JPH10204664A - Formation of corrosion inhibiting film on aluminum brass pipe - Google Patents
Formation of corrosion inhibiting film on aluminum brass pipeInfo
- Publication number
- JPH10204664A JPH10204664A JP402397A JP402397A JPH10204664A JP H10204664 A JPH10204664 A JP H10204664A JP 402397 A JP402397 A JP 402397A JP 402397 A JP402397 A JP 402397A JP H10204664 A JPH10204664 A JP H10204664A
- Authority
- JP
- Japan
- Prior art keywords
- colloid
- ozone
- tank
- cooling water
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L57/00—Protection of pipes or objects of similar shape against external or internal damage or wear
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルミ黄銅管の防
食皮膜形成方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an anticorrosion film on an aluminum brass tube.
【0002】[0002]
【従来の技術】従来、熱交換器を冷却する冷却水として
は河川水や海水等が利用されている。前記冷却水が流動
する冷却管はアルミ黄銅管が多く使用されている。この
アルミ黄銅管の腐食を防止するための手段として、特公
昭57−40222号公報記載の銅合金管材の防食処理
方法を挙げることができる。この公報記載の技術におい
ては、第1鉄イオン又は第2鉄イオン、又は両イオンの
混合物10〜200PPmを含有する海水を銅合金内に
通水すると同時に、適時スポンジボールを通過させるこ
とにより銅合金管内壁面に防食皮膜を形成している。す
なわち、海水中に注入された鉄イオンは、海水中の溶存
酸素と反応して水和酸化鉄のコロイドとなり、このコロ
イドが管内壁面に付着して防食皮膜を形成する。2. Description of the Related Art Conventionally, river water, seawater or the like has been used as cooling water for cooling a heat exchanger. As the cooling pipe through which the cooling water flows, an aluminum brass pipe is often used. As means for preventing the corrosion of the aluminum brass tube, there can be mentioned a method for preventing corrosion of a copper alloy tube material described in Japanese Patent Publication No. 57-40222. In the technology described in this publication, seawater containing 10 to 200 PPm of ferrous ions or ferric ions or a mixture of both ions is passed through the copper alloy and, at the same time, passed through a sponge ball in a timely manner. An anticorrosion film is formed on the inner wall of the pipe. That is, the iron ions injected into the seawater react with dissolved oxygen in the seawater to form a hydrated iron oxide colloid, which adheres to the inner wall surface of the tube to form an anticorrosion film.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来技術においては、鉄イオンと海水中の溶存酸素とが反
応して水和酸化鉄のコロイドが形成されるまでの時間を
長時間(数週間〜数ヶ月)必要とし、管内壁面に素早く
防食皮膜を形成することができないという問題があっ
た。However, in the above prior art, the time required for iron ions to react with dissolved oxygen in seawater to form a hydrated iron oxide colloid is long (several weeks to several weeks). (Several months), and there was a problem that an anticorrosion film could not be quickly formed on the inner wall surface of the pipe.
【0004】本発明は、上記問題を解消するためになさ
れたものであって、その目的は、短期間で管内壁面に防
食皮膜を形成することが可能なアルミ黄銅管の防食皮膜
形成方法を提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for forming an anticorrosion film on an aluminum brass tube, which can form an anticorrosion film on the inner wall surface of the tube in a short period of time. Is to do.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明では、容器内で第1鉄イオン
を含む材料とオゾンを所定割合で水に溶解させることに
より、酸化第2鉄のコロイドを生成し、このコロイドか
らほぼ残留オゾンを取り除いた後、アルミ黄銅管に注入
し、その管内壁面に酸化鉄皮膜を形成することをその要
旨とする。In order to achieve the above object, according to the first aspect of the present invention, a material containing ferrous ions and ozone are dissolved in water at a predetermined ratio in a container, thereby oxidizing the material. The gist of the present invention is to form a ferric colloid, remove almost residual ozone from the colloid, and then inject the colloid into an aluminum brass tube to form an iron oxide film on the inner wall surface of the tube.
【0006】請求項2に記載の発明では、請求項1に記
載の発明において、前記コロイドを生成した後、容器内
に窒素を吹き込んでコロイド中のオゾンを外部に排出す
ることをその要旨とする。According to a second aspect of the present invention, the gist of the first aspect is that, after the colloid is formed, nitrogen is blown into a container to discharge ozone in the colloid to the outside. .
