JPH10205908A - Direct-fired absorption refrigerating machine - Google Patents

Direct-fired absorption refrigerating machine

Info

Publication number
JPH10205908A
JPH10205908A JP9023099A JP2309997A JPH10205908A JP H10205908 A JPH10205908 A JP H10205908A JP 9023099 A JP9023099 A JP 9023099A JP 2309997 A JP2309997 A JP 2309997A JP H10205908 A JPH10205908 A JP H10205908A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
direct
exhaust gas
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9023099A
Other languages
Japanese (ja)
Inventor
Akihiro Kawada
章廣 川田
Masayoshi Toyofuku
正嘉 豊福
Akira Fukushima
亮 福島
Makoto Fujiwara
誠 藤原
Shuichi Matsushita
修一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9023099A priority Critical patent/JPH10205908A/en
Publication of JPH10205908A publication Critical patent/JPH10205908A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise the temperature of weak solution, which flows into a direct- fired high-pressure reproducer through a high-temperature heat exchanger and a waste gas heat exchanger, by providing the waste gas heat exchanges, heating the weak solution discharged out of a low-temperature heat exchanger. SOLUTION: The temperature of weak solution, having the temperature of about 70 deg.C and flowing from a low temperature heat exchanger 5, is raised to about 80 deg.C by heat exchange in the second waste gas heat exchanger 13 between the waste gas, passed through a waste gas heat exchanger 8 and having the temperature of about 180 deg.C, then, the temperature of the same is raised further to about 155 deg.C by a high-temperature heat exchanger 6 and the same is introduced into a direct-fired high-pressure reproducer 7. The temperature of the dilute solution, flowing into the direct-fired high-pressure reproducer 7, can be raised to 155 deg.C in such a manner whereby the temperature rise of only 15deg deg.C is enough to a refrigerant vapor generating temperature 160 deg.C in the direct-fired high-pressure reproducer 7 and, accordingly, fuel consumption is reduced whereby the performance coefficient of a refrigerating machine can be improved remarkably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は直焚式吸収冷凍機に
関する。
The present invention relates to a direct-fired absorption refrigerator.

【0002】[0002]

【従来の技術】従来の直焚式吸収冷凍機の系統図が図3
に示されている。蒸発器1内底部に貯溜された液冷媒は
冷媒ポンプ10によって抽出されて蒸発器1内上部に配設
されたノズル15から管群16に散布され、この管群15内を
循環する冷水を冷却することによって蒸発する。冷却さ
れた冷水は冷房負荷に供給される。
2. Description of the Related Art A system diagram of a conventional direct-fired absorption refrigerator is shown in FIG.
Is shown in The liquid refrigerant stored at the bottom of the evaporator 1 is extracted by the refrigerant pump 10 and sprayed from the nozzle 15 disposed at the upper part of the evaporator 1 to the tube group 16 to cool the cold water circulating in the tube group 15. Evaporate by doing. The cooled cold water is supplied to a cooling load.

【0003】蒸発器1内で蒸発した冷媒蒸気はエリミネ
ータ17を通って吸収器2内に入り、ここで吸収器2内上
部に配設されたノズル18から管群19に散布される濃溶液
に吸収されることにより希溶液となってその底部に貯溜
される。この際の反応熱は管群19内を循環する冷却水に
よって外部に取り出される。
[0003] The refrigerant vapor evaporated in the evaporator 1 enters the absorber 2 through the eliminator 17, where it is converted into a concentrated solution sprayed to the tube group 19 from the nozzle 18 provided in the upper part of the absorber 2. When absorbed, it becomes a dilute solution and is stored at the bottom. The reaction heat at this time is taken out by the cooling water circulating in the tube group 19.

【0004】吸収器2内底部に溜まった希溶液は溶液ポ
ンプ9によって抽出され、低温熱交換器5の伝熱管5Aを
流過する過程で管外の濃溶液と熱交換することによって
加熱される。
The dilute solution collected at the bottom of the absorber 2 is extracted by the solution pump 9 and is heated by exchanging heat with the concentrated solution outside the tube in the process of flowing through the heat transfer tube 5A of the low-temperature heat exchanger 5. .

