert-bu
tyl hydroperoxide. J. Biolumin. Chemilumin., 10,
335-338、(4)Yoshiki Y, Kinumi M, Kahara T and Okub
o K(1996): Chemiluminescence of soybean saponins i
n the presence of active oxygen species. Plant Sci
ence, 116, 125-129、(5)Yoshiki Y, KaharaT, Okubo
K, Igarashi K, Yotsuhashi K and Fenwick G R(1956):
Chemiluminescence mechanism of catechins in the
presence of active oxygen. J. Biolumin. Chemilumi
n., in press)。
2. Description of the Related Art In a series of studies to date, the present inventors have studied the weak light emission phenomenon in the presence of non-enzymatic X (active oxygen species), Y (catalytic species) and Z (accepting species). Kinetic analysis using natural radical scavengers such as flavonoids revealed that this XYZ system is an active oxygen radical scavenging system ((1) Yoshiki Y, Okub
oK, Onuma S and Igarashi Y (1995): Chemiluminescenc
e of benzoic acid andcinnamic acid, and flavonoids
in the presence of aldehyde and hydrogenperoxide
or hydroxyl radical by Fenton reaction.Phytoche
mistry, 39, 225-229, (2) Yoshiki Y and Okubo K (199
5): Oxygen radical scavenging activity of DDMP
(2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-on
e) conjugated saponin in soybean seed.Biosci.Bio
tech.Biochem., 59, 1556-1557, (3) Yoshiki Y, Okub
o K and Igarashi K (1995): Chemiluminescence of an
thocyanins in the presence of aldehyde and tert-bu
tyl hydroperoxide. J. Biolumin. Chemilumin., 10,
335-338, (4) Yoshiki Y, Kinumi M, Kahara T and Okub
o K (1996): Chemiluminescence of soybean saponins i
n the presence of active oxygen species.Plant Sci
ence, 116, 125-129, (5) Yoshiki Y, KaharaT, Okubo
K, Igarashi K, Yotsuhashi K and Fenwick GR (1956):
Chemiluminescence mechanism of catechins in the
presence of active oxygen.J. Biolumin. Chemilumi
n., in press).

【0003】[0003]

【発明が解決しようとする課題】本発明は、XYZ系の
Zが相乗的に抗酸化性を促進する成分で、その代表的成
分がDDMPサポニンであり、たん白質等もその範疇に入る
予備的結果を得、味噌、醤油、もやし等の大豆食品に未
確認Z成分が存在する予備的結果を得たので、更に、大
豆ホエー中にかかるZ成分の存在を究明し摂取して活性
酸素ラジカル消去剤を得ることを目的とした。
DISCLOSURE OF THE INVENTION The present invention is based on the premise that XYZ-based Z is a component which synergistically promotes antioxidant properties, a typical component of which is DDMP saponin, and proteins and the like which fall within the category. As a result, preliminary results were obtained in which unidentified Z components were present in soybean foods such as miso, soy sauce, and bean sprouts. The aim was to get.

【0004】[0004]

【課題を解決するための手段】本発明者等は前記目的を
達成すべく大豆たん白質等からYおよびZ成分を検索し
た結果、ホエー区分にその活性がみられ、微弱発光特
性、ESRスピントラッピング法によるラジカル消去
能、抗酸化活性を明らかにすることができ、本発明を完
成するに到った。
Means for Solving the Problems The present inventors have searched the Y and Z components from soybean protein and the like in order to achieve the above-mentioned object. As a result, the activity was found in the whey category, the weak light emission characteristics, and the ESR spin trapping. The radical scavenging ability and the antioxidant activity by the method were clarified, and the present invention was completed.

【0005】即ち、本発明は、大豆ホエー中の分子量94
kDa画分及び/又は分子量30kDa画分を有効成分とする活
性酸素ラジカル消去剤である。没食子酸を含むことが好
適である。
[0005] That is, the present invention relates to a soybean whey having a molecular weight of 94
It is an active oxygen radical scavenger containing a kDa fraction and / or a 30 kDa molecular weight fraction as an active ingredient. It is preferred to include gallic acid.

