JPH10204542A - Production of grain oriented silicon steel sheet small in side strain - Google Patents

Production of grain oriented silicon steel sheet small in side strain

Info

Publication number
JPH10204542A
JPH10204542A JP9012449A JP1244997A JPH10204542A JP H10204542 A JPH10204542 A JP H10204542A JP 9012449 A JP9012449 A JP 9012449A JP 1244997 A JP1244997 A JP 1244997A JP H10204542 A JPH10204542 A JP H10204542A
Authority
JP
Japan
Prior art keywords
coil
annealing
finish annealing
steel sheet
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9012449A
Other languages
Japanese (ja)
Other versions
JP3643200B2 (en
Inventor
Toshito Takamiya
俊人 高宮
Kunihiro Senda
邦浩 千田
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP01244997A priority Critical patent/JP3643200B2/en
Publication of JPH10204542A publication Critical patent/JPH10204542A/en
Application granted granted Critical
Publication of JP3643200B2 publication Critical patent/JP3643200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To remarkably reduce the occurrence of strains in the edge part of a coil on the side to be contacted with a pedestal of the coil in a box type annealing furnace by secondarily recrystallizing the edge part of the coil on the side to be contacted with the pedestal of the coil by finish annealing simultaneously at the same time as the center part of the width direction on the coil or at the time earier than that prior to finish annealing in the box time annealing furnace. SOLUTION: As for a means of secondarily recrystallizing the edge part of a coil on the sice to be contacted with a pedestal of the coil in a box type annealing furnace at the same time as the center part of the width direction on the coil or at the time earier than that by finish annealing, e.g. the edge part of a decarburized and annealed sheet on the side to be contacted with the pedestal of the coil is applied with prestrains by 0.1 to 5% prior to the finish annealing. The region to be applied with prestrains is regulated to about 5 to 100mm from the edge part of the coil. In this way, the generation of strains in the edge part of the coil is advantageously evaded to remarkably improve the yield of the product, and since voids are hard to be generated at the time of lamination, its magnetic properties can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性けい素鋼
板の製造方法に関し、特に方向性けい素鋼板をコイル状
態で仕上焼鈍する際に懸念される、コイル受け台と接す
る側のコイル端部における歪の発生を効果的に軽減する
ための技術についての提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet, and more particularly to a coil end portion on a side in contact with a coil cradle, which is a concern when finish annealing a grain-oriented silicon steel sheet in a coil state. This is a proposal for a technique for effectively reducing the occurrence of distortion in the.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、所定の成分組成に
調製された熱延板に、1回又は中間焼鈍を挟む2回以上
の冷間圧延を施し、次いで脱炭焼鈍後、焼鈍分離剤を塗
布・乾燥させてから、巻取り張力の付与下にコイル状に
巻取り、その後、所定の雰囲気ガス中で仕上焼鈍するこ
とによって製造される。上記の仕上焼鈍においては、コ
イルをその巻取軸をコイル受け台の上面に対し垂直にし
た状態で焼鈍炉内に配置して高温・長時間実施すること
から、コイル受け台と接する側のコイル端部には「側
歪」と呼ばれる歪が発生する。この傾向は特に厚みが0.
30mm以下の薄物材に多い。かかるコイル側縁部の歪は、
方向性けい素鋼板が積層されて使用されることから、磁
気特性及び加工性の両面で大きな障害となる。したがっ
て、このような側縁部の歪は極力低減する必要がある。
2. Description of the Related Art A grain-oriented silicon steel sheet is prepared by subjecting a hot-rolled sheet prepared to a predetermined composition to cold rolling one or more times with intermediate annealing, followed by decarburizing annealing and then annealing separation. It is manufactured by applying and drying the agent, winding it up in a coil shape under the application of winding tension, and then performing finish annealing in a predetermined atmosphere gas. In the above-mentioned finish annealing, the coil is placed in an annealing furnace with its winding axis being perpendicular to the upper surface of the coil holder, and the coil is placed at a high temperature for a long time. Distortion called "side distortion" occurs at the end. This tendency is especially true when the thickness is 0.
Mostly used for thin materials of 30mm or less. The distortion of the coil side edge is
Since the grain-oriented silicon steel sheets are used in a laminated state, it becomes a major obstacle in both magnetic properties and workability. Therefore, it is necessary to reduce such side edge distortion as much as possible.

