JPH10208747A - Secondary battery and battery and equipment system utilizing the secondary battery - Google Patents

Secondary battery and battery and equipment system utilizing the secondary battery

Info

Publication number
JPH10208747A
JPH10208747A JP9015029A JP1502997A JPH10208747A JP H10208747 A JPH10208747 A JP H10208747A JP 9015029 A JP9015029 A JP 9015029A JP 1502997 A JP1502997 A JP 1502997A JP H10208747 A JPH10208747 A JP H10208747A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
negative electrode
positive electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9015029A
Other languages
Japanese (ja)
Inventor
Katsunori Nishimura
勝憲 西村
Akihiro Goto
明弘 後藤
Hisashi Ando
寿 安藤
Tadashi Muranaka
村中  廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9015029A priority Critical patent/JPH10208747A/en
Publication of JPH10208747A publication Critical patent/JPH10208747A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode in which the amount of a conductive agent such as graphite and carbon black is reduced and increase battery capacity by increasing energy density by using inorganic system binder forming a chain or network structure by connecting inorganic atoms except carbon. SOLUTION: This secondary battery has chain couplings or network structures containing at least one kind or element among B, N, Al, Si, P, S, Se. The chain couplings are a P-N coupling (polyphosphazene), an Si-Si coupling (polysilane), a B-N coupling (polyborazene) and a B-B coupling (polyborane), etc. In a rectangular lithium secondary battery, a positive electrode 2 and a negative electrode 3 are formed by applying a 95:5 mixture of LiCoO2 of a positive active material and polyborane of binder and a 95:5 mixture of mass mixture of natural graphite powder, polysilane and polyborane, respectively, as organic solvent slurry on a collector and drying the mixture. The positive electrode 2 is inserted into a separator 4. Non-aqueous electrolyte made of ethylene carbonate, dimethyl carbonate and LiBF4 is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池、特にリチ
ウム二次電池とそれを搭載したシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery, particularly to a lithium secondary battery and a system including the same.

【0002】[0002]

【従来の技術】リチウム二次電池を代表とする非水電解
液二次電池は、鉛蓄電池やニッケル・カドミニウム電池
よりも高いエネルギ密度が得られるため、近年ビデオカ
メラ,携帯用電話,ノート型パソコンなどのポータブル
電気機器に利用されている。リチウム二次電池の負極に
用いられている活物質は、リチウム金属,リチウムイオ
ンを吸蔵可能な炭素材料などが挙げられ、他方正極活物
質にはコバルト酸リチウムやスピネル型マンガン酸リチ
ウムなどの遷移金属酸化物がある。これらの電池活物質
は、有機系高分子バインダによって、集電体へ固定され
ている。主に用いられているバインダを列挙すると、テ
フロン,ポリフッ化ビニリデンなどのフッ素系バイン
ダ,エチレン・ブタジエンゴムなどのゴム系バインダが
ある(特開平4−249860 号,特開平7−220720 号公
報)。これらのバインダは、実際上絶縁体である。この
ため、高抵抗な正極活物質に導電性を付与するために、
黒鉛やカーボンブラックなどの炭素質導電剤を添加して
正極を製造している。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries, such as lithium secondary batteries, have higher energy densities than lead-acid batteries and nickel-cadmium batteries. It is used in portable electrical equipment such as. The active material used for the negative electrode of a lithium secondary battery includes lithium metal and a carbon material capable of storing lithium ions, while the positive electrode active material includes transition materials such as lithium cobaltate and spinel lithium manganate. There are metal oxides. These battery active materials are fixed to the current collector by an organic polymer binder. The binders mainly used include fluorine-based binders such as Teflon and polyvinylidene fluoride, and rubber-based binders such as ethylene-butadiene rubber (JP-A-4-249860 and JP-A-7-220720). These binders are actually insulators. Therefore, in order to impart conductivity to the high-resistance positive electrode active material,
The positive electrode is manufactured by adding a carbonaceous conductive agent such as graphite or carbon black.

【0003】[0003]

【発明が解決しようとする課題】近年リチウム二次電池
は、ポータブル電気機器の普及に伴い、ますます長時間
の使用に耐えうるものが要求されており、さらに大きな
電池容量をもった電池が望まれている。しかし、現状の
リチウム二次電池では、有機系高分子バインダに十分な
電気伝導性がないため、電池容量の増大に無関係な導電
剤が必要になり、電池のエネルギ密度を増加させるため
の障害になっている。
In recent years, with the spread of portable electric equipment, lithium secondary batteries have been required to be able to withstand use for a longer time, and batteries having a larger battery capacity have been desired. It is rare. However, in the current lithium secondary battery, since the organic polymer binder does not have sufficient electric conductivity, a conductive agent irrelevant to the increase in the battery capacity is required, and there is an obstacle to increase the energy density of the battery. Has become.

【0004】さらに、角型リチウム二次電池は電子機器
への収納が容易であることから、角型電池のニーズは大
きいが、多数の電極を積層するための製造上の課題が残
されている。その課題を解決するために、電極合剤層の
厚膜化による電極積層枚数の低減化技術が要求されてい
る。しかし、有機系高分子バインダを用いて電極を厚膜
化すると、電極合剤層を厚さの増加とともに、バインダ
使用量も増加し、電極抵抗が増大する問題が生じる。こ
の問題も、有機系高分子バインダの絶縁性に起因してい
る。
[0004] Further, since the prismatic lithium secondary battery is easily housed in electronic equipment, the need for the prismatic battery is great, but there remains a manufacturing problem for laminating a large number of electrodes. . In order to solve the problem, a technique for reducing the number of stacked electrodes by increasing the thickness of the electrode mixture layer is required. However, when the thickness of the electrode is increased by using an organic polymer binder, the thickness of the electrode mixture layer is increased, and the amount of the binder used is increased, thereby causing a problem that the electrode resistance is increased. This problem is also caused by the insulating property of the organic polymer binder.

【0005】発明者らは、有機系高分子バインダの欠点
を解決すべく鋭意研究した結果、導電性の無機系バイン
ダの発明に至った。本発明の目的は、黒鉛やカーボンブ
ラックなどの導電剤の使用量を低減し、電極の製造を可
能にする無機系バインダを利用した二次電池、およびそ
れを利用した組電池と機器システムを提供することにあ
る。
The inventors have conducted intensive studies to solve the drawbacks of the organic polymer binder, and as a result, have come to the invention of a conductive inorganic binder. SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery using an inorganic binder capable of manufacturing an electrode by reducing the amount of a conductive agent such as graphite or carbon black, and an assembled battery and a device system using the same. Is to do.

【0006】[0006]

【課題を解決するための手段】ポリフッ化ビニリデンな
どの有機系バインダを利用したリチウム二次電池用電極
の比抵抗は大きく、その値は1〜100kΩcmの範囲に
ある。したがって、本発明の無機バインダの比抵抗は、
100kΩcm以下であれば、有機バインダを使用した場
合よりも低抵抗な電極を製造することができる。本発明
者らは,B,N,Al,Si、P,S,Ti,Seを有
する無機系高分子で、特にB−B,Si−Si,S−
S,Se−Se,S−Se,B−C,B−N,B−P,
B−Si,B−S,Al−N,Al−C,Si−N,S
i−C,P=N,P−S,S=N結合を有する無機系高
分子からなるバインダの電気抵抗が低く、それが二次電
池用バインダとして機能しうることを発見した。以下で
は、本発明の詳細を述べる。無機系高分子とは、その分
子に存在する主鎖骨格中に炭素以外の他の原子の共有結
合で並んでいる巨大分子であると定義されている(高分
子学会編,高分子新素材便覧,1988年刊行)。この
ような無機系原子の共有結合を形成できる元素は,B,
N,Al,Si,P,S,Seなどがある。例えば、S
i−O,P−Oの結合が網目状に連なった材料として、
乾燥剤に用いられるシリカゲル、あるいはケイ酸塩,リ
ン酸塩などのガラスがよく知られている。これらの結合
は強固であるため、その構造は非常に安定である。しか
し、無機系高分子の主鎖に酸素元素が存在すると、酸素
が非局在化電子をもたないため、無機系高分子の抵抗が
増大する欠点を生じる。ポリフッ化ビニリデンなどの有
機系バインダを利用したリチウム二次電池用電極の比抵
抗は大きく、その値は1〜100kΩcmの範囲にある。
したがって、本発明の無機系バインダの比抵抗は、10
0kΩcm以下であれば、有機系バインダを使用した場合
よりも低抵抗な電極を製造することができる。
The specific resistance of a lithium secondary battery electrode using an organic binder such as polyvinylidene fluoride is large, and its value is in the range of 1 to 100 kΩcm. Therefore, the specific resistance of the inorganic binder of the present invention is:
If it is 100 kΩcm or less, an electrode having lower resistance than when an organic binder is used can be manufactured. The present inventors have proposed an inorganic polymer having B, N, Al, Si, P, S, Ti, and Se, particularly BB, Si-Si, S-.
S, Se-Se, S-Se, BC, BN, BP,
B-Si, BS, Al-N, Al-C, Si-N, S
It has been discovered that a binder composed of an inorganic polymer having iC, P = N, PS, and S = N bonds has a low electric resistance, and can function as a binder for a secondary battery. Hereinafter, details of the present invention will be described. Inorganic macromolecules are defined as macromolecules arranged in the main chain skeleton of the molecule by covalent bonds of atoms other than carbon (edited by the Society of Polymer Science, Handbook of New Polymer Materials) , 1988). Elements that can form such a covalent bond of an inorganic atom are B,
N, Al, Si, P, S, Se and the like. For example, S
As a material in which i-O and PO bonds are connected in a network,
Silica gel or glass such as silicate or phosphate used as a desiccant is well known. Because these bonds are strong, their structure is very stable. However, when an oxygen element is present in the main chain of the inorganic polymer, oxygen has no delocalized electrons, so that there is a disadvantage that the resistance of the inorganic polymer increases. The specific resistance of an electrode for a lithium secondary battery using an organic binder such as polyvinylidene fluoride is large, and its value is in the range of 1 to 100 kΩcm.
Therefore, the specific resistance of the inorganic binder of the present invention is 10
If it is 0 kΩcm or less, an electrode having a lower resistance than when an organic binder is used can be manufactured.

【0007】そこで発明者らは、無機系高分子の主鎖上
で、非局在化電子を安定化させた共有結合を有する材料
を電池用バインダに用いることを見い出した。その一例
として、P=N結合が連結した材料では、P,N原子上
のπ電子が安定化され、高分子の導電性が増大する。例
えばP−N結合を有するポリオルガノホスファゼンがあ
り、1mScm~1オーダーの低抵抗材料が存在する。導電
性電子を有するSi−Si−共有結合からなる低抵抗な
無機高分子もある。例えばオルガノポリシランを挙げる
ことができる。この材料は、光照射によって架橋する性
質をもつ。これを利用して、電極活物質とオルガノポリ
シランを混合し、集電体に塗布するか、あるいは混合物
を型へ注入し、乾燥後、電極へ光を照射することによ
り、電極内部にSi−Si共有結合を新たに形成させて
電極強度を増大させることができる。ポリチアジルはS
=N共有結合を有し、π電子共役構造による電子伝導性
を示す。他に、B−B結合を有するポリボラン,S−S
やS−Se結合を有するポリカルコゲン,B−C結合を
有するポリボラカルバン,B−N結合を有するポリボラ
ゼン,B−P結合を有するポリボラホスフェン,B−S
結合を有するポリボラホスフェン,Al−N結合を有す
るポリアラザン,Al−C結合を有するポリアラカルバ
ン,Si−N結合を有するポリシラザン,Si−C結合
を有するポリシラカルバン,P−S結合を有するポリホ
スファチアン,P−S結合を有するポリホスファチアン
などの無機系高分子を、二次電池用無機系バインダとし
て利用可能である。あるいは、無機系高分子の共重合
体、電気伝導率を増大させるためにヨウ化物イオンや1
価または2価の遷移金属イオンをドープした無機系高分
子も使用可能である。上記無機系高分子の無機原子の側
鎖に結合したアルキル基またはフェニル基は、非水電解
液に含まれる溶媒との親和性が高く、上記の無機高分子
をそのまま用いることができないときがある。この場
合、アルキル基またはフェニル基の水素をハロゲン化処
理し親油性を低減させると、非水電解液への溶解を抑制
することができる。例えば、ポリシランの水素原子をア
ルキル基に置換したペルアルキルシランがある。アルキ
ル基の水素をハロゲンで置換したものは、電解液への溶
解,有機溶媒による膨潤が抑制されて、バインダとして
さらに望ましい。
Accordingly, the inventors have found that a material having a covalent bond stabilizing delocalized electrons on the main chain of an inorganic polymer is used for a battery binder. As an example, in a material in which P = N bonds are connected, π electrons on P and N atoms are stabilized, and the conductivity of the polymer is increased. For example, there is a polyorganophosphazene having a PN bond, and a low-resistance material on the order of 1 mScm to 1 is present. There is also a low-resistance inorganic polymer composed of a Si—Si—covalent bond having conductive electrons. For example, an organopolysilane can be mentioned. This material has a property of being crosslinked by light irradiation. By utilizing this, the electrode active material and the organopolysilane are mixed and applied to a current collector, or the mixture is injected into a mold, and after drying, the electrode is irradiated with light, so that the Si-Si The strength of the electrode can be increased by newly forming a covalent bond. Polythiazyl is S
= N has a covalent bond and exhibits electron conductivity due to a π-electron conjugated structure. Besides, polyborane having BB bond, SS
Or polychalcogen having an S-Se bond, polyboracarban having a BC bond, polyborazene having a BN bond, polyboraphosphene having a BP bond, BS
Polyboraphosphene having a bond, polyarazan having an Al-N bond, polyaracarban having an Al-C bond, polysilazane having a Si-N bond, polysilacarban having a Si-C bond, having a PS bond Inorganic polymers such as polyphosphatiane and polyphosphatiane having a PS bond can be used as an inorganic binder for a secondary battery. Alternatively, a copolymer of an inorganic polymer, iodide ion or 1
An inorganic polymer doped with a bivalent or divalent transition metal ion can also be used. The alkyl group or the phenyl group bonded to the side chain of the inorganic atom of the inorganic polymer has a high affinity for the solvent contained in the nonaqueous electrolyte, and the inorganic polymer may not be used as it is. . In this case, when the hydrogen of the alkyl group or the phenyl group is halogenated to reduce lipophilicity, dissolution in the nonaqueous electrolyte can be suppressed. For example, there is peralkylsilane in which a hydrogen atom of polysilane is substituted with an alkyl group. The one in which hydrogen of the alkyl group is replaced by halogen is more preferable as a binder because dissolution in an electrolytic solution and swelling by an organic solvent are suppressed.