【0006】[0006]

【発明の実施の形態】本発明の大豆ホエーは大豆から油
脂、酸沈殿性蛋白、水不溶性成分(通常オカラと称す
る)等を除いた水可溶性成分である。
BEST MODE FOR CARRYING OUT THE INVENTION The soybean whey of the present invention is a water-soluble component obtained by removing oils, fats, acid-precipitable proteins, water-insoluble components (usually called okara) and the like from soybean.

【0007】例えば、大豆或いは脱脂大豆を水抽出して
オカラ成分を除いて得られる豆乳(WSP:Water Soluble
Protein)を等電点(約pH4.5)付近に調整して蛋
白成分を沈殿(APP:Acid Precipitated Protein)除去
した残りの可溶性画分として得ることが出来る。必要に
より透析等膜分離により塩等の低分子成分を除くことが
出来る。或いは、豆乳を等電点より若干高いpH(pH
5.8付近)に調整して沈殿する画分を除いた可溶性画
分を透析等した後更に等電点付近のpHに調整して沈殿
してくる画分(主に7S画分)を更に除いた可溶性画分と
して得ることが出来る。前者の方法によるホエーのほう
が活性酸素ラジカル消去効果に優れ好ましい。
For example, soymilk (WSP: Water Soluble) obtained by extracting soybeans or defatted soybeans with water and removing the okara component
Protein) is adjusted to around the isoelectric point (about pH 4.5) to obtain the remaining soluble fraction from which the protein component has been removed (APP: Acid Precipitated Protein). If necessary, low molecular components such as salts can be removed by membrane separation such as dialysis. Alternatively, the soymilk is brought to a pH slightly higher than the isoelectric point (pH
The soluble fraction excluding the fraction that precipitates by adjusting to 5.8) is dialyzed, and then the pH is further adjusted to around the isoelectric point to further precipitate the fraction (mainly the 7S fraction). It can be obtained as a soluble fraction removed. Whey obtained by the former method is preferable because of its excellent effect of eliminating active oxygen radicals.

【0008】大豆ホエー中の分子量94kDa画分及び分子
量30kDa画分は、大豆ホエーをゲル濾過分画、膜分画
(ウルトラフィルター分画、逆浸透圧膜分画等)等の公
知の分画手段を利用して得ることが出来る。
[0008] The fraction of 94 kDa molecular weight and 30 kDa molecular weight in soybean whey can be obtained by known fractionation of soybean whey by gel filtration fractionation, membrane fractionation (ultrafilter fractionation, reverse osmosis membrane fractionation, etc.). Can be obtained by using.

【0009】大豆ホエー中分子量が94kDa画分も分子量
が30kDa画分も活性酸素ラジカル消去効果を有するが、
加熱すると活性酸素ラジカル消去効果が減少するので未
加熱のものが好適である。
[0009] In the soy whey, both the 94 kDa fraction and the 30 kDa fraction have a reactive oxygen radical scavenging effect.
Heating reduces the effect of scavenging active oxygen radicals, so unheated ones are preferred.

【0010】分子量が94kDa画分にはYとZの特性がみ
られるのに対し、分子量が30kDa画分にはZのみの特性
がみられる。両者ともに共通してZの特性、即ち、抗酸
化性を促進することが出来る。従来Z系は単独では酸化
促進に作用するものを、Y系等と組み合わせることによ
り抗酸化促進系に変化させることが出来る。従って、Z
の特性を有するこれらの画分はY系等と組み合わせるこ
とにより抗酸化性を促進するものである。
[0010] While the fraction of 94 kDa in molecular weight has characteristics of Y and Z, the fraction of 30 kDa has only Z characteristics in the fraction. Both can commonly promote the properties of Z, that is, antioxidant properties. Conventionally, the Z system alone acting on oxidation promotion can be changed to an antioxidant system by combining it with the Y system or the like. Therefore, Z
These fractions having the following characteristics promote antioxidant properties by being combined with a Y type or the like.

