JPH10211560A - Method for continuously casting billet - Google Patents

Method for continuously casting billet

Info

Publication number
JPH10211560A
JPH10211560A JP1234597A JP1234597A JPH10211560A JP H10211560 A JPH10211560 A JP H10211560A JP 1234597 A JP1234597 A JP 1234597A JP 1234597 A JP1234597 A JP 1234597A JP H10211560 A JPH10211560 A JP H10211560A
Authority
JP
Japan
Prior art keywords
nozzle
molten steel
mold
billet
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1234597A
Other languages
Japanese (ja)
Inventor
Masayuki Kawamoto
正幸 川本
Seiji Furuhashi
誠治 古橋
Yuichi Tsukaguchi
友一 塚口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1234597A priority Critical patent/JPH10211560A/en
Publication of JPH10211560A publication Critical patent/JPH10211560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method for billet which prevents the entrapment, etc., of powder near a meniscus, improves the ratio of equi-axed crystal and reduces the invading depth of inclusion, blow hole, etc. SOLUTION: (1) In the continuous casting method for casting the billet by using a bottomless immersed nozzle 1, the nozzle 1 gradually increasing the inner cross sectional area toward the outlet, is dipped into molten steel, and the molten steel in the nozzle 1 is circled and the molten steel in a mold is circled in the reverse direction of the circulation in the nozzle 1. (2) In the continuous casting method for casting the billet by using the bottomless nozzle 1, the nozzle 1 gradually increasing the inner cross sectional area toward the outlet is dipped into the molten steel and the molten steel in the nozzle 1 is circled to give the molten steel in the mold an electromagnetic brake.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ノロカミや内部欠
陥の発生を抑制したビレットの連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting a billet in which occurrence of slime and internal defects is suppressed.

【0002】[0002]

【従来の技術】従来の連続鋳造、特にビレットの連続鋳
造の場合は、底面を持たない開放端の円筒形注入ノズル
(以下、「ストレートノズル」と略称する)を使用して
鋳造を行っていた。これに対して、スラブの連続鋳造の
場合は、底面を有しノズル側面に1対の吐出口を有する
ノズル(以下、「2孔ノズル」と略称する)を使用す
る。ビレットの連続鋳造の場合はノズルと鋳型壁面の距
離が小さいので、2孔ノズルを使用したのでは高速の吐
出流が凝固シェルに直接ぶつかるために、ストレートノ
ズルを使用する。
2. Description of the Related Art In the conventional continuous casting, particularly in the continuous casting of billets, casting is performed using an open-end cylindrical injection nozzle having no bottom surface (hereinafter abbreviated as "straight nozzle"). . On the other hand, in the case of continuous casting of a slab, a nozzle having a bottom surface and a pair of discharge ports on the nozzle side surface (hereinafter, abbreviated as “two-hole nozzle”) is used. In the case of continuous casting of billets, since the distance between the nozzle and the mold wall is small, a straight nozzle is used because a high-speed discharge flow directly hits the solidified shell when a two-hole nozzle is used.

【0003】ストレートノズルを使用した連続鋳造の場
合、溶鋼流は下向きの流れが主になるので、介在物や気
泡が鋳片内部に捕捉されやすい。かつ鋳型内の溶鋼表面
(メニスカス)近傍への熱供給が少なくなるので、溶鋼
表面において凝固相が生じ、表面欠陥を生じたりする問
題があった。そのために、通常は鋳型内の溶鋼に電磁場
を作用させ溶鋼に旋回流を与えることによってメニスカ
ス近傍の温度の確保を行っている。この鋳型内の溶鋼の
電磁撹拌は、ビレットの等軸晶率を上昇させ鋳片の内部
品質を改善する効果も有している。現状においては、ス
トレートノズルを用いる連続鋳造の場合には、鋳型内の
電磁撹拌は必須といえる。
[0003] In the case of continuous casting using a straight nozzle, since the molten steel flow is mainly a downward flow, inclusions and air bubbles are easily trapped inside the slab. In addition, since heat supply to the vicinity of the molten steel surface (meniscus) in the mold is reduced, there is a problem that a solidification phase occurs on the surface of the molten steel and surface defects occur. For this purpose, usually, a temperature near the meniscus is ensured by applying an electromagnetic field to molten steel in a mold to give a swirling flow to the molten steel. The electromagnetic stirring of the molten steel in the mold also has the effect of increasing the equiaxed crystal ratio of the billet and improving the internal quality of the slab. At present, in the case of continuous casting using a straight nozzle, it can be said that electromagnetic stirring in the mold is essential.