【0008】本発明の無機系バインダを利用した電極の
製造には、2種類の方法がある。第一の方法は、無機系
バインダを有機溶媒に溶解させ、電極活物質と混合した
スラリを製造し、ドクターブレード法,ディッピング法
などによって、スラリを銅箔やアルミニウム箔上へ塗布
することによって、電極を作製することができる。一軸
法または二軸法で電極を捲回して、円筒型または角型電
池を製造するとき、電極活物質の脱落を回避するため
に、電極厚さは0.5mm 以下が望ましい。他方、電極積
層方式の角型電池を製造するとき、数mmの厚さの電極を
使用することが可能になる。このように従来用いられた
有機系高分子と類似した製造プロセスで、有機高分子の
低導電性の欠点を克服することができる。無機系高分子
を溶解または分散させる溶媒の例として、キシレン,ト
ルエンなどの芳香族有機溶媒等の無極性溶媒がある。溶
解を容易にするためには、スラリを加熱する方法をとる
ことができる。あるいは、無機系バインダの重合度を小
さくして、低分子量の無機系バインダを利用する方法を
採用すればよい。低分子量の無機系バインダを用いる場
合、分子量千から五万の高分子が望ましい。第二の電極
作製方法として、電極活物質と本発明の無機系バインダ
を乾式で混合し、板状,円筒状などの任意の形状に加圧
成型下後に、熱処理によってバインダを溶融させ、バイ
ンダと電極活物質を一体化させる手段がある。これによ
って、高強度の電極が得られる。電極面にアルミニウム
または銅のメッシュを圧着することによって、電極から
の集電ができる。
[0008] There are two methods for producing an electrode using the inorganic binder of the present invention. The first method is to dissolve an inorganic binder in an organic solvent, produce a slurry mixed with an electrode active material, and apply the slurry to a copper foil or an aluminum foil by a doctor blade method, a dipping method, or the like. Electrodes can be made. When a cylindrical or prismatic battery is manufactured by winding an electrode by a uniaxial method or a biaxial method, the thickness of the electrode is preferably 0.5 mm or less in order to avoid falling off of the electrode active material. On the other hand, when manufacturing a prismatic battery of the electrode lamination type, it is possible to use an electrode having a thickness of several mm. As described above, the manufacturing process similar to the conventionally used organic polymer can overcome the disadvantage of the low conductivity of the organic polymer. Examples of solvents for dissolving or dispersing the inorganic polymer include non-polar solvents such as aromatic organic solvents such as xylene and toluene. To facilitate dissolution, a method of heating the slurry can be employed. Alternatively, a method of reducing the degree of polymerization of the inorganic binder and using a low molecular weight inorganic binder may be employed. When using a low molecular weight inorganic binder, a polymer having a molecular weight of 1,000 to 50,000 is desirable. As a second electrode manufacturing method, the electrode active material and the inorganic binder of the present invention are dry-mixed, and the mixture is pressed and molded into an arbitrary shape such as a plate or a cylinder, and then the binder is melted by heat treatment. There is a means for integrating the electrode active material. Thereby, a high-strength electrode is obtained. By pressing an aluminum or copper mesh on the electrode surface, current can be collected from the electrode.

【0009】本発明で作製したシート状の正極と負極
を、両電極の間にポリプロピレンやポリエチレンからな
るセパレータを挟んで捲回する。これを円筒型金属容器
に収納し、正極または負極の一方を電池蓋底と電池缶底
へ溶接した後、電池を封口する。角型リチウム二次電池
の製法は2種類の方法がある。正極と負極を加圧成型、
切断後に、両電極の間にポリプロピレンやポリエチレン
からなるセパレータを挟んで、二軸捲回法によりそれら
を楕円状に捲回する。あるいは、加圧成型した短冊形状
のセパレータを介して積層し、電極群を製造する。これ
らの電極群を角型電池缶に収納し、電極端子を電池蓋や
電池缶に溶接する。さらに電解液を電池内部へ注入した
後に、缶と蓋を溶接することにより、角型リチウム二次
電池が完成する。固体電解質またはゲル状電解質を用い
る際、シート状に加工した固体電解質またはゲル状電解
質を正極と負極の間に挿入して電極群を組み立ててか
ら、電極群を電池缶へ収納し、電極端子を電池蓋や電池
缶に溶接して、電池を完成させる。
The sheet-like positive electrode and negative electrode produced in the present invention are wound with a separator made of polypropylene or polyethylene interposed between the two electrodes. This is housed in a cylindrical metal container, and one of the positive electrode and the negative electrode is welded to the bottom of the battery lid and the bottom of the battery can, and then the battery is sealed. There are two methods for manufacturing a prismatic lithium secondary battery. Pressure molding of positive and negative electrodes,
After the cutting, a separator made of polypropylene or polyethylene is sandwiched between the two electrodes, and these are wound in an elliptical shape by a biaxial winding method. Alternatively, the electrodes are laminated through a strip-shaped separator formed by pressurization to manufacture an electrode group. These electrode groups are housed in a rectangular battery can, and the electrode terminals are welded to the battery lid and the battery can. Further, after the electrolyte is injected into the battery, the can and the lid are welded to complete the prismatic lithium secondary battery. When using a solid electrolyte or a gel electrolyte, a solid electrolyte or a gel electrolyte processed into a sheet is inserted between a positive electrode and a negative electrode to assemble an electrode group. The battery is completed by welding to the battery lid and battery can.

【0010】リチウム二次電池に使用可能な正極活物質
は、コバルト酸リチウム(LiCoO2),ニッケル酸リチウ
ム(LiNiO2 )などの層状化合物、あるいはマンガ
ン酸リチウム(LiMn24,LiMnO3,LiMn2
3,LiMnO2),銅−リチウム酸化物(Li2Cu
2)、あるいはLiV38,LiFe34,V25
Cu227などのバナジウム酸化物、あるいは化学式
LiNi1-xMxO2(ただし、M=Co,Mn,Al,
Cu,Fe,Mg,B,Gaであり、x=0.01〜0.
3)で表わされるNiサイト置換型ニッケル酸リチウ
ム、あるいは化学式LiMn2-xMxO2(ただし、M=
Co,Ni,Fe,Cr,Zn,Taであり、x=0.
01〜0.1)または化学式Li2Mn3MO8(ただし、
M=Fe,Co,Ni,Cu,Zn)で表わされるマン
ガン複合酸リチウムまたは化学式Liの一部をアルカリ
土類金属イオンで置換したLiMn24,ジスルフィド
化合物、あるいはFe2(MoO4)3などが挙げられる。
The positive electrode active material usable for the lithium secondary battery is a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or lithium manganate (LiMn 2 O 4 , LiMnO 3 , LiMn). Two
O 3 , LiMnO 2 ), copper-lithium oxide (Li 2 Cu)
O 2 ), or LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 ,
A vanadium oxide such as Cu 2 V 2 O 7 or a chemical formula LiNi 1-x MxO 2 (where M = Co, Mn, Al,
Cu, Fe, Mg, B, Ga, and x = 0.01 to 0.1.
Ni-substituted lithium nickelate represented by 3) or the chemical formula LiMn 2-x MxO 2 (where M =
Co, Ni, Fe, Cr, Zn, Ta, and x = 0.
01-0.1) or the chemical formula Li 2 Mn 3 MO 8 (however,
LiMn 2 O 4 in which a part of lithium manganese composite acid represented by M = Fe, Co, Ni, Cu, Zn) or chemical formula Li is substituted with an alkaline earth metal ion, a disulfide compound, or Fe 2 (MoO 4 ) 3 And the like.

【0011】他方、負極活物質にはリチウムと合金化可
能な金属、例えばAl,Sn,Si,In,Ga,M
g、あるいはこれらの合金などがある。これらの金属ま
たは合金はリチウムと合金化した材料を利用することも
可能である。さらに、天然黒鉛,人造黒鉛,炭素繊維,
気相成長法炭素繊維,ピッチ系炭素質材料、ニードルコ
ークス,ポリアクリロニトリル系炭素繊維,カーボンブ
ラックなどの炭素質材料、あるいは5員環または6員環
の環式炭化水素または環式含酸素有機化合物を熱分解に
よって合成した非晶質炭素材料、あるいはポリアセン,
ポリパラフェニレン,ポリアニリン,ポリアセチレンか
らなる導電性高分子材料、あるいはSnO,GeO2,S
nSiO3,SnSi0.51.5,SnSi0.7Al0.10.3
0.23.5,SnSi0.5Al0.30.30.54.15など
を含む14族または15族元素の酸化物、あるいはイン
ジウム酸化物、あるいは亜鉛酸化物、あるいはLi3
eN2、あるいはFe2Si3,FeSi,FeSi2,M
2Siなどのケイ化物、あるいはAg,Sn,Al,
Pb,Zn,Cd,Auと炭素とを複合化した材料など
も負極活物質に使用できる。また、本発明は上記の電池
活物質以外にも適用可能であり、負極にリチウム金属シ
−トを用いてもよい。
On the other hand, a metal which can be alloyed with lithium, for example, Al, Sn, Si, In, Ga, M
g or an alloy thereof. As these metals or alloys, materials alloyed with lithium can be used. In addition, natural graphite, artificial graphite, carbon fiber,
Carbonaceous materials such as vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, polyacrylonitrile-based carbon fiber, carbon black, or 5- or 6-membered cyclic hydrocarbon or cyclic oxygen-containing organic compound Amorphous carbon material synthesized by pyrolysis or polyacene,
Conductive polymer material composed of polyparaphenylene, polyaniline, polyacetylene, or SnO, GeO 2 , S
nSiO 3 , SnSi 0.5 O 1.5 , SnSi 0.7 Al 0.1 B 0.3
An oxide of a Group 14 element or a Group 15 element including P 0.2 O 3.5 , SnSi 0.5 Al 0.3 B 0.3 P 0.5 O 4.15 , or the like, indium oxide, zinc oxide, or Li 3 F
eN 2 , or Fe 2 Si 3 , FeSi, FeSi 2 , M
silicides such as g 2 Si or Ag, Sn, Al,
A material in which Pb, Zn, Cd, Au and carbon are combined can be used as the negative electrode active material. Further, the present invention is applicable to other than the above-mentioned battery active material, and a lithium metal sheet may be used for the negative electrode.

【0012】リチウム二次電池の使用可能な電解質は、
その化学式がLiPF6,LiBF4,LiClO4,L
iCF3SO3,LiCF3CO2,LiAsF6,LiS
bF6,低級脂肪族カルボン酸リチウムで表記される電解
質またはそれらの混合物を用いることができる。
The usable electrolyte of the lithium secondary battery is as follows:
Its chemical formula is LiPF 6 , LiBF 4 , LiClO 4 , L
iCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiS
An electrolyte represented by bF 6 , lithium lower aliphatic carboxylate, or a mixture thereof can be used.