【0011】大豆ホエー中の分子量94kDa画分及び/又
は分子量30kDa画分は、自体活性酸素ラジカル消去効果
を有するが、没食子酸を併用すると活性酸素ラジカル消
去効果が相乗的に増加する。例えば、没食子酸添加した
大豆ホエー(分子量94kDa画分及び分子量30kDa画分を含
む)ではリノール酸の自動酸化が顕著に抑制することが
出来る。
The fraction of 94 kDa in molecular weight and / or the fraction of 30 kDa in soybean whey have an active oxygen radical scavenging effect by themselves, but when gallic acid is used in combination, the active oxygen radical scavenging effect increases synergistically. For example, in the case of soy whey to which gallic acid has been added (including a 94 kDa fraction and a 30 kDa fraction), autoxidation of linoleic acid can be significantly suppressed.

【0012】本発明の活性酸素ラジカル消去剤は、抗酸
化剤として油脂、油脂利用食品等に利用することが出来
る。
The active oxygen radical scavenger of the present invention can be used as an antioxidant in fats and oils, foods utilizing fats and oils, and the like.

【0013】[0013]

【実施例】以下実施例により本発名に実施態様を説明す
る。 実施例1 (実験方法試料の調製)低温脱脂大豆から10倍加水水
抽出液を得、図1に従って、水抽出(water extracted p
rotein、WEP)、ホエー(whey)、酸沈殿たん白質(acid pr
ecipitated protein、APP)、粗11S(11S)、粗7S(7
S)およびホエー〓(whey 〓)の各画分を調製した。 (ゲルろ過)50mMリン酸緩衝液(pH 7.0)に分散した約5
mlの試料液を、同緩衝液であらかじめ平衡化しておいた
セファローズ6Bまたは2Bカラム(6.5 x 2.7 cm)に
注入し、同緩衝液で溶出した。溶出液を5 ml毎に分取
し、280 nmにおける吸光度を測定した。 (電気泳動分析)Studierら(Studier F W(1973): Anal
ysis of bacteriophage T7 early RNAsand proteins on
slab/gels. J. Mol. Biol., 79, 237-248)に従い、SD
S-PAGAで電気泳動し、0.1%Coomassie Brilliant Blue R
-250で染色することによってゲル電気泳動分析した。 (抗酸化性の測定)ロダン鉄法(Nakatani N and Kikuz
aki H(1987): A new antioxidative glucoside isolate
d from Organo (Origanum vulgare L.). Agric. Biol.
Chem., 51,2727-2731)で次のようにして抗酸化性を求
めた。すなわち、1 mlの試料液(50mMリン酸緩衝液)に2.
51%リノール酸エタノールの1.026mlを加え、蒸留水で5
mlにした。リノール酸含有試料液を37℃にそれぞれ放置
した後、その0.1 mlを採取し、4.7 mlの75%エタノール
を加え、続いて0.1 mlの30%ammonium thiocyanateを加
えた。この混合液に3.5%塩酸で調製した0.02M ferrous
chlorideを加えて発色させ、3分後に500 nmにおける吸
光度を測定した。 (微弱発光の測定)微弱発光の測定は既報1)に従い次
のようにして行った。すなわち、送液ポンプ(Waters M
odel 510)とインジェクター(Waters U6K)付帯フォトン
カウンテイングタイプCL検出器(東北電子CLD-11
0、300-650 nm)を用い、50 mMリン酸緩衝液(pH 7.0)を
1.0 ml/minで送液し、インジェクターからH2O2等の活性
酸素種(X),没食子酸等の触媒種(Y)およびCH3CHO
等の受容種(Z)を注入することによって発生するフォ
トンを測定した。 (SOD活性の測定)河野ら(Hiramatsu M and Kohno M(1
987): Determination of superoxide dismutase activi
ty by electron spin resonance spectrometry using t
he spin trap method. JEOL NEWS, 23, 6-9)のESRスピ
ントラッピング法(日本電子JES-RE1X)により次のよう
にしてSOD活性を測定した。即ち、スピントラッピン
グ剤として9.2M DMPO (5,5-dimethyl-1-pyrroline-N-
oxide, LABOTEC CO.,LTD製)20μl、試料水溶液 50μ
l、2mM ヒポキサンチン 溶液 (SIGMA CHEMICAL 製) 50
μl、0.4U/ml キサンチンオキシダーゼ溶液(Behringer
Mannheim 製)50μlを混合・撹拌後、水溶液偏平セル
に混合溶液を吸引し、45秒間インキュベートした後、測
定を行った。 (結果と考察)XYZ微弱発光系における比較XYZ微弱発光
系における各たんぱく質画分の比較を次のようにして行
った。Yとして40 mg/mlの各たん白質溶液を準備し、Zと
して2%CH3CHOを用い、微弱発光強度に及ぼすXとしてのH
2O2濃度の影響を調べた。その結果(図2(a))、APPでは
ほとんど観察されなかったが、whey>whey〓>WEPの順
にH2O2濃度に依存した顕著な微弱発光が観察された。Z
として40 mg/mlの各画分溶液を準備し、Yとして50 mM没
食子酸を用い、微弱発光強度に及ぼすH2O2濃度の影響を