【0004】しかしながら、電磁撹拌を行うと浸漬ノズ
ル近傍の湯面が低下する一方で鋳型壁面近傍が盛り上が
るために、メニスカス近傍でパウダーの捕捉が生じた
り、溶融パウダーの流入が阻害され、表面欠陥や内部欠
陥を生じる等の問題があった。
However, when the electromagnetic stirring is performed, the level of the molten metal near the immersion nozzle is reduced while the area near the mold wall rises, so that powder is trapped near the meniscus and the inflow of molten powder is hindered. There were problems such as the occurrence of internal defects.

【0005】このようなストレートノズル固有の問題を
緩和するために、ノズル形状と溶鋼の流動状態に限って
基礎的に解析した研究結果が公表されている(横谷ら:
材料とプロセス ,Vol.9 (1996) No.4,P773)。この研究
結果によれば、出口に向けて内断面積が漸増するストレ
ートノズルを使用し、ノズル内の溶鋼流を旋回させる
と、ノズル内壁に沿った流れが形成され、かつメニスカ
ス近傍の溶鋼は鋳型中心に向かって流動する。
[0005] In order to alleviate such problems inherent in the straight nozzle, research results have been published that have been analyzed fundamentally only with respect to the nozzle shape and the flow state of molten steel (Yokotani et al .:
Materials and Processes, Vol.9 (1996) No.4, P773). According to the results of this study, using a straight nozzle whose inner cross-sectional area gradually increases toward the outlet, turning the molten steel flow inside the nozzle forms a flow along the nozzle inner wall, and the molten steel near the meniscus is cast in the mold Flow towards the center.

【0006】このような研究結果を利用すれば、電磁撹
拌を併用しストレートノズルを用いて連続鋳造されたビ
レットに発生する欠陥を抑制できることが示唆される。
しかし、たとえ上記形状のノズルを用いても下降方向の
流れも相当強く残るので上記ノズルの使用だけで欠陥が
防止できないことや、その場合どのような改善と組み合
わせることが効果的であるか等を検討する必要がある。
It is suggested that the use of such research results can suppress defects occurring in billets continuously cast using a straight nozzle with electromagnetic stirring.
However, even if a nozzle having the above-mentioned shape is used, the flow in the descending direction still remains quite strong, so that the use of the above-mentioned nozzle alone cannot prevent defects, and what kind of improvement can be effectively combined with such a case, etc. Need to consider.

【0007】[0007]

【発明が解決しようとする課題】本発明は、ストレート
ノズルを使用しながらメニスカス温度を確保し、メニス
カス近傍のパウダー巻き込みを防止しかつ等軸晶率を増
加させる方法、およびそれに加えて介在物、気泡等の侵
入深さを低減する方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a method for securing a meniscus temperature while using a straight nozzle, preventing powder entrainment in the vicinity of the meniscus and increasing the equiaxed crystal ratio, and in addition to the above, It is an object of the present invention to provide a method for reducing the penetration depth of bubbles and the like.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記課題を
解決するために思考実験を行い、いくつかの方法を考案
し、それらについて実験した結果、下記の事項を確認す
ることができた。
Means for Solving the Problems The present inventors conducted thought experiments in order to solve the above-mentioned problems, devised several methods, and conducted experiments on them. As a result, the following items could be confirmed. .