【0007】請求項3に記載の発明では、請求項1又は
請求項2に記載の発明において、前記容器とアルミ黄銅
管との間を接続する経路途中に、所定粒径以下のみのコ
ロイド状酸化第2鉄の通過を許容するフィルタを配設し
たことをその要旨とする。According to a third aspect of the present invention, in the first or the second aspect of the present invention, a colloidal oxide having a particle diameter of not more than a predetermined particle size is provided in a path connecting the container and the aluminum brass tube. The gist is that a filter that allows the passage of ferrous iron is provided.
【0008】[0008]
【発明の実施の形態】以下、本発明を具体化した一実施
形態を図面に基づいて説明する。図1に示すように、熱
交換器1にはアルミ黄銅管からなる冷却水流動管2が配
設されている。前記冷却水流動管2の供給口3にはポン
プPが接続され、同ポンプ4は冷却水としての海水を吸
い込んで、その海水を供給口3から冷却水流動管2内に
圧送する。冷却水流動管2内に圧送された海水は吐出口
5から外部に吐出される。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a cooling water flow pipe 2 made of an aluminum brass pipe is provided in the heat exchanger 1. A pump P is connected to a supply port 3 of the cooling water flow pipe 2, and the pump 4 draws in seawater as cooling water and pumps the seawater from the supply port 3 into the cooling water flow pipe 2. The seawater pumped into the cooling water flow pipe 2 is discharged from the discharge port 5 to the outside.
【0009】酸素製造装置6にはオゾナイザ7が接続さ
れ、同オゾナイザ7は酸素製造装置6にて製造される酸
素からオゾンを製造し、容器としての第1タンク8へ供
給する。前記第1タンク8には淡水が貯留されている。
また、第1タンク8には鉄イオン供給装置9が接続され
ている。第1タンク8内にて淡水中に硫酸第1鉄及び前
記オゾナイザ7から供給されるオゾンを溶解させること
により、酸化第2鉄のコロイドが生成される。本実施の
形態では、前記硫酸第1鉄は水溶液中の濃度が0.5〜
1ppmとなるように第1タンク8内に供給される。ま
た、前記オゾンは水溶液1リットルあたり50〜100
mgとなるように第1タンク8内に供給される。また、
第1タンク8には同タンク8内に貯まった過剰なオゾン
を外部に排出するためのオゾン排出管10が接続されて
いる。[0009] An ozonizer 7 is connected to the oxygen producing device 6. The ozonizer 7 produces ozone from oxygen produced by the oxygen producing device 6 and supplies it to a first tank 8 as a container. Fresh water is stored in the first tank 8.
Further, an iron ion supply device 9 is connected to the first tank 8. By dissolving ferrous sulfate and ozone supplied from the ozonizer 7 in fresh water in the first tank 8, a colloid of ferric oxide is generated. In the present embodiment, the ferrous sulfate has a concentration in the aqueous solution of 0.5 to 0.5.
It is supplied into the first tank 8 so as to be 1 ppm. The ozone is 50 to 100 per liter of the aqueous solution.
mg is supplied into the first tank 8. Also,
An ozone discharge pipe 10 for discharging excess ozone stored in the tank 8 to the outside is connected to the first tank 8.
【0010】前記第1タンク8にはポンプ16を介して
第2タンク11が接続され、ポンプ16の駆動に伴い、
第1タンク8内にて形成されたコロイドが容器としての
第2タンク11内に供給される。また、第2タンク11
には窒素供給装置12及びオゾン排出管13が接続され
ている。窒素供給装置12から第2タンク11内に供給
される窒素により第2タンク11内に供給されたコロイ
ド中のオゾン(第1タンクにて排出できなかったオゾ
ン)がオゾン排出管13より外部に排出される。また、
第2タンク11と前記冷却水流動管2の供給口3側とは
コロイド供給管14により接続されている。コロイド供
給管14の途中にはメンブレンフィルタ15が連結され
ている。第2タンク11内のコロイドはポンプ17の駆
動に伴い、コロイド供給管14からメンブレンフィルタ
15を通過して冷却水流動管2内に注入されるようにな
っている。A second tank 11 is connected to the first tank 8 via a pump 16.