調べた。その結果(図2. (a))、WEP、APP、11Sおよ
び7Sでは低かったが、whey>whey〓の順にH2O2濃度に
依存した顕著な微弱発光が観察された。しかし、その発
光強度はYとしての約半分の値であった。2%CH3CHOまた
は50mM没食子酸存在下における40mg/mlwheyおよび1時
間加熱処理同画分の微弱発光に及ぼすH2O2濃度の影響を
調べた。その結果(図3.)、CH3CHO存在下におけるYお
よび没食子酸存在下におけるZとしてのwheyの微弱発光
はH2O2濃度に比例して直線的に増加したが、加熱処理wh
eyの微弱発光はYとして僅かな直線的増加がみられたに
過ぎなかった。これらの結果からH2O2存在下におけるwh
eyの微弱発光成分は酵素系であるものと推察され、より
直線的H2O2濃度依存性を示すことからZ特性を有してい
るものと思われる。また、wheyには酵素的Y特性成分の
存在も推察される。SOD活性5, 10および20 mg/mlの
各画分溶液を調製し、ESRスピントラッピング法でSOD活
性を調べた。その結果(図4)、APPと11SにはほとんどSO
D活性がみられなかったが、SOD活性は、WEPと7Sで0.1U/
mg、whey〓で0.3U/mg、特にwheyで1.7U/mgもの高い活性
がみられた。図には示さなかったが、没食子酸の添加で
微弱発光挙動同様にこれらの活性が高まった。Wheyの抗
酸化性におよぼすYの影響ロダン鉄法でリノール酸の自
動酸化に及ぼすwhey、Yとしての没食子酸およびZとし
てのCH3CHOの影響を調べた。その結果(図.3)、1 mg/m
lのwheyおよびそのCH3CHO添加ではリノール酸の自動酸
化が促進されたのに対し、没食子酸および没食子酸添加
wheyではリノール酸の自動酸化が顕著に抑制された。従
って、wheyはXYZ系におけるZの特性を有しているこ
とが明らかとなった。Wheyの分画セファローズ6Bによ
るゲルろ過でwheyを分画し、SDS-PAGEでゲル電気泳動分
析した結果(図4)、94kDaに主バンドがみられるピーク
1と30kDaに主バンドがみられるピーク2に分画され
た。得られたピーク1と2についてXYZ系における微
弱発光を調べた結果(図5)、ピーク1にはYとZの特性
がみられたのに対し、ピーク2にはZのみの特性がみら
れた。そこでピーク1に注目し、分画範囲の大きいセフ
ァデックス4Bと2Bで再ゲルろ過した結果(ず6)、い
ずれのゲルろ過においてもシングルピークとして検出さ
れた。単離標品の微弱発光特性およびリポキシゲナーゼ
標品との比較Wheyからのゲルろ過単離標品の10,20およ
び40 mg/ml溶液を調製し、2%CH3CHOまたは50 mM没食子
酸存在下における微弱発光に及ぼすH2O2濃度の影響を調
べた。その結果(図7)、いずれにおいても濃度に依存し
た微弱発光が観察され、CH3CHO存在下におけるYとして
の微弱発光は没食子酸存在下におけるZとしての微弱発
光の約2倍の発光フォトン量であった。しかし、Yとし
てはH2O2濃度の影響がみられなかったが、Zとしては明
らかにその依存性がみられた。この単離標品には94kDa
に相当する主バンどが検出されたことから、メルク製品
のリポキシゲナーゼ標品と比較した。
The embodiments of the present invention will be described below by way of examples. Example 1 (Preparation of experimental method sample) A 10-fold hydrolyzed water extract was obtained from low-temperature defatted soybeans, and water extraction (water extracted p
rotein, WEP), whey (whey), acid precipitated protein (acid pr
ecipitated protein, APP), crude 11S (11S), crude 7S (7
Each fraction of S) and whey (whey) was prepared. (Gel filtration) about 5 dispersed in 50 mM phosphate buffer (pH 7.0)
ml of the sample solution was injected onto a Sepharose 6B or 2B column (6.5 × 2.7 cm) which had been equilibrated with the same buffer, and eluted with the same buffer. The eluate was collected every 5 ml, and the absorbance at 280 nm was measured. (Electrophoretic analysis) Studier et al. (Studier FW (1973): Anal
ysis of bacteriophage T7 early RNAsand proteins on
slab / gels. J. Mol. Biol., 79, 237-248)
After electrophoresis on S-PAGA, 0.1% Coomassie Brilliant Blue R
Gel electrophoresis analysis was performed by staining at -250. (Measurement of antioxidant properties) Rodin iron method (Nakatani N and Kikuz
aki H (1987): A new antioxidative glucoside isolate
d from Organo (Origanum vulgare L.). Agric. Biol.
Chem., 51, 2727-2731), and the antioxidant property was determined as follows. That is, add 2 ml to 1 ml of sample solution (50 mM phosphate buffer).
