JPH10211549A - Mold for continuous casting and continuous casting method - Google Patents

Mold for continuous casting and continuous casting method

Info

Publication number
JPH10211549A
JPH10211549A JP1215997A JP1215997A JPH10211549A JP H10211549 A JPH10211549 A JP H10211549A JP 1215997 A JP1215997 A JP 1215997A JP 1215997 A JP1215997 A JP 1215997A JP H10211549 A JPH10211549 A JP H10211549A
Authority
JP
Japan
Prior art keywords
mold
slab
continuous casting
solidified shell
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1215997A
Other languages
Japanese (ja)
Inventor
Tadashi Hirashiro
正 平城
Yoshinori Tanizawa
好徳 谷澤
Seiji Kumakura
誠治 熊倉
Masafumi Hanao
方史 花尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1215997A priority Critical patent/JPH10211549A/en
Publication of JPH10211549A publication Critical patent/JPH10211549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the W-shaping of a crater end part and to reduce the segregation in the center part of thickness at both widths of a slab by pouring molten metal into a mold for continuous casting through a two-hole nozzle and secondary-cooling so that solidified shell growing speed in the cast slab just after coming out from the mold becomes quicker than that in the mold. SOLUTION: The outlet side at the center parts in the width direction of the long side surfaces in the mold is formed as projecting shape to restrain the growth of solidified shell at the center part in the slab width. The molten metal is poured by using the two hole nozzle into this continuous casting mold so as not to entrap powder covering a meniscus. After the solidified shell comes out from the mold, the secondary cooling is arranged to strengthen the cooling more than that in the mold. The growing speed of the solidified shell in the secondary cooling zone is quicker than that in the mold. By this method, after forming the sound cast slab surface in the mold, the cooling is strengthened just after coming out from the mold and the solidified shell thickness is secured, and the solidified shell is made to stand up to deformation, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属の鋳片、なか
でも鋼鋳片の幅方向1/4部の中心偏析を軽減すること
ができる連続鋳造用鋳型および連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold and a continuous casting method capable of reducing the segregation of the center of a metal slab, especially a steel slab, in a quarter of its width.

【0002】[0002]

【従来の技術】従来のプレートタイプの銅板鋳型は、銅
板とその外側から補強するバックアッププレートを備
え、通常は長方形の銅板中に設けられた冷却水路にバッ
クアッププレートを介して冷却水が通水される構造とな
っている。
2. Description of the Related Art A conventional plate-type copper plate mold includes a copper plate and a backup plate for reinforcing the copper plate from the outside thereof. Cooling water is usually passed through a backup water passage through a cooling water passage provided in a rectangular copper plate. Structure.

【0003】図7は従来の連続鋳造装置の縦断面を模式
的に表す図である。
FIG. 7 is a view schematically showing a longitudinal section of a conventional continuous casting apparatus.

【0004】また、図6(a)は図7における鋳型のA
−Aa 断面図を、また図6(b)は(a)におけるB−
Ba 断面図をあらわす。この種の鋳型は、鋳型銅板1の
背面にバックアッププレート2を重ねてボルトで締結
し、冷却水配管4から供給される冷却水がバックアップ
レート2内を通り鋳型銅板1内に導入されて冷却される
構造となっている。このような構造の連続鋳造用鋳型の
冷却水路3は、図6(b)に示すように、例えば鋳型銅
板1の背面に断面矩形スリット溝3を形成し、その背面
にバックアッププレート2を重ねて形成する方式が一般
的である。
FIG. 6 (a) shows the A of the mold in FIG.
6A is a cross-sectional view, and FIG.
Ba shows a sectional view. In this type of mold, a backup plate 2 is superimposed on a back surface of a copper mold plate 1 and fastened with bolts, and cooling water supplied from a cooling water pipe 4 is introduced into the mold copper plate 1 through the backup rate 2 and cooled. Structure. As shown in FIG. 6 (b), for example, the cooling water passage 3 of the continuous casting mold having such a structure is formed by forming a rectangular slit groove 3 on the back surface of the mold copper plate 1 and stacking the backup plate 2 on the back surface. The method of forming is common.

【0005】上記の従来鋳型を使用し、矩形断面の鋳片
(以下スラブと呼称)を連続鋳造するとき、鋳型内に注
湯された溶湯8は、鋳型や溶融パウダ6等を介して冷却
され、凝固シェル8a を形成する。この後、未凝固の溶
湯は鋳型を出た後、ロール9に支持されつつミスト冷却
される2次冷却ゾーンにおいて凝固を終了する。凝固終
了位置の輪郭はクレータエンドと称されている。
When a slab having a rectangular cross section (hereinafter referred to as a slab) is continuously cast by using the above-mentioned conventional mold, the molten metal 8 poured into the mold is cooled through the mold, the molten powder 6 and the like. Forming a solidified shell 8a. Thereafter, the unsolidified molten metal exits the mold, and then ends solidification in the secondary cooling zone where the mist is cooled while being supported by the roll 9. The contour of the solidification end position is called a crater end.