【0013】リチウム二次電池の非水電解液は、上記の
リチウム塩を非水電解液用溶媒へ溶解させた溶液が使用
される。非水電解液用溶媒の例として、プロピレンカー
ボネート,エチレンカーボネート,ブチレンカーボネー
ト,ビニレンカーボネート,γ−ブチロラクトン,ジメ
チルカーボネート,ジエチルカーボネート,メチルエチ
ルカーボネート、1,2−ジメトキシエタン,2−メチ
ルテトラヒドロフラン,ジメチルスルフォキシド、1,
3−ジオキソラン,ホルムアミド,ジメチルホルムアミ
ド,プロピオン酸メチル,プロピオン酸エチル,リン酸
トリエステル,トリメトキシメタン,ジオキソラン,ジ
エチルエーテル,スルホラン,3−メチル−2−オキサ
ゾリジノン,テトラヒドロフラン、1,2−ジエトキシ
エタンのうち1種類以上の溶媒からなる有機溶媒、また
は有機溶媒分子内の水素の一部をハロゲンへ置換した誘
導体、または有機溶媒分子内の水素の一部をアルキル
基,アルケン基,アルキン基,芳香族基へ置換した誘導
体が挙げられる。また、これらの混合物も使用すること
ができる。
As the non-aqueous electrolyte for the lithium secondary battery, a solution in which the above-described lithium salt is dissolved in a solvent for the non-aqueous electrolyte is used. Examples of the solvent for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran and dimethyl sulfonate. Foxide, 1,
3-dioxolan, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolan, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,2-diethoxyethane Or a derivative obtained by substituting a part of hydrogen in an organic solvent molecule with a halogen, or an alkyl group, an alkene group, an alkyne group, or an aromatic compound in which a part of hydrogen in the organic solvent molecule is substituted with halogen. And derivatives substituted with a group. Also, mixtures thereof can be used.

【0014】固体電解質を用いる場合は、上で述べたリ
チウム塩をエチレンオキシド,アクリロニトリル,フッ
化ビニリデン,メタクリル酸メチル,ヘキサフルオロプ
ロピレンの高分子に保持させて使用する。
When a solid electrolyte is used, the above-mentioned lithium salt is used by being held in a polymer of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene.

【0015】ゲル状電解液を用いる場合は、エチレンオ
キシド,アクリロニトリル,フッ化ビニリデン,メタク
リル酸メチル,ヘキサフルオロプロピレンの高分子内
に、上で列記した非水電解液を保持させて使用する。
When a gel electrolyte is used, the non-aqueous electrolyte listed above is held in a polymer of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene.

【0016】本発明の無機系バインダは、導電剤の使用
量を低減できるので、電極一枚当りに保持される電極活
物質量を増大させることができ、その結果電池の容量密
度が増加する。さらに、無機系バインダに導電性がある
ため、電極全体で活物質が一様に利用されやすくなり、
電極の厚膜化が可能になる。このことは、非発電要素で
ある集電体が電池に占める割合を減少させ電池容量を増
大させるだけでなく、電極積層枚数を減少させて積層式
角型電池の製造工程を飛躍的に簡易化させる効果があ
る。また、正極、負極のいずれか一方を円柱状に加工
し、他方を中空の円筒形状に加工した電極を製造し、円
柱状電極の側面部をセパレータで被覆した後に、円筒状
電極の中空部に円柱状電極を挿入することにより、1組
の正極,負極で構成された二次電池を製造することが可
能である。この電池は、集電体やセパレータなどの非発
電要素を大幅に削減できるので電池容量を増大し、製造
工程を簡略化できる。本発明の無機系バインダを利用し
た二次電池を用いると、高エネルギ密度の組電池を製造
できる。本発明の組電池をパーソナルコンピュータ,大
型電子計算機,ノート型パソコン,ペン入力パソコン,
ノート型ワープロ,携帯電話,カメラ,電気シェーバ,
コードレス電話,ファックス,ビデオ,ビデオカメラ,
電子手帳,電卓,通信機能付き電子手帳,携帯コピー
機,液晶テレビ,電動工具,掃除機,バーチャルリアリ
ティ等の機能を有するゲーム機器,玩具,電動式自転
車,医療介護用歩行補助機,医療介護用車椅子,医療介
護用移動式ベッド,エスカレータ,エレベータ,フォー
クリフト,ゴルフカート,非常用電源,ロードコンディ
ショナ,電力貯蔵システムなどの製品に搭載することに
より、使用時間の長いシステムあるいは消費電力の大き
なシステムを提供できる。
The inorganic binder of the present invention can reduce the amount of the conductive agent used, so that the amount of electrode active material retained per electrode can be increased, and as a result, the capacity density of the battery increases. Furthermore, since the inorganic binder has conductivity, the active material is easily used uniformly throughout the electrode,
The electrode can be made thicker. This not only reduces the proportion of the current collector, which is a non-power-generating element, to the battery and increases the battery capacity, but also dramatically reduces the number of stacked electrodes and dramatically simplifies the manufacturing process of the stacked prismatic battery. Has the effect of causing Also, one of the positive electrode and the negative electrode was processed into a cylindrical shape, the other was processed into a hollow cylindrical electrode to produce an electrode, and the side surface of the cylindrical electrode was coated with a separator, and then the cylindrical electrode was hollowed out. By inserting the columnar electrode, it is possible to manufacture a secondary battery composed of a pair of a positive electrode and a negative electrode. In this battery, non-power generation elements such as a current collector and a separator can be significantly reduced, so that the battery capacity can be increased and the manufacturing process can be simplified. When the secondary battery using the inorganic binder of the present invention is used, a battery pack having a high energy density can be manufactured. The battery pack of the present invention can be used for personal computers, large-scale computers, notebook computers, pen-input computers,
Note-type word processor, mobile phone, camera, electric shaver,
Cordless telephone, fax, video, video camera,
Electronic organizer, calculator, electronic organizer with communication function, portable copy machine, LCD TV, power tool, vacuum cleaner, game equipment with functions such as virtual reality, toys, electric bicycle, walking aid for medical care, medical care Equipped with products such as wheelchairs, mobile beds for medical care, escalators, elevators, forklifts, golf carts, emergency power supplies, road conditioners, and power storage systems, it is possible to use systems with long operating times or large power consumption. Can be provided.

【0017】本発明の無機バインダを用いることによ
り、電池に充填される電極活物質を増加させることがで
き、二次電池の容量を増加させることができる。また、
電極を厚くすることが可能なので、電池の高容量化と電
池組み立て工程の簡易化が可能になる。
By using the inorganic binder of the present invention, it is possible to increase the amount of the electrode active material filled in the battery and to increase the capacity of the secondary battery. Also,
Since the electrodes can be made thicker, it is possible to increase the capacity of the battery and to simplify the battery assembling process.

【0018】[0018]

【発明の実施の形態】以下では、本発明の内容を実施例
に基づいて詳細に説明する。ただし、本発明は下記の実
施例によって何ら限定されることはなく、本発明の主旨
を変更しない範囲で適宜変更可能であることを付記す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be described in detail based on embodiments. However, it should be noted that the present invention is not limited at all by the following examples, and can be appropriately changed without changing the gist of the present invention.

【0019】(実施例1)本発明の円筒型リチウム二次
電池の実施例を述べる。正極は以下で述べる方法で作製
した。正極活物質としてのLiCoO2 粉末と、バイン
ダとして表1に示した9種類の無機系高分子とを重量比
95:5で混合し、有機溶媒としてキシレンを添加し
て、十分に混練して正極スラリを調製した。使用した無
機系高分子の分子量は五千から五万の範囲とした。ドク
ターブレード法によって、厚さ20μmのアルミニウム
箔表面に正極スラリを塗布した。この正極を180℃で
2時間乾燥して正極を作製した。
(Example 1) An example of a cylindrical lithium secondary battery of the present invention will be described. The positive electrode was manufactured by the method described below. LiCoO 2 powder as a positive electrode active material and nine kinds of inorganic polymers shown in Table 1 as a binder were mixed at a weight ratio of 95: 5, xylene was added as an organic solvent, and the mixture was sufficiently kneaded to form a positive electrode. A slurry was prepared. The molecular weight of the inorganic polymer used was in the range of 5,000 to 50,000. A positive electrode slurry was applied to the surface of an aluminum foil having a thickness of 20 μm by a doctor blade method. This positive electrode was dried at 180 ° C. for 2 hours to produce a positive electrode.

【0020】[0020]

【表1】 [Table 1]

【0021】負極は以下の手順で作製した。平均粒径5
μmの天然黒鉛粉末と、無機バインダ1bと1eの等重
量混合物1beを、重量比95:5で混合し、有機溶媒
としてキシレンを添加して、十分に混練して負極スラリ
を調製した。ドクターブレード法によって、厚さ20μ
mの銅箔表面に負極スラリを塗布した。この負極を18
0℃で2時間乾燥して正極を作製した。
The negative electrode was manufactured according to the following procedure. Average particle size 5
A negative graphite slurry was prepared by mixing natural graphite powder of μm and an equal weight mixture 1be of the inorganic binders 1b and 1e at a weight ratio of 95: 5, adding xylene as an organic solvent, and kneading sufficiently to prepare a negative electrode slurry. 20μ thickness by doctor blade method
The negative electrode slurry was applied to the surface of the copper foil of m. This negative electrode is 18
It dried at 0 degreeC for 2 hours, and produced the positive electrode.

【0022】本発明に使用した電解液は、エチレンカー
ボネートとジエチルカーボネートの混合溶媒に、1モル
/リットル相当のLiPF6 を溶かした非水電解液を調
製した。
As the electrolyte used in the present invention, a non-aqueous electrolyte prepared by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate was prepared.

【0023】正極,負極、および非水電解液を使用し
て、図1に示した高さ65mm,直径18mmの円筒型電池
を組み立てた。正極2と負極3は、上で調製した非水電
解液を含浸させたポリエチレン製の微多孔フィルム4を
介して渦巻き状に巻き取られた状態で電池缶5に収納さ
れている。正極2は正極リード6と連結され、電池蓋7
へ電気的に接続している。また、負極3は負極リード9
と連結され、負極リード8は電池缶5の底面に溶接され
ている。電池缶5の上方のくびれ部分に、ポリプロピレ
ン製パッキン9と電池蓋7を被せて金型でかしめて、電
池を密閉した。電池内圧を開放するために、電池蓋7の
内部にAl箔製の破裂弁10を取り付けた。このような
構成で、電気化学的エネルギは電池蓋7と電池缶5より
取り出し、また再充電可能になっている。無機系バイン
ダ1a,1b,1c,1d,1e,1f,1g,1h,
1jを用いた円筒型電池を、それぞれA1,B1,C
1,D1,E1,F1,G1,H1,J1と区別した。
A cylindrical battery having a height of 65 mm and a diameter of 18 mm shown in FIG. 1 was assembled using the positive electrode, the negative electrode, and the non-aqueous electrolyte. The positive electrode 2 and the negative electrode 3 are housed in a battery can 5 in a state of being spirally wound via a microporous film 4 made of polyethylene impregnated with the nonaqueous electrolyte prepared above. Positive electrode 2 is connected to positive electrode lead 6 and battery lid 7
Is electrically connected to The negative electrode 3 is a negative electrode lead 9
The negative electrode lead 8 is welded to the bottom surface of the battery can 5. A packing 9 made of polypropylene and a battery cover 7 were put on the constricted portion above the battery can 5 and caulked with a mold to seal the battery. To release the internal pressure of the battery, a rupture valve 10 made of Al foil was attached inside the battery cover 7. With such a configuration, electrochemical energy can be extracted from the battery lid 7 and the battery can 5 and can be recharged. Inorganic binders 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h,
Aj, A1, B1, C
1, D1, E1, F1, G1, H1, and J1.

【0024】(実施例2)本発明の無機系高分子を混合
したバインダを利用した円筒型リチウム二次電池の実施
例を述べる。本実施例では、無機系高分子1aと1b,
1bと1e,1aと1h,1eと1hの等重量混合物1
ab,1be,1ah,1ehをバインダに使用した。
正極は、実施例1と同様にLiCoO2 粉末と、無機系
バインダ1ab,1be,1ah,1ehをそれぞれ、
重量比95:5で混合し、実施例1と同じ方法で作製し
た。負極と電解液は、実施例1と同一仕様のものを用い
た。無機系バインダの異なる4種類の正極と負極および
非水電解液を使用して、図1に示した高さ65mm,直径
18mmの円筒型電池を組み立てた。正極に無機系バイン
ダ1ab,1be,1ah,1ehを用いた円筒型電池
を、それぞれAB2,BE2,AH2,EH2と区別し
た。
Embodiment 2 An embodiment of a cylindrical lithium secondary battery using a binder mixed with an inorganic polymer of the present invention will be described. In this embodiment, the inorganic polymers 1a and 1b,
An equal weight mixture 1 of 1b and 1e, 1a and 1h, 1e and 1h
ab, 1be, 1ah, 1eh were used for the binder.
The positive electrode was made of LiCoO 2 powder and inorganic binders 1ab, 1be, 1ah, and 1eh, respectively, as in Example 1.
The mixture was mixed at a weight ratio of 95: 5, and produced in the same manner as in Example 1. The negative electrode and the electrolyte used had the same specifications as in Example 1. A cylindrical battery having a height of 65 mm and a diameter of 18 mm shown in FIG. 1 was assembled using four types of positive and negative electrodes having different inorganic binders and a non-aqueous electrolyte. The cylindrical batteries using the inorganic binders 1ab, 1be, 1ah, and 1eh for the positive electrode were distinguished from AB2, BE2, AH2, and EH2, respectively.