Add 1.026 ml of 51% linoleic acid ethanol and add 5% with distilled water.
ml. After each of the linoleic acid-containing sample solutions was allowed to stand at 37 ° C., 0.1 ml thereof was collected, and 4.7 ml of 75% ethanol was added, followed by 0.1 ml of 30% ammonium thiocyanate. 0.02M ferrous prepared with 3.5% hydrochloric acid
The color was developed by adding chloride, and the absorbance at 500 nm was measured after 3 minutes. (Measurement of weak light emission) The measurement of weak light emission was carried out in the following manner according to the report 1). That is, the liquid sending pump (Waters M
odel 510) and an injector (Waters U6K) attached photon counting type CL detector (Tohoku Electronics CLD-11
0, 300-650 nm) using 50 mM phosphate buffer (pH 7.0).
The solution was sent at 1.0 ml / min, and active oxygen species (X) such as H2O2, catalytic species (Y) such as gallic acid, and CH3CHO
Photons generated by injecting the acceptor species (Z) were measured. (Measurement of SOD activity) Kono et al. (Hiramatsu M and Kohno M (1
987): Determination of superoxide dismutase activi
ty by electron spin resonance spectrometry using t
The SOD activity was measured as follows by the ESR spin trapping method (JEOL JES-RE1X) of he spin trap method. JEOL NEWS, 23, 6-9). That is, 9.2M DMPO (5,5-dimethyl-1-pyrroline-N-
oxide, LABOTEC CO., LTD) 20μl, sample aqueous solution 50μ
l, 2mM hypoxanthine solution (SIGMA CHEMICAL) 50
μl, 0.4 U / ml xanthine oxidase solution (Behringer
After mixing and stirring 50 μl (manufactured by Mannheim), the mixed solution was aspirated into an aqueous flat cell, incubated for 45 seconds, and then measured. (Results and Discussion) Comparison in XYZ Weak Light Emission System Comparison of each protein fraction in the XYZ weak light emission system was performed as follows. Prepare each protein solution of 40 mg / ml as Y, use 2% CH3CHO as Z, and use H as X to affect the weak luminescence intensity.
The effect of 2O2 concentration was investigated. As a result (FIG. 2 (a)), almost no light was observed for APP, but remarkable weak light emission depending on the H2O2 concentration was observed in the order of whey>whey〓> WEP. Z
Each fraction solution of 40 mg / ml was prepared, and 50 mM gallic acid was used as Y, and the effect of H2O2 concentration on the weak luminescence intensity was examined. As a result (FIG. 2. (a)), it was low in WEP, APP, 11S and 7S, but remarkable weak emission depending on the H2O2 concentration was observed in the order of whey> whey〓. However, the emission intensity was about half the value of Y. The effect of H2O2 concentration on the weak luminescence of the same fraction heat-treated at 40 mg / ml whey in the presence of 2% CH3CHO or 50 mM gallic acid was examined. As a result (FIG. 3), the weak luminescence of whey as Y in the presence of CH3CHO and Z in the presence of gallic acid increased linearly in proportion to the H2O2 concentration.