【0005】低温熱交換器5で加熱された希溶液の一部
は低圧再生器4に供給されるが、大部は高温熱交換器6
の伝熱管6Aに入り、この伝熱管6Aを流過する過程で管外
の濃溶液と熱交換することによって加熱され、次いで、
直焚高圧再生器7の排ガス通路14内に配設された排ガス
熱交換器8を流過する過程で管外の排ガスと熱交換する
ことによって加熱される。
[0005] A part of the dilute solution heated by the low-temperature heat exchanger 5 is supplied to the low-pressure regenerator 4, but most of the diluted solution is heated by the high-temperature heat exchanger 6.
Is heated by exchanging heat with a concentrated solution outside the tube in the process of flowing through the heat transfer tube 6A,
In the process of flowing through the exhaust gas heat exchanger 8 disposed in the exhaust gas passage 14 of the direct-fired high-pressure regenerator 7, heat is generated by exchanging heat with the exhaust gas outside the tube.

【0006】次いで、この希溶液は直焚高圧再生器7に
入りその底部に貯溜されている間にその火炉20内で燃料
を燃焼させることによって発生した熱により加熱されて
希溶液中の冷媒が蒸発することにより濃溶液となる。
Next, the dilute solution enters the direct-fired high-pressure regenerator 7 and is heated by the heat generated by burning fuel in the furnace 20 while being stored at the bottom thereof, so that the refrigerant in the dilute solution is decomposed. Evaporate to a thick solution.

【0007】直焚高圧再生器7で濃縮された濃溶液は高
温熱交換器6に導入されここで冷却された後、低圧再生
器4から抽出された濃溶液と合流して低温熱交換器5に
入りここで再び冷却された後、吸収器14に入りそのノズ
ル18から散布される。
[0007] The concentrated solution concentrated in the direct-fired high-pressure regenerator 7 is introduced into the high-temperature heat exchanger 6 and cooled therein, and then merges with the concentrated solution extracted from the low-pressure regenerator 4 to be cooled. After entering and cooling again, it enters the absorber 14 and is sprayed from the nozzle 18 thereof.

【0008】一方、直焚高圧再生器7で吸収液から分離
された冷媒蒸気は低圧再生器4内に配設された管群21内
に導入され、この管群21を流過する過程で管外の希溶液
を加熱することによって冷却されて液冷媒となる。これ
によって低圧再生器4内底部に貯溜された希溶液から冷
媒が蒸発して分離され、分離された冷媒蒸気は凝縮器3
内に入り、低圧再生器4で濃縮された濃溶液は抽出され
て低温熱交換器5に流入する。
On the other hand, the refrigerant vapor separated from the absorbent in the direct-fired high-pressure regenerator 7 is introduced into a tube group 21 provided in the low-pressure regenerator 4, and flows through the tube group 21 in the course of flowing through the tube group 21. The outer dilute solution is cooled by heating to become a liquid refrigerant. As a result, the refrigerant evaporates and is separated from the dilute solution stored in the bottom of the low-pressure regenerator 4, and the separated refrigerant vapor is supplied to the condenser 3.
The concentrated solution concentrated in the low-pressure regenerator 4 is extracted and flows into the low-temperature heat exchanger 5.

【0009】そして、管群21で冷却された液冷媒は凝縮
器3内上部に配設されたノズル22から管群23に散布さ
れ、凝縮器3内を下降する過程で冷媒蒸気を伴って管群
23の外面を流下する過程で管内を循環する冷却水によっ
て冷却されることにより冷媒蒸気が凝縮する。
The liquid refrigerant cooled in the tube group 21 is sprayed to the tube group 23 from a nozzle 22 provided in the upper part of the condenser 3, and flows along with the refrigerant vapor in the process of descending in the condenser 3. group
In the process of flowing down the outer surface of 23, the refrigerant vapor is condensed by being cooled by the cooling water circulating in the pipe.