【0025】(比較例1)実施例1と同じLiCoO2
粉末、導電剤として天然黒鉛粉末、およびバインダとし
てポリフッ化ビニリデンを、重量比85:10:5で混
合し、有機溶媒として1−メチル−2−ピロリドンを添
加して、十分に混練して正極スラリを調製した。ポリフ
ッ化ビニリデンは絶縁性であるため、正極に導電性を付
与するために良導電体の天然黒鉛を使用する必要があ
り、実施例1と比べて電極中のLiCoO2重量組成が小さく
なった。このスラリを用い正極を作製した。負極の作製
の場合も、実施例1と同じ天然黒鉛粉末と、ポリフッ化
ビニリデンを、重量比90:10で混合し、さらに1−
メチル−2−ピロリドンを添加して、十分に混練して負
極スラリを調製した。このスラリを用い負極を作製し
た。本発明に使用した電解液は、実施例1と同一仕様で
ある。ポリフッ化ビニリデンをバインダに使用した正極
と負極、および非水電解液を用いて、実施例1と同一形
状の円筒型電池1を組み立てた。比較例1で作製した電
池を識別記号X1とする。
Comparative Example 1 The same LiCoO 2 as in Example 1
A powder, a natural graphite powder as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 85: 10: 5, 1-methyl-2-pyrrolidone is added as an organic solvent, and the mixture is sufficiently kneaded to form a positive electrode slurry. Was prepared. Since polyvinylidene fluoride is insulative, it was necessary to use natural graphite of good electrical conductivity in order to impart conductivity to the positive electrode, and the LiCoO 2 weight composition in the electrode was smaller than that in Example 1. A positive electrode was produced using this slurry. Also in the case of producing the negative electrode, the same natural graphite powder as in Example 1 and polyvinylidene fluoride were mixed at a weight ratio of 90:10, and 1-
Methyl-2-pyrrolidone was added and kneaded well to prepare a negative electrode slurry. A negative electrode was produced using this slurry. The electrolyte used in the present invention has the same specifications as in Example 1. A cylindrical battery 1 having the same shape as that of Example 1 was assembled using a positive electrode and a negative electrode using polyvinylidene fluoride as a binder, and a non-aqueous electrolyte. The battery manufactured in Comparative Example 1 is designated as identification code X1.

【0026】以上のようにして作製された14種類の電
池A1,B1,C1,D1,E1,F1,G1,H1,
J1,AB2,BE2,AH2,EH2,X1につい
て、温度25℃,充電電圧4.2V,充電電流0.5A、
充電時間5時間の条件で定電流−定電圧充電を実施した
後、放電電流0.2A の条件で、電圧が2.8V まで低
下するまで電池を放電させた。同様に、充電と放電のサ
イクルを繰り返し、電池の寿命試験を実施した。表2
に、10サイクル目と100サイクル目における各電池
の放電容量、ならびに容量保持率[(100サイクル目
の放電容量)/(10サイクル目の放電容量)×100]
を表示した。
The fourteen types of batteries A1, B1, C1, D1, E1, F1, G1, H1,
For J1, AB2, BE2, AH2, EH2, and X1, a temperature of 25 ° C., a charging voltage of 4.2 V, a charging current of 0.5 A,
After performing a constant current-constant voltage charge under the condition of a charge time of 5 hours, the battery was discharged under a condition of a discharge current of 0.2 A until the voltage was reduced to 2.8 V. Similarly, the cycle of charge and discharge was repeated, and a battery life test was performed. Table 2
The discharge capacity of each battery at the 10th cycle and the 100th cycle, and the capacity retention [(discharge capacity at the 100th cycle) / (discharge capacity at the 10th cycle) × 100]
Was displayed.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、10サイクル時
において、本発明の無機系バインダを用いた電池A1,
B1,C1,D1,E1,F1,G1,H1,J1,A
B2,BE2,AH2,EH2は、ポリフッ化ビニリデ
ンを用いた電池X1に比べて、放電容量が大きくなっ
た。各電池の放電容量は、それぞれの電池に充填された
LiCoO2 および天然黒鉛の重量比と一致したことか
ら、無機バインダを用いることによって、電池に充填可
能な電極活物質を増加させ、その結果電池容量が増大し
たことがわかった。100サイクル時の各電池の放電容
量と容量保持率を比較すると、本発明の無機バインダを
使用しても電極活物質が劣化することがなく、特に2種
類の無機系バインダを使用した電池AB2,BE2,A
H2,EH2が優れた容量維持率を示した。以上の結果
から、本発明の無機系バインダを利用することによっ
て、電池容量の増大が可能になった。
As is clear from Table 2, at the time of 10 cycles, the batteries A1, using the inorganic binder of the present invention,
B1, C1, D1, E1, F1, G1, H1, J1, A
B2, BE2, AH2, and EH2 had larger discharge capacities than the battery X1 using polyvinylidene fluoride. Since the discharge capacity of each battery was equal to the weight ratio of LiCoO 2 and natural graphite filled in each battery, the use of an inorganic binder increased the amount of electrode active material that could be filled in the battery, and as a result, It was found that the capacity had increased. Comparing the discharge capacity and capacity retention of each battery at 100 cycles, the electrode active material did not deteriorate even when the inorganic binder of the present invention was used, and in particular, the batteries AB2 using two types of inorganic binders did not deteriorate. BE2, A
H2 and EH2 showed excellent capacity retention rates. From the above results, it was possible to increase the battery capacity by using the inorganic binder of the present invention.

【0029】(実施例3)本発明の角型リチウム二次電
池に関する実施例を説明する。正極活物質としてのLi
CoO2 粉末と、バインダとして13種類の無機系高分
子1a,1b,1c,1d,1e,1f,1g,1h,
1j,1ab,1be,1ah,1ehを、重量比9
5:5で混合し、有機溶媒としてキシレンを添加して、
十分に混練して正極スラリを調製した。ドクターブレー
ド法によって、厚さ20μmのアルミニウム箔からなる
正極集電体の表面に正極スラリを塗布した。この正極を
180℃で2時間乾燥後、正極活物質塗布面を、高さ40m
m,幅30mmに切断して正極を作製した。電極厚さは0.
6mm 、電極枚数は12枚とした。
(Embodiment 3) An embodiment relating to the prismatic lithium secondary battery of the present invention will be described. Li as positive electrode active material
CoO 2 powder and 13 kinds of inorganic polymers 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h as binders
1j, 1ab, 1be, 1ah, and 1eh at a weight ratio of 9
Mix at 5: 5, add xylene as organic solvent,
The mixture was sufficiently kneaded to prepare a positive electrode slurry. A positive electrode slurry was applied to the surface of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method. This positive electrode
After drying at 180 ° C for 2 hours, the positive electrode active material coated surface was
m and a width of 30 mm to prepare a positive electrode. The electrode thickness is 0.
6 mm, and the number of electrodes was 12.

【0030】負極は以下の手順で作製した。平均粒径5
μmの天然黒鉛粉末と実施例1で使用した無機系バイン
ダ1beを重量比95:5で混合し、有機溶媒としてキ
シレンを添加して、十分に混練して負極スラリを調製し
た。ドクターブレード法によって、厚さ20μmの銅箔
からなる負極集電体の表面に負極スラリを塗布した。こ
の負極を180℃で2時間乾燥後、負極活物質塗布面
を、高さ40mm,幅30mmに切断して負極を作製した。
電極厚さは0.5mm 、電極枚数は13枚とした。本発明
に使用した電解液は、エチレンカーボネートとジメチル
カーボネートの混合溶媒に、1モル/リットル相当のL
iBF4 を溶かした非水電解液を調製した。
The negative electrode was manufactured according to the following procedure. Average particle size 5
A negative electrode slurry was prepared by mixing natural graphite powder of μm and the inorganic binder 1be used in Example 1 at a weight ratio of 95: 5, adding xylene as an organic solvent, and sufficiently kneading the mixture. A negative electrode slurry was applied to the surface of a negative electrode current collector made of a copper foil having a thickness of 20 μm by a doctor blade method. After drying the negative electrode at 180 ° C. for 2 hours, the negative electrode active material coated surface was cut into a height of 40 mm and a width of 30 mm to prepare a negative electrode.
The electrode thickness was 0.5 mm, and the number of electrodes was thirteen. The electrolyte solution used in the present invention is prepared by adding 1 mol / liter of L to a mixed solvent of ethylene carbonate and dimethyl carbonate.
A non-aqueous electrolyte in which iBF 4 was dissolved was prepared.

【0031】上で作製した13種類の正極と負極および
非水電解液を組み合わせて、高さ45mm,幅32mm,奥
行き15mmの角型電池を作製した。図2は作製した角型
リチウム二次電池の断面図である。電極積層時に負極と
の接触を回避するために、封筒状に加工したポリエチレ
ン製セパレータ4に正極2を挿入した。これと負極3を
交互に積層した電極群を電池缶5に挿入した。正極2は
正極リード6と連結され、電池蓋7の底面から正極外部
端子11へ接続した。また、負極3は負極リード9と連
結され、電池蓋7の底面から負極外部端子12へ接続し
た。電池蓋と電池缶を溶接した後、非水電解液を電池蓋
7の注液口8より真空注液し、注液口8を密閉した。電
池内圧を開放するために、電池蓋7にAl箔製の破裂弁
10を取り付けた。このような構成で、電気化学的エネ
ルギは正極外部端子11と負極外部端子12より取り出
し、また再充電可能になっている。実施例3で作製した
電池を識別記号A3,B3,C3,D3,E3,F3,
G3,H3,J3,AB3,BE3,AH3,EH3とす
る。
A prismatic battery having a height of 45 mm, a width of 32 mm and a depth of 15 mm was prepared by combining the 13 types of positive electrode, negative electrode and non-aqueous electrolyte prepared above. FIG. 2 is a sectional view of the manufactured prismatic lithium secondary battery. In order to avoid contact with the negative electrode at the time of laminating the electrodes, the positive electrode 2 was inserted into a polyethylene separator 4 processed into an envelope shape. An electrode group in which this and the negative electrode 3 were alternately laminated was inserted into the battery can 5. The positive electrode 2 was connected to the positive electrode lead 6, and was connected from the bottom surface of the battery cover 7 to the positive electrode external terminal 11. Further, the negative electrode 3 was connected to the negative electrode lead 9, and was connected to the negative electrode external terminal 12 from the bottom surface of the battery lid 7. After welding the battery lid and the battery can, a non-aqueous electrolyte was vacuum-injected from the inlet 8 of the battery cover 7 and the inlet 8 was sealed. To release the battery internal pressure, a rupture valve 10 made of Al foil was attached to the battery lid 7. With such a configuration, electrochemical energy can be extracted from the positive electrode external terminal 11 and the negative electrode external terminal 12 and can be recharged. The batteries manufactured in Example 3 were identified by identification symbols A3, B3, C3, D3, E3, F3,
G3, H3, J3, AB3, BE3, AH3, and EH3.

【0032】(比較例2)比較例1と同じLiCoO2
粉末、導電剤として天然黒鉛粉末、およびバインダとし
てポリフッ化ビニリデンを、重量比85:10:5で混
合し、有機溶媒として1−メチル−2−ピロリドンを添
加して、十分に混練して正極スラリを調製した。このス
ラリを用い、実施例1と同じ方法で正極を作製した。負
極の作製の場合も、実施例1と同じ天然黒鉛粉末とポリ
フッ化ビニリデンを、重量比90:10で混合し、さら
に1−メチル−2−ピロリドンを添加して、十分に混練
して負極スラリを調製した。このスラリを用い、実施例
1と同じ方法で負極を作製した。正極の厚さは0.6m
m、電極枚数は12枚とした。負極の厚さは0.5mm、電
極枚数は13枚とした。本発明に使用した電解液は、実
施例1と同一仕様である。ポリフッ化ビニリデンをバイ
ンダに使用した正極と負極、および非水電解液を用い
て、実施例3と同一形状の角型電池を組み立てた。比較
例2で作製した電池を識別記号X2とする。
Comparative Example 2 Same LiCoO 2 as Comparative Example 1
A powder, a natural graphite powder as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 85: 10: 5, 1-methyl-2-pyrrolidone is added as an organic solvent, and the mixture is sufficiently kneaded to form a positive electrode slurry. Was prepared. Using this slurry, a positive electrode was produced in the same manner as in Example 1. Also in the case of producing the negative electrode, the same natural graphite powder as in Example 1 and polyvinylidene fluoride were mixed at a weight ratio of 90:10, and 1-methyl-2-pyrrolidone was added. Was prepared. Using this slurry, a negative electrode was produced in the same manner as in Example 1. The thickness of the positive electrode is 0.6m
m, and the number of electrodes was 12. The thickness of the negative electrode was 0.5 mm, and the number of electrodes was thirteen. The electrolyte used in the present invention has the same specifications as in Example 1. A prismatic battery having the same shape as in Example 3 was assembled using a positive electrode and a negative electrode using polyvinylidene fluoride as a binder, and a non-aqueous electrolyte. The battery fabricated in Comparative Example 2 is designated as identification code X2.

【0033】また電池X2の電極組成を変えずに、電極
の厚さを1/3に変更した電池X3も作製した。正極の
厚さと枚数はそれぞれ0.2mm ,36枚とした。負極の
厚さと枚数はそれぞれ0.17mm ,37枚とした。
A battery X3 was also produced in which the thickness of the electrode was changed to 1/3 without changing the electrode composition of the battery X2. The thickness and the number of the positive electrodes were 0.2 mm and 36, respectively. The thickness and the number of the negative electrodes were 0.17 mm and 37 sheets, respectively.