【0003】従来、かかるコイル側縁部の歪の軽減策と
して、例えば特開昭55−110721号公報では、ボ
ックス焼鈍の前に塗布する焼鈍分離剤の量をコイル側縁
部にて増大させることによって、側縁部の変形を少なく
する方法を提案している。しかしながら、コイル側縁部
の焼鈍分離剤の量が多いと、この端部の磁気特性の劣化
を招き易い。また、焼鈍分離剤の量が多いと製品に被膜
欠陥が出易くなってしまう傾向があった。また、特開昭
58−61231号公報では、コイル受け台上に、焼鈍
される鋼板コイルと同じ材質の敷板を置き、その上に鋼
板コイルを配置して、鋼板コイルの下端部における歪発
生を防止する方法を提案している。この方法では、被処
理材がけい素鋼の場合には敷板の材質もSi鋼となるが、
Si鋼をはじめとするフェライト鋼は高温での熱間強度が
非常に低く、そのため高温での仕上焼鈍時にコイル端面
が敷板に食い込み易いことから、コイルと敷板が拘束さ
れる。このため、コイルと敷板が別の動きをしようとす
る場合に、やはり歪が発生する。更に、特開昭62−5
6526号公報では、コイルとコイル受け台との間に該
コイルよりも固く巻いたフープコイルを設置する方法を
提案している。この方法もそれなりに有効ではあるが、
フープコイルはわずか数回の焼鈍で座屈するため、頻繁
な取り替えを必要とし、コストの上昇が著しいことと、
焼鈍中フープコイルの座屈が起こると製品コイルに大き
な歪が発生するという問題があった。また更に、特開平
2−97622号公報では、コイル端面の焼鈍前の結晶
粒度を15μm 以上とすることによって、歪の発生を防止
する方法を提案している。この方法では、それなりにコ
イル下端面の座屈歪を軽減することはできるけれども、
却ってコイル形状を悪化させてしまうことが往々にして
見られた。また、コイル端部の磁気特性を著しく劣化さ
せてしまうという問題もあった。また、特開平5−17
9353号公報では、コイルとコイル受け台との間に、
0.2 wt%以上のCを含有し、かつ変態点を有する鋼材を
敷板として介挿させた状態で高温仕上焼鈍を行う方法を
提案している。この方法もかなりの歪低減効果を示す
が、高温で二次再結晶を起こさせる成分設計(例えばAl
系等)の鋼コイルに適用した場合にはあまり有効とはい
えなかった。
Conventionally, as a measure for reducing the distortion of the coil side edge, for example, in Japanese Patent Application Laid-Open No. 55-110721, the amount of an annealing separator applied before box annealing is increased at the coil side edge. Has proposed a method of reducing the deformation of the side edge. However, if the amount of the annealing separating agent at the side edge of the coil is large, the magnetic properties at the end are likely to deteriorate. In addition, when the amount of the annealing separator is large, there is a tendency that a film defect tends to occur in a product. Also, in Japanese Patent Application Laid-Open No. 58-61231, a base plate made of the same material as the steel coil to be annealed is placed on a coil receiving stand, and the steel coil is disposed thereon, so that the occurrence of distortion at the lower end of the steel coil is reduced. Suggesting ways to prevent it. In this method, when the material to be treated is silicon steel, the material of the sole plate is also Si steel,
Ferritic steels such as Si steels have very low hot strength at high temperatures, and as a result, the coil end faces easily bite into the bottom plate during finish annealing at high temperatures, so that the coil and the bottom plate are restrained. For this reason, when the coil and the floor plate make different movements, distortion also occurs. Further, Japanese Unexamined Patent Publication No.
Japanese Patent No. 6526 proposes a method in which a hoop coil wound tighter than the coil is installed between the coil and the coil receiver. This method is also effective, but
Since hoop coils buckle after only a few annealings, they require frequent replacement, and the cost rise is remarkable.
When the buckling of the hoop coil occurs during annealing, there is a problem that a large distortion is generated in the product coil. Furthermore, Japanese Patent Application Laid-Open No. 2-97622 proposes a method for preventing the occurrence of distortion by setting the grain size of the coil end surface before annealing to 15 μm or more. Although this method can reduce the buckling distortion of the lower end face of the coil,
On the contrary, it was often found that the coil shape was rather deteriorated. There is also a problem that the magnetic properties of the coil ends are significantly deteriorated. Further, Japanese Patent Application Laid-Open No.
In US Pat. No. 9353, the distance between the coil and the coil receiver is
A method of performing high-temperature finish annealing in a state in which a steel material containing 0.2 wt% or more of C and having a transformation point is interposed as a bottom plate has been proposed. Although this method also shows a considerable strain reduction effect, the component design (for example, Al
System) was not very effective.