【0010】凝縮器3内底部に溜まった液冷媒は膨張弁
24を流過する過程で絞られた後、蒸発器1内に入りここ
でその一部がフラッシュ蒸発し、残部は蒸発器1内底部
に貯溜される。
The liquid refrigerant accumulated at the bottom of the condenser 3 is supplied to an expansion valve.
After being squeezed in the course of flowing through the evaporator 1, the evaporator 1 enters the evaporator 1, where a part thereof is flash-evaporated, and the remainder is stored in the bottom of the evaporator 1.

【0011】[0011]

【発明が解決しようとする課題】上記従来の冷凍機にお
いては、排ガス熱交換器8から直焚高圧再生器7に流入
する希溶液の温度は130 ℃程度で、直焚高圧再生器7内
における冷媒蒸気発生温度160 ℃より約30deg ℃程度低
いので、希溶液を直焚高圧再生器7内でこの温度差だけ
加熱して昇温させる必要があるため、冷凍機の成績係数
(COP)が低いという問題があった。
In the above-mentioned conventional refrigerator, the temperature of the dilute solution flowing from the exhaust gas heat exchanger 8 into the direct-fired high-pressure regenerator 7 is about 130 ° C. Since the refrigerant vapor generation temperature is about 30 ° C. lower than 160 ° C., it is necessary to heat the dilute solution by this temperature difference in the direct-fired high-pressure regenerator 7 to raise the temperature. There was a problem.

【0012】直焚高圧再生器7に流入する希溶液の温度
を高くするには低温熱交換器5及び高温熱交換器6の伝
熱面積を拡大したり、その伝熱性能を向上する必要があ
るが、これは実用上限界がある。また、直焚高圧再生器
7で発生した排ガスは180 ℃程度で排ガスダクト14から
大気中に放出されるので、大量の熱が捨てられていると
いう問題があった。
In order to increase the temperature of the dilute solution flowing into the direct-fired high-pressure regenerator 7, it is necessary to increase the heat transfer area of the low-temperature heat exchanger 5 and the high-temperature heat exchanger 6 and to improve the heat transfer performance. There are, however, practical limitations. Further, since the exhaust gas generated in the direct-fired high-pressure regenerator 7 is discharged into the atmosphere from the exhaust gas duct 14 at about 180 ° C., there is a problem that a large amount of heat is discarded.

【0013】[0013]

【課題を解決するための手段】本発明は上記課題を解決
するために発明されたものであって、その要旨とすると
ころは、直焚高圧再生器、低圧再生器、凝縮器、蒸発器
を具え、吸収器から抽出された希溶液が低温熱交換器、
高温熱交換器及び上記直焚高圧再生器の排ガス通路に配
設された排ガス熱交換器で加熱された後上記直焚高圧再
生器に導入される直焚式吸収冷凍機において、上記直焚
高圧再生器の排ガス通路の上記排ガス熱交換器の後流側
に上記低温熱交換器から流出した希溶液を加熱する第2
排ガス熱交換器を配設し、この第2排ガス熱交換器で加
熱された希溶液を上記高温熱交換器及び排ガス熱交換器
をこの順に経て上記直焚高圧再生器に導入することを特
徴とする直焚式吸収冷凍機にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and its gist is to provide a direct-fired high-pressure regenerator, a low-pressure regenerator, a condenser, and an evaporator. The dilute solution extracted from the absorber is a low-temperature heat exchanger,
The direct-fired absorption refrigerator, which is heated by a high-temperature heat exchanger and an exhaust gas heat exchanger disposed in an exhaust gas passage of the direct-fired high-pressure regenerator and then introduced into the direct-fired high-pressure regenerator, comprises: A second solution for heating the dilute solution flowing out of the low-temperature heat exchanger on the downstream side of the exhaust gas heat exchanger in the exhaust gas passage of the regenerator.
An exhaust gas heat exchanger is provided, and the diluted solution heated by the second exhaust gas heat exchanger is introduced into the direct-fired high-pressure regenerator through the high-temperature heat exchanger and the exhaust gas heat exchanger in this order. In a direct-fired absorption refrigerator.

【0014】他の特徴とするところは、上記第2排ガス
熱交換器で加熱された希溶液の一部を上記低圧再生器に
導入することにある。
Another feature is that a part of the dilute solution heated in the second exhaust gas heat exchanger is introduced into the low-pressure regenerator.