【0034】以上のようにして作製された14種類の電
池A3,B3,C3,D3,E3,F3,G3,H3,
J3,AB3,BE3,AH3,EH3,X2,X3に
ついて、温度25℃,充電電圧4.2V,充電電流0.5
A、充電時間6時間の条件で定電流−定電圧充電を実施
した後、放電電流0.5Aの条件で、電圧が2.8Vまで
低下するまで電池を放電させた。同様に、充電と放電の
サイクルを繰り返し、電池の寿命試験を実施した。表3
に、10サイクル目と100サイクル目における各電池
の放電容量、ならびに容量保持率[(100サイクル目
の放電容量)/(10サイクル目の放電容量)×10
0]を表示した。
The fourteen types of batteries A3, B3, C3, D3, E3, F3, G3, H3, and
For J3, AB3, BE3, AH3, EH3, X2, and X3, the temperature was 25 ° C., the charging voltage was 4.2 V, and the charging current was 0.5.
A, a constant current-constant voltage charge was performed under the condition of a charge time of 6 hours, and then the battery was discharged under a condition of a discharge current of 0.5 A until the voltage was reduced to 2.8 V. Similarly, the cycle of charge and discharge was repeated, and a battery life test was performed. Table 3
The discharge capacity of each battery at the 10th cycle and the 100th cycle, and the capacity retention [(discharge capacity at the 100th cycle) / (discharge capacity at the 10th cycle) × 10
0] was displayed.

【0035】[0035]

【表3】 [Table 3]

【0036】表3から明らかなように、10サイクル時
において、本発明の無機系バインダを用いた電池A3,
B3,C3,D3,E3,F3,G3,H3,J3,A
B3,BE3,AH3,EH3は、ポリフッ化ビニリデ
ンを用いた電池X2よりも高い放電容量を有し、特に1
00サイクル経過後でその差が顕著になった。また電池
X3では、本発明の13種類の電池とほぼ同じ放電容量
が得られた。しかし、X3の電極枚数は本発明の電池と
比較して3倍となり、電極を積層するために約3倍の時
間を要し、製造時間が長くなる欠点が認められた。本発
明の無機系バインダを用いることによって、電極枚数を
減少させて製造時間を短縮させると同時に、電池容量も
増大することがわかった。100サイクル時の各電池の
容量保持率を比較すると、本発明の無機系バインダを使
用しても電極活物質が劣化することがなく、特に2種類
の無機系バインダを使用した電池AB2,BE2,AH
2,EH2が優れた容量維持率を示した。
As is apparent from Table 3, at the time of 10 cycles, the batteries A3 and B3 using the inorganic binder of the present invention were used.
B3, C3, D3, E3, F3, G3, H3, J3, A
B3, BE3, AH3, and EH3 have a higher discharge capacity than battery X2 using polyvinylidene fluoride, and
The difference became significant after the lapse of 00 cycles. In the battery X3, almost the same discharge capacity was obtained as in the 13 types of batteries of the present invention. However, the number of electrodes of X3 was three times as large as that of the battery of the present invention, and it took about three times as much time to laminate the electrodes, and the production time was long. It has been found that by using the inorganic binder of the present invention, the number of electrodes is reduced to shorten the manufacturing time, and at the same time, the battery capacity is increased. Comparing the capacity retention rates of the batteries at 100 cycles, the electrode active material did not deteriorate even when the inorganic binder of the present invention was used, and in particular, the batteries AB2, BE2 and AB2 using two types of inorganic binders did not deteriorate. AH
2, EH2 showed an excellent capacity retention rate.

【0037】(実施例4)本発明の一例として、一組の
正極と負極からなる円筒型リチウム二次電池を図3に示
した。正極は以下で述べる方法で作製した。正極活物質
としてのLiCoO2粉末と無機系バインダ1beを、重量比
90:10で混合し、有機溶媒としてキシレンを添加し
て、十分に混練して正極スラリを調製した。このスラリ
を100℃で3時間、大気中で乾燥後、カッタミキサで
粉砕し、微細な粉末を作製した。金型を用いてこの正極
合剤粉末を加圧成型し、外側の直径5.5mm ,高さ38
mmの円柱形の正極を作製した。正極の中心には、集電体
として幅3.5mm ,長さ45mm,厚さ0.3mm のアルミ
ニウム板を埋め込み、一方の端部を正極より露出させて
正極リード6として利用した。これを180℃で加熱処
理した電極を正極2に使用した。正極外側面にポリエチ
レン製セパレータ4を巻き付け、その外側よりスポット
状にセパレータを溶着して固定した。
Embodiment 4 As an example of the present invention, a cylindrical lithium secondary battery comprising a pair of a positive electrode and a negative electrode is shown in FIG. The positive electrode was manufactured by the method described below. A positive electrode slurry was prepared by mixing LiCoO 2 powder as a positive electrode active material and an inorganic binder 1be at a weight ratio of 90:10, adding xylene as an organic solvent, and sufficiently kneading the mixture. The slurry was dried at 100 ° C. for 3 hours in the air and then pulverized with a cutter mixer to produce a fine powder. This positive electrode mixture powder is molded under pressure using a mold, and has an outer diameter of 5.5 mm and a height of 38 mm.
A cylindrical positive electrode of mm was produced. A 3.5 mm wide, 45 mm long, 0.3 mm thick aluminum plate was embedded as a current collector in the center of the positive electrode, and one end was exposed from the positive electrode to be used as a positive electrode lead 6. The electrode heated at 180 ° C. was used as the positive electrode 2. A polyethylene separator 4 was wound around the outer surface of the positive electrode, and the separator was welded and fixed in a spot shape from the outside.

【0038】負極は以下の手順で作製した。平均粒径5
μmの天然黒鉛粉末と無機系バインダ1beを、重量比
90:10で混合し、有機溶媒としてキシレンを添加し
て、十分に混練して負極スラリを調製した。このスラリ
を100℃で3時間、大気中で乾燥後、カッタミキサで
粉砕し、微細な粉末を作製した。金型を用いてこの負極
合剤粉末を加圧成型し、外側の直径9mm,肉厚1.7mm
,高さ38mmのチューブ形の負極3を作製した。これ
を180℃で加熱処理した電極を負極3に使用した。負
極3の外側面には、負極集電体13として銅製メッシュ
を巻き付けた。
The negative electrode was manufactured according to the following procedure. Average particle size 5
A negative electrode slurry was prepared by mixing natural graphite powder of 1 μm and inorganic binder 1be at a weight ratio of 90:10, adding xylene as an organic solvent, and kneading well. The slurry was dried at 100 ° C. for 3 hours in the air and then pulverized with a cutter mixer to produce a fine powder. This negative electrode mixture powder is molded under pressure using a mold, and the outer diameter is 9 mm and the wall thickness is 1.7 mm.
And a tube-shaped negative electrode 3 having a height of 38 mm was produced. This electrode was heated at 180 ° C., and an electrode was used as the negative electrode 3. A copper mesh was wound around the outer surface of the negative electrode 3 as the negative electrode current collector 13.

【0039】上で作製した負極3を電池缶5へ挿入後、
負極集電体13を電池缶5の底面に溶接し、その溶接部
と正極2を絶縁するために負極3の中空部に円盤状ポリ
プロピレン製絶縁板14を置いた。セパレータを巻つけ
た正極2を負極3の中空部分に挿入した。正極リード6
は、電池蓋5の底面に接続した。次に実施例1で使用し
た同一組成の非水電解液を電池へ注入し、電極群へ含浸
させた後に、電池缶5と電池蓋7をかしめて、電池を密
閉した。実施例3で作製した電池を識別記号BE4とす
る。
After inserting the negative electrode 3 prepared above into the battery can 5,
The negative electrode current collector 13 was welded to the bottom of the battery can 5, and a disc-shaped polypropylene insulating plate 14 was placed in the hollow portion of the negative electrode 3 to insulate the welded portion from the positive electrode 2. The positive electrode 2 around which the separator was wound was inserted into the hollow portion of the negative electrode 3. Positive electrode lead 6
Was connected to the bottom of the battery cover 5. Next, the nonaqueous electrolytic solution of the same composition used in Example 1 was injected into the battery and impregnated into the electrode group, and then the battery can 5 and the battery lid 7 were caulked to seal the battery. The battery manufactured in Example 3 is denoted by BE4.

【0040】(比較例3)実施例4と同じLiCoO2
粉末、導電剤として天然黒鉛粉末、およびバインダとし
てポリフッ化ビニリデンを、重量比85:10:5で混
合し、有機溶媒として1−メチル−2−ピロリドンを添
加して、十分に混練して正極スラリを調製した。このス
ラリを用い、実施例4と同じ方法で円柱状正極を作製し
た。負極の作製の場合も、実施例1と同じ天然黒鉛粉末
と、ポリフッ化ビニリデンを、重量比90:10で混合
し、さらに1−メチル−2−ピロリドンを添加して、十
分に混練して負極スラリを調製した。このスラリを用
い、実施例4と同じ方法で中空円筒状負極を作製した。
本発明に使用した電解液は、実施例4と同一仕様であ
る。ポリフッ化ビニリデンをバインダに使用した正極と
負極、および非水電解液を用いて、実施例4と同一形状
の円筒型電池を組み立てた。比較例3で作製した電池を
識別記号X4とする。
Comparative Example 3 Same LiCoO 2 as in Example 4
A powder, a natural graphite powder as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 85: 10: 5, 1-methyl-2-pyrrolidone is added as an organic solvent, and the mixture is sufficiently kneaded to form a positive electrode slurry. Was prepared. Using this slurry, a cylindrical positive electrode was produced in the same manner as in Example 4. Also in the case of producing the negative electrode, the same natural graphite powder as in Example 1 and polyvinylidene fluoride were mixed at a weight ratio of 90:10, and 1-methyl-2-pyrrolidone was further added. A slurry was prepared. Using this slurry, a hollow cylindrical negative electrode was produced in the same manner as in Example 4.
The electrolyte used in the present invention has the same specifications as in Example 4. Using a positive electrode and a negative electrode using polyvinylidene fluoride as a binder, and a non-aqueous electrolyte, a cylindrical battery having the same shape as in Example 4 was assembled. The battery manufactured in Comparative Example 3 is identified by an identification code X4.

【0041】実施例4と比較例3で作製された2種類の
電池BE4,X4について、温度25℃,充電電圧4.
2V,充電電流0.05A,充電時間6時間の条件で定
電流−定電圧充電を実施した後、放電電流0.02Aの
条件で、電圧が2.8Vまで低下するまで電池を放電さ
せた。同様に、充電と放電のサイクルを繰り返し、電池
の寿命試験を実施した。10サイクル時で、本発明の無
機系バインダを用いた電池BE4とポリフッ化ビニリデ
ンを用いた電池X3の1サイクル目の放電容量はそれぞ
れ270Ah,20Ahであり、100サイクル目では
265Ah,5Ahに低下した。容量保持率を比較する
と、本発明の電池では98%、比較例3の電池では25
%となった。本発明の無機系バインダを用いると、電極
厚さを大きくしても、無機系バインダを添加した正極,
負極ともに電気抵抗が低いため、電極全体の活物質を充
放電させることができ、その結果電池が高容量化される
ことがわかった。他方、絶縁性のポリフッ化ビニリデン
をバインダに使用した電池X3の放電容量は、電池BE
3の1/10以下であり、100サイクル時での比較で
も電池BE3の放電容量の1/50となった。以上の結
果から、本発明の無機系バインダを利用することによっ
て、電極の厚膜化が可能になり、電池の高容量化と長寿
命化が可能になった。
With respect to the two types of batteries BE4 and X4 produced in Example 4 and Comparative Example 3, the temperature was 25 ° C. and the charging voltage was 4.
After performing constant current-constant voltage charging under the conditions of 2V, charging current of 0.05A, and charging time of 6 hours, the battery was discharged under the condition of the discharging current of 0.02A until the voltage was reduced to 2.8V. Similarly, the cycle of charge and discharge was repeated, and a battery life test was performed. At the 10th cycle, the discharge capacity in the first cycle of the battery BE4 using the inorganic binder of the present invention and the battery X3 using the polyvinylidene fluoride were 270 Ah and 20 Ah, respectively, and decreased to 265 Ah and 5 Ah in the 100th cycle. . Comparing the capacity retention, the battery of the present invention was 98%, and the battery of Comparative Example 3 was 25%.
%. When the inorganic binder of the present invention is used, even if the electrode thickness is increased, the positive electrode to which the inorganic binder is added,
It has been found that since the negative electrode has low electric resistance, the active material of the entire electrode can be charged and discharged, and as a result, the battery has a high capacity. On the other hand, the discharge capacity of the battery X3 using the insulating polyvinylidene fluoride as the binder is the same as that of the battery BE.
3, which is 1/10 or less, which is 1/50 of the discharge capacity of the battery BE3 even in comparison at 100 cycles. From the above results, by using the inorganic binder of the present invention, it was possible to increase the thickness of the electrode, and to increase the capacity and the life of the battery.