The weak light emission of ey showed only a slight linear increase as Y. From these results, wh in the presence of H2O2
It is presumed that the weak light-emitting component of ey is an enzyme system and exhibits a more linear H2O2 concentration dependency, so that it has Z characteristics. In addition, the presence of an enzymatic Y characteristic component is also presumed in whey. Each fraction solution having SOD activities of 5, 10, and 20 mg / ml was prepared, and the SOD activity was examined by the ESR spin trapping method. As a result (Fig. 4), almost SO was found in APP and 11S.
Although no D activity was observed, the SOD activity was 0.1 U / W in WEP and 7S.
The activity was as high as 0.3 U / mg for mg and whey〓, especially as high as 1.7 U / mg for whey. Although not shown in the figure, the addition of gallic acid enhanced these activities as well as the weak luminescence behavior. Effect of Y on the antioxidant properties of Whey The effects of whey, gallic acid as Y and CH3CHO as Z on the autoxidation of linoleic acid were investigated by the rhodane iron method. The result (Fig. 3), 1 mg / m
lwhey and its addition of CH3CHO promoted autoxidation of linoleic acid, whereas gallic acid and gallic acid added
In whey, autoxidation of linoleic acid was significantly suppressed. Therefore, it became clear that whey has the characteristic of Z in the XYZ system. Fractionation of whey by gel filtration with Sepharose 6B fractionated by Whey, and gel electrophoresis analysis by SDS-PAGE (Fig. 4). 2 fractions. As a result of examining the weak emission in the XYZ system for the obtained peaks 1 and 2 (FIG. 5), peak 1 showed the characteristics of Y and Z, whereas peak 2 showed the characteristics of only Z. Was. Therefore, attention was paid to peak 1, and as a result of re-gel filtration using Sephadex 4B and 2B having a large fractionation range (not 6), a single peak was detected in each gel filtration. Weak luminescence properties of the isolated preparation and comparison with the lipoxygenase preparation Gel filtration from Whey 10, 20, and 40 mg / ml solutions of the isolated preparation were prepared, and the weak The effect of H2O2 concentration on luminescence was investigated. As a result (FIG. 7), in each case, a concentration-dependent weak emission was observed, and the weak emission as Y in the presence of CH3CHO was about twice as much as the weak emission as Z in the presence of gallic acid. Was. However, although the effect of H2O2 concentration was not observed for Y, the dependence was clearly observed for Z. 94 kDa
Were detected and compared with a lipoxygenase sample from Merck.