【0006】幅広のスラブにおいては、幅方向にわたっ
てメニスカスからの距離が同じになるクレータエンド、
すなわちフラットな形状のクレータエンドが実現するの
はつぎの理由により難しい。
In a wide slab, the crater end has the same distance from the meniscus in the width direction,
That is, it is difficult to realize a flat crater end for the following reasons.

【0007】溶湯8は、通常、二孔ノズルと呼ばれる浸
漬ノズル5より水冷鋳型内1へ吐出され、大きな循環下
降流8b が溶湯内に形成される。
The molten metal 8 is discharged from the immersion nozzle 5 usually called a two-hole nozzle into the water-cooled mold 1, and a large circulating downward flow 8b is formed in the molten metal.

【0008】図5は二孔ノズルから吐出された溶湯の下
降流を示す図である。下降流を形成する溶湯は周囲の金
属より高温であるため、下降流が生じるとスラブ内の均
一な冷却は不可能となる。
FIG. 5 is a view showing a downward flow of the molten metal discharged from the two-hole nozzle. Since the molten metal that forms the downflow is hotter than the surrounding metal, uniform cooling in the slab becomes impossible if the downflow occurs.

【0009】図4(a)は、最終凝固位置直前における
断面を模式的に示す図である。また、図4(b)は未凝
固の溶湯の流動を示す図である。図4(a)によれば、
凝固シェルは鋳型中央で厚く、幅1/4付近で薄くなっ
ている。したがって、クレータエンドはW字型形状にな
る。
FIG. 4A is a diagram schematically showing a cross section immediately before the final solidification position. FIG. 4B is a diagram showing the flow of the unsolidified molten metal. According to FIG.
The solidified shell is thicker at the center of the mold and thinner around 1/4 in width. Therefore, the crater end has a W-shaped shape.

【0010】クレータエンドがW字型の場合には、幅中
央部の肉厚中心部が凝固するとき、液相分配率の高い元
素が濃化した溶鋼が幅1/4位置の未凝固部分へ排出さ
れ、幅1/4部の中心偏析の原因となる。
When the crater end has a W-shape, when the center of the thickness at the center of the width solidifies, molten steel enriched with an element having a high liquid phase distribution ratio is transferred to the unsolidified portion at the 1/4 width position. It is discharged and causes center segregation of 1/4 width.

【0011】特開平5−237621号公報では、この
ような幅1/4部における偏析防止のために鋳型内に磁
場を形成し浸漬ノズルの吐出流速を電磁力で制動するこ
とによる方法が提案されている。しかし、このような鋳
型用の電磁ブレーキは設備コストがかかる上、鋳型重量
も非常に重くなるという欠点を有する。
Japanese Patent Application Laid-Open No. Hei 5-237621 proposes a method in which a magnetic field is formed in a mold and the discharge flow rate of an immersion nozzle is braked by an electromagnetic force in order to prevent such segregation at a quarter of the width. ing. However, such an electromagnetic brake for a mold has the disadvantage that the equipment cost is high and the weight of the mold is very heavy.

【0012】幅1/4部の偏析防止と無関係に、鋳型壁
の冷却能を部分ごとに局所的に変化させるために冷却水
量を部分ごとに変化させる提案はなされたことはある
(特開平3−47654号公報)が、凝固シェルの成長
を各部分ごとに制御するには困難が予想される。
Regardless of the prevention of segregation of 1/4 of the width, there has been proposed that the amount of cooling water is changed for each part in order to locally change the cooling capacity of the mold wall for each part (Japanese Patent Application Laid-Open No. HEI 3 (1991) -1991). However, it is difficult to control the growth of the solidified shell for each part.

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、高設
備コストを要さずにかつ確実にスラブ幅の両1/4部に
おける中心偏析を軽減することができる連続鋳造用鋳型
および連続鋳造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a continuous casting mold and a continuous casting mold capable of reliably reducing center segregation in both quarters of the slab width without requiring high equipment costs. It is to provide a method.

【0014】[0014]

【課題を解決するための手段】本発明者らは、現状の鋳
型銅板による冷却方式を生かしつつ、クレータエンド形
状のW字化を防止する方法を検討し、つぎの事項を確認
することができた。
Means for Solving the Problems The present inventors have studied the method of preventing the crater end shape from being W-shaped while utilizing the current cooling method using a mold copper plate, and have confirmed the following items. Was.

【0015】(イ)下降流が発生してもスラブの幅中央
部で凝固シェルの成長を抑制すれば、クレータエンドの
形状がW字型にならずに幅方向にフラットな形状とな
り、スラブ幅1/4部に集中する中心偏析は分散され
る。
(A) Even if a downward flow occurs, if the growth of the solidified shell is suppressed at the center of the slab width, the crater end will not be W-shaped but will be flat in the width direction, and the slab width will be reduced. Center segregation concentrated in a quarter part is dispersed.

【0016】(ロ)後記するように鋳型内よりも2次冷
却ゾーンのほうが凝固シェルの成長速度は大きいので、
幅中央部が他の部分よりもより多くの時間を鋳型内で経
過するようにできれば、スラブ幅中央部における凝固シ
ェルの成長は抑制される。
(B) As described later, since the growth rate of the solidified shell is higher in the secondary cooling zone than in the mold,
If the central width can be allowed to pass more time in the mold than the other parts, the growth of the solidified shell in the central width of the slab is suppressed.

