JPH10205687A - Vacuum heat insulating material - Google Patents
Vacuum heat insulating materialInfo
- Publication number
- JPH10205687A JPH10205687A JP9021943A JP2194397A JPH10205687A JP H10205687 A JPH10205687 A JP H10205687A JP 9021943 A JP9021943 A JP 9021943A JP 2194397 A JP2194397 A JP 2194397A JP H10205687 A JPH10205687 A JP H10205687A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- container
- heat insulating
- tobermorite
- calcium silicate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は真空断熱材に関するもの
であり、詳しくは断熱芯材として特定の珪酸カルシウム
を使用することにより、低真空状態でも優れた断熱性を
発揮するように改良した真空断熱材に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulating material, and more particularly, to a vacuum heat insulating material which uses a specific calcium silicate as a heat insulating core so as to exhibit excellent heat insulating properties even in a low vacuum condition. It is related to thermal insulation.
【0002】[0002]
【従来の技術】珪酸カルシウム系成形体を芯材とする真
空断熱材はこれまでにも知られており、その成形体の強
度を増すために繊維状物質で補強したり、更には熱伝導
率を低下させるために輻射遮蔽材を含有させた珪酸カル
シウムを主体とする成型体を使用することが提案され、
そのための製造方法についてもいくつか知られている。
例えば珪酸カルシウム成形体に輻射遮蔽材の混合層を設
けたもの(特公平4−4998号公報)、輻射遮蔽材を
含有するケイ酸カルシウム成形体(特開昭58−145
652号公報)、珪酸カルシウム成形体中のパルプを燃
焼消失させたものを芯材とした真空断熱材(特公平4−
60950号公報)、輻射遮蔽材を含有する珪酸カルシ
ウムを芯材とする真空断熱材(WO9514881号公報)など
が提案されている。2. Description of the Related Art Vacuum insulation materials having a calcium silicate-based molded body as a core material have been known so far. In order to increase the strength of the molded body, it is reinforced with a fibrous substance, and furthermore, has a thermal conductivity. It has been proposed to use a molded body mainly composed of calcium silicate containing a radiation shielding material to reduce
Several manufacturing methods are also known.
For example, a calcium silicate molded article provided with a mixed layer of a radiation shielding material (Japanese Patent Publication No. 4-4998), and a calcium silicate molded article containing a radiation shielding material (Japanese Patent Application Laid-Open No. 58-145)
No. 652), a vacuum heat insulating material having a core obtained by burning and eliminating pulp in a calcium silicate molded body (Japanese Patent Publication No. Hei 4-
No. 60950) and a vacuum heat insulating material having a core of calcium silicate containing a radiation shielding material (WO9514881) has been proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記のよ
うな従来の真空断熱材に用いられている珪酸カルシウム
を主体とする成形体は真空度依存性が大きく,0.1T
orr以下の高真空で真空包装を行わないと、安定した
低熱伝導性を呈する真空断熱材を得られないという問題
があった。しかも真空度を0.1Torr以下に高める
には、真空引きに多大の時間を必要とするため、生産性
は低下せざるをえず、また真空排気設備も大がかりなも
のを導入しなければならないので経済的には不利であっ
た。それゆえ2Torr程度の低真空で、従来の高真空
で達せられていたのと同程度の低熱伝導性を有する真空
断熱材を得るのに適した珪酸カルシウム成形体からなる
芯材が望まれていた。However, the compact mainly composed of calcium silicate used in the above-mentioned conventional vacuum heat insulating material has a large degree of vacuum dependency, and is 0.1T.
Unless vacuum packaging is performed at a high vacuum of orr or lower, there is a problem that a vacuum heat insulating material exhibiting stable low thermal conductivity cannot be obtained. In addition, in order to increase the degree of vacuum to 0.1 Torr or less, a large amount of time is required for evacuation, so that productivity must be reduced, and a large-scale vacuum exhaust system must be introduced. Economically disadvantaged. Therefore, there has been a demand for a core material made of a calcium silicate molded body suitable for obtaining a vacuum heat insulating material having a low vacuum of about 2 Torr and a low thermal conductivity equivalent to that achieved by a conventional high vacuum. .
【0004】[0004]
【課題を解決するための手段】本発明者らはこのような
問題を解決するため、種々の結晶構造を有する珪酸カル
シウムについて鋭意検討を重ねた結果、より低真空で低
熱伝導性を有する珪酸カルシウム成形体を芯材とした真
空断熱材には、特定の結晶形の珪酸カルシウム、即ちト
バモライト系珪酸カルシウムを使用した成形体からなる
芯材が有効であることを見出し本発明に至った。Means for Solving the Problems In order to solve such a problem, the present inventors have conducted intensive studies on calcium silicates having various crystal structures. As a result, calcium silicate having a lower vacuum and lower thermal conductivity has been obtained. The present inventors have found out that a core material made of a molded body using calcium silicate of a specific crystal form, that is, a tobermorite-based calcium silicate, is effective as a vacuum heat insulating material having a molded body as a core material, and reached the present invention.