【0009】(a)出口に向かって内断面積が漸増する
ストレートノズル内の溶鋼流を旋回させると、湯面付近
のメニスカス溶鋼は鋳型中心に向かって流動する。この
状態において鋳型内溶鋼を適切に旋回させると、湯面付
近にも鋳型に向かう遠心力が発生し上記鋳型中心に向か
う流動とキャンセルされ、メニスカスの流動は旋回方向
のみが残った状態となる。この結果、溶融パウダーが鋳
型近傍で不足する状態は回避され、かつメニスカスに流
動を与えることができ、各種の欠陥を防止することがで
きる。
(A) When the molten steel flow in the straight nozzle whose inner cross-sectional area increases gradually toward the outlet, the meniscus molten steel near the molten metal surface flows toward the center of the mold. If the molten steel in the mold is appropriately swirled in this state, a centrifugal force is generated in the vicinity of the molten metal surface toward the mold, and the flow toward the center of the mold is canceled, and the meniscus flow remains in only the swirling direction. As a result, a state in which the molten powder runs short in the vicinity of the mold is avoided, and a flow can be given to the meniscus, and various defects can be prevented.

【0010】(b)ノズルの直下の鋳型内で下降流に電
磁制動を印加すると鋳型内の下降流が整流され、介在物
や気泡の鋳片内部への侵入が防止される。この場合は、
ノズル内の溶鋼の旋回が十分に行われていなくても、十
分にメニスカスに流動を与えることが可能である。
(B) When electromagnetic braking is applied to the descending flow in the mold immediately below the nozzle, the descending flow in the mold is rectified, and the intrusion of inclusions and bubbles into the slab is prevented. in this case,
Even if the swirling of the molten steel in the nozzle is not sufficiently performed, it is possible to sufficiently provide a flow to the meniscus.

【0011】本発明は上記の事項を基に現場実験を重ね
て完成されたもので、下記の連続鋳造方法をその特徴と
する。
The present invention has been completed through repeated field experiments based on the above matters, and is characterized by the following continuous casting method.

【0012】(1)底の無い浸漬ノズルを用いてビレッ
トを鋳造する連続鋳造方法であって、出口付近の内断面
積が出口に向かって漸増するノズルを溶鋼中に浸漬する
とともに、ノズル内の溶鋼を旋回させ、かつ鋳型内の溶
鋼をノズル内とは逆向きに旋回させる連続鋳造方法
(〔発明1〕とする)。
(1) A continuous casting method for casting a billet using a bottomless immersion nozzle, wherein the nozzle whose inner cross-sectional area near the outlet gradually increases toward the outlet is immersed in molten steel. A continuous casting method in which the molten steel is swirled and the molten steel in the mold is swirled in a direction opposite to that of the nozzle (referred to as [Invention 1]).

【0013】(2)底の無い浸漬ノズルを用いてビレッ
トを鋳造する連続鋳造方法であって、出口付近の内断面
積が出口に向かって漸増するノズルを溶鋼中に浸漬する
とともに、ノズル内の溶鋼を旋回させ、かつノズル直下
の鋳型内溶鋼に電磁制動を付与する連続鋳造方法(〔発
明2〕とする)。
(2) A continuous casting method for casting a billet using a bottomless immersion nozzle, wherein the nozzle whose inner cross-sectional area near the outlet gradually increases toward the outlet is immersed in molten steel, and A continuous casting method in which molten steel is swirled and electromagnetic braking is applied to molten steel in a mold immediately below a nozzle (referred to as [Invention 2]).

【0014】上記において、「底の無いノズル」とはビ
レットの鋳造に専ら用いられるストレートノズルをさ
す。「ノズル内の溶鋼を旋回させる」とはノズルまわり
に取り付けた電磁コイルにより落下する溶鋼を旋回さ
せ、らせん運動をさせることをいう。〔発明2〕におい
て、「鋳型内溶鋼に電磁制動を付与する」とは、ノズル
から落下してきた溶鋼の主として下降流成分にブレーキ
をかけることをさす。
In the above, the term "nozzle without a bottom" refers to a straight nozzle used exclusively for billet casting. "Swirl the molten steel in the nozzle" refers to swirling the molten steel falling by an electromagnetic coil attached around the nozzle to make a spiral movement. In [Invention 2], "providing electromagnetic braking to molten steel in a mold" refers to applying a brake mainly to a downward flow component of molten steel dropped from a nozzle.