【0015】[0015]

【発明の実施の形態】本発明の第1の実施形態が図1に
示されている。直焚高圧再生器7の排ガス通路14には排
ガス熱交換器8の後流側に位置するように第2排ガス熱
交換器13が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is shown in FIG. A second exhaust gas heat exchanger 13 is disposed in the exhaust gas passage 14 of the direct-fired high-pressure regenerator 7 so as to be located on the downstream side of the exhaust gas heat exchanger 8.

【0016】そして、低温熱交換器5から流出した希溶
液の一部は低圧再生器4に供給されるが、その大部は第
2排ガス熱交換器13を流過する過程で排ガス熱交換器8
を流過した排ガスと熱交換することにより加熱された
後、高温熱交換器6の伝熱管6A及び排ガス熱交換器8を
経て直焚高圧再生器7に導入されるようになっている。
他の構成は図3に示す従来のものと同様であり、対応す
る部材には同じ符号が付されている。
A part of the dilute solution flowing out of the low-temperature heat exchanger 5 is supplied to the low-pressure regenerator 4, and most of the dilute solution flows through the second exhaust gas heat exchanger 13 in the course of passing through the second exhaust gas heat exchanger 13. 8
After being heated by exchanging heat with the exhaust gas flowing through, the heat is introduced into the direct-fired high-pressure regenerator 7 through the heat transfer tube 6A of the high-temperature heat exchanger 6 and the exhaust gas heat exchanger 8.
The other configuration is the same as that of the conventional one shown in FIG. 3, and the corresponding members are denoted by the same reference numerals.

【0017】しかして、低温熱交換器5から流出した約
70℃の希溶液が第2排ガス熱交換器13で排ガス熱交換器
8を流過した約180 ℃の排ガスと熱交換することによっ
て約80℃に昇温し、高温熱交換器6で更に昇温して約15
5 ℃となって直焚高圧再生器7に導入される。
Thus, the flow out of the low-temperature heat exchanger 5
The 70 ° C. dilute solution exchanges heat with the exhaust gas of about 180 ° C. flowing through the exhaust gas heat exchanger 8 in the second exhaust gas heat exchanger 13 to raise the temperature to about 80 ° C., and further increases in the high temperature heat exchanger 6. About 15
At 5 ° C., it is introduced into the direct-fired high-pressure regenerator 7.

【0018】一方、直焚高圧再生器7の火炉20で発生し
た約240 ℃の排ガスは排ガス熱交換器8を流過する過程
で約180 ℃に降温し、第2排ガス熱交換器13を流過する
ことによって約160 ℃に降温して大気中に放出される。
On the other hand, the exhaust gas of about 240 ° C. generated in the furnace 20 of the direct-fired high-pressure regenerator 7 is cooled down to about 180 ° C. in the course of flowing through the exhaust gas heat exchanger 8 and flows through the second exhaust gas heat exchanger 13. The temperature drops to about 160 ° C, and is released into the atmosphere.

【0019】かくして、直焚高圧再生器7に流入する希
溶液を155 ℃に昇温させることができるので、直焚高圧
再生器7では冷媒蒸気発生温度160 ℃まで15deg ℃だけ
昇温させれば足り、従って、その燃料消費量が少なくな
るので、冷凍機の成績係数を大巾に向上できる。
Thus, since the temperature of the dilute solution flowing into the direct-fired high-pressure regenerator 7 can be raised to 155 ° C., the temperature of the direct-fired high-pressure regenerator 7 can be increased by 15 ° C. to a refrigerant vapor generation temperature of 160 ° C. As a result, the fuel consumption is reduced, and the coefficient of performance of the refrigerator can be greatly improved.