【0005】すなわち、本発明の要旨は、トバモライト
系珪酸カルシウムで、その2次粒子が外殻に球状殻を形
成しない粒子を主成分とする成型体を断熱芯材とし、且
つ該断熱芯材を封入した容器内を真空排気することによ
り2Torr以下となしたことよりなる断熱芯材が容器
で密着包装されて成る真空断熱材に存し、好ましくは、
その容器内が1Torr以下であり、また、トバモライ
ト系珪酸カルシウムが花弁状2次粒子であることよりな
る真空断熱材に存する。[0005] That is, the gist of the present invention is to provide a heat-insulating core made of a molded body of tobermorite-based calcium silicate whose secondary particles are mainly composed of particles that do not form a spherical shell in the outer shell. A vacuum insulating material formed by tightly wrapping in the container an insulating core material made to be 2 Torr or less by evacuating the enclosed container, preferably,
The inside of the container is 1 Torr or less, and the tobermorite-based calcium silicate is a petal-like secondary particle in a vacuum heat insulating material.
【0006】[0006]
【発明の実施の形態】以下、本発明をより詳細に説明す
る。本発明に用いる珪酸カルシウムは、トバモライトと
称される結晶質を主成分とするトバモライト系珪酸カル
シウムである。そしてトバモライトは、その2次粒子が
外殻に球状殻を有す粒子と外殻に球状殻を持たない粒子
が知られており、前者の代表的な形状にはマリモ状と呼
ばれる球状粒子があり、後者の代表的な形状には花弁状
と呼ばれるバラの花のような粒子が知られている。本発
明に使用しうるトバモライトはその2次粒子が外殻に球
状殻を持たない粒子であり、特に好適には花弁状の2次
粒子のものである。また、本発明で使用するトバモライ
トとしては、不純物としてCSH−I、CSH−IIを含
んでいても、更に非晶質のものを含むものも使用し得
る。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The calcium silicate used in the present invention is a tobermorite-based calcium silicate mainly composed of crystalline material called tobermorite. Tobermorite is known to have a secondary particle having a spherical shell in the outer shell and a particle having no spherical shell in the outer shell.A typical example of the former is a spherical particle called marimo-like. In the latter typical shape, particles such as rose flowers called petals are known. The tobermorite which can be used in the present invention is a particle whose secondary particle does not have a spherical shell on the outer shell, and is particularly preferably a petal-like secondary particle. Further, as the tobermorite used in the present invention, one containing CSH-I or CSH-II as an impurity and also containing an amorphous substance may be used.
【0007】本発明のトバモライト系珪酸カルシウム
は、石灰質原料と珪酸質原料を、水熱合成反応させるこ
とにより製造される。珪酸質原料としては非晶質、結晶
質のいずれでも良く、具体的には珪藻土、珪石、石英な
どの天然品、およびシリコンダストなどの工業副産物が
あげられる。また、石灰質原料の具体例としては生石
灰、消石灰、などが挙げられるが、通常石灰質原料は消
石灰スラリーにして使用し、時として嵩高の石灰粒子を
含有する石灰乳に調製して使用されることもある。The tobermorite-based calcium silicate of the present invention is produced by subjecting a calcareous material and a siliceous material to a hydrothermal synthesis reaction. The siliceous raw material may be either amorphous or crystalline. Specific examples include natural products such as diatomaceous earth, silica stone and quartz, and industrial by-products such as silicon dust. Further, specific examples of the calcareous raw material include quick lime, slaked lime, and the like.In general, the calcareous raw material is used in the form of slaked lime slurry, and sometimes it is sometimes used by preparing into lime milk containing bulky lime particles. is there.
【0008】上記水熱合成反応はそれ自体公知であり、
その反応条件、例えばCa/Si比、珪酸質原料、反応
温度、反応時間等を選ぶことにより異なった結晶形が得
られるが、本発明のトバモライトを取得するためには、
石灰質原料と珪酸質原料であるCaOとSiO2 のモル
比をCa/Si=0.6〜1.0となる様に調整した水
性スラリーを加圧下、撹拌しながら140℃以上に昇温
して反応させる方法が採用される。特に花弁状トバモラ
イトを得ようとする場合には、珪酸質原料としてヒュー
ムドシリカのような非晶質珪酸を使用する。反応時間、
反応性を考えると結晶質珪酸と非晶質珪酸を混合して用
いるのがよく、この結晶質珪酸原料と非晶質珪酸原料の
比に合わせて花弁の大きさ、粒子の大きさに違いのある
花弁状の粒子を得ることが出来る。The above-mentioned hydrothermal synthesis reaction is known per se,
Different crystal forms can be obtained by selecting the reaction conditions, for example, Ca / Si ratio, siliceous raw material, reaction temperature, reaction time, etc. In order to obtain the tobermorite of the present invention,
The aqueous slurry in which the molar ratio between the calcareous raw material and the siliceous raw material CaO and SiO 2 was adjusted so that Ca / Si = 0.6 to 1.0 was heated to 140 ° C. or more while stirring under pressure. A reaction method is employed. In particular, when obtaining petal-like tobermorite, amorphous silicic acid such as fumed silica is used as a siliceous raw material. Reaction time,
Considering the reactivity, it is better to use a mixture of crystalline silicic acid and amorphous silicic acid.The petal size and particle size differ according to the ratio of this crystalline silicic acid material to the amorphous silicic acid material. Some petal-like particles can be obtained.