【0015】[0015]

【発明の実施の形態】つぎに本発明を上記のように限定
した理由について説明する。
Next, the reason why the present invention is limited as described above will be described.

【0016】1.ノズル形状(〔発明1〕および〔発明
2〕) 浸漬ノズルを用いるのは介在物の巻き込み等のビレット
の品質を確保するためであり、ストレートノズルとする
のは鋳込み能率を維持したうえでビレットの表面性状を
良好なものとするためである。
1. Nozzle shape ([Invention 1] and [Invention 2]) The immersion nozzle is used to ensure the quality of the billet such as inclusion of inclusions, and the straight nozzle is used to maintain the casting efficiency while maintaining the casting efficiency. This is for improving the surface properties.

【0017】ストレートノズルの形状は、ストレートノ
ズルの出口付近の内断面積を漸増させたものとする。漸
増の程度はノズルの半径で1mあたり25cm以上増大
させることが望ましい。上限はとくに限定しないが、鋳
型の内側に納まる形状とすることにより自ずと制限され
る。
The shape of the straight nozzle is such that the inner cross-sectional area near the outlet of the straight nozzle is gradually increased. The degree of the gradual increase is desirably increased by 25 cm or more per meter in the radius of the nozzle. The upper limit is not particularly limited, but is naturally limited by a shape that fits inside the mold.

【0018】出口付近の内断面積を漸増させると、溶鋼
の流れに下方の成分だけでなく、水平方向、すなわち鋳
壁垂直方向の成分が生じ、メニスカス付近の温度降下を
防止することができる。かつ後記する鋳型内撹拌の効果
と結合してメニスカスに流動を与える作用を及ぼし、パ
ウダー巻き込みが防止される。
When the internal cross-sectional area near the outlet is gradually increased, not only a lower component but also a component in the horizontal direction, that is, the vertical direction of the casting wall is generated in the flow of the molten steel, and a temperature drop near the meniscus can be prevented. In addition, in combination with the effect of stirring in the mold described later, an effect of giving a flow to the meniscus is exerted, and powder entrainment is prevented.

【0019】ノズル出口付近の内壁は軸対称をなし、内
径は緩やかに漸増することが望ましく、出口付近の縦断
面における内壁はとくに放物線をなすことが望ましい。
It is desirable that the inner wall near the nozzle outlet is axially symmetric, the inner diameter gradually increases gradually, and the inner wall in the vertical section near the outlet is particularly parabolic.

【0020】このノズル形状と、鋳型内溶鋼の旋回のた
めの電磁撹拌の強度を変化させると、鋳型内の流動状況
を任意に調整することが可能である。
By changing the shape of the nozzle and the intensity of the electromagnetic stirring for turning the molten steel in the mold, it is possible to arbitrarily adjust the flow state in the mold.

【0021】2.ノズル内溶鋼への旋回力の付与(〔発
明1〕および〔発明2〕) 旋回力は、通常はノズル内の溶鋼流に対して回転磁場を
付加することによってノズル内の溶鋼を旋回させる。こ
の回転磁場の回転数は、磁場の侵入深さに影響を与える
ので、変化させることは好ましくない。回転磁場は耐火
物のノズルを介して印可するので、シールドされるのを
避ける必要がある鋳型内の電磁撹拌のように数Hzオー
ダーの低周波数にする必要はない。たとえば、商用電源
周波数を使用することも可能であり、設備コストの低減
が可能である。
2. Giving Swirling Force to Molten Steel in Nozzle ([Invention 1] and [Invention 2]) The swirling force normally turns the molten steel in the nozzle by applying a rotating magnetic field to the molten steel flow in the nozzle. It is not preferable to change the number of revolutions of the rotating magnetic field because it affects the penetration depth of the magnetic field. Since the rotating magnetic field is applied through the refractory nozzle, it is not necessary to have a low frequency on the order of several Hz as in the case of electromagnetic stirring in the mold, which must be shielded. For example, it is possible to use a commercial power supply frequency, and it is possible to reduce equipment costs.