【0020】本発明の第2の実施形態が図2に示されて
いる。この第2の実施形態では、低温熱交換器5の伝熱
管5Aから流出した希溶液の全てが第2排ガス熱交換器13
に入り、ここで加熱された後分岐してその一部が低圧再
生器4に供給され、大部が高温熱交換器6の伝熱管6Aに
流入するようになっている。他の構成は図1に示す第1
の実施形態と同様であり、対応する部材には同じ符号が
付されている。
A second embodiment of the present invention is shown in FIG. In the second embodiment, all of the dilute solution flowing out of the heat transfer tube 5A of the low-temperature heat exchanger 5 is supplied to the second exhaust gas heat exchanger 13
Then, after being heated, it branches off and a part thereof is supplied to the low-pressure regenerator 4, and most of the branch flows into the heat transfer tube 6 </ b> A of the high-temperature heat exchanger 6. Another configuration is the first configuration shown in FIG.
The same reference numerals are given to corresponding members.

【0021】この第2の実施形態においては、低圧再生
器4に流入する希溶液の温度を従来のものより高温とし
うるので、低圧再生器4における冷媒の蒸発量を従来の
ものより増加させることができる。
In the second embodiment, the temperature of the dilute solution flowing into the low-pressure regenerator 4 can be higher than that of the conventional dilute solution. Can be.

【0022】[0022]

【発明の効果】本発明においては、低温熱交換器から流
出した希溶液を第2排ガス熱交換器に導き、ここで排ガ
ス熱交換器を流過した排ガスと熱交換させることにより
昇温させているので、高温熱交換器及び排ガス熱交換器
を経て直焚高圧再生器に流入する希溶液の温度を従来の
ものより高くすることができる。
According to the present invention, the dilute solution flowing out of the low-temperature heat exchanger is led to the second exhaust gas heat exchanger, where it is heated by exchanging heat with the exhaust gas flowing through the exhaust gas heat exchanger. Therefore, the temperature of the dilute solution flowing into the direct-fired high-pressure regenerator through the high-temperature heat exchanger and the exhaust gas heat exchanger can be higher than that of the conventional solution.

【0023】従って、直焚高圧再生器で希溶液を冷媒蒸
気発生温度まで加熱するのに要する熱が減少するので、
直焚高圧再生器の所要燃料が少なくて足り、しかも、大
気に放散される排ガスの熱を利用して希溶液を加熱して
いるので冷凍機の成績係数を大巾に向上できる。
Therefore, the heat required to heat the dilute solution to the refrigerant vapor generation temperature in the direct-fired high-pressure regenerator is reduced,
The fuel required for the direct-fired high-pressure regenerator is sufficient, and the coefficient of performance of the refrigerator can be greatly improved because the dilute solution is heated using the heat of the exhaust gas released to the atmosphere.

【0024】第2排ガス熱交換器で加熱された希溶液の
一部を低圧再生器に導入すれば、低圧再生器の能力を向
上することができる。
If a part of the dilute solution heated in the second exhaust gas heat exchanger is introduced into the low pressure regenerator, the performance of the low pressure regenerator can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す系統図である。FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】従来の直焚式吸収冷凍機の系統図である。FIG. 3 is a system diagram of a conventional direct-fired absorption refrigerator.

【符号の説明】[Explanation of symbols]