【0014】その結果(図8)、メルク標品の主バンド
も94kDaに相当することから、単離標品の主成分はリポ
キシゲナーゼであるものと推察された。リポキゲナーゼ
は基質に酸素を付加する典型的な酸化酵素であり、大豆
食品加工においては不快臭発生の原因酵素であることが
知られている。しかし、本研究ではSOD活性を有し、
その酸化性はYの存在で抗酸化性に転換する酵素である
ことが強く推察され、XYZ系におけるさらなる詳細な
研究に興味がもたれる。
As a result (FIG. 8), the main band of the Merck sample also corresponded to 94 kDa, and it was inferred that the main component of the isolated sample was lipoxygenase. Lipoxygenase is a typical oxidase that adds oxygen to a substrate, and is known to be an enzyme causing unpleasant odor in soybean food processing. However, this study has SOD activity,
It is strongly speculated that its oxidizing property is an enzyme that converts to antioxidant property in the presence of Y, and interest in further detailed research on the XYZ system is of interest.

【0015】[0015]

【発明の効果】本発明により、平均分子量94kDa及び
/又は30kDaの大豆ホエー成分が抗酸化促進剤として
可能になったものである。
According to the present invention, a soybean whey component having an average molecular weight of 94 kDa and / or 30 kDa can be used as an antioxidant accelerator.

【図面の簡単な説明】 「[Brief description of drawings]

【図1】」は、低温脱脂大豆からの各画分の調製を示す
図面である。 「
FIG. 1 is a drawing showing the preparation of each fraction from low temperature defatted soybeans. "

【図2】」は、微弱発光強度に及ぼすH2O2濃度の影響を
示す図面である。 「
FIG. 2 is a drawing showing the effect of H2O2 concentration on weak light emission intensity. "

【図3】」は、WEP存在下、加熱処理の微弱発光に及ぼ
すH2O2濃度の影響を示す図面である。 「
FIG. 3 is a drawing showing the effect of H2O2 concentration on weak light emission of heat treatment in the presence of WEP. "

【図4】」は、ESRスピントラッピング法でSOD活性を調
べた結果を示す図面である。 「
FIG. 4 is a drawing showing the results of examining SOD activity by the ESR spin trapping method. "

【図5】」は、ピーク1と2についてXYZ系における
微弱発光を調べた結果を示す図面である。 「
FIG. 5 is a drawing showing the results of examining weak light emission in the XYZ system for peaks 1 and 2. "

【図6】」は、分画範囲の大きいセファデックス4Bと
2Bで再ゲルろ過した結果を示す図面である。 「
FIG. 6 is a drawing showing the results of regel filtration on Sephadex 4B and 2B having a large fractionation range. "

【図7】」は、CH3CHOまたは没食子酸存在下における微
弱発光に及ぼすH2O2濃度の影響を調べた結果を示す図面
である。 「
FIG. 7 is a drawing showing the results of examining the effect of H2O2 concentration on weak light emission in the presence of CH3CHO or gallic acid. "

【図8】」は、メルク製品のリポキシゲナーゼ標品と比
較した結果を示す図面である。
FIG. 8 is a drawing showing the results of comparison with a lipoxygenase standard product of Merck.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 一良 宮城県仙台市青葉区堤通雨宮町1−1 東 北大学農学部内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kazuyoshi Okubo 1-1, Atsumiyamachi, Tsutsudori Amiya-ku, Aoba-ku, Sendai City, Miyagi Prefecture Inside Tohoku University Faculty of Agriculture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】大豆ホエー中の分子量94kDa画分及び/又
は分子量30kDa画分を有効成分とする活性酸素ラジカル
消去剤。
1. An active oxygen radical scavenger comprising, as an active ingredient, a 94 kDa molecular weight fraction and / or a 30 kDa molecular weight fraction in soy whey.
【請求項2】没食子酸を含む請求項1の活性酸素ラジカ
ル消去剤。
2. The active oxygen radical scavenger according to claim 1, comprising gallic acid.
JP1833797A 1997-01-31 1997-01-31 Active oxygen free radical eliminator Withdrawn JPH10212297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1833797A JPH10212297A (en) 1997-01-31 1997-01-31 Active oxygen free radical eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1833797A JPH10212297A (en) 1997-01-31 1997-01-31 Active oxygen free radical eliminator