【0022】この回転磁場の回転数は、毎秒5〜10回
転程度が望ましい範囲であり、これよりも遅いとノズル
壁に沿った流れが形成されない。また、毎秒10回転以
上の回転数を付与することは、装置能力の制約等の困難
が伴う。
The number of rotations of the rotating magnetic field is preferably in the range of about 5 to 10 rotations per second, and if it is slower than this, no flow is formed along the nozzle wall. In addition, providing a rotation speed of 10 rotations or more per second involves difficulties such as restrictions on the device capacity.

【0023】上記のように電磁力により旋回力を付与し
ないで、ノズルの内側にらせん状の溝をつけて旋回力を
付与してもよい。
As described above, instead of applying the turning force by the electromagnetic force, the turning force may be applied by forming a spiral groove inside the nozzle.

【0024】3.鋳型内溶鋼への旋回流付与(〔発明
1〕) 鋳型内溶鋼への旋回流を付与するのは電磁撹拌装置によ
って行われる。この電磁撹拌装置については、通常用い
られるものと同様のものでよく、鋳型銅板を介して、5
〜6Hz程度の周波数の磁場を印可する。
3. Application of swirl flow to molten steel in mold ([Invention 1]) The application of swirl flow to molten steel in the mold is performed by an electromagnetic stirrer. This electromagnetic stirrer may be the same as the one usually used, and is provided with a 5
A magnetic field having a frequency of about 6 Hz is applied.

【0025】この結果、鋳型内溶鋼の最大回転速度は毎
秒3回転程度となる。起磁力である印可電流は最小20
0A、最大500A、平均300A程度を印可する。
As a result, the maximum rotation speed of the molten steel in the mold is about three rotations per second. The applied current, which is the magnetomotive force, is at least 20
0A, maximum 500A, average 300A are applied.

【0026】鋳型内電磁撹拌による旋回の向きは、ノズ
ル内の旋回と同じ向きにすると、鋳片表面への未滓化パ
ウダーのトラップなどが問題となるので、逆方向の回転
とする。
If the direction of the rotation by the electromagnetic stirring in the mold is the same as the direction of the rotation in the nozzle, trapping of unslagged powder on the slab surface becomes a problem.

【0027】4.鋳型内溶鋼下降流への電磁制動(〔発
明2〕) 鋳型内溶鋼の下降流への電磁制動は静磁場を付加するこ
とにより行う。静磁場は、鋳型を挟んだ1対の磁極によ
って発生される。磁極の断面は鋳型の内径程度にする。
この電磁制動装置によって鋳型内に発生される磁束密度
は、0.2〜0.5Tであれば、介在物、気泡等の侵入
深さを大幅に軽減することができる。また、これ以上の
静磁場も工業的に使用できるのであれば、使用してかま
わない。
4. Electromagnetic braking on the downward flow of molten steel in the mold ([Invention 2]) Electromagnetic braking on the downward flow of molten steel in the mold is performed by applying a static magnetic field. The static magnetic field is generated by a pair of magnetic poles sandwiching the mold. The cross section of the magnetic pole should be about the inner diameter of the mold.
If the magnetic flux density generated in the mold by this electromagnetic braking device is 0.2 to 0.5 T, the penetration depth of inclusions, bubbles and the like can be greatly reduced. Further, a static magnetic field larger than this can be used as long as it can be used industrially.

【0028】従来は等軸晶率確保のため、電磁撹拌を行
いデンドライトを分断して等軸晶の核を生成させてい
た。本発明においても凝固シェルに対して溶鋼流速を生
じさせ等軸晶の生成を促進しているので、等軸晶率は従
来なみに確保されている。
Conventionally, in order to secure the equiaxed crystal ratio, electromagnetic stirring was performed to cut the dendrites to generate equiaxed nuclei. In the present invention as well, since the flow rate of molten steel is generated in the solidified shell to promote the generation of equiaxed crystals, the equiaxed crystal ratio is assured as compared with the prior art.

【0029】[0029]

【実施例】つぎに実施例により本発明の効果について説
明する。
EXAMPLES Next, the effects of the present invention will be described with reference to examples.