【0009】本発明の断熱芯材として使用する珪酸カル
シウム成形体は、上記方法で得られたトバモライトスラ
リーをそのまま用いて脱水成形し、乾燥することにより
製造することができるが、トバモライトスラリーを乾燥
して粉末にしたものを再度水に添加して用いることもで
きる。該スラリー中の珪酸カルシウムの固形分濃度は特
に制限はないが8(wt)%以下が好ましく、特に低比重の
珪酸カルシウム成形体を得ようとする場合は2〜7(wt)
%が好ましい。The calcium silicate molded body used as the heat insulating core material of the present invention can be produced by dehydrating and molding the tobermorite slurry obtained by the above method as it is and drying it. The powder obtained by powdering can be used by adding it to water again. The solid content concentration of calcium silicate in the slurry is not particularly limited, but is preferably 8 (wt)% or less. In particular, when a calcium silicate compact having a low specific gravity is to be obtained, 2 to 7 (wt)
% Is preferred.
【0010】本発明の珪酸カルシウム成形体は、上記の
トバモライトを含む水性スラリーと必要に応じて添加さ
れるパルプ、ガラス繊維等の補強繊維、炭化珪素、カー
ボン等の輻射熱吸収材等との混合物を、従来公知のフィ
ルタープレス等を利用した加圧脱水法により脱水成形
し、次いで乾燥することにより製造される。脱水成形機
の脱水部の形状により、平板(パネル)や曲部を有する
種々の形状(パイプ等)に成形することが出来る。脱水
成形後の乾燥は、通常、100〜200℃の温度で5〜
30時間おこなわれる。上記方法で得られた成形体の見
かけ密度は0.05〜0.15g/cm3であり圧縮強度
は、通常1Kg/cm2 以上、具体的には1.5〜6K
g/cm2である。The calcium silicate compact of the present invention comprises a mixture of the aqueous slurry containing tobermorite described above and reinforcing fibers such as pulp and glass fiber, and radiant heat absorbing materials such as silicon carbide and carbon, which are added as necessary. It is manufactured by dehydration molding by a pressure dehydration method using a conventionally known filter press or the like, and then drying. Depending on the shape of the dewatering section of the dewatering molding machine, it can be formed into various shapes (such as pipes) having a flat plate (panel) or a curved portion. Drying after dehydration molding is usually performed at a temperature of 100 to 200 ° C. for 5 to 5 minutes.
Performed for 30 hours. The molded article obtained by the above method has an apparent density of 0.05 to 0.15 g / cm 3 and a compression strength of usually 1 kg / cm 2 or more, specifically 1.5 to 6 K.
g / cm 2 .
【0011】本発明の上記成形体に添加される繊維状物
質としては、ガラス繊維、炭素繊維、有機繊維、パルプ
等、従来公知の種々の繊維状物質を用いることができ
る。これらは単独、もしくは2種以上混合しても良い。
また、輻射熱吸収材としては炭化珪素、酸化チタン、カ
ーボン等が好適に使用される。これらは珪酸カルシウム
成形体の製造工程において、例えば珪酸カルシウムスラ
リー中に添加される。更に珪酸カルシウムの反応を阻害
しない物質ならば、例えば石灰質原料、珪酸質原料と共
に混合して水熱合成に付しても良い。As the fibrous substance added to the molded article of the present invention, various conventionally known fibrous substances such as glass fiber, carbon fiber, organic fiber and pulp can be used. These may be used alone or as a mixture of two or more.
Further, as the radiant heat absorbing material, silicon carbide, titanium oxide, carbon and the like are preferably used. These are added, for example, to a calcium silicate slurry in the process of manufacturing the calcium silicate molded body. Further, any substance that does not inhibit the reaction of calcium silicate may be mixed with, for example, a calcareous raw material or a siliceous raw material and subjected to hydrothermal synthesis.
【0012】本発明に使用する容器(袋)は、ガスバリ
アー性で且つ可撓性の容器であれば特に制限されず、通
常、可撓性を有する限り公知のガスバリアー性フィルム
を使用して製作することができる。ガスバリアー性フィ
ルムとしては、例えばプラスチックフィルムにアルミニ
ウム等の金属箔を積層したものや金属もしくは金属酸化
物を蒸着した複合フィルム、塩化ビニリデン系フィル
ム、塩化ビニリデン樹脂コートフィルム、ポリビニルア
ルコール系フィルム等が挙げられるが、複合フィルムが
好適である。The container (bag) used in the present invention is not particularly limited as long as it is a gas-barrier and flexible container. Generally, a known gas-barrier film is used as long as it has flexibility. Can be manufactured. Examples of the gas barrier film include, for example, a plastic film obtained by laminating a metal foil such as aluminum on a plastic film, a composite film obtained by depositing a metal or metal oxide, a vinylidene chloride-based film, a vinylidene chloride resin-coated film, a polyvinyl alcohol-based film, and the like. However, composite films are preferred.