【0017】図1は、本発明に係る幅中央部の鋳型長さ
を長くした連続鋳造用鋳型を示す図面である。図1
(a)は3角関数曲線にしたがって幅中央部を鋳片の進
行方向に長くした鋳型を、図1(b)は逆台形状に長く
した鋳型を、また図1(c)は逆3角形状に長くした鋳
型を表す。これらの図に示すように、鋳型の幅中央部を
スラブの出側に長くすれば、スラブ幅中央部は他に比較
して鋳型内で経過する時間が長くなり、それだけ2次冷
却ゾーンに移行する時期が遅れるので凝固シェルの成長
が遅れ、幅方向にフラットなクレータエンド形状が実現
する。
FIG. 1 is a drawing showing a continuous casting mold according to the present invention in which the length of the mold at the center of the width is increased. FIG.
(A) shows a mold whose center in the width is elongated in the advancing direction of a slab according to a trigonometric function curve, FIG. 1 (b) shows a mold whose length is increased in an inverted trapezoidal shape, and FIG. 1 (c) shows an inverted triangle. Represents a mold elongated in shape. As shown in these figures, if the width of the center of the mold is increased toward the exit side of the slab, the time required for the center of the slab to elapse in the mold is longer than that of the other parts, and the transition to the secondary cooling zone is made accordingly. Since the time of the formation is delayed, the growth of the solidified shell is delayed, and a flat crater end shape is realized in the width direction.

【0018】本発明は上記の事項を基に計算と実験を重
ね、製造現場でその効果を確認することによって完成さ
れたもので、下記の連続鋳造用鋳型および連続鋳造方法
をその特徴とする(図1参照)。
The present invention has been completed by repeating calculations and experiments on the basis of the above-mentioned matters and confirming its effects at the manufacturing site, and is characterized by the following continuous casting mold and continuous casting method ( (See FIG. 1).

【0019】(1)横断面が矩形状の鋳片の連続鋳造用
鋳型であって、鋳型長辺面の幅中央部が幅の端の部分よ
りも鋳片の進行方向に長い連続鋳造用鋳型(〔発明1〕
とする)。
(1) A casting mold for continuous casting of a slab having a rectangular cross section, wherein the center of the width of the long side of the casting mold is longer than the end of the width in the advancing direction of the slab. ([Invention 1]
And).

【0020】(2)二孔ノズルにより溶融金属を上記
〔発明1〕の連続鋳造用鋳型に注湯し、鋳片が当該鋳型
を出た直後から、凝固シェル成長速度が当該鋳型内での
凝固シェル成長速度よりも大きくなるように2次冷却す
ることを特徴とする連続鋳造方法(〔発明2〕とす
る)。
(2) The molten metal is poured into the continuous casting mold of the above [Invention 1] by means of a two-hole nozzle, and immediately after the slab has left the mold, the solidification shell growth rate is changed to the solidification in the mold. A continuous casting method characterized by performing secondary cooling so as to be higher than the shell growth rate (referred to as [Invention 2]).

【0021】〔発明1〕および〔発明2〕において、連
続鋳造の対象になる金属は主に炭素鋼、低合金鋼、ステ
ンレス鋼等の鋼であるが銅等の非鉄合金であってもよ
い。
In [Invention 1] and [Invention 2], the metal to be subjected to continuous casting is mainly steel such as carbon steel, low alloy steel and stainless steel, but may be a non-ferrous alloy such as copper.

【0022】〔発明1〕および〔発明2〕の対象となる
連続鋳造用鋳型は、凝固シェル成長速度が鋳型内よりも
2次冷却ゾーンにおけるほうが大きい連続鋳造装置すべ
てに適用できる。凝固シェル成長速度の大小は、具体的
には後記する凝固係数kによって記述される。最適な
「鋳型長辺面の幅中央部の長さ」は、後記するように、
本発明の鋳型が適用される連続鋳造装置の2次冷却ゾ
ーンや鋳型への冷却水供給能等の特性、浸漬ノズル形
状、溶湯の比重、スラブ引き抜き速度等が影響した
結果生じたクレータエンドのW字型の凹凸の実測値に応
じて決定される。
The casting mold for continuous casting which is the subject of [Invention 1] and [Invention 2] can be applied to all continuous casting apparatuses in which the solidification shell growth rate is higher in the secondary cooling zone than in the casting mold. The magnitude of the solidified shell growth rate is specifically described by a solidification coefficient k described later. The optimal “length of the center of the width of the long side of the mold” is, as described below,
Characteristics of the secondary cooling zone of the continuous casting apparatus to which the mold of the present invention is applied and the ability to supply cooling water to the mold, the shape of the immersion nozzle, the specific gravity of the molten metal, the slab withdrawing speed, and the like are the results of the crater end W It is determined according to the actually measured value of the character-shaped unevenness.

【0023】〔発明2〕における「鋳片」とは、鋳型を
出た直後、すなわち内部に未凝固の溶湯を含んだ状態の
鋳片も含める。
The "slab" in [Invention 2] also includes a slab immediately after the mold is released, that is, a slab containing an unsolidified molten metal therein.