【0030】図1は、内径が漸増するストレートノズ
ル、ノズルと鋳型内の溶鋼への旋回流付与電磁コイルお
よび鋳型内電磁制動コイルを備えたビレットの連続鋳造
装置の鋳型付近の縦断面をしめす図である。
FIG. 1 is a view showing a vertical cross section near a mold of a continuous casting apparatus for a billet provided with a straight nozzle having an inner diameter gradually increasing, an electromagnetic coil for imparting swirling flow to molten steel in the nozzle and the mold, and an electromagnetic braking coil in the mold. It is.

【0031】実施に用いた連続鋳造機は、鋳型断面は内
径200mmであり、ビレットの引き出しは湾曲型のも
の(図示せず)とした。浸漬ノズルはアルミナグラファ
イト製で、出口部分以外は外径90mm、内径50mm
の直管とした。
In the continuous casting machine used in the embodiment, the mold had a cross section of 200 mm in inner diameter, and the billet was drawn out in a curved shape (not shown). The immersion nozzle is made of alumina graphite and the outer diameter is 90 mm and the inner diameter is 50 mm except for the outlet.
Straight pipe.

【0032】図2は実施に用いたノズルの縦断面図であ
る。同図に示すようにこのノズルの出口付近は内径のみ
を緩やかに増大させ、断面積を出口に向かって漸増させ
た。
FIG. 2 is a longitudinal sectional view of the nozzle used in the embodiment. As shown in the figure, only the inner diameter of the vicinity of the outlet of the nozzle was gradually increased, and the sectional area was gradually increased toward the outlet.

【0033】ノズル内の溶鋼に旋回を付与するためにノ
ズル周囲に密着させた3分割したコイルを用い、起磁力
として周波数50Hzにて、0〜10Aの電流を通し
た。
A current of 0 to 10 A was passed as a magnetomotive force at a frequency of 50 Hz using a three-part coil closely attached to the periphery of the nozzle in order to impart a swirl to the molten steel in the nozzle.

【0034】鋳型内の溶鋼に旋回を付与する電磁撹拌
は、鋳型の周囲に配した3分割したコイルにより起磁力
として周波数6Hz、0〜400Aの電流を印可した。
In the electromagnetic stirring for imparting a swirl to the molten steel in the mold, a current having a frequency of 6 Hz and a current of 0 to 400 A was applied as a magnetomotive force by three divided coils arranged around the mold.

【0035】下降流の静磁場による電磁制動は、同軸の
2つのコイルの間に鋳型を納め、かつ、その軸を溶鋼下
降流に直交させるように配し、両コイル間、すなわち鋳
型内に0.4Tの磁束密度を発生させることによって行
った。
Electromagnetic braking by a downflow static magnetic field is performed by placing a mold between two coaxial coils and arranging the axis of the mold so as to be orthogonal to the molten steel downflow. Performed by generating a magnetic flux density of .4T.

【0036】それぞれのコイルの取り付け位置は図1に
示す通りである。
The mounting position of each coil is as shown in FIG.

【0037】表1は、上記装置により鋳造した中炭素鋼
の化学組成を示す。
Table 1 shows the chemical composition of medium carbon steel cast by the above apparatus.

【0038】[0038]

【表1】 [Table 1]

【0039】表2は、実施した連続鋳造の操業条件を示
す。
Table 2 shows the operating conditions of the continuous casting performed.

【0040】また、表3はノズルと鋳型内での旋回流付
与条件および鋳型内電磁制動付与条件を示す。
Table 3 shows the conditions for applying the swirling flow in the nozzle and the mold and the conditions for applying the electromagnetic braking in the mold.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】各試験番号について、鋳造された鋳片のノ
ロカミ発生率および内部欠陥発生率を調査した。ここ
で、ノロカミ発生率=(ノロカミ発生ビレット本数/全
ビレット本数)×100(%)、また、内部欠陥発生率
=(内部不良製品管本数/全製品管本数)×100
(%)で定義される。
For each test number, the occurrence rate of norokami and the occurrence rate of internal defects of the cast slab were examined. Here, norokami occurrence rate = (number of norokami occurrence billets / total number of billets) × 100 (%), and internal defect occurrence rate = (number of internal defective product tubes / total number of product tubes) × 100
(%).