【0013】複合フィルムを構成するプラスチックフィ
ルムとしては、ポリエステルフィルム、ポリプロピレン
フィルム、ポリアミドフィルム等が挙げられ、複合フィ
ルムの層構成は、2層でもよいが、金属箔或いは蒸着膜
を中心に両側にプラスチックフィルムを設けた3層構成
が好ましい。3層構成の複合フィルムにおいては、容器
(袋)にした場合、外層にはポリエステルフィルムのよ
うな耐傷性に優れたフィルムを、内層にはヒートシール
性に優れたポリプロピレン、ポリアミド等のフィルムと
なるように選定される。フィルムの厚さは、その真空断
熱材の用途によって異なるが、通常10〜100mμ程
度である。また、容器の形状は、通常一端又は両端が開
放された筒状体である。Examples of the plastic film constituting the composite film include a polyester film, a polypropylene film, and a polyamide film. The layer structure of the composite film may be two layers. A three-layer structure provided with a film is preferable. In the case of a three-layer composite film, the container
In the case of (bag), the outer layer is selected to be a film having excellent scratch resistance such as a polyester film, and the inner layer is selected to be a film made of polypropylene, polyamide or the like having excellent heat sealing properties. The thickness of the film varies depending on the use of the vacuum heat insulating material, but is usually about 10 to 100 mμ. Further, the shape of the container is usually a tubular body having one end or both ends open.
【0014】本発明の真空断熱材は公知の真空包装機な
どを用いた方法により製造される。すなわち、容器内に
上記のトバモライト系珪酸カルシウムを主体とする成形
体を収容した後、容器内を減圧状態となる様にして真空
排気し、所定の真空度に到達した時点で成形体を減圧状
態で容器により密着包装せしめる様に容器の開放端をヒ
ートシールする。真空容器内の減圧状態は2Torr以
下の真空度を保つようにし、好適には1Torr以下、
更に好ましくは0.8Torr以下にすることにより優
れた断熱性能を得ることができる。The vacuum heat insulating material of the present invention is manufactured by a method using a known vacuum packaging machine or the like. That is, after the molded body mainly composed of the above-mentioned tobermorite-based calcium silicate is accommodated in the container, the interior of the container is evacuated to a reduced pressure state, and when the predetermined degree of vacuum is reached, the molded body is decompressed. Heat seal the open end of the container so that it is tightly packed by the container. The depressurized state in the vacuum vessel is to maintain a degree of vacuum of 2 Torr or less, preferably 1 Torr or less,
More preferably, by setting the pressure to 0.8 Torr or less, excellent heat insulating performance can be obtained.
【0015】本発明においては、珪酸カルシウム成形体
は密着包装される前に300℃以上の温度、具体的には
300〜500℃の温度で、通常は1〜5時間加熱処理
されるのが好ましい。この加熱処理により珪酸カルシウ
ム成形体の吸着水が除去され、加熱処理のない場合と比
べて一層優れた断熱性能を発揮する事ができる。In the present invention, the calcium silicate molded body is preferably subjected to a heat treatment at a temperature of 300 ° C. or higher, specifically, a temperature of 300 to 500 ° C., usually for 1 to 5 hours, before being packaged in close contact. . By this heat treatment, the adsorbed water of the calcium silicate molded body is removed, and more excellent heat insulating performance can be exhibited as compared with the case without the heat treatment.
【0016】本発明の真空断熱材は、低真空度でも優れ
た断熱性能を呈することが出来、容器内の真空度が2T
orrでも20℃における熱伝導率は、通常約0.01
Kcal/mh℃であり、更に低真空度のものはその熱伝導率
は約0.006〜0.008Kcal/mh℃に達している。The vacuum heat insulating material of the present invention can exhibit excellent heat insulating performance even at a low vacuum, and the vacuum inside the container is 2T.
Even at orr, the thermal conductivity at 20 ° C. is usually about 0.01
Kcal / mh ° C, and those with a lower vacuum degree have a thermal conductivity of about 0.006 to 0.008 Kcal / mh ° C.
【0017】本発明に従い、芯材成形体にトバモライト
粒子のうち球状の外殻を持たない2次粒子を使用するこ
とにより上記の如き高性能の真空断熱材が得られるその
理由の詳細は必ずしも明確ではないが、球状外殻を有す
る繭状ゾノトライト及びマリモ状トバモライトのいずれ
もが本発明の芯材となる成形体に不適であることから、
粒子の球状外殻が真空排気時、脱気、脱水を阻害し排気
速度を遅くし、充分な性能を発揮するに至らないものと
推察される。本発明の高性能の真空断熱材は、例えば電
気冷蔵庫、冷凍車、冷蔵貨物車、家屋(建築用)などの
断熱材として好適に使用し得る。According to the present invention, by using the secondary particles having no spherical outer shell among the tobermorite particles in the core material molded body, the high-performance vacuum heat insulating material as described above can be obtained. However, since neither cocoon-shaped zonotolite having a spherical outer shell and marimo-shaped tobermorite are unsuitable for the molded body to be the core material of the present invention,
It is presumed that the spherical outer shell of the particles hinders deaeration and dehydration during vacuum evacuation, slows the evacuation speed, and does not exhibit sufficient performance. The high-performance vacuum heat insulating material of the present invention can be suitably used as a heat insulating material for, for example, electric refrigerators, refrigerator cars, refrigerated freight cars, and houses (for construction).
【0018】[0018]
【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はその要旨を越えない限り下
記実施例に限定されるものではない。なお、以下の実施
例及び比較例において特記しない限り%は重量%を意味
する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In the following Examples and Comparative Examples,% means% by weight unless otherwise specified.