Publications (1)

Publication Number Publication Date
JPH10212297A true JPH10212297A (en) 1998-08-11

Family

ID=11968846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1833797A Withdrawn JPH10212297A (en) 1997-01-31 1997-01-31 Active oxygen free radical eliminator

Country Status (1)

Country Link
JP (1) JPH10212297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158742A (en) * 1999-12-02 2001-06-12 Marine Bio Kk Active oxygen scavenger, filter, health food, food, and drink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158742A (en) * 1999-12-02 2001-06-12 Marine Bio Kk Active oxygen scavenger, filter, health food, food, and drink
JP4611476B2 (en) * 1999-12-02 2011-01-12 マリーンバイオ株式会社 filter

Similar Documents

Publication Publication Date Title
Karthivashan et al. Identification of bioactive candidate compounds responsible for oxidative challenge from hydro‐ethanolic extract of Moringa oleifera leaves
CN102210717A (en) Compositions comprising Lactobacillus plantarum strains in combination with tannin and new Lactobacillus plantarum strains
DK175619B1 (en) plant Extracts
Sripad et al. Effect of methods to remove polyphenols from sunflower meal on the physicochemical properties of the proteins
KR100844185B1 (en) The manfacturing method of fermentation artemisia tea with lactic acid
Lee et al. Potential of benthic diatoms Achnanthes longipes, Amphora coffeaeformis and Navicula sp.(Bacillariophyceae) as antioxidant sources
Lin et al. Vegetable soybean (Glycine max (L.) Merr.) leaf extracts: Functional components and antioxidant and anti‐inflammatory activities
Van Loon et al. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacumvar.“Samsun” and “Samsun NN”—I
Takanami et al. Purification and characterization of the anti-plant viral protein from Mirabilis jalapa L.
Wang et al. Polysaccharides from mulberry leaf in relation to their antioxidant activity and antibacterial ability
KR20220084810A (en) Method for preparing hibiscus extract wiht high content of collagen
JPH10212297A (en) Active oxygen free radical eliminator
CN101579146B (en) Method for preparing tobacco flavor by Maillard reaction of nitrogen source and sugar source
CN105132508A (en) Biological magnetic separation method for screening antimicrobial peptide with antifungal activity
KR102359165B1 (en) Dendropanax morbifera complex extracts for improving liver and kidney, Manufacturing method thereof and Health functional food containing the same
JPH11228441A (en) Antioxidant function potentiator for living body
Noda et al. Antioxidant activities of uyaku (lindera strychnifolia) leaf extract: a natural extract used in traditional medicine
Yao et al. Fermentation process improvement of a Chinese traditional food: soybean residue cake
KR102378420B1 (en) Tea composition comprising pine heartwood and process for preparing thereof
KR101611881B1 (en) Method for producing Phellinus linteus mycelium pressurized extract with increased antioxidant and whitening activity cultured in Mori ramulus medium
Chen et al. Preparation and characterisation of glyceollin‐enriched soya bean protein using solid‐state fermentation
Ma et al. Study on the antioxidant activity of peptides from soybean meal by fermentation based on the chemical method and AAPH‐induced oxidative stress
Sinha et al. Antioxidant potential of the ripe fruits of Flacourtia jungomas (Lour.) Raeus.
KR20150141028A (en) Method for production of small colored potato extract with antioxidative materials
CN104970183A (en) Soluble soya bean protein, preparation method and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040402