【0044】表4はこれらの調査結果を示す一覧表であ
る。表4において、[右]または[左]の表示は、ノズ
ルおよび鋳型を上から見おろしてノズル内または鋳型内
の溶鋼が右旋回または左旋回されたことを表示する。
Table 4 is a list showing the results of these investigations. In Table 4, the indication of [right] or [left] indicates that the molten steel in the nozzle or the mold was turned right or left when the nozzle and the mold were viewed from above.

【0045】[0045]

【表4】 [Table 4]

【0046】図3はこのノロカミ発生率および内部欠陥
発生率を各試験番号別に図示する。比較例である試験番
号1は、内部欠陥、ノロカミともに少ないが等軸晶率が
小さく、加工時の欠陥が問題となった。比較例である試
験番号2は現在の操業条件であるが、ノロカミが多く、
内部欠陥も多かった。比較例である試験番号3は、ノズ
ル内の旋回を与えた場合であって、ノロカミは少ない
が、ノズル内の旋回流による湯面の盛り上がりによっ
て、内部欠陥が多発した。
FIG. 3 shows the occurrence rate of the norokami and the internal defect rate for each test number. In Test No. 1 as a comparative example, although both internal defects and norokami were small, the equiaxed crystal ratio was small, and defects during processing became a problem. Test No. 2 which is a comparative example is the current operating condition, but there are many norokami,
There were also many internal defects. Test No. 3, which is a comparative example, was a case in which swirling in the nozzle was given. Although there was little sloshing, internal defects frequently occurred due to the rise of the molten metal surface due to the swirling flow in the nozzle.

【0047】一方、本発明例の試験番号4は、ノズル内
の旋回流と、鋳型内の電磁撹拌が相殺されて、安定した
湯面形状となり、ノロカミおよび内部欠陥が少なかっ
た。本発明例の試験番号5は、内部への介在物などの侵
入が減少することにより、内部欠陥発生率が減少してお
り、かつ静磁場による整流効果によって湯面形状が安定
し、ノロカミが減少した。
On the other hand, in Test No. 4 of the present invention, the swirling flow in the nozzle and the electromagnetic stirring in the mold were canceled out to obtain a stable molten metal surface shape, and there were few norogami and internal defects. In Test No. 5 of the present invention, the incidence of internal defects is reduced due to a decrease in the intrusion of inclusions and the like into the inside, and the shape of the molten metal surface is stabilized by the rectification effect of the static magnetic field, and norogami is reduced. did.

【0048】比較例の試験番号6は、鋳型内電磁撹拌と
ノズル内旋回流を同一方向に回した場合で、内部欠陥が
多発した。
In Test No. 6 of the comparative example, when the electromagnetic stirring in the mold and the swirling flow in the nozzle were turned in the same direction, internal defects occurred frequently.

【0049】[0049]

【発明の効果】本発明によって、ストレートノズルを用
いて鋳造能率を確保しながら、等軸晶率を向上させ、ノ
ロカミおよび内部欠陥を防止し、鋳片品質を向上させる
ことが可能となった。
According to the present invention, it has become possible to improve the equiaxed crystal ratio, prevent norokami and internal defects, and improve the quality of cast slab while ensuring casting efficiency using a straight nozzle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に用いたノズルおよび鋳型の縦断面図FIG. 1 is a longitudinal sectional view of a nozzle and a mold used in an example.

【図2】本発明のノズルの一例を示す縦断面図FIG. 2 is a longitudinal sectional view showing an example of the nozzle of the present invention.

【図3】実施例の欠陥発生率を示す図FIG. 3 is a diagram showing a defect occurrence rate according to an example.