【0004】[0004]

【発明が解決しようとする課題】上述したとおり、各従
来法はいずれも、実用上かなりの問題を残していた。こ
の発明は、上記を問題を有利に解決するもので、コイル
に巻かれた状態で実施される高温仕上焼鈍において懸念
される、該コイル下端部における歪の発生を有利に回避
し、ひいては製品歩留まりを大幅に向上させることがで
きるほか、変圧器に組み込む際、積層時に空隙ができに
くいため磁気特性を改善することができる方向性けい素
鋼板の製造方法を提案することを目的とする。
As described above, each of the conventional methods has had a considerable problem in practical use. The present invention advantageously solves the above problems, and advantageously avoids the occurrence of distortion at the lower end of the coil, which is a concern in high-temperature finish annealing performed in a state wound on a coil, and furthermore, product yield. Another object of the present invention is to propose a method for manufacturing a grain-oriented silicon steel sheet that can significantly improve the magnetic characteristics because it is difficult to form a gap at the time of lamination when being incorporated in a transformer.

【0005】[0005]

【課題を解決するための手段】この発明は、含けい素鋼
スラブを熱間圧延した後、一回又は中間焼鈍を挟む2回
以上の冷間圧延を施し、次いで脱炭焼鈍後、MgO を主成
分とする焼鈍分離剤を塗布してから、箱型焼鈍炉にて仕
上焼鈍を施す一連の工程からなる方向性けい素鋼板の製
造方法において、箱型焼鈍炉のコイル受け台と接する側
のコイル端部をコイル幅方向中央部と同時期又はより早
い時期に仕上焼鈍で二次再結晶させる手段を、この仕上
焼鈍に先立って施すことを特徴とする側歪の少ない方向
性けい素鋼の製造方法である。ここに、コイル受け台と
接する側のコイル端部をコイル幅方向中央部と同時期又
はより早い時期に二次再結晶させる手段には、例えば、
コイル受け台と接触する側の脱炭焼鈍板の端部に0.1 〜
5%の予歪を、仕上焼鈍に先立って加えるものであるこ
とがある。
SUMMARY OF THE INVENTION According to the present invention, a silicon-containing steel slab is hot-rolled, subjected to one or two or more cold-rolling steps including intermediate annealing, and then, after decarburizing annealing, MgO is removed. After applying the annealing separating agent as a main component, in a method for producing a grain-oriented silicon steel sheet comprising a series of steps of performing a finish annealing in a box-type annealing furnace, the side of the side in contact with the coil cradle of the box-type annealing furnace A means for performing secondary recrystallization by finish annealing at the same time as or earlier than the center of the coil width direction with the coil width direction center, prior to this finish annealing. It is a manufacturing method. Here, means for secondary recrystallizing the coil end on the side in contact with the coil receiver at the same time as or earlier than the center in the coil width direction includes, for example,
0.1 to 0.1 mm at the end of the decarburized annealed plate
A pre-strain of 5% may be applied prior to finish annealing.