【0024】「長辺面」とは、連続鋳造スラブの横断面
における矩形の長辺が接触し形成される側の鋳型の面を
さす。「スラブの進行方向」とはスラブが連続的に引き
抜かれてゆく方向をさす。
"Long side surface" refers to the surface of the mold on the side where the long side of the rectangle in the cross section of the continuous casting slab is formed by contact. The “slab traveling direction” refers to the direction in which the slab is continuously pulled out.

【0025】〔発明2〕における浸漬ノズルは、鋳型内
に形成される溶湯溜まり内に排出口を浸漬させて注湯す
るノズルはすべて該当する。
The immersion nozzle in [Invention 2] corresponds to any nozzle that immerses a discharge port in a molten metal pool formed in a mold and pours the molten metal.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

1.〔発明1〕 〔発明1〕において鋳型長辺面の幅方向中央部の出側を
凸型形状にするのは上記したように、スラブの幅中央部
の凝固シェルの成長を抑制するためである。鋳型におい
ても冷却はなされ凝固シェルは成長するのであるが、後
述する、3.凸型長さの最適値において示すように鋳型
内よりも2次冷却ゾーンでのほうが凝固シェルの成長速
度は大きい。したがって、下降流の影響を受け凝固シェ
ル成長速度の遅い幅1/4部と同じ凝固シェル厚さとす
るために鋳型長辺面の幅中央部の長さを長くするのであ
る。
1. [Invention 1] In [Invention 1], the reason why the exit side at the center in the width direction of the long side surface of the mold is made to have a convex shape is to suppress the growth of the solidified shell at the width center of the slab as described above. . Cooling is also performed in the mold, and the solidified shell grows. As shown in the optimum value of the convex length, the growth rate of the solidified shell is higher in the secondary cooling zone than in the mold. Therefore, the length of the central portion of the long side surface of the mold is increased in order to obtain the same solidified shell thickness as the width 1/4 portion where the solidified shell growth rate is slow due to the influence of the downward flow.

【0027】どの程度長手方向に凸形状にするかは、ク
レータエンドの実測値を基に定量的に詰める必要があ
り、3.鋳型長辺面の幅中央部の最適長さにおいて詳述
する。
It is necessary to quantitatively determine the extent of the convex shape in the longitudinal direction based on the actually measured value of the crater end. The optimum length at the center of the width of the long side surface of the mold will be described in detail.

【0028】2.〔発明2〕 〔発明2〕においては、二孔ノズルを用いて〔発明1〕
の連続鋳造用鋳型に注湯する。二孔ノズルを用いるの
は、メニスカス(溶湯の湯面)を覆うパウダーを巻き込
むことなく鋳型に給湯するためである。
2. [Invention 2] In [Invention 2], using a two-hole nozzle [Invention 1]
Pour into a continuous casting mold. The reason why the two-hole nozzle is used is to supply hot water to the mold without involving the powder covering the meniscus (the surface of the molten metal).

【0029】鋳型を出た後2次冷却を設け、鋳型内より
も冷却を強化するのは、鋳型内で健全な鋳片表面が形成
された後は、鋳型を出て直ちに冷却を強化して凝固シェ
ル厚さを確保して変形等に耐えるようにするため、およ
び能率向上のためである。その目的を達成するために、
2次冷却ゾーンにおける凝固シェル成長速度は鋳型内で
のそれより大きいものとする。通常、凝固シェル成長速
度は凝固係数k(mm/(min)0.5)によって表示され
る。鋳型内での凝固係数kMが10〜30mm/(min)
0.5であるのに対して、2次冷却ゾーンでのそれを20
〜40mm/(min)0.5とすることが望ましい。
Secondary cooling is provided after leaving the mold, and the cooling is strengthened more than in the mold. After a sound slab surface is formed in the mold, the cooling is strengthened immediately after leaving the mold. This is for ensuring the solidified shell thickness to withstand deformation and the like and for improving efficiency. To achieve that goal,
The solidification shell growth rate in the secondary cooling zone should be greater than that in the mold. Usually, the solidification shell growth rate is indicated by the solidification coefficient k (mm / (min) 0.5 ). Solidification coefficient km in the mold is 10 to 30 mm / (min)
0.5 compared to 20 in the secondary cooling zone.
4040 mm / (min) 0.5 is desirable.

【0030】3.鋳型長辺面の幅中央部の最適長さ つぎに〔発明1〕において、連続鋳造装置の特性等の結
果であるクレータエンドの形状に応じて鋳型長辺面の幅
中央部出側をどの程度凸型にするか、幅中央部の最適長
さの計算方法を示す。
3. Optimum length of the center of the width of the long side of the mold Next, in [Invention 1], how much the exit side of the center of the width of the long side of the mold depends on the shape of the crater end, which is the result of the characteristics of the continuous casting apparatus. The calculation method of the optimum length at the center of the width or the convex shape is shown.