【0019】実施例1 生石灰(矢橋工業製:軽焼き生石灰 CaO 96.20%,Al2O3
0.06%,MgO 1.29%、Fe 0.031%,ig.loss 1.12%)43.1重
量部に温水(690重量部)を加え、95℃で5分消和
し消石灰スラリーとし、このスラリーを超音波分散機
(MST、20mmチップ使用)で超音波を20分照射
して消石灰乳を得た。 珪石(東海工業製:伊豆特粉 SiO2 96.64%, Al2O3 1.2
3%, Fe2O3 0.107%,ig.loss 0.89% )28.4重量部と
ヒュームドシリカ(エルケム社製:商品名マイクロシリ
カ983U SiO2 98% )28.4重量部とを水中に分散
し珪石スラリーを得た。上記消石灰乳と前記珪石スラリ
ーを合わせ、総水量が固形分に対し27重量倍となるよ
うに水を加えた。このスラリーをオートクレーブ中で1
90℃の温度(約15Kg/cm2の水蒸気圧下)で撹拌
しながら3時間反応を行い、花弁状2次粒子のトバモラ
イトの珪酸カルシウム水和物のスラリーを得た。得られ
たトバモライト珪酸カルシウムの電子顕微鏡写真(SEM)
を図1に示す。Example 1 Quick lime (produced by Yabashi Kogyo: lightly burnt quick lime CaO 96.20%, Al 2 O 3
0.06%, MgO 1.29%, Fe 0.031%, ig.loss 1.12%) 43.1 parts by weight of hot water (690 parts by weight) was added and slaked at 95 ° C for 5 minutes to form slaked lime slurry, and this slurry was ultrasonically dispersed. Ultrasonic waves were irradiated for 20 minutes using a machine (MST, using a 20 mm chip) to obtain slaked lime milk. Silica (Tokai Kogyo: Izu special powder SiO 2 96.64%, Al 2 O 3 1.2
3%, Fe 2 O 3 0.107%, ig.loss 0.89%) 28.4 parts by weight
28.4 parts by weight of fumed silica (trade name: Micro Silica 983U SiO 2 98%, manufactured by Elchem) were dispersed in water to obtain a silica slurry. The slaked lime milk and the silica stone slurry were combined, and water was added so that the total amount of water became 27 times by weight of the solid content. This slurry was placed in an autoclave for 1 hour.
The reaction was carried out for 3 hours while stirring at a temperature of 90 ° C. (under a steam pressure of about 15 kg / cm 2 ) to obtain a slurry of tobermorite calcium silicate hydrate of the petal-like secondary particles. Electron micrograph (SEM) of the obtained tobermorite calcium silicate
Is shown in FIG.
【0020】上記珪酸カルシウムスラリーに珪酸カルシ
ウムの固形分98重量%に対し、ガラス繊維1重量%と
パルプ1重量%を添加し混合したのち、22×22cm
2 の濾水成型機の金型に供給した。これを加圧、脱水
し、105℃で21時間乾燥して、比重0.093g/
cm3の成形体を得た。添加したガラス繊維(GF)
は、18mmに切断したチョップドストランドであり、
このガラス繊維とパルプはスラリーと混合前にあらかじ
めミキサーで分散してから使用した。After adding 1% by weight of glass fiber and 1% by weight of pulp to 98% by weight of solid content of calcium silicate to the above-mentioned calcium silicate slurry and mixing them, 22 × 22 cm
It was supplied to the mold of the drainage molding machine of No. 2 . This was pressurized, dehydrated and dried at 105 ° C. for 21 hours to obtain a specific gravity of 0.093 g /
A molded product of cm 3 was obtained. Glass fiber added (GF)
Is a chopped strand cut to 18 mm,
The glass fiber and the pulp were used after being dispersed with a mixer before mixing with the slurry.
【0021】得られた成型体を300℃で5時間加熱処
理を行った後、フィルム製容器に収納した。容器は、ポ
リエチレンテレフタレートフィルム(12μm)/アル
ミニウム箔(9μm)/ポリプロピレンフィルム(60
μm)の構成をした積層フィルムより、ポリプロピレン
フィルムを内層とする両端開放の筒状容器を使用した。
この容器内の約中央に上記成形体を配置し、真空室容積
20L(リットル)、排気量500L(リットル)/分の性能を備え
た真空包装機に収容して排気処理を行った。真空室のゲ
ージ圧が2Torrに達した時点でこの真空度を維持し
30分排気を行った後、容器両端の開口部をヒートシー
ルして密着包装し、珪酸カルシウム成形体を断熱芯材と
する真空断熱材を得た。上記の真空断熱材の20℃での
熱伝導率を測定し表1に記した。The obtained molded body was subjected to a heat treatment at 300 ° C. for 5 hours, and then stored in a film container. Containers were polyethylene terephthalate film (12 μm) / aluminum foil (9 μm) / polypropylene film (60
μm), a cylindrical container having a polypropylene film as an inner layer and open at both ends was used.
The molded body was placed at about the center of the container, and housed in a vacuum packaging machine having a vacuum chamber volume of 20 L (liter) and an exhaust capacity of 500 L (liter) / min to perform an exhaust process. When the vacuum pressure in the vacuum chamber reaches 2 Torr, this degree of vacuum is maintained, and after evacuation is performed for 30 minutes, the openings at both ends of the container are heat-sealed and tightly packaged, and the calcium silicate molded body is used as a heat insulating core material. A vacuum insulation was obtained. The thermal conductivity at 20 ° C. of the above vacuum heat insulating material was measured and is shown in Table 1.