【0006】さて、発明者らは、仕上焼鈍時におけるコ
イル端部の歪発生機構を詳しく調査した。まず、コイル
端部にいつ歪が入るかを、仕上焼鈍の途中の各温度でコ
イルを焼鈍炉から引き出して調査した。その結果、以下
のことが明らかとなった。すなわち、コイル端部はコイ
ル中央部に比べて二次再結晶の開始が遅いこと、コイル
エッジ部のなかでもでも二次再結晶開始温度が低い領域
ではコイルエッジに入る歪量は少ないことが明らかとな
ったのである。
[0006] The inventors of the present invention have studied in detail the mechanism of distortion generation at the coil end during finish annealing. First, the coil was pulled out of the annealing furnace at each temperature during the finish annealing to examine when the coil ends were strained. As a result, the following became clear. In other words, it is clear that the secondary end of the secondary recrystallization is slower at the coil end than at the center of the coil, and that the amount of strain entering the coil edge is small in the region where the secondary recrystallization start temperature is low even at the coil edge It became.

【0007】そのため、ラボで更に研究を進めるための
端著として、高温時のけい素鋼の強度を測定した。この
実験の素材としては、標準的なSi:3.25wt%、Mn:0.07
wt%、S:0.020 wt%を含有する成分になる脱炭焼鈍板
を用意した。そして、その表面にMgO を主成分とする焼
鈍分離剤を塗布してから、水素雰囲気中で10℃/hr で昇
温し1200℃で10hr保持する仕上焼鈍を行って二次再結晶
させ、3〜7mmの大きさの二次再結晶粒からなる二次再
結晶板を得た。一方で、この二次再結晶板と同一成分組
成の脱炭焼鈍板を用い、同様に焼鈍分離剤を塗布した
後、50℃/sで急熱し、1200℃で10時間焼鈍した板も作製
した。過去の知見より、このように急速加熱をすると二
次再結晶を起こさないことが明らかとなっている。果し
て、この板の平均粒径は約1ミリであった。これ以下、
このようにして得られた板を二次再結晶不良板と称す。
[0007] For this reason, the strength of silicon steel at high temperatures was measured in order to further research in the laboratory. As the material for this experiment, standard Si: 3.25 wt%, Mn: 0.07
A decarburized annealed plate was prepared as a component containing wt% and S: 0.020 wt%. Then, an annealing separator containing MgO as a main component is applied to the surface, and then subjected to finish annealing in a hydrogen atmosphere at 10 ° C./hr and holding at 1200 ° C. for 10 hr to perform secondary recrystallization. A secondary recrystallized plate comprising secondary recrystallized grains having a size of about 7 mm was obtained. On the other hand, a decarburized annealed plate having the same composition as the secondary recrystallized plate was used, and after applying an annealing separator in the same manner, a plate rapidly heated at 50 ° C / s and annealed at 1200 ° C for 10 hours was also prepared. . It is clear from past knowledge that such rapid heating does not cause secondary recrystallization. As a result, the average particle size of this plate was about 1 mm. Below this,
The plate obtained in this way is called a secondary recrystallization defective plate.