【0042】(実施例5)実施例3で製造した電池BE
3と同一仕様の電池を、ぞれぞれ8個ずつ作製した。同
一仕様の電池8個を、4直列−2並列に接続して図4に
示した電池パック15を組み立てた。電池パックの外寸
法は、高さ34mm,幅140mm,奥行き58mmである。
制御パネル17は各単電池16の充放電電流を制御し、
正極外部端子18,負極外部端子19,コモン端子20
を用いて、機器または充電器へ接続する。本発明の8個
の電池BE3を用いた電池パック15は、平均放電14.4
V,容量3.6Ah ,放電エネルギ52Wh,エネルギ
密度188Wh/lであった。
Example 5 Battery BE manufactured in Example 3
Eight batteries each having the same specifications as in No. 3 were produced. Eight batteries of the same specification were connected in 4 series-2 parallel to assemble the battery pack 15 shown in FIG. The external dimensions of the battery pack are 34 mm in height, 140 mm in width, and 58 mm in depth.
The control panel 17 controls the charge / discharge current of each cell 16,
Positive external terminal 18, negative external terminal 19, common terminal 20
Use to connect to equipment or charger. The battery pack 15 using the eight batteries BE3 of the present invention has an average discharge of 14.4.
V, capacity: 3.6 Ah, discharge energy: 52 Wh, and energy density: 188 Wh / l.

【0043】比較例2で製造した電池X3と同一仕様の
電池を、ぞれぞれ8個ずつ作製した。同一仕様の電池8
個を、4直列−2並列に接続して図4に示した電池パッ
クを組み立てた。ポリフッ化ビニリデンをバインダに用
いた電池X3から構成された電池パックは、平均放電1
4.4V,容量3.2Ah,放電エネルギ46Wh,エネ
ルギ密度167Wh/lであった。本発明の二次電池を
利用することにより、組電池のエネルギ密度も増加し
た。
Eight batteries each having the same specifications as the battery X3 manufactured in Comparative Example 2 were produced. Battery 8 of the same specification
The battery packs shown in FIG. 4 were assembled by connecting them in four series and two parallel. The battery pack composed of the battery X3 using polyvinylidene fluoride as a binder has an average discharge of 1
The power was 4.4 V, the capacity was 3.2 Ah, the discharge energy was 46 Wh, and the energy density was 167 Wh / l. By using the secondary battery of the present invention, the energy density of the battery pack was also increased.

【0044】図5は、本発明の組電池パックをノート型
パソコンへ搭載した一例である。
FIG. 5 shows an example in which the battery pack of the present invention is mounted on a notebook computer.

【0045】21はキーボード部、22は液晶表示部で
ある。本発明の無機バインダを使用することによって、
リチウム二次電池から構成される電池パックのエネルギ
密度を増加させることができ、比較例2の従来方式の電
池を用いた場合と比較して、電子機器の使用可能時間を
約10%延長できる。
Reference numeral 21 denotes a keyboard, and reference numeral 22 denotes a liquid crystal display. By using the inorganic binder of the present invention,
The energy density of the battery pack composed of the lithium secondary battery can be increased, and the usable time of the electronic device can be extended by about 10% as compared with the case where the conventional battery of Comparative Example 2 is used.

【0046】(実施例6)本発明の大型リチウム二次電
池の実施例を説明する。正極は以下で述べる方法で作製
した。正極活物質としてのLiCoO2 粉末と、バイン
ダとして13種類の無機系高分子1beを、重量比9
5:5で混合し、有機溶媒としてキシレンを添加して、
十分に混練して正極スラリを調製した。ドクターブレー
ド法によって、厚さ20μmのアルミニウム箔からなる
正極集電体の表面に正極スラリを塗布した。この正極を
180℃で2時間乾燥後、正極活物質塗布面を、高さ1
00mm,幅150mmに切断して正極を作製した。電極厚
さは0.6mm とした。
(Embodiment 6) An embodiment of a large-sized lithium secondary battery of the present invention will be described. The positive electrode was manufactured by the method described below. LiCoO 2 powder as a positive electrode active material and 13 kinds of inorganic polymer 1be as a binder were mixed at a weight ratio of 9
Mix at 5: 5, add xylene as organic solvent,
The mixture was sufficiently kneaded to prepare a positive electrode slurry. A positive electrode slurry was applied to the surface of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method. After drying the positive electrode at 180 ° C. for 2 hours, the surface coated with the positive electrode active material was adjusted to a height of 1
The positive electrode was prepared by cutting the sheet to a width of 00 mm and a width of 150 mm. The electrode thickness was 0.6 mm.

【0047】負極は以下の手順で作製した。平均粒径5
μmの天然黒鉛粉末と、実施例1で使用した無機系バイ
ンダ1beを重量比95:5で混合し、有機溶媒として
キシレンを添加して、十分に混練して負極スラリを調製
した。ドクターブレード法によって、厚さ20μmの銅
箔からなる負極集電体の表面に負極スラリを塗布した。
この負極を180℃で2時間乾燥後、負極活物質塗布面
を、高さ100mm,幅150mmに切断して負極を作製し
た。電極厚さは0.5mmとした。
The negative electrode was manufactured according to the following procedure. Average particle size 5
A negative electrode slurry was prepared by mixing natural graphite powder of μm and the inorganic binder 1be used in Example 1 at a weight ratio of 95: 5, adding xylene as an organic solvent, and kneading the mixture sufficiently. A negative electrode slurry was applied to the surface of a negative electrode current collector made of a copper foil having a thickness of 20 μm by a doctor blade method.
After drying the negative electrode at 180 ° C. for 2 hours, the negative electrode active material coated surface was cut into a height of 100 mm and a width of 150 mm to prepare a negative electrode. The electrode thickness was 0.5 mm.

【0048】本発明に使用した電解液は、エチレンカー
ボネートとジメチルカーボネートの混合溶媒に、1モル
/リットル相当のLiBF4 を溶かした非水電解液を調
製した。
As the electrolyte used in the present invention, a non-aqueous electrolyte prepared by dissolving 1 mol / liter of LiBF 4 in a mixed solvent of ethylene carbonate and dimethyl carbonate was prepared.

【0049】上で作製した正極と負極および非水電解液
を組み合わせて、高さ116mm,幅160mm,奥行き4
5mmの角型リチウム二次電池8個を作製した。電池の総
容量は56Ah,平均作動電圧3.6V ,放電エネルギ
200Whである。電池内部構造は図2に示した通りで
ある。電極積層時に負極との接触を回避するために、封
筒状に加工したポリエチレン製セパレータ4に正極2を
挿入した。これと負極3を交互に積層した電極群を電池
缶5に挿入した。正極2は正極リード6と連結され、電
池蓋6の底面から正極外部端子11へ電気的に接続し
た。また、負極2は負極リード9と連結され、負極リー
ド8は電池蓋6の底面から負極外部端子12へ電気的に
接続した。電池蓋7と電池缶5を溶接した後、非水電解
液を電池蓋7の注液口8より真空注液し、注液口8を密
封した。電池内圧を開放するために、電池蓋7の内部に
Al箔製の破裂弁10を取り付けた。このような構成
で、電気化学的エネルギは正極外部端子11と負極外部
端子12より取り出し、また再充電可能になっている。
実施例6で作製した電池を識別記号BE6とする。
The above-prepared positive electrode, negative electrode and non-aqueous electrolyte were combined to obtain a height of 116 mm, a width of 160 mm and a depth of 4 mm.
Eight 5 mm square lithium secondary batteries were produced. The total capacity of the battery is 56 Ah, the average operating voltage is 3.6 V, and the discharge energy is 200 Wh. The internal structure of the battery is as shown in FIG. In order to avoid contact with the negative electrode at the time of laminating the electrodes, the positive electrode 2 was inserted into a polyethylene separator 4 processed into an envelope shape. An electrode group in which this and the negative electrode 3 were alternately laminated was inserted into the battery can 5. The positive electrode 2 was connected to the positive electrode lead 6, and was electrically connected from the bottom surface of the battery lid 6 to the positive electrode external terminal 11. The negative electrode 2 was connected to a negative electrode lead 9, and the negative electrode lead 8 was electrically connected to the negative electrode external terminal 12 from the bottom of the battery lid 6. After welding the battery lid 7 and the battery can 5, a non-aqueous electrolytic solution was vacuum-injected from the injection port 8 of the battery lid 7, and the injection port 8 was sealed. To release the internal pressure of the battery, a rupture valve 10 made of Al foil was attached inside the battery cover 7. With such a configuration, electrochemical energy can be extracted from the positive electrode external terminal 11 and the negative electrode external terminal 12 and can be recharged.
The battery fabricated in Example 6 is denoted by BE6.

【0050】実施例6で製造した8個の電池BE6を直
列接続した1.6kWh 組電池を製造し、その組電池2
0個からなる組電池モジュール23を電気自動車24へ
搭載した。図6に電気自動車の構成を示した。電気自動
車の前面には、通常走行時に外気がボンネットから車体
へ流れ込むように、通風口25を設けた。電気自動車の
ボンネット内部に組電池モジュール23を設置した。使
用者が制御装置26を操作することにより、変換機27
を作動させて組電池モジュール25からの出力を増減で
きる。変換機27から供給される電力を利用して、モー
ター28と車輪29を駆動させて電気自動車を走行させ
た。
A 1.6 kWh battery pack in which the eight batteries BE6 manufactured in Example 6 were connected in series was manufactured.
The assembled battery module 23 consisting of zero was mounted on the electric vehicle 24. FIG. 6 shows the configuration of the electric vehicle. A ventilation port 25 is provided on the front of the electric vehicle so that outside air flows from the hood to the vehicle body during normal running. The assembled battery module 23 was installed inside the hood of the electric vehicle. When the user operates the control device 26, the converter 27
Can be operated to increase or decrease the output from the battery module 25. The electric vehicle is driven by driving the motor 28 and the wheels 29 using the electric power supplied from the converter 27.

【0051】(比較例4)比較のために、比較例2の電
池材料を用いて、図6と同一寸法の角型リチウム二次電
池X6を作製した。この電池の容量は180Whとなっ
た。8個の電池X6を8直列接続した組電池からなる組
電池モジュール23を電気自動車に搭載した。
Comparative Example 4 For comparison, a prismatic lithium secondary battery X6 having the same dimensions as in FIG. 6 was manufactured using the battery material of Comparative Example 2. The capacity of this battery was 180 Wh. An assembled battery module 23 composed of an assembled battery in which eight batteries X6 were connected in eight series was mounted on an electric vehicle.

【0052】実施例6と比較例4の電気自動車を走行さ
せたところ、実施例6の電気自動車の一充電最大走行距
離が、比較例4と比べて約10%増大した。
When the electric vehicles of Example 6 and Comparative Example 4 were run, the maximum mileage per charge of the electric vehicle of Example 6 was increased by about 10% as compared with Comparative Example 4.

【0053】(実施例7)図7は、実施例6で製造した
組電池または2〜5個の組電池のモジュールからなる電
源30を搭載した医療介護用車椅子31の一例である。
医療介護用車椅子31には、使用者が乗車した状態でコ
ントローラー32を操作して、背もたれシート33およ
び足掛けシート34に備えた駆動部を作動させて角度を
調節できる。この機能を利用して、使用者が乗り降りす
るときは足掛けシート34を下へ倒しておき、使用者が
休む場合には背もたれシート33および足掛けシート3
4を水平にする。また、医療介護用車椅子31には移動
用の車輪29があるので、コントローラー32を操作し
て使用者が目的位置まで移動することも可能である。本
実施例の医療介護用車椅子31は、比較例4のリチウム
二次電池を使用した場合と比較して、同じ使用条件で一
充電の使用可能時間が約10%長くなった。
(Embodiment 7) FIG. 7 shows an example of a wheelchair 31 for medical care provided with a power source 30 composed of the assembled battery manufactured in the sixth embodiment or a module of 2 to 5 assembled batteries.
The angle can be adjusted by operating the controller 32 on the wheelchair 31 for medical care by operating the controller 32 while the user is in the vehicle and operating the drive units provided on the backrest seat 33 and the footrest seat 34. By utilizing this function, the footrest sheet 34 is lowered when the user gets on and off, and the backrest seat 33 and the footrest seat 3 are used when the user rests.
Level 4 Since the wheelchair 31 for medical care and care has the wheels 29 for movement, the user can move to the target position by operating the controller 32. The wheelchair 31 for medical and nursing care of this example has a usable time for one charge longer by about 10% under the same use condition as compared with the case where the lithium secondary battery of Comparative Example 4 is used.