【0031】図3は、スラブ長手方向に沿ったメニスカ
スからの距離lに応じた凝固シェル厚さおよび鋳片状況
を示す図面である。“スラブ長手方向に沿ったメニスカ
スからの距離”とはスラブに沿った長さをさす。
FIG. 3 is a drawing showing the thickness of the solidified shell and the condition of the slab according to the distance 1 from the meniscus along the longitudinal direction of the slab. "Distance from the meniscus along the longitudinal direction of the slab" refers to the length along the slab.

【0032】一般に、金属の連続鋳造において、凝固シ
ェル厚さは、時間の平方根に比例し(1)式の形に表せら
れる。
In general, in continuous casting of metal, the thickness of the solidified shell is proportional to the square root of time and is expressed by the following equation (1).

【0033】 D=k・t0.5・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) D:凝固シェル厚さ(mm) k:凝固係数( mm/(分0.5) ) t:時間(分) 以下において上記 (1)式を鋳型内と2次冷却ゾーンに分
けて考える。凝固係数も鋳型内のそれkMと2次冷却ゾ
ーンでのそれkSに分けて議論する。
D = kt0.5 0.5 (1) D : Solidification shell thickness (mm) k: solidification coefficient (mm / (min 0.5 )) t: time (min) In the following, the above formula (1) is divided into a mold and a secondary cooling zone. Coagulation factor is also discussed separately thereto k S in which k M and a secondary cooling zone in the mold.

【0034】鋳型内の凝固係数kMの値は、鋳造中に凝固
シェルが破れ溶鋼が流出するブレークアウト発生時の解
析、またはトレーサとして硫黄Sを添加し横断面をサル
ファプリントで観察する方法により求められ、およそ2
0mm/(分0.5)である。
The value of the coagulation factor k M in the mold by methods observing analyzed during breakout occurs which solidified shell broken molten steel flows out during casting or the cross section of sulfur was added S as a tracer in Sulfur Print Sought, about 2
0 mm / (min 0.5 ).

【0035】一方、鋳型を出た後の2次冷却ゾーンの凝
固係数kSは、実測値でおよそ28.6mm/(分0.5)で
ある。
On the other hand, the solidification coefficient k S in the secondary cooling zone after leaving the mold is about 28.6 mm / (min 0.5 ) as a measured value.

【0036】上記の関係をもとに凝固開始からの時間t
分後の凝固シェル厚さは、鋳型内の部分と2次冷却ゾー
ンにある部分に分けて、それぞれ(2)式、(3)式で表せ
る。
Based on the above relationship, the time t from the start of solidification
The thickness of the solidified shell after one minute can be expressed by equations (2) and (3), separately for the part in the mold and the part in the secondary cooling zone.

【0037】 DM=kM・t0.5 (0≦t≦lM/VC) ・・・・・・・・・・・・・・・・・・(2) DS=kS・{t-(l0/VC)}0.5 ・・・・・・・・・・・・・・・・・・・・・・・(3) (lM/VC≦t≦lE/VC) ここで、d1:従来の鋳型(CASE1)での鋳型を出
た時点での凝固シェル厚さ(mm) dE:凝固終了厚さ(mm)=スラブ厚さ/2 lM:鋳型長辺面の長さ(mm)(図3のCASE1で
はlM1と表示) lE:凝固終了時のメニスカスからの距離(mm) Vc:スラブ引き抜き速度(mm/分) l0についてはつぎに述べる。 (2)式および(3)式の凝固
シェル厚さは鋳型から2次冷却ゾーンに移行するとき同
じでなければならないので、鋳型内時間t=lM1/VC
経過後の凝固シェル厚さを、DM=DS=d1と置く。ま
た、最終凝固時間t=(lE/VC)にて、凝固シェル厚
さは、DS=dEである。これらの条件からksおよびl0
がつぎのように求められる。
[0037] D M = k M · t 0.5 (0 ≦ t ≦ l M / V C) ·················· (2) D S = k S · { t- (l 0 / V C )} 0.5・ ・ ・ ・ ・ ・ ・ ・ ・ (3) (l M / V C ≦ t ≦ l E / V C ) Here, d 1 : thickness of solidified shell (mm) at the time of leaving the mold in the conventional mold (CASE 1) d E : thickness of solidified end (mm) = slab thickness / 2 l M : mold Length of long side surface (mm) (in CASE1 of FIG. 3, it is indicated as l M1 ) l E : distance from meniscus at the end of solidification (mm) V c : slab withdrawal speed (mm / min) l 0 is next State. Since the solidified shell thickness in equations (2) and (3) must be the same when transitioning from the mold to the secondary cooling zone, the time in the mold, t = l M1 / V C
The thickness of the solidified shell after the passage is set as D M = D S = d 1 . Further, at the final solidification time t = (l E / V C ), the solidified shell thickness is D S = d E. From these conditions, k s and l 0
Is obtained as follows.

【0038】 kS=dE/(l0/VC0.5・・・・・・・・・・・・・・・・・・・・・・・・・・・(4) l0=(lE-lM)・dE 2/(dE 2-d1 2) ・・・・・・・・・・・・・・・・・・・・(5) l0 は、図3中のメニスカスからの距離lと凝固シェル
厚さDの関係図におけるP点を意味する。
K S = d E / (l 0 / V C ) 0.5 (4) l 0 = (l E -l M) · d E 2 / (d E 2 -d 1 2) ···················· (5) l 0 is 3 It means a point P in the relationship diagram between the distance l from the middle meniscus and the solidified shell thickness D.