【0022】次に上記のシールした断熱材を開封し常圧
にパージした後、再び上記真空包装機に収容して、ゲー
ジ圧を1.00Torrに維持したことを除いて上記方
法と同じ方法で真空断熱材を得て、熱伝導率を測定し
た。結果を表1に記した。同様な操作をを以下、0.8
0Torr、0.45Torr、0.05Torrの真
空度で繰り返し、得られた断熱真空材についてそれぞれ
熱伝導率を測定し結果を表1に記した。2Torr付近
の低真空状態で十分優れた性能を発揮することが明らか
である。Next, after the sealed heat insulating material is opened and purged to normal pressure, it is again stored in the vacuum packing machine, and the same method as above is used except that the gauge pressure is maintained at 1.00 Torr. A vacuum heat insulating material was obtained, and the thermal conductivity was measured. The results are shown in Table 1. The same operation is repeated below for 0.8
The thermal conductivity was measured for the obtained heat-insulating vacuum materials repeatedly at a vacuum degree of 0 Torr, 0.45 Torr, and 0.05 Torr, and the results are shown in Table 1. It is clear that a sufficiently excellent performance is exhibited in a low vacuum state near 2 Torr.
【0023】実施例2 珪酸カルシウム成型体の組成比が珪酸カルシウム83w
t%,SiC(平均粒径0.7μm)15wt%、パル
プ1wt%、GF1wt%であり、またSiCをGF及
びパルプと同時に添加したことを除いて実施例1と同じ
方法で真空断熱材を製造した。各真空度で排気したとき
の熱伝導率を測定しその結果を表1に記した。2Tor
r付近の低真空状態で十分優れた性能を発揮する。ま
た、成形体製造時に得られた珪酸カルシウム水和物の電
子顕微鏡写真(SEM)を図2に示す。Example 2 The composition ratio of the calcium silicate molded product was calcium silicate 83 w
t%, 15 wt% of SiC (average particle size 0.7 μm), 1 wt% of pulp, 1 wt% of GF, and a vacuum heat insulating material was manufactured in the same manner as in Example 1 except that SiC was added simultaneously with GF and pulp. did. The thermal conductivity when exhausted at each degree of vacuum was measured, and the results are shown in Table 1. 2Torr
It exhibits sufficiently excellent performance in a low vacuum state near r. FIG. 2 shows an electron micrograph (SEM) of the calcium silicate hydrate obtained during the production of the molded body.
【0024】比較例1 実施例1で使用したものと同じ生石灰49.6重量部に
温水を加え、95℃で5分消和し消石灰スラリーとし、
このスラリーを超音波分散機(MST、20mmチップ
使用)で超音波を20分照射して消石灰乳を得た。又、
実施例1で用いたものと同じ珪石50.4重量部を水中
に分散し珪石スラリーを得た。上記消石灰乳と珪石スラ
リーを合わせ、総水量が固形分に対し38重量倍となる
ように水を加えた。このスラリーをオートクレーブ中で
204℃の温度(約17Kg/cm2の水蒸気圧下)で撹
拌しながら2時間45分反応を行い、ゾノトライトの珪
酸カルシウム水和物を得た。この珪酸カルシウム水和物
の電子顕微鏡写真(SEM)を図3に示す。Comparative Example 1 Warm water was added to 49.6 parts by weight of the same quick lime used in Example 1 and slaked at 95 ° C. for 5 minutes to form a slaked lime slurry.
This slurry was irradiated with ultrasonic waves for 20 minutes using an ultrasonic dispersing machine (MST, using a 20 mm chip) to obtain slaked lime milk. or,
50.4 parts by weight of the same silica as that used in Example 1 was dispersed in water to obtain a silica slurry. The slaked lime milk and the silica stone slurry were combined, and water was added so that the total water content was 38 times by weight of the solid content. The slurry was reacted in an autoclave at a temperature of 204 ° C. (under a water vapor pressure of about 17 kg / cm 2 ) for 2 hours and 45 minutes to obtain a calcium silicate hydrate of zonotlite. An electron micrograph (SEM) of this calcium silicate hydrate is shown in FIG.
【0025】得られた珪酸カルシウムに珪酸カルシウム
の固形分98重量%に対し、実施例1と同様にしてGF
1重量%とパルプ1重量%を添加し混合したのち、22
×22cm2の濾水成型機の金型に供給した。この金型
の上面と下面の濾水面にはあらかじめ不織布をはって置
いた。これを加圧、脱水し、105℃で21時間乾燥し
て比重0.064g/cm3 の成形体を得た。この成
型体を300℃で5時間加熱処理を行った。この成形体
を用い、実施例1と同様な方法により真空包装機を用い
て真空断熱材を得た。各真空度で排気したときの熱伝導
率を測定しその結果を表1に記した。0.05Torr
程度の高真空状態では優れた性能を発揮するが、1To
rr付近でも優れた性能を発揮しない。In the same manner as in Example 1, GF was added to the obtained calcium silicate with respect to the solid content of 98% by weight of calcium silicate.