7 直焚高圧再生器 14 排ガス通路 4 低圧再生器 3 凝縮器 1 蒸発器 2 吸収器 5 低温熱交換器 6 高温熱交換器 8 排ガス熱交換器 13 第2排ガス熱交換器 7 Direct-fired high pressure regenerator 14 Exhaust gas passage 4 Low pressure regenerator 3 Condenser 1 Evaporator 2 Absorber 5 Low temperature heat exchanger 6 High temperature heat exchanger 8 Exhaust gas heat exchanger 13 Second exhaust gas heat exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 誠 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 (72)発明者 松下 修一 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂製作所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Makoto Fujiwara 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Prefecture Inside the Takasago Works, Mitsubishi Heavy Industries, Ltd. No. 1 Inside the Mitsubishi Heavy Industries, Ltd. Takasago Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直焚高圧再生器、低圧再生器、凝縮器、
蒸発器を具え、吸収器から抽出された希溶液が低温熱交
換器、高温熱交換器及び上記直焚高圧再生器の排ガス通
路に配設された排ガス熱交換器で加熱された後上記直焚
高圧再生器に導入される直焚式吸収冷凍機において、 上記直焚高圧再生器の排ガス通路の上記排ガス熱交換器
の後流側に上記低温熱交換器から流出した希溶液を加熱
する第2排ガス熱交換器を配設し、この第2排ガス熱交
換器で加熱された希溶液を上記高温熱交換器及び排ガス
熱交換器をこの順に経て上記直焚高圧再生器に導入する
ことを特徴とする直焚式吸収冷凍機。
1. A direct-fired high-pressure regenerator, a low-pressure regenerator, a condenser,
An evaporator is provided, and the dilute solution extracted from the absorber is heated by a low-temperature heat exchanger, a high-temperature heat exchanger, and an exhaust gas heat exchanger provided in an exhaust gas passage of the direct-fired high-pressure regenerator, and then heated directly In a direct-fired absorption refrigerator introduced into a high-pressure regenerator, a second solution for heating a dilute solution flowing out of the low-temperature heat exchanger to a downstream side of the exhaust gas heat exchanger in an exhaust gas passage of the direct-fired high-pressure regenerator. An exhaust gas heat exchanger is provided, and the diluted solution heated by the second exhaust gas heat exchanger is introduced into the direct-fired high-pressure regenerator through the high-temperature heat exchanger and the exhaust gas heat exchanger in this order. Direct-fired absorption refrigerator.
【請求項2】 上記第2排ガス熱交換器で加熱された希
溶液の一部を上記低圧再生器に導入することを特徴とす
る請求項1記載の直焚式吸収冷凍機。
2. The direct-fired absorption refrigerator according to claim 1, wherein a part of the dilute solution heated in the second exhaust gas heat exchanger is introduced into the low-pressure regenerator.
JP9023099A 1997-01-23 1997-01-23 Direct-fired absorption refrigerating machine Withdrawn JPH10205908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9023099A JPH10205908A (en) 1997-01-23 1997-01-23 Direct-fired absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9023099A JPH10205908A (en) 1997-01-23 1997-01-23 Direct-fired absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JPH10205908A true JPH10205908A (en) 1998-08-04

Family

ID=12101013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9023099A Withdrawn JPH10205908A (en) 1997-01-23 1997-01-23 Direct-fired absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPH10205908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108258A1 (en) * 2011-07-24 2013-01-24 VauQuadrat GmbH Method for realization of heat-operated refrigerating machine, involves performing thermal storage and retrieval processes e.g. adsorption/desorption and absorption/desorption, at preset low temperature

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108258A1 (en) * 2011-07-24 2013-01-24 VauQuadrat GmbH Method for realization of heat-operated refrigerating machine, involves performing thermal storage and retrieval processes e.g. adsorption/desorption and absorption/desorption, at preset low temperature
DE102011108258B4 (en) * 2011-07-24 2015-02-12 VauQuadrat GmbH Process for the realization of a heat-driven chiller with internal heat recovery to increase the efficiency and the possibility of further use of the resulting waste heat

Similar Documents

Publication Publication Date Title
CN1144987C (en) Absorbing refrigerator
KR20030034006A (en) Absorption refrigerator
US4553409A (en) Multiple regeneration multiple absorption type heat pump
US4672821A (en) Absorption-type heat pump
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
US4662191A (en) Absorption - type refrigeration system
JPH10205908A (en) Direct-fired absorption refrigerating machine
JP4079576B2 (en) Absorption refrigerator
KR100512827B1 (en) Absorption type refrigerator
KR0132391B1 (en) Absorptive refrig
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
JP4266697B2 (en) Absorption refrigerator
CN217423663U (en) Smoke type lithium bromide absorption type second-class heat pump unit
CN114087802B (en) Open heat pump system for simultaneously recovering water and latent heat in high-humidity flue gas
JP2000055496A (en) Absorption type water chiller/heater
JPH04116352A (en) Absorption cooler/heater
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
KR200161048Y1 (en) Regenerator of absorption type refrigerator
KR0113790Y1 (en) Absorption refrigerating machine
JP4540086B2 (en) Exhaust gas driven absorption chiller / heater
JPH0350373Y2 (en)
JP4201403B2 (en) Absorption refrigerator
JP3404225B2 (en) Absorption refrigerator
JP4557468B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040121

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406