【0039】浸漬ノズルからの下降流により影響がなけ
れば、(2)〜(5)式で求められる凝固シェル厚さは幅方向
に一定で、クレータエンド形状も幅方向にフラットとな
る。しかし、実際は下降流の影響で図3のCASE1の
ようにクレータエンド形状はW字型となる。
Unless affected by the downward flow from the immersion nozzle, the thickness of the solidified shell determined by the equations (2) to (5) is constant in the width direction, and the crater end shape is flat in the width direction. However, the crater end shape is actually W-shaped due to the influence of the downward flow as in CASE1 of FIG.

【0040】スラブ幅方向についてのメニスカスから凝
固終了位置までの距離の差を ΔlE(mm)とすると、
CASE1の図にあるように下降流の影響で凝固が早く
完了してしまうスラブ幅中央部に対しては、それを相殺
するようにΔlEa (=ΔlE)(mm)分だけ凝固が遅
れるように鋳型長さを長くしておけばよい。
Assuming that the difference in the distance from the meniscus to the solidification end position in the slab width direction is Δl E (mm),
As shown in the figure of CASE1, solidification is delayed by Δl E a (= Δl E ) (mm) to cancel the center of the slab width where solidification is completed early due to the downward flow. The length of the mold may be increased as described above.

【0041】CASE2は、浸漬ノズルの下降流の影響
の無い場合の凝固状況を示し、鋳型長辺面の長さはCA
SE1のlM1よりも長いlM2としてある。このとき下降
流が無いと、鋳型長辺面の幅中央部を出側に凸型にする
とクレータエンド形状は凸型となる。
CASE 2 shows the solidification state in the case where there is no influence of the descending flow of the immersion nozzle.
It is set as 1 M2 longer than 1 M1 of SE1. At this time, if there is no descending flow, the crater end shape becomes convex if the width center part of the long side surface of the mold is made convex on the output side.

【0042】しかし、実際には下降流の影響があること
から、本発明の方法をとればCASE1とCASE2が
重畳され、ちょうど凝固終了位置での前者のW字部分の
凹部と後者の凸部が相殺されて、最終的にCASE3の
ように凝固終了位置が幅方向にフラットとなった一定位
置にそろうことになる。
However, because of the effect of the downward flow, CASE1 and CASE2 are superimposed by the method of the present invention, and the former W-shaped concave portion and the latter convex portion just at the coagulation end position are formed. As a result, the solidification end position is finally aligned with a fixed position flat in the width direction as in CASE3.

【0043】このようなクレータエンド形状を実現する
ために鋳型の幅中央部長さlM2(mm)は、つぎのよう
に決定される。
In order to realize such a crater end shape, the width center length l M2 (mm) of the mold is determined as follows.

【0044】凝固終了位置に、図3のように ΔlEa
(mm)の差がある場合、幅中央部の鋳型内における凝
固開始(メニスカス形成)からの時間t分後の凝固シェ
ル厚さは、(6)式で表せる。
[0044] coagulation end position, .DELTA.l E a as in FIG. 3
When there is a difference in (mm), the thickness of the solidified shell after a time t from the start of solidification (formation of meniscus) in the mold at the center of the width can be expressed by equation (6).

【0045】 DM=kM・t0.5 (0≦t≦lM2/VC) ・・・・・・・・・・・・・・・・・(6) このときの2次冷却ゾーンでの凝固シェル厚さDSa (7)
式で表される。
D M = k M · t 0.5 (0 ≦ t ≦ l M2 / V C ) (6) In the secondary cooling zone at this time the solidified shell thickness D S a (7)
It is expressed by an equation.

【0046】DSa=kS・{t-(l0/VC)-(ΔlEa/VC)}0.5 ( lM2/VC≦t≦(lE+ΔlEa)/VC ) ・・・・・・・・・・・・・(7)
したがって、鋳型の幅中央部を出た時点t=lM2/VC
で、凝固シェル厚さDM=DSa=d2と置くと、つぎの
(8)式、(9)式が求められる。
[0046] D S a = k S · { t- (l 0 / V C) - (Δl E a / V C)} 0.5 (l M2 / V C ≦ t ≦ (l E + Δl E a) / V C ) (7)
Therefore, the time t = l M2 / V C at the time of exiting the center of the width of the mold.
In, placing the solidified shell thickness D M = D S a = d 2, the following
Equations (8) and (9) are obtained.

【0047】 d2=kM・(lM2/VC)0.5 ・・・・・・・・・・・・・・・・・・・・・・・・・(8) d2=kS・{(lM2/VC)-(l0/VC)-(ΔlEa/VC)}0.5・・・・・・(9) この(8)式と(9)式を変形すると鋳型中央部長lM2(mm)
は次の(10)式で決定される。
D 2 = k M · (l M2 / V C ) 0.5 (8) d 2 = k S・ {(L M2 / V C )-(l 0 / V C )-(Δl E a / V C )} 0.5・ ・ ・ ・ ・ ・ (9) By transforming the equations (8) and (9), Mold center length l M2 (mm)
Is determined by the following equation (10).