After adding and mixing 1% by weight and 1% by weight of pulp,
It was supplied to a mold of a × 22 cm 2 drainage molding machine. A nonwoven fabric was put on the upper and lower draining surfaces of the mold in advance. This was pressurized, dehydrated, and dried at 105 ° C. for 21 hours to obtain a molded product having a specific gravity of 0.064 g / cm 3 . This molded body was subjected to a heat treatment at 300 ° C. for 5 hours. Using this molded body, a vacuum heat insulating material was obtained using a vacuum packaging machine in the same manner as in Example 1. The thermal conductivity when exhausted at each degree of vacuum was measured, and the results are shown in Table 1. 0.05 Torr
Demonstrates excellent performance in high vacuum conditions of about
Excellent performance is not exhibited even near rr.
【0026】比較例2 珪酸カルシウム成型体の組成比が珪酸カルシウム83w
t%,SiC(平均粒径0.7μm)15wt%、パル
プ1wt%、GF1wt%であり、またSiCをGF及
びパルプと同時に添加したことを除いて比較例1と同じ
方法で真空断熱材を製造した。各真空度で排気したとき
の熱伝導率を測定しその結果を表1に示した。2Tor
r付近の低真空状態では優れた性能を発揮しない。ま
た、成形体製造時に得られた珪酸カルシウム水和物の電
子顕微鏡写真(SEM)を図4に示す。Comparative Example 2 The composition ratio of the calcium silicate molded product was 83 w
t%, 15 wt% of SiC (average particle diameter 0.7 μm), 1 wt% of pulp, 1 wt% of GF, and a vacuum heat insulating material was manufactured in the same manner as in Comparative Example 1 except that SiC was added simultaneously with GF and pulp. did. The thermal conductivity when exhausted at each degree of vacuum was measured, and the results are shown in Table 1. 2Torr
Excellent performance is not exhibited in a low vacuum state near r. FIG. 4 shows an electron micrograph (SEM) of the calcium silicate hydrate obtained during the production of the molded body.
【0027】比較例3 実施例1で使用したのと同じ生石灰44.1重量部に温
水を加え、95℃で5分消和し消石灰スラリーとし、こ
のスラリーを超音波分散機(MST、20mmチップ使
用)で超音波を20分照射して消石灰乳を得た。又、実
施例1で使用したのと同じ珪石55.9重量部を水中に
分散し珪石スラリーを得た。上記消石灰乳と珪石スラリ
ーを合わせ、総水量が固形分に対し38重量倍となるよ
うに水を加えた。このスラリーをオートクレーブ中で1
80℃の温度(約10Kg/cm2の水蒸気圧下)で撹
拌しながら4時間反応を行い、球状の殻を持つマリモ状
の2次粒子のトバモライトケイ酸カルシウム水和物を得
た。この珪酸カルシウム水和物の電子顕微鏡写真(SEM)
を図5に示す。COMPARATIVE EXAMPLE 3 Warm water was added to 44.1 parts by weight of the same quick lime used in Example 1 and slaked at 95 ° C. for 5 minutes to obtain a slaked lime slurry. This slurry was treated with an ultrasonic disperser (MST, 20 mm chip). Ultrasonic wave was applied for 20 minutes to obtain slaked lime milk. Also, 55.9 parts by weight of the same silica stone used in Example 1 was dispersed in water to obtain a silica stone slurry. The slaked lime milk and the silica stone slurry were combined, and water was added so that the total water content was 38 times by weight of the solid content. This slurry was placed in an autoclave for 1 hour.
The reaction was carried out for 4 hours while stirring at a temperature of 80 ° C. (under a steam pressure of about 10 kg / cm 2 ) to obtain marimo-like secondary particles of tobermorite calcium silicate hydrate having a spherical shell. Electron micrograph (SEM) of this calcium silicate hydrate
Is shown in FIG.
【0028】得られた珪酸カルシウム水和物を用いて、
実施例1と同様にして成形体を製造し、次いで真空包装
機を用いて真空断熱材を製造した。各真空度で排気した
ときの熱伝導率を測定しその結果を表1に示した。2T
orr付近では優れた性能を発揮しない。Using the obtained calcium silicate hydrate,
A molded body was manufactured in the same manner as in Example 1, and then a vacuum heat insulating material was manufactured using a vacuum packaging machine. The thermal conductivity when exhausted at each degree of vacuum was measured, and the results are shown in Table 1. 2T
Excellent performance is not exhibited near orr.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【発明の効果】本発明の真空断熱材は、従来の珪酸カル
シウム成型体を芯材とした場合に必要とされる高真空状
態ではなく、2Torr付近という低真空状態で排気
し、真空室内部の真空度をほぼ2Torrとするのみで
優れた断熱性能を発揮する。それ故優れた性能を発揮す
るのに大規模の高真空設備を要せず、真空引きに長時間
要することもないので、生産性に優れた真空断熱材を供
給することができる。According to the present invention, the vacuum heat insulating material is evacuated in a low vacuum state of about 2 Torr instead of the high vacuum state required when a conventional calcium silicate molded body is used as a core, and the inside of the vacuum chamber is reduced. Excellent heat insulation performance is exhibited only by setting the degree of vacuum to approximately 2 Torr. Therefore, a large-scale high-vacuum facility is not required to exhibit excellent performance, and a long time is not required for evacuation, so that a vacuum heat insulating material excellent in productivity can be supplied.