【0054】[0054]

【発明の効果】本発明の組電池システムは、実施例5,
6および7のノート型パソコン,電気自動車,医療介護
用車椅子のみでなく、省電力型の電子機器、例えばパー
ソナルコンピュータ,大型電子計算機、ノート型パソコ
ン、ペン入力パソコン,ノート型ワープロ,携帯コピー
機,液晶テレビ、あるいは大電力・大容量の電源を必要
とする機器システム,例えば大型電子計算機,電動工
具,掃除機,バーチャルリアリティの機能などを持った
ゲーム機器,玩具電動式自転車,医療介護用歩行補助
機,医療介護用移動式ベッド,エスカレータ,エレベー
タ,フォークリフト,ゴルフカート,非常用電源,ロー
ドコンディショナ,電力貯蔵システムなどの製品に搭載
することが可能で、本明細書で述べた実施例と同様な効
果が得られる。
According to the battery pack system of the present invention, the fifth embodiment
6 and 7 notebook computers, electric vehicles, wheelchairs for medical care, as well as power-saving electronic devices such as personal computers, large-scale computers, notebook computers, pen-input personal computers, notebook word processors, portable copiers, LCD televisions, or equipment systems that require large power and large capacity power supplies, such as large-sized computers, electric tools, vacuum cleaners, game devices with virtual reality functions, toy electric bicycles, and walking aids for medical care It can be mounted on products such as machines, mobile beds for medical care, escalators, elevators, forklifts, golf carts, emergency power supplies, road conditioners, and power storage systems, as in the embodiments described in this specification. Effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型リチウム二次電池の内部の説明
図。
FIG. 1 is an explanatory view of the inside of a cylindrical lithium secondary battery of the present invention.

【図2】本発明の角型リチウム二次電池の内部の説明
図。
FIG. 2 is an explanatory view of the inside of the prismatic lithium secondary battery of the present invention.

【図3】本発明の円筒型リチウム二次電池の内部の説明
図。
FIG. 3 is an explanatory view of the inside of a cylindrical lithium secondary battery of the present invention.

【図4】本発明の角型リチウム二次電池からなる組電池
の内部の説明図。
FIG. 4 is an explanatory view of the inside of a battery pack including the prismatic lithium secondary battery of the present invention.

【図5】本発明の組電池を搭載したノート型パソコンの
一例の説明図。
FIG. 5 is an explanatory diagram of an example of a notebook computer equipped with the battery pack of the present invention.

【図6】本発明の組電池を搭載した電気自動車の一例の
説明図。
FIG. 6 is a diagram illustrating an example of an electric vehicle equipped with the battery pack of the present invention.

【図7】本発明の組電池を搭載した医療介護用車椅子の
一例の説明図。
FIG. 7 is an explanatory view of an example of a wheelchair for medical care provided with the battery pack of the present invention.

【符号の説明】[Explanation of symbols]

2…正極、3…負極、4…セパレータ、5…電池缶、6
…正極リード、7…電池蓋、8…負極リード、9…パッ
キン、10…破裂弁、11…正極外部端子、12…負極
外部端子。
2 ... Positive electrode, 3 ... Negative electrode, 4 ... Separator, 5 ... Battery can, 6
... Positive electrode lead, 7 ... Battery cover, 8 ... Negative electrode lead, 9 ... Packing, 10 ... Burst valve, 11 ... Positive external terminal, 12 ... Negative external terminal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 10/40 H01M 10/40 Z B (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 10/40 H01M 10/40 ZB (72) Inventor Ren Muranaka 7-1-1, Omikacho, Hitachi City, Hitachi City, Ibaraki Pref. Hitachi Research Laboratory, Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】炭素以外の無機原子が連結した鎖状結合あ
るいは網目状結合を有する無機系バインダと電極活物質
を含む正極または負極、および電解質を含有する非水電
解液または固体電解質またはゲル状電解液からなること
を特徴とする二次電池。
1. A positive electrode or a negative electrode containing an inorganic binder having a chain bond or a network bond in which inorganic atoms other than carbon are linked, and a positive electrode or a negative electrode containing an electrode active material, and a non-aqueous electrolyte or a solid electrolyte or a gel containing an electrolyte A secondary battery comprising an electrolytic solution.
【請求項2】無機系バインダがB,N,Al,Si,
P,S,Seのうち少なくとも1種類の元素を含有する
鎖状結合あるいは網目状結合を有する請求項1に記載の
二次電池。
2. The method according to claim 1, wherein the inorganic binder is B, N, Al, Si,
The secondary battery according to claim 1, having a chain bond or a network bond containing at least one element of P, S, and Se.
【請求項3】無機系バインダが、B−B,Si−Si,
S−S,Se−Se,S−Se,B−C,B−N,B−
P,B−Si,B−S,Al−N,Al−C,Si−
N,Si−C,P=N,P−S,S=Nからなる無機系
結合群のうち少なくとも1種類の無機系結合を有する請
求項1または2に記載の二次電池。
3. An inorganic binder comprising BB, Si-Si,
SS, Se-Se, S-Se, BC, BN, B-
P, B-Si, BS, Al-N, Al-C, Si-
3. The secondary battery according to claim 1, wherein the secondary battery has at least one type of inorganic bond among a group of inorganic bonds consisting of N, Si—C, P = N, PS, and S = N. 4.
【請求項4】無機系バインダがポリボラン,ポリシラ
ン,ポリカルゴゲン,ポリボラカルバン,ポリボラゼ
ン,ポリボラホスフェン,ポリボロチェン,ポリアラザ
ン,ポリアラカルバン,ポリシラザン,ポリシラカルバ
ン,ポリホフファゼン,ポリホスファチアン,ポリチア
ジルの無機系高分子群より選択された少なくとも1種類
の高分子または共重合体を含む請求項1,2または3に
記載の二次電池。
4. An inorganic binder comprising polyborane, polysilane, polycarbogen, polyboracarban, polyborazene, polyboraphosphene, polyborochen, polyarazan, polyaracarban, polysilazane, polysilacarban, polyhoffphazene, polyphosphatiane, and polythiazyl. 4. The secondary battery according to claim 1, comprising at least one polymer or copolymer selected from the group of polymer series. 5.
【請求項5】無機系バインダと電極活物質からなる電極
層が0.2mm 以上であることを特徴とする請求項1,
2,3または4に記載の二次電池。
5. An electrode layer comprising an inorganic binder and an electrode active material having a thickness of 0.2 mm or more.
The secondary battery according to 2, 3, or 4.
【請求項6】正極および負極が板状であり、上記正極と
上記負極を積層したことを特徴とする請求項1,2,
3,4または5に記載の二次電池。
6. A method according to claim 1, wherein said positive electrode and said negative electrode are plate-shaped, and said positive electrode and said negative electrode are laminated.
6. The secondary battery according to 3, 4, or 5.
【請求項7】正極および負極が円柱状または中空の筒状
のいずれか一方の形状にあり、円柱状電極を筒状電極に
挿入した請求項1,2,3,4または5に記載の円筒型
二次電池。
7. The cylinder according to claim 1, wherein the positive electrode and the negative electrode have a cylindrical shape or a hollow cylindrical shape, and the cylindrical electrode is inserted into the cylindrical electrode. Type secondary battery.
【請求項8】正極活物質は、化学式がLiCoO2,L
iNiO2,LiNi1-xMxO2(ただし、M=Co,
Mn,Al,Cu,Fe,Mg,B,Gaであり、x=
0.01〜0.3 )で表わされるNiサイト置換型ニッ
ケル酸リチウム,LiMn24,LiMnO3,LiM
23,LiMnO2,Li2CuO2,LiV38,L
iFe34,V25,Cu227、化学式がLiMn
2-xMxO2 (ただし、M=Co,Ni,Fe,Cr,
Zn,Taであり、x=0.01〜0.1)で表記される
スピネル型マンガン酸リチウム、化学式がLi2Mn3
8(ただし、M=Fe,Co,Ni,Cu,Zn)で表
記されるリチウム−マンガン複合酸化物,Liの一部を
アルカリ土類金属イオンで置換したLiMn24,ジス
ルフィド化合物,Fe2(MoO4)3 からなる正極活物質
群のうち少なくとも1種類の化合物を含む請求項1,
2,3,4,5,6または7に記載の二次電池。
8. The positive electrode active material has a chemical formula of LiCoO 2 , L
iNiO 2 , LiNi 1-x MxO 2 (where M = Co,
Mn, Al, Cu, Fe, Mg, B, Ga, and x =
0.01-0.3) Ni-site-substituted lithium nickelate, LiMn 2 O 4 , LiMnO 3 , LiM
n 2 O 3 , LiMnO 2 , Li 2 CuO 2 , LiV 3 O 8 , L
iFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 , with a chemical formula of LiMn
2-x MxO 2 (where M = Co, Ni, Fe, Cr,
A spinel-type lithium manganate represented by Zn and Ta, where x = 0.01 to 0.1), and the chemical formula is Li 2 Mn 3 M
Lithium-manganese composite oxide represented by O 8 (where M = Fe, Co, Ni, Cu, Zn), LiMn 2 O 4 in which part of Li is replaced by alkaline earth metal ion, disulfide compound, Fe 2. A composition comprising at least one compound selected from the group consisting of positive electrode active materials consisting of 2 (MoO 4 ) 3 .
The secondary battery according to 2, 3, 4, 5, 6, or 7.
【請求項9】負極活物質が、Al,Ag,Sn,Si,
In,Ga,Mgより選ばれた金属あるいは合金、ある
いは上記金属または上記合金とリチウムの合金からなる
負極活物質群のうち少なくとも1種類の金属を含む請求
項1,2,3,4,5,6,7または8に記載の二次電
池。
9. The method according to claim 9, wherein the negative electrode active material is Al, Ag, Sn, Si,
6. A negative electrode active material group comprising at least one metal selected from the group consisting of In, Ga, and Mg, or a metal or an alloy of the metal or the alloy and lithium. The secondary battery according to 6, 7, or 8.
【請求項10】負極活物質が、天然黒鉛,人造黒鉛,炭
素繊維,気相成長法炭素繊維,ピッチ系炭素質材料,ニ
ードルコークス,石油コークス,ポリアクリロニトリル
系炭素繊維,カーボンブラックなどの炭素質材料、ある
いは5員環または6員環の環式炭化水素または環式含酸
素有機化合物を熱分解によって合成した非晶質炭素材
料、あるいはポリアセン,ポリパラフェニレン,ポリア
ニリン,ポリアセチレンからなる導電性高分子材料、あ
るいはSnO,GeO2 ,SnSiO3 ,SnSi0.5
1.5,SnSi0.7Al0.10.30.23.5
SnSi0.5Al0.30.30.54.15を含む14
族または15族元素の酸化物、あるいはインジウム酸化
物、あるいは亜鉛酸化物、あるいはLi3FeN2、ある
いはFe2Si3,FeSi,FeSi2,Mg2Siを含
むケイ化物からなる負極活物質群のうち少なくとも1種
類の化合物を含む請求項1,2,3,4,5,6,7ま
たは8に記載の二次電池。
10. The negative electrode active material is a carbonaceous material such as natural graphite, artificial graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, petroleum coke, polyacrylonitrile-based carbon fiber, and carbon black. Material, or amorphous carbon material synthesized by pyrolysis of 5- or 6-membered cyclic hydrocarbon or cyclic oxygen-containing organic compound, or conductive polymer composed of polyacene, polyparaphenylene, polyaniline, polyacetylene Material or SnO, GeO 2 , SnSiO 3 , SnSi 0.5
O 1.5 , SnSi 0.7 Al 0.1 B 0.3 P 0.2 O 3.5 ,
Including SnSi 0.5 Al 0.3 B 0.3 P 0.5 O 4.15 14
Of a negative electrode active material group composed of an oxide of a Group 15 element or a Group 15 element, indium oxide, or zinc oxide, or Li 3 FeN 2 , or a silicide containing Fe 2 Si 3 , FeSi, FeSi 2 , or Mg 2 Si 9. The secondary battery according to claim 1, comprising at least one compound.
【請求項11】電解質は、化学式がLiPF6,LiB
4,LiClO4,LiCF3SO3 ,LiCF3
2,LiAsF6,LiSbF6,低級脂肪族カルボン
酸リチウムからなる電解質群のうち少なくとも1種類の
リチウム塩である請求項1,2,3,4,5,6,7,
8,9または10に記載の二次電池。
11. The electrolyte has a chemical formula of LiPF 6 , LiB.
F 4 , LiClO 4 , LiCF 3 SO 3 , LiCF 3 C
A lithium salt of at least one of the electrolyte group consisting of O 2 , LiAsF 6 , LiSbF 6 and a lower aliphatic lithium carboxylate.
The secondary battery according to 8, 9, or 10.
【請求項12】上記電解質が、プロピレンカーボネー
ト,エチレンカーボネート,ブチレンカーボネート,ビ
ニレンカーボネート,γ−ブチロラクトン,ジメチルカ
ーボネート,ジエチルカーボネート,メチルエチルカー
ボネート、1,2−ジメトキシエタン,2−メチルテト
ラヒドロフラン,ジメチルスルフォキシド、1,3−ジ
オキソラン,ホルムアミド,ジメチルホルムアミド,プ
ロピオン酸メチル,プロピオン酸エチル,リン酸トリエ
ステル,トリメトキシメタン,ジオキソラン,ジエチル
エーテル,スルホラン,3−メチル−2−オキサゾリジ
ノン,テトラヒドロフラン、1,2−ジエトキシエタ
ン,クロルエチレンカーボネート,クロルプロピレンカ
ーボネートからなる非水電解液群のうち少なくとも1種
類の非水電解液用溶媒に溶解した請求項1,2,3,
4,5,6,7,8,9,10または11に記載の二次
電池。
12. The electrolyte according to claim 1, wherein said electrolyte is propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, .gamma.-butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, dimethylsulfonate. Oxide, 1,3-dioxolan, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolan, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,2 At least one solvent for a non-aqueous electrolyte from a group of non-aqueous electrolytes consisting of diethoxyethane, chloroethylene carbonate and chloropropylene carbonate; Dissolved claims 1, 2, 3,
The secondary battery according to 4, 5, 6, 7, 8, 9, 10, or 11.
【請求項13】固体電解質が、上記電解質をエチレンオ
キシド、アクリロニトリル,フッ化ビニリデン,メタク
リル酸メチル,ヘキサフルオロプロピレンの高分子群の
うち少なくとも1種類の高分子に保持された請求項1,
2,3,4,5,6,7,8,9,10または11に記
載の二次電池。
13. The solid electrolyte according to claim 1, wherein said electrolyte is held by at least one polymer selected from the group consisting of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene.
The secondary battery according to 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11.
【請求項14】ゲル状電解液が、エチレンオキシド,ア
クリロニトリル,フッ化ビニリデン,メタクリル酸メチ
ル,ヘキサフルオロプロピレンの高分子内に、上記電解
質と上記非水電解液用溶媒を保持された請求項1,2,
3,4,5,6,7,8,9,10,11または12に
記載の二次電池。
14. A gel electrolyte comprising a polymer of ethylene oxide, acrylonitrile, vinylidene fluoride, methyl methacrylate, and hexafluoropropylene in which the electrolyte and the solvent for the non-aqueous electrolyte are held. 2,
The secondary battery according to 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12.
【請求項15】炭素以外の無機原子が連結した鎖状結合
あるいは網目状結合を有する無機系バインダと電極活物
質を含む正極または負極、および電解質を含有する非水
電解液または固体電解質またはゲル状電解液からなる複
数の二次電池を直列または並列に接続したことを特徴と
する組電池。
15. A positive electrode or a negative electrode containing an inorganic binder having a chain bond or a network bond in which inorganic atoms other than carbon are connected and an electrode active material, and a non-aqueous electrolyte, a solid electrolyte or a gel containing an electrolyte. An assembled battery, wherein a plurality of secondary batteries made of an electrolytic solution are connected in series or in parallel.
【請求項16】請求項15に記載の組電池を搭載した電
気自動車。
16. An electric vehicle equipped with the battery pack according to claim 15.
【請求項17】請求項1,2,3,4,5,6,7,
8,9,10,11,12,13,14または15に記
載の電池を、パーソナルコンピュータ,大型電子計算
機,ノート型パソコン,ペン入力パソコン,ノート型ワ
ープロ,携帯電話,カメラ,電気シェーバ,コードレス
電話,ファックス,ビデオ,ビデオカメラ,電子手帳,
電卓,通信機能付き電子手帳,携帯コピー機,液晶テレ
ビ,電動工具,掃除機,ゲーム機器,玩具,医療介護用
歩行補助機,医療介護用車椅子,医療介護用移動式ベッ
ド,エスカレータ,エレベータ,フォークリフト,ゴル
フカート,非常用電源,ロードコンディショナ,電力貯
蔵システムに搭載した電子機器。
17. The method of claim 1, 2, 3, 4, 5, 6, 7,
The battery described in 8, 9, 10, 11, 12, 13, 14 or 15 can be used for a personal computer, a large computer, a notebook computer, a pen-input personal computer, a notebook word processor, a mobile phone, a camera, an electric shaver, and a cordless phone. , Fax, video, video camera, electronic organizer,
Calculator, electronic organizer with communication function, portable copy machine, LCD TV, power tool, vacuum cleaner, game machine, toy, walking aid for medical care, wheelchair for medical care, mobile bed for medical care, escalator, elevator, forklift , Golf carts, emergency power supplies, road conditioners, electronic equipment mounted on power storage systems.
JP9015029A 1997-01-29 1997-01-29 Secondary battery and battery and equipment system utilizing the secondary battery Pending JPH10208747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9015029A JPH10208747A (en) 1997-01-29 1997-01-29 Secondary battery and battery and equipment system utilizing the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9015029A JPH10208747A (en) 1997-01-29 1997-01-29 Secondary battery and battery and equipment system utilizing the secondary battery