【0048】 lM2=kS 2(l0+ΔlEa)/(kS 2-kM 2)・・・・・・・・・・・・・・・・・(10) d2=kM・[kS 2(l0+ΔlEa)/{(kS 2-kM 2)・Vc}]0.5 ・・(11) 上記(10)式より 従来鋳型を用いた場合のクレータエン
ドの実測値△lEa に基づいて、その連続鋳造装置、浸
漬ノズル、鋳造対象金属、引き抜き速度等にとって最適
な本発明に係る鋳型長辺面の幅中央部長さlM2を導出す
ることができる。
L M2 = k S 2 (l 0 + Δl E a) / (k S 2 -k M 2 ) (10) d 2 = k M · [k S 2 (l 0 + Δl E a) / {(k S 2 -k M 2 ) · Vc}] 0.5 · (11) From the above equation (10), the crater using the conventional mold Based on the actual measured value を l E a of the end, it is possible to derive the width central length l M2 of the long side surface of the mold according to the present invention, which is optimal for the continuous casting apparatus, immersion nozzle, metal to be cast, drawing speed, etc. it can.

【0049】通常の鋼の連続鋳造装置を用い、通常の操
業条件において発生しうる△lEaは300mm以内であ
り、この場合には、鋳型の幅中央部をおよそ500mm
以内だけ他の部分より長くすればよい。
[0049] Using a continuous casting apparatus conventional steel, it can occur under normal operating conditions △ l E a is within 300 mm, in this case, approximately 500mm width central portion of the mold
It only has to be longer than other parts.

【0050】[0050]

【実施例】つぎに実施例により本発明の効果を説明す
る。
EXAMPLES Next, the effects of the present invention will be described with reference to examples.

【0051】表1は、実施に用いた本発明に係る鋳型と
比較用の従来型の矩形鋳型を備えた連続鋳造機および連
続鋳造条件を示す。
Table 1 shows a continuous casting machine equipped with a mold according to the present invention used in the practice and a conventional rectangular mold for comparison, and continuous casting conditions.

【0052】[0052]

【表1】 [Table 1]

【0053】同表に示す仕様の連続鋳造機を使って、低
炭素アルミキルド鋼(0.05wt%C-0.05wt%Si-0.20wt%Mn)
を鋳造速度5.0m/分で連続鋳造した。連続鋳造用鋳
型として、従来の矩形の長辺面を持つ鋳型と本発明に係
る出側中央部を凸型形状とした鋳型の比較を行った。本
発明に係る鋳型は、加工が簡単な図1(b)に示す逆台
形型の鋳型とした。この台形の高さを290mm、すな
わち鋳型長辺の長さlM2を1190mmにするにあたっ
ては、鋳型内凝固係数kM=20.0mm/(mi
n)0.5、2次冷却ゾーンの凝固係数kS=28.58m
m/(min)0.5、△lEa=0.200m、lO=0.4
085mを用いた。
Using a continuous casting machine having the specifications shown in the table, a low-carbon aluminum killed steel (0.05 wt% C-0.05 wt% Si-0.20 wt% Mn)
Was continuously cast at a casting speed of 5.0 m / min. As a continuous casting mold, a comparison was made between a conventional mold having a long side surface of a rectangular shape and a mold according to the present invention in which the outlet side central portion had a convex shape. The mold according to the present invention was an inverted trapezoidal mold as shown in FIG. In order to make the height of this trapezoid 290 mm, that is, to make the length l M2 of the long side of the mold 1190 mm, the solidification coefficient in the mold k M = 20.0 mm / (mi
n) 0.5 , solidification coefficient k S of the secondary cooling zone = 28.58 m
m / (min) 0.5 , Δl E a = 0.200 m, l O = 0.4
085 m was used.

【0054】図2は、スラブの横断面の幅1/4部での
厚さ方向の炭素濃度の偏析度の測定結果を示す図であ
る。縦軸の偏析度は、局所濃度/平均濃度を表示する。
FIG. 2 is a graph showing the results of measuring the segregation degree of the carbon concentration in the thickness direction at a quarter of the width of the cross section of the slab. The degree of segregation on the vertical axis indicates local concentration / average concentration.

【0055】本発明によれば、炭素濃度は厚さ中央で平
均値の1.3倍であったものを1.1倍弱に軽減できる
ことが判明した。
According to the present invention, it has been found that the carbon concentration can be reduced from 1.3 times the average value at the center of the thickness to slightly less than 1.1 times.

【0056】[0056]

【発明の効果】本発明により、クレータエンド形状のW
字化が防止でき、幅1/4部での肉厚中心部の偏析が軽
減され、良質な連続鋳造スラブを得ることができる。
According to the present invention, the crater end shape W
Characterization can be prevented, segregation at the center of the thickness at a quarter of the width is reduced, and a high-quality continuous cast slab can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造用鋳型の長辺面形状を示す図
である。(a)は3角関数に従った場合、(b)は逆台
形状の場合、(c)は逆3角形状の場合をしめす。
FIG. 1 is a view showing a long side surface shape of a continuous casting mold of the present invention. (A) shows the case of following a triangular function, (b) shows the case of an inverted trapezoidal shape, and (c) shows the case of an inverted triangular shape.