【図1】実施例1で得られた花弁状のトバモライト珪酸
カルシウム水和物の結晶構造を示す電子顕微鏡写真(SE
M)である。FIG. 1 is an electron micrograph (SE) showing the crystal structure of petal-like tobermorite calcium silicate hydrate obtained in Example 1.
M).
【図2】実施例1で得られた花弁状のトバモライト珪酸
カルシウム水和物の結晶構造を示す電子顕微鏡写真(SE
M)である。FIG. 2 is an electron micrograph (SE) showing the crystal structure of petal-like tobermorite calcium silicate hydrate obtained in Example 1.
M).
【図3】比較例1で得られたゾノトライト珪酸カルシウ
ム水和物の結晶構造を示す電子顕微鏡写真(SEM)であ
る。FIG. 3 is an electron micrograph (SEM) showing a crystal structure of the zonotorite calcium silicate hydrate obtained in Comparative Example 1.
【図4】比較例2で得られた珪酸カルシウム水和物の結
晶構造を示す電子顕微鏡写真(SEM)である。FIG. 4 is an electron micrograph (SEM) showing the crystal structure of the calcium silicate hydrate obtained in Comparative Example 2.
【図5】実施例3で得られたマリモ状のトバモライト珪
酸カルシウム水和物の結晶構造を示す電子顕微鏡写真(S
EM)である。FIG. 5 is an electron micrograph (S) showing the crystal structure of the marimo-like tobermorite calcium silicate hydrate obtained in Example 3.
EM).
Claims (4)
次粒子が外殻に球状殻を形成しない粒子を主成分とする
成型体を断熱芯材とし、且つ該断熱芯材を封入した容器
内を真空排気することにより2Torr以下となしたこ
とを特徴とする断熱芯材が容器で密着包装されて成る真
空断熱材。(1) Tobermorite-based calcium silicate,
A molded body mainly composed of particles whose secondary shell does not form a spherical shell is used as a heat insulating core material, and the inside of the container in which the heat insulating core material is sealed is evacuated to 2 Torr or less. Vacuum insulation material consisting of a heat insulation core material packed tightly in a container.
とする請求項1に記載の真空断熱材。2. The vacuum heat insulating material according to claim 1, wherein the inside of the container is 1 Torr or less.
次粒子であることを特徴とする請求項1に記載の真空断
熱材。3. The petal-shaped tobermorite-based calcium silicate
The vacuum heat insulating material according to claim 1, wherein the material is secondary particles.
複合フィルムから構成されることを特徴とする請求項1
乃至3のいずれか1項に記載の真空断熱材。4. The container according to claim 1, wherein said container has a gas barrier property and is made of a flexible composite film.
4. The vacuum heat insulating material according to any one of claims 3 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9021943A JPH10205687A (en) | 1997-01-22 | 1997-01-22 | Vacuum heat insulating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9021943A JPH10205687A (en) | 1997-01-22 | 1997-01-22 | Vacuum heat insulating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10205687A true JPH10205687A (en) | 1998-08-04 |
Family
ID=12069140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9021943A Pending JPH10205687A (en) | 1997-01-22 | 1997-01-22 | Vacuum heat insulating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10205687A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003029878A (en) * | 2001-07-12 | 2003-01-31 | Matsushita Refrig Co Ltd | Notebook-sized personal computer |
-
1997
- 1997-01-22 JP JP9021943A patent/JPH10205687A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003029878A (en) * | 2001-07-12 | 2003-01-31 | Matsushita Refrig Co Ltd | Notebook-sized personal computer |
JP4654546B2 (en) * | 2001-07-12 | 2011-03-23 | パナソニック株式会社 | Notebook computer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5866228A (en) | Vacuum heat-insulator | |
JPH08303686A (en) | Vacuum heat insulating panel and manufacture of it | |
EP1117961B1 (en) | Vacuum insulation panel and method of preparing the same | |
US4636415A (en) | Precipitated silica insulation | |
US5084320A (en) | Evacuated thermal insulation | |
US4594279A (en) | Heat insulator | |
JPH08312880A (en) | Vacuum heat insulating panel and its manufacture | |
JP2015530340A (en) | Manufacturing method and molding machine of low density inorganic powder heat insulating material using expanded perlite | |
EP0682206B1 (en) | Vacuum heat-insulator | |
JP2599515B2 (en) | Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer | |
US4647499A (en) | Shaped body of calcium silicate and process for producing same | |
JPH10205687A (en) | Vacuum heat insulating material | |
JP2000291881A (en) | Decompressed heat insulating body and manufacture thereof | |
WO1987001370A1 (en) | Silica molding and process for its production | |
JPH08291892A (en) | Lamination layer type vacuum heat insulating panel | |
JPH1044290A (en) | Vacuum heat insulation material | |
KR100965971B1 (en) | Vacuum heat insulation material | |
JPH05118492A (en) | Manufacture of heat insulating material | |
JPH10160091A (en) | Vacuum insulation material | |
JPS5849654A (en) | Heat insulating molded body made from calcium silicate as main component | |
JP3935556B2 (en) | Insulating material and manufacturing method thereof | |
JPH09229290A (en) | Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator | |
JPH06281089A (en) | Vacuum heat-insulating material | |
JPH08189595A (en) | Vacuum heat insulating material | |
JPH10167799A (en) | Calcium silicate molding product and vacuum heat-insulating material using the same |