【符号の説明】[Explanation of symbols]

1:ノズル 2:ノズル内旋回流付与電磁コイル 3:鋳型内旋回流付与電磁コイル 4:鋳型内電磁制動コイル 5:鋳型 6:凝固シェル 1: Nozzle 2: Electromagnetic coil for applying swirl flow in nozzle 3: Electromagnetic coil for imparting swirl flow in mold 4: Electromagnetic braking coil in mold 5: Mold 6: Solidified shell

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】底の無い浸漬ノズルを用いてビレットを鋳
造する連続鋳造方法であって、出口付近の内断面積が出
口に向かって漸増するノズルを溶鋼中に浸漬するととも
に、ノズル内の溶鋼を旋回させ、かつ鋳型内の溶鋼をノ
ズル内とは逆向きに旋回させることを特徴とするビレッ
トの連続鋳造方法。
1. A continuous casting method for casting a billet using an immersion nozzle having no bottom, wherein a nozzle whose inner cross-sectional area near an outlet gradually increases toward an outlet is immersed in molten steel, and a molten steel in the nozzle is provided. , And the molten steel in the mold is swirled in the opposite direction to the inside of the nozzle.
【請求項2】底の無い浸漬ノズルを用いてビレットを鋳
造する連続鋳造方法であって、出口付近の内断面積が出
口に向かって漸増するノズルを溶鋼中に浸漬するととも
に、ノズル内の溶鋼を旋回させ、かつノズル直下の鋳型
内溶鋼に電磁制動を付与することを特徴とするビレット
の連続鋳造方法。
2. A continuous casting method for casting a billet using an immersion nozzle having no bottom, wherein a nozzle whose inner cross-sectional area near an outlet gradually increases toward the outlet is immersed in molten steel, and a molten steel in the nozzle is provided. And a method for continuously casting a billet, wherein electromagnetic steel is applied to molten steel in a mold immediately below a nozzle.
JP1234597A 1997-01-27 1997-01-27 Method for continuously casting billet Pending JPH10211560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234597A JPH10211560A (en) 1997-01-27 1997-01-27 Method for continuously casting billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234597A JPH10211560A (en) 1997-01-27 1997-01-27 Method for continuously casting billet

Publications (1)

Publication Number Publication Date
JPH10211560A true JPH10211560A (en) 1998-08-11

Family

ID=11802702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234597A Pending JPH10211560A (en) 1997-01-27 1997-01-27 Method for continuously casting billet

Country Status (1)

Country Link
JP (1) JPH10211560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875090B2 (en) 2016-12-12 2020-12-29 Abb Schweiz Ag Assembly for a metal-making process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10875090B2 (en) 2016-12-12 2020-12-29 Abb Schweiz Ag Assembly for a metal-making process

Similar Documents

Publication Publication Date Title
EP0069270B1 (en) Process and apparatus having improved efficiency for producing a semi-solid slurry
JP6625065B2 (en) Non-contact control of molten metal flow
US4042007A (en) Continuous casting of metal using electromagnetic stirring
US2963758A (en) Production of fine grained metal castings
US7735544B2 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
JP2007000936A (en) Method for vertical continuous casting of metal using electromagnetic field and casting facility therefor
US5246060A (en) Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
SU1416050A3 (en) Method of continuous electromagnetic casting of ingots
JPH10211560A (en) Method for continuously casting billet
US5137077A (en) Method of controlling flow of molten steel in mold
KR950002967B1 (en) Method for continuous casting of molten steel and apparatus therefor
JP2002239695A (en) Continuous casting method and continuous casting equipment
JP4669367B2 (en) Molten steel flow control device
JP3257546B2 (en) Steel continuous casting method
JPH0810917A (en) Method for continuously casting molten metal and apparatus thereof
JP2621677B2 (en) Continuous casting method and apparatus
JPH091301A (en) Method and equipment of agitation control in continuous casting of metal
JP4848656B2 (en) Method and apparatus for continuous casting of steel
JP2008173644A (en) Electromagnetic coil for continuous casting mold
JP3186649B2 (en) Continuous casting method of molten metal
JP3147824B2 (en) Continuous casting method
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP2755038B2 (en) Continuous casting method with electromagnetic stirring
JP2002316242A (en) Method for continuously casting steel
JPH09168845A (en) Method for continuously casting molten metal free of inclusion and blow hole and apparatus therefor