【図2】鋼スラブの幅中央部の炭素の肉厚方向の分布の
測定結果を示す図である。
FIG. 2 is a view showing a measurement result of a distribution of carbon in a thickness direction in a central portion of a width of a steel slab.

【図3】凝固シェルの成長挙動および各種形状の鋳型使
用時のクレータエンド形状を模式的に示す図である。
FIG. 3 is a view schematically showing a growth behavior of a solidified shell and crater end shapes when using various shapes of molds.

【図4】(a)はクレータエンド付近の肉厚断面の未凝
固部分を示す図である。(b)は溶湯の流れを示す図で
ある。
FIG. 4A is a diagram showing an unsolidified portion of a thick section near a crater end. (B) is a figure which shows the flow of a molten metal.

【図5】二孔ノズルから発生する下降流を示す図であ
る。
FIG. 5 is a diagram showing a downward flow generated from a two-hole nozzle.

【図6】(a)は鋳型のA−Aa断面図を、(b)は
(a)中のB−Ba断面図を表す。
6A is a cross-sectional view of the mold taken along line A-Aa, and FIG. 6B is a cross-sectional view taken along line B-Ba of FIG.

【図7】連続鋳造装置の縦断面を模式的に表す図であ
る。
FIG. 7 is a view schematically showing a longitudinal section of a continuous casting apparatus.

【符号の簡単な説明】[Brief description of reference numerals]

1:鋳型銅板 2:バックアッププレート 3:冷却水路 4:給水配管 5:二孔ノズル 6:溶融パウダ 7:タンディッシュ 8:溶湯 8a:凝固シェル 8b:下降流 9:サポートロール 10:クレータエンド 1: Mold copper plate 2: Backup plate 3: Cooling channel 4: Water supply pipe 5: Two-hole nozzle 6: Melting powder 7: Tundish 8: Molten metal 8a: Solidified shell 8b: Downflow 9: Support roll 10: Crater end

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花尾 方史 大阪府大阪市中央区北浜4丁目5番33号住 友金属工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masafumi Hanao 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】横断面が矩形状の鋳片の連続鋳造用鋳型で
あって、鋳型長辺面の幅中央部が幅の端の部分よりも鋳
片の進行方向に長いことを特徴とする連続鋳造用鋳型。
1. A casting mold for continuous casting of a slab having a rectangular cross section, characterized in that the center of the width of the long side of the casting mold is longer than the end of the width in the advancing direction of the slab. Continuous casting mold.
【請求項2】二孔ノズルにより溶融金属を上記請求項1
の連続鋳造用鋳型に注湯し、鋳片が当該鋳型を出た直後
から、凝固シェル成長速度が当該鋳型内での凝固シェル
成長速度よりも大きくなるように2次冷却することを特
徴とする連続鋳造方法。
2. The molten metal is supplied by a two-hole nozzle.
And the secondary cooling is performed immediately after the slab leaves the mold, so that the solidification shell growth rate becomes higher than the solidification shell growth rate in the mold. Continuous casting method.
JP1215997A 1997-01-27 1997-01-27 Mold for continuous casting and continuous casting method Pending JPH10211549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215997A JPH10211549A (en) 1997-01-27 1997-01-27 Mold for continuous casting and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215997A JPH10211549A (en) 1997-01-27 1997-01-27 Mold for continuous casting and continuous casting method

Publications (1)

Publication Number Publication Date
JPH10211549A true JPH10211549A (en) 1998-08-11

Family

ID=11797684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215997A Pending JPH10211549A (en) 1997-01-27 1997-01-27 Mold for continuous casting and continuous casting method

Country Status (1)

Country Link
JP (1) JPH10211549A (en)

Similar Documents

Publication Publication Date Title
US20080032150A1 (en) Casting steel strip with low surface roughness and low porosity
US5381857A (en) Apparatus and method for continuous casting
JP7284403B2 (en) Twin roll continuous casting apparatus and twin roll continuous casting method
EP3488947B1 (en) Continuous steel casting method
JP3246372B2 (en) Continuous casting of steel
JP3214374B2 (en) Continuous casting of steel
JPH10211549A (en) Mold for continuous casting and continuous casting method
JP2964888B2 (en) Continuous casting method
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP2626861B2 (en) Flow control device for molten steel in continuous casting mold
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JP3125661B2 (en) Steel continuous casting method
JP3362703B2 (en) Continuous casting method
JPH11156511A (en) Steel slab continuous casting method
JP2001321901A (en) Method for continuously casting steel
JP3408374B2 (en) Continuous casting method
JP2867894B2 (en) Continuous casting method
JP2607332B2 (en) Flow control device for molten steel in continuous casting mold
JPH05237621A (en) Continuous casting method
JPH0947852A (en) Continuous casting method and immersion nozzle
JP3394730B2 (en) Continuous casting method of steel slab
JP3077572B2 (en) Continuous casting method
JPH0659526B2 (en) Thin plate continuous casting method
JPS60137562A (en) Continuous casting method for thin sheet
WO1996001709A1 (en) Dual tundishes for use with twin-roll caster