【0008】ここに、脱炭焼鈍板と上述の方法で得られ
た二次再結晶板及び二次再結晶不良板とを用い、各温度
における強度測定を行った。この結果を図1に示す。図
1から新たに分かったことは、室温での強度は脱炭焼鈍
板>二次再結晶不良板>二次再結晶板の順で強くなるの
に対し、900 ℃以上では二次再結晶板>二次再結晶不良
板>脱炭焼鈍板の順になった。
Here, the strength was measured at each temperature using the decarburized annealed plate, the secondary recrystallized plate obtained by the above-described method, and the secondary recrystallized defective plate. The result is shown in FIG. It is newly found from FIG. 1 that the strength at room temperature increases in the order of decarburized annealed sheet> defective secondary recrystallization sheet> secondary recrystallized sheet, whereas secondary recrystallized sheet at 900 ° C or higher. > Defective secondary recrystallization plate> decarburized annealed plate.

【0009】この現象は次のように説明できる。室温の
ような温度の低い領域では、粒界の強度は高く、この粒
界面積が多いほどその板の強度は高くなる。すなわち、
細粒なものほど単位体積当たりの粒界面積が増えるため
強度が高く、脱炭焼鈍板>二次再結晶不良板>二次再結
晶板の順で強度が高くなる。これに対し、高温では粒界
強度が低下し、粒界滑りが起き易くなる。このため単位
体積当たりの粒界面積が少ないほど、すなわち粒径の大
きなものほど強度が強くなる。このため、高温側では二
次再結晶板>二次再結晶不良板>脱炭焼鈍板の順で強度
が強くなると考えられる。
This phenomenon can be explained as follows. In a low temperature region such as room temperature, the strength of the grain boundary is high, and the greater the grain boundary area, the higher the strength of the sheet. That is,
The finer the grain, the higher the grain boundary area per unit volume and thus the higher the strength, and the higher the strength in the order of decarburized annealed sheet> defective secondary recrystallization sheet> secondary recrystallized sheet. On the other hand, at a high temperature, the grain boundary strength decreases, and grain boundary sliding easily occurs. Therefore, the smaller the grain boundary area per unit volume, that is, the larger the grain size, the higher the strength. For this reason, on the high temperature side, it is considered that the strength increases in the order of the secondary recrystallized plate> the poor secondary recrystallization plate> the decarburized annealed plate.

【0010】、以上のことから、仕上焼鈍時におけるコ
イル端部の歪の発生原因は、次のように考えられる。コ
イル受け台と接する側のコイル端部は、コイルの幅方向
中央部に比べ二次再結晶の開始が遅く、高温まで細粒の
状態が続く。このため高温では粒界滑りが起こり、コイ
ル端部で座屈していく。コイル端部であっても特に二次
再結晶開始温度が低い場合にはコイル端部部に入る歪量
が低い理由もこの理屈で説明できる。すなわち、コイル
端部においても低温で二次再結晶が起こると、高温にお
いて強度の高い二次再結晶粒の存在のおかげでコイルエ
ッジ部の強度が高く、座屈しなくなる。以上のことか
ら、コイルエッジ部の二次再結晶温度をコイル中央部と
少なくとも同等もしくはそれ以下に下げることが、側歪
の軽減に有効であると考えられる。
From the above, the cause of the distortion at the coil end during the finish annealing is considered as follows. The start of secondary recrystallization is slower at the coil end in contact with the coil receiver than at the center in the width direction of the coil, and the state of fine grains continues up to high temperatures. Therefore, at high temperatures, grain boundary slip occurs and buckles at the coil end. This reason can explain the reason why the amount of strain entering the coil end portion is low especially when the secondary recrystallization initiation temperature is low even at the coil end portion. That is, if secondary recrystallization occurs at a low temperature also at the coil end, the strength of the coil edge is high due to the presence of secondary recrystallized grains having a high strength at a high temperature, and the coil does not buckle. From the above, it is considered that reducing the secondary recrystallization temperature at the coil edge portion to at least equal to or lower than the coil central portion is effective in reducing the side distortion.