The colloid formed in the first tank 8 is supplied into a second tank 11 as a container. Also, the second tank 11
Is connected to a nitrogen supply device 12 and an ozone discharge pipe 13. Ozone in the colloid supplied into the second tank 11 by the nitrogen supplied from the nitrogen supply device 12 into the second tank 11 (ozone that could not be discharged by the first tank) is discharged to the outside through the ozone discharge pipe 13. Is done. Also,
The second tank 11 and the supply port 3 side of the cooling water flow pipe 2 are connected by a colloid supply pipe 14. A membrane filter 15 is connected in the middle of the colloid supply pipe 14. The colloid in the second tank 11 is injected from the colloid supply pipe 14 through the membrane filter 15 into the cooling water flow pipe 2 as the pump 17 is driven.
【0011】次に本実施の形態の作用について説明す
る。まず、ポンプ4が駆動されると冷却水流動管2の供
給口3から海水が吸い込まれる。また、これと同時に第
1タンク8内で酸化第2鉄のコロイドが生成される。そ
して、第1タンク8にて生成されたコロイドはポンプ1
6により第2タンク11に圧送される。コロイドが第2
タンク11に圧送されると、同第2タンク11において
コロイド中のオゾンが殆ど外部に排出される。その後、
第2タンク11内のコロイドはポンプ17によりコロイ
ド供給管14からメンブレンフィルタ15を経て冷却水
流動管2の供給口3より海水とともに冷却水流動管2内
に圧送される。前記メンブレンフィルタ15は所定粒径
以下(本実施形態では、2〜3ミクロン以下)の粒径の
コロイドのみの流動を許容する。Next, the operation of the embodiment will be described. First, when the pump 4 is driven, seawater is sucked from the supply port 3 of the cooling water flow pipe 2. At the same time, a colloid of ferric oxide is generated in the first tank 8. The colloid generated in the first tank 8 is supplied to the pump 1
6 is fed to the second tank 11 by pressure. Colloid is second
When pressure-fed to the tank 11, the ozone in the colloid is almost discharged to the outside in the second tank 11. afterwards,
The colloid in the second tank 11 is pumped into the cooling water flow pipe 2 together with seawater from the supply port 3 of the cooling water flow pipe 2 through the membrane filter 15 from the colloid supply pipe 14 by the pump 17. The membrane filter 15 permits the flow of only the colloid having a particle size of a predetermined particle size or less (2 to 3 microns or less in this embodiment).
【0012】前記所定粒径以下のコロイドを海水ととも
に冷却水流動管2に所定期間(10日〜30日)流動さ
せると、冷却水流動管2の内壁面に防食皮膜(酸化鉄皮
膜)が形成される。When the colloid having a particle diameter equal to or less than the predetermined particle size is flown in the cooling water flow tube 2 together with seawater for a predetermined period (10 to 30 days), an anticorrosion film (iron oxide film) is formed on the inner wall surface of the cooling water flow tube 2. Is done.
【0013】本実施の形態では、上記のように冷却水流
動管(アルミ黄銅管)2の内壁面に防食皮膜を形成する
ようにしたことにより、次のような効果を得ることがで
きる。In the present embodiment, the following effects can be obtained by forming the anticorrosion film on the inner wall surface of the cooling water flow pipe (aluminum brass pipe) 2 as described above.
【0014】・従来では海水中に鉄イオンを注入し、海
水中の溶存酸素と鉄イオンを反応させることにより、冷
却水流動管内で水和酸化鉄のコロイドを生成し、このコ
ロイドを管内壁面に付着させて防食皮膜を形成してい
た。Conventionally, iron ions are injected into seawater, and the dissolved oxygen in the seawater reacts with the iron ions to form a hydrated iron oxide colloid in the cooling water flow tube. The anticorrosion film was formed by adhering.