Publications (1)

Publication Number Publication Date
JPH10208747A true JPH10208747A (en) 1998-08-07

Family

ID=11877417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9015029A Pending JPH10208747A (en) 1997-01-29 1997-01-29 Secondary battery and battery and equipment system utilizing the secondary battery

Country Status (1)

Country Link
JP (1) JPH10208747A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043790A1 (en) * 1999-04-07 2000-10-11 Hydro-Quebec Current collector coating of lithium storage batteries
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
WO2002019445A2 (en) 2000-09-01 2002-03-07 Global Thermoelectric Inc. Electrode pattern for solid oxide fuel cells
US6511776B1 (en) 1999-01-20 2003-01-28 Sanyo Electric Co., Ltd. Polymer electrolyte battery and polymer electrolyte
JP2003308837A (en) * 2002-04-18 2003-10-31 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method
US6806004B1 (en) * 1999-08-06 2004-10-19 Matsushita Electric Industrial Co., Ltd. Polymeric solid electrolyte and lithium secondary cell using the same
KR100496275B1 (en) * 1998-09-29 2005-09-12 삼성에스디아이 주식회사 Method of processing electrode used in secondary battery
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
WO2008038798A1 (en) * 2006-09-29 2008-04-03 Mitsui Mining & Smelting Co., Ltd. Non-aqueous electrolyte secondary battery
JP2008517435A (en) * 2004-10-21 2008-05-22 エボニック デグサ ゲーエムベーハー Inorganic separator electrode unit for lithium ion battery, its production method and its use in lithium battery
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2010122974A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013145756A (en) * 2004-10-08 2013-07-25 Nec Corp Thin battery and battery pack
WO2013137285A1 (en) * 2012-03-15 2013-09-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2014182096A1 (en) * 2013-05-08 2014-11-13 주식회사 엘지화학 Charging system for vehicle and vehicle including same
JP2015011922A (en) * 2013-07-01 2015-01-19 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN104868163A (en) * 2014-02-20 2015-08-26 索尼公司 Nonaqueous electrolyte solution for secondary battery, secondary battery, battery pack, electrically driven vehicle, power storage system, electrically driven tool, and electronic apparatus
JP2016042416A (en) * 2014-08-15 2016-03-31 ソニー株式会社 Electrolytic solution, secondary battery arranged by use thereof, battery pack incorporating secondary battery, and electronic device
WO2016121947A1 (en) * 2015-01-30 2016-08-04 株式会社 東芝 Battery assembly and cell pack
JP2016177980A (en) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 Positive electrode material for battery and all-solid lithium ion battery
US10096827B2 (en) 2015-03-13 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10505186B2 (en) 2015-01-30 2019-12-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10553868B2 (en) 2014-12-02 2020-02-04 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100496275B1 (en) * 1998-09-29 2005-09-12 삼성에스디아이 주식회사 Method of processing electrode used in secondary battery
US6511776B1 (en) 1999-01-20 2003-01-28 Sanyo Electric Co., Ltd. Polymer electrolyte battery and polymer electrolyte
EP1043790A1 (en) * 1999-04-07 2000-10-11 Hydro-Quebec Current collector coating of lithium storage batteries
US6806004B1 (en) * 1999-08-06 2004-10-19 Matsushita Electric Industrial Co., Ltd. Polymeric solid electrolyte and lithium secondary cell using the same
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
JP2001176500A (en) * 1999-12-08 2001-06-29 Samsung Sdi Co Ltd Negative electrode active material slurry composition for lithium secondary battery, and method of manufacturing negative electrode using the same
WO2002019445A2 (en) 2000-09-01 2002-03-07 Global Thermoelectric Inc. Electrode pattern for solid oxide fuel cells
JP2003308837A (en) * 2002-04-18 2003-10-31 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2013145756A (en) * 2004-10-08 2013-07-25 Nec Corp Thin battery and battery pack
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
JP2008517435A (en) * 2004-10-21 2008-05-22 エボニック デグサ ゲーエムベーハー Inorganic separator electrode unit for lithium ion battery, its production method and its use in lithium battery
US7927740B2 (en) 2005-03-24 2011-04-19 Kabushiki Kaisha Toshiba Battery pack and vehicle
WO2008038798A1 (en) * 2006-09-29 2008-04-03 Mitsui Mining & Smelting Co., Ltd. Non-aqueous electrolyte secondary battery
KR101113480B1 (en) * 2006-09-29 2012-04-17 미츠이 마이닝 & 스멜팅 콤파니 리미티드 Non-aqueous electrolyte secondary battery
US8394536B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8673492B2 (en) 2009-04-24 2014-03-18 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394535B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8394538B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2010122974A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US8394537B2 (en) 2009-04-24 2013-03-12 Dai Nippon Printing Co., Ltd. Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2010122975A1 (en) * 2009-04-24 2010-10-28 大日本印刷株式会社 Electrode plate for non-aqueous electrolyte secondary battery, process for production of electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2010272511A (en) * 2009-04-24 2010-12-02 Dainippon Printing Co Ltd Electrode plate for nonaqueous electrolyte solution secondary battery, method for manufacturing electrode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
WO2013137285A1 (en) * 2012-03-15 2013-09-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JPWO2013137285A1 (en) * 2012-03-15 2015-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2014182096A1 (en) * 2013-05-08 2014-11-13 주식회사 엘지화학 Charging system for vehicle and vehicle including same
KR20140132698A (en) * 2013-05-08 2014-11-18 주식회사 엘지화학 Charging system for vehicle and vehicle comprising the same
US9221349B2 (en) 2013-05-08 2015-12-29 Lg Chem, Ltd. Charging system for vehicle and vehicle comprising the same
JP2015011922A (en) * 2013-07-01 2015-01-19 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN104868163A (en) * 2014-02-20 2015-08-26 索尼公司 Nonaqueous electrolyte solution for secondary battery, secondary battery, battery pack, electrically driven vehicle, power storage system, electrically driven tool, and electronic apparatus
JP2015156281A (en) * 2014-02-20 2015-08-27 ソニー株式会社 Electrolyte for secondary battery, secondary battery, battery pack, electric vehicle, electric power storage system, electric tool, and electronic apparatus
JP2016042416A (en) * 2014-08-15 2016-03-31 ソニー株式会社 Electrolytic solution, secondary battery arranged by use thereof, battery pack incorporating secondary battery, and electronic device
US10553868B2 (en) 2014-12-02 2020-02-04 Kabushiki Kaisha Toshiba Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle
WO2016121947A1 (en) * 2015-01-30 2016-08-04 株式会社 東芝 Battery assembly and cell pack
CN106104866A (en) * 2015-01-30 2016-11-09 株式会社东芝 Battery component and set of cells
US10505186B2 (en) 2015-01-30 2019-12-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10511014B2 (en) 2015-01-30 2019-12-17 Kabushiki Kaisha Toshiba Battery module and battery pack
US10096827B2 (en) 2015-03-13 2018-10-09 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
US10516163B2 (en) 2015-03-13 2019-12-24 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
JP2016177980A (en) * 2015-03-20 2016-10-06 コニカミノルタ株式会社 Positive electrode material for battery and all-solid lithium ion battery

Similar Documents

Publication Publication Date Title
JPH10208747A (en) Secondary battery and battery and equipment system utilizing the secondary battery
Shukla et al. Materials for next-generation lithium batteries
KR20170038787A (en) Positive-electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, electricity storage apparatus, and power system
CN102903914B (en) Active substance, its manufacture method, electrode, secondary cell and set of cells
CN106471652A (en) Negative-electrode active material for secondary battery, secondary battery cathode, secondary cell, set of cells, electric vehicle, accumulating system, electric tool and electronic installation
JP2006216395A (en) Lithium ion battery pack
EP1114481A1 (en) Solid polymer alloy electrolyte in homogeneous state and manufacturing method therefor, and composite electrode, lithium polymer battery and lithium ion polymer battery using the same and manufacturing methods therefor
JP2003168480A (en) Lithium secondary battery, its electrolytic solution, and its positive electrode
US10833362B2 (en) Secondary battery including electrolyte having an unsaturated cyclic ester carbonate
CN106233524A (en) Secondary cell electrolyte, secondary cell, set of cells, electric vehicle, accumulating system, electric tool and electronic equipment
CN102088086A (en) High-voltage lithium ion battery anode, lithium ion battery using same and preparation method of high-voltage lithium ion battery anode
JP5412843B2 (en) battery
CN102361095A (en) Lithium ion battery with high specific power and preparation method for same
WO2019009239A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP2014078535A (en) Negative electrode and battery
JP2003077476A (en) Lithium ion secondary battery
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP2000277152A (en) Lithium secondary battery
WO2013133361A1 (en) Lithium secondary battery pack, and electronic device, charging system, and charging method using same
WO2020031431A1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JP4368119B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2002198016A (en) Thin secondary cell
CN202839842U (en) Multiplying power lithium ion battery
JP3182391B2 (en) Non-aqueous electrolyte secondary battery and electric device using the same
JP3732063B2 (en) Lithium polymer secondary battery