【0015】これに対し、本実施の形態では、防食皮膜
を形成するコロイドを予め第1タンク8にて生成し、そ
のタンク8にて生成されたコロイドを冷却水流動管2内
に注入させ、管内壁面に酸化鉄皮膜を形成するようにし
た。すなわち、従来では、第1鉄イオンを冷却水に注入
することで、冷却水中の溶融酸素と第1鉄イオンが結び
ついてコロイド化し、それが管内壁に付着することによ
り、管内壁面に酸化鉄皮膜が形成されるが、本実施形態
では、コロイドを冷却水流動管2の外で積極的に生成し
た後、冷却水流動管2にコロイドを注入することによ
り、酸化鉄皮膜を素早く、かつ確実に冷却水流動管2の
内壁面に形成することができる。On the other hand, in the present embodiment, the colloid forming the anticorrosion film is generated in the first tank 8 in advance, and the colloid generated in the tank 8 is injected into the cooling water flow pipe 2. An iron oxide film was formed on the inner wall surface of the tube. That is, conventionally, by injecting ferrous ions into the cooling water, the molten oxygen in the cooling water and the ferrous ions are combined to form a colloid, which adheres to the inner wall of the pipe, thereby forming an iron oxide film on the inner wall of the pipe. However, in the present embodiment, after the colloid is actively generated outside the cooling water flow tube 2, the colloid is injected into the cooling water flow tube 2 to quickly and surely form the iron oxide film. It can be formed on the inner wall surface of the cooling water flow tube 2.
【0016】・冷却水流動管2内に注入されるコロイド
を、メンブレンフィルタ15を使用して粒径が所定粒径
以下(2〜3ミクロン以下)のものだけに限定した。そ
の理由としては、所定粒径を超えた粒径のコロイドは冷
却水流動管2の内壁面に付着しにくいことから、酸化鉄
皮膜が形成されにくい。すなわち、本実施の形態では、
粒径の小さいコロイドのみを冷却水流動管2に注入する
ようにしたことにより、冷却水流動管2の内壁面への酸
化鉄皮膜の形成を一層素早く行うことができる。The colloid injected into the cooling water flow tube 2 is limited to a particle having a particle size of a predetermined particle size or less (2 to 3 microns or less) by using a membrane filter 15. The reason is that a colloid having a particle diameter exceeding a predetermined particle diameter is unlikely to adhere to the inner wall surface of the cooling water flow tube 2, so that an iron oxide film is not easily formed. That is, in the present embodiment,
By injecting only the colloid having a small particle size into the cooling water flow tube 2, the iron oxide film can be formed on the inner wall surface of the cooling water flow tube 2 more quickly.
【0017】また、コロイドは粒径が大きくなるにつ
れ、その透明感も低くなる。そのため、粒径の大きいコ
ロイドを冷却水流動管2に注入した場合には、冷却水流
動管2の吐出口5から濁った海水が吐出され、見た目も
悪くなる。しかし、本実施の形態では、粒径の小さいコ
ロイドを冷却水流動管2に注入することから、吐出され
る海水の透明感も高く見た目にもよい。Further, as the particle size of the colloid increases, the transparency of the colloid decreases. Therefore, when a colloid having a large particle diameter is injected into the cooling water flow pipe 2, turbid seawater is discharged from the discharge port 5 of the cooling water flow pipe 2, and the appearance becomes poor. However, in the present embodiment, since the colloid having a small particle diameter is injected into the cooling water flow pipe 2, the transparency of the discharged seawater is also high, and the appearance is good.
【0018】・第1タンク8にてコロイドを生成後、第
2タンク11内に窒素を吹き込んでコロイド中のオゾン
を外部に排出するようにした。その結果、冷却水流動管
2内でコロイドが海水に混ざった場合でも、オゾンと海
水の不純物の反応により発生する残留オキシダント等の
毒性物質の発生を防止でき、ひいては環境への悪影響を
低減できる。After the colloid was generated in the first tank 8, nitrogen was blown into the second tank 11 to discharge ozone in the colloid to the outside. As a result, even when the colloid mixes with the seawater in the cooling water flow pipe 2, the generation of toxic substances such as residual oxidants generated by the reaction between the ozone and the impurities of the seawater can be prevented, and the adverse effect on the environment can be reduced.
【0019】なお、上記実施の形態を次のように代えて
具体化してもよい。 ・フィルタ15が通過を許容するコロイドの粒径を適宜
変更してもよい。 ・第1タンク8と第2タンク11とを一体化して具体化
してもよい。The above embodiment may be embodied instead of the following. -The particle size of the colloid that the filter 15 allows to pass may be appropriately changed. -The 1st tank 8 and the 2nd tank 11 may be integrated and embodied.
【0020】・冷却水を海水以外の淡水等に代えて具体
化してもよい。 ・第1タンク8内の水溶液中の第1鉄イオン及びオゾン
の濃度を適宜変更して具体化してもよい。The cooling water may be embodied in place of fresh water other than seawater. -The concentration of ferrous ion and ozone in the aqueous solution in the first tank 8 may be changed as appropriate and embodied.
【0021】[0021]
【発明の効果】請求項1に記載の発明によれば、予め酸
化第2鉄のコロイドを生成しておいてから、アルミ黄銅
管内にそのコロイドを注入することにより、アルミ黄銅
管内でコロイド状酸化第2鉄を生成する従来技術より
も、短期間でアルミ黄銅管内壁面に酸化鉄皮膜を形成す
ることができる。According to the first aspect of the present invention, a colloid of ferric oxide is formed in advance, and then the colloid is injected into an aluminum brass tube, whereby the colloidal oxide is formed in the aluminum brass tube. The iron oxide film can be formed on the inner wall surface of the aluminum brass tube in a shorter period of time than the conventional technique for producing ferric iron.
【0022】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、コロイドを生成した後、容
器内に窒素を吹き込んでコロイド中のオゾンを外部に排
出することにより、アルミ黄銅管内でコロイドと海水等
が混ざり合っても、オゾンと海水等の不純物との反応に
より発生する毒性のある物質の発生を防止することがで
きる。According to the invention of claim 2, according to claim 1,
In addition to the effects of the invention described in the above, after the colloid is generated, by blowing nitrogen into the container and discharging ozone in the colloid to the outside, even if the colloid and seawater are mixed in the aluminum brass tube, the ozone and ozone are mixed. It is possible to prevent the generation of toxic substances generated by the reaction with impurities such as seawater.
【0023】請求項3に記載の発明によれば、請求項1
又は請求項2に記載の発明の効果に加え、前記容器とア
ルミ黄銅管との間を接続する経路途中に、所定粒径以下
のみのコロイドの通過を許容するフィルタを配設した。
これにより、管内壁面に付着しにくい所定粒径を超えた
粒径のコロイドが管内に注入されるのが防止され、より
短期間で管内壁面に酸化鉄皮膜を形成することができ
る。すなわち、粒径の小さいコロイド状酸化第2鉄のみ
を管内に注入することにより、管内壁面への酸化鉄皮膜
の形成を一層素早く行うことができる。According to the third aspect of the present invention, the first aspect is provided.
Alternatively, in addition to the effect of the second aspect of the present invention, a filter that allows the passage of a colloid having a particle diameter equal to or less than a predetermined particle size is provided in a path connecting the container and the aluminum brass tube.
As a result, a colloid having a particle diameter exceeding a predetermined particle diameter that does not easily adhere to the inner wall surface of the tube is prevented from being injected into the tube, and an iron oxide film can be formed on the inner wall surface of the tube in a shorter time. That is, by injecting only the colloidal ferric oxide having a small particle size into the tube, the iron oxide film can be more quickly formed on the inner wall surface of the tube.
【0024】また、コロイドは粒径が大きくなるにつ
れ、その透明感も低くなる。そのため、粒径の大きいコ
ロイドを管内に注入した場合には、管から吐出される海
水等に濁りが発生し、見た目も悪くなる。しかし、粒径
の小さいコロイドを管内に注入することにより、管から
吐出される海水等の透明感も高く、見た目にもよい。Further, as the particle size of the colloid increases, the transparency of the colloid decreases. Therefore, when a colloid having a large particle size is injected into the tube, turbidity occurs in seawater discharged from the tube, and the appearance also becomes poor. However, by injecting a colloid having a small particle size into the tube, the transparency of seawater and the like discharged from the tube is high and the appearance is good.
【図1】 防食皮膜形成装置の模式的な回路図。FIG. 1 is a schematic circuit diagram of an anticorrosion film forming apparatus.
【符号の説明】 1…熱交換器、2…アルミ黄銅管としての冷却水流動
管、3…供給口、8…容器としての第1タンク、9…鉄
イオン供給装置、11…容器としての第2容器、14…
コロイド供給管、15…メンブレンフィルタ。[Description of Signs] 1 ... heat exchanger, 2 ... cooling water flow tube as aluminum brass tube, 3 ... supply port, 8 ... first tank as container, 9 ... iron ion supply device, 11 ... second as container 2 containers, 14 ...
Colloid supply tube, 15 ... membrane filter.
Claims (3)
ンを所定割合で水に溶解させることにより、酸化第2鉄
のコロイドを生成し、このコロイドからほぼ残留オゾン
を取り除いた後、アルミ黄銅管に注入し、その管内壁面
に酸化鉄皮膜を形成することを特徴とするアルミ黄銅管
の防食皮膜形成方法。1. A ferrous oxide colloid is produced by dissolving a material containing ferrous ions and ozone in water at a predetermined ratio in a container, and after substantially removing residual ozone from the colloid, aluminum A method for forming an anticorrosion film on an aluminum brass tube, comprising injecting the film into a brass tube and forming an iron oxide film on the inner wall surface of the tube.
素を吹き込んでコロイド中のオゾンを外部に排出する請
求項1に記載のアルミ黄銅管の防食皮膜形成方法。2. The method for forming an anticorrosion film on an aluminum brass tube according to claim 1, wherein after the colloid is generated, nitrogen is blown into the container to discharge ozone in the colloid to the outside.
る経路途中に、所定粒径以下のみのコロイドの通過を許
容するフィルタを配設した請求項1又は請求項2に記載
のアルミ黄銅管の防食皮膜形成方法。3. The aluminum brass according to claim 1, wherein a filter that allows passage of a colloid having a particle diameter of not more than a predetermined particle size is provided in a path connecting the container and the aluminum brass tube. Method of forming anticorrosion film on pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP402397A JPH10204664A (en) | 1997-01-13 | 1997-01-13 | Formation of corrosion inhibiting film on aluminum brass pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP402397A JPH10204664A (en) | 1997-01-13 | 1997-01-13 | Formation of corrosion inhibiting film on aluminum brass pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10204664A true JPH10204664A (en) | 1998-08-04 |
Family
ID=11573376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP402397A Pending JPH10204664A (en) | 1997-01-13 | 1997-01-13 | Formation of corrosion inhibiting film on aluminum brass pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10204664A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401707B1 (en) * | 2000-12-04 | 2003-10-11 | 기아자동차주식회사 | Apparatus for cooling an engine for a motor vehicle |
KR101521250B1 (en) * | 2013-12-26 | 2015-05-20 | 재단법인 포항산업과학연구원 | Apparatus for mitigating corrosion |
-
1997
- 1997-01-13 JP JP402397A patent/JPH10204664A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100401707B1 (en) * | 2000-12-04 | 2003-10-11 | 기아자동차주식회사 | Apparatus for cooling an engine for a motor vehicle |
KR101521250B1 (en) * | 2013-12-26 | 2015-05-20 | 재단법인 포항산업과학연구원 | Apparatus for mitigating corrosion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070034230A1 (en) | Method and system for producing ozonized deionized water | |
WO2009113682A1 (en) | Gas-dissolved water supply system | |
JP2003334433A (en) | Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water | |
JP2011016130A (en) | System and method of water treatment | |
KR20110007092A (en) | Cleaning water for electronic material, method of cleaning electronic material, and system for supplying water containing dissolved gases | |
JPH1171600A (en) | Production of cleaning solution and apparatus therefor | |
WO2018179495A1 (en) | Apparatus for producing treated water | |
EP0520826B1 (en) | Recarbonation of water | |
US6190629B1 (en) | Organic acid scrubber and methods | |
JP3381250B2 (en) | Gas dissolving cleaning water flow pipe | |
CN103943539B (en) | The processing unit and processing method of substrate | |
JPH10204664A (en) | Formation of corrosion inhibiting film on aluminum brass pipe | |
JPH04337089A (en) | Regeneration of ferric chloride etchant | |
TW201908242A (en) | Washing water supply device | |
JP3091583B2 (en) | Method and apparatus for supplying oxygen to electroless plating solution | |
JP2010155754A (en) | Apparatus and method of manufacturing ozone water | |
HUH3888A (en) | Process for treating sewage | |
EP4338825A1 (en) | Gas solution supply apparatus and method | |
JPS62191031A (en) | Apparatus for generating air bubbles | |
JPH04314883A (en) | Tin electroplating method | |
JPH0673563A (en) | Etching method | |
JP3193152B2 (en) | Metal etching method | |
CA2196506C (en) | A process for treating a liquid reactive medium | |
JP4097778B2 (en) | Gas dissolved cleaning water supply piping | |
JPH05138180A (en) | Treatment of city water |