【0011】このため、コイル端部の二次再結晶温度を
コイル中央部と同等もしくはそれ以下に低下させる方法
について、研究開発を進めた結果、この発明を新規に案
出したのである。この発明の基礎となった実験内容につ
いて下記に示す。標準成分としてC:0.06wt%、Si:3.
5 wt%、Mn:0.07wt%、N:0.0090wt%、Se:0.020 wt
%、Al:0.022 wt%、Cu:0.07wt%及びSb:0.020 wt%
を含有する鋼を製鋼工程で成分調整したのち、通常の連
続鋳造法により200 mm厚のスラブとした。これらのスラ
ブをガス炉で1390℃,8hrの高温加熱した後、通常の熱
間圧延を行い板厚2.3 mmの熱延板に仕上げた。この後、
1130℃,100 秒の熱延板焼鈍を行ってから板厚1.7 mmま
での冷延圧延を行い、引き続き1150℃,30秒の中間焼鈍
に供した。その後、最終板厚0.22mmまで圧延した。これ
らの鋼板を脱脂した後、820 ℃,100 秒の脱炭焼鈍に供
した。これらのコイルから単板を切り出し、実験室でこ
れら脱炭焼鈍板にロールで0.01〜10%までの種々の値に
なる歪を付加した。その後MgO を主成分とする焼鈍分離
剤を塗布し、仕上焼鈍を行った。また、仕上焼鈍の昇温
途中の各温度において試料を炉から引出し、二次再結晶
挙動を観察した。この仕上焼鈍の昇温中の各温度におけ
る二次再結晶率を図2に示す。図2より、0.1 %以上の
歪を加えることにより、900 ℃でも二次再結晶が生じる
ほどに二次再結晶温度が低下することが分かる。
Therefore, as a result of research and development of a method for lowering the secondary recrystallization temperature at the coil end to be equal to or lower than that of the coil center, the present invention was newly devised. The experimental contents on which the present invention is based are shown below. C: 0.06wt%, Si: 3.
5 wt%, Mn: 0.07 wt%, N: 0.0090 wt%, Se: 0.020 wt
%, Al: 0.022 wt%, Cu: 0.07 wt% and Sb: 0.020 wt%
Was adjusted in the steelmaking process to obtain a 200 mm thick slab by a normal continuous casting method. These slabs were heated in a gas furnace at 1390 ° C. for 8 hours, and then subjected to ordinary hot rolling to obtain a hot-rolled sheet having a thickness of 2.3 mm. After this,
After hot-rolled sheet annealing at 1130 ° C for 100 seconds, cold rolling was performed to a sheet thickness of 1.7 mm, followed by intermediate annealing at 1150 ° C for 30 seconds. Then, it was rolled to a final thickness of 0.22 mm. After degreasing these steel sheets, they were subjected to decarburization annealing at 820 ° C for 100 seconds. Veneers were cut from these coils, and in the laboratory, these decarburized annealed plates were rolled to give strains of various values from 0.01 to 10%. Thereafter, an annealing separator containing MgO 2 as a main component was applied and finish annealing was performed. Further, the sample was pulled out of the furnace at each temperature during the temperature rise during the finish annealing, and the secondary recrystallization behavior was observed. FIG. 2 shows the secondary recrystallization ratio at each temperature during the temperature rise in the finish annealing. From FIG. 2, it can be seen that the application of a strain of 0.1% or more lowers the secondary recrystallization temperature so that secondary recrystallization occurs even at 900 ° C.

【0012】これらの結果を踏まえて、実際の脱炭焼鈍
コイルのエッジ部(側縁部)20mmに歪を0.05〜10%の種
々の値で付加した後、MgO を主成分とする焼鈍分離剤を
塗布し、箱型焼鈍炉における水素雰囲気中で1200℃,10
時間の仕上焼鈍を行った。その後は未反応MgO を除去し
て、コイルエッジ部の歪発生深さを測定した。このとき
の最大歪深さ(板を平面板に置きコイル中央に対し1mm
以上持ちあがる箇所の長さをいう。)を図3に示す。図
3で示されるように、0.1 〜5%の範囲で顕著な効果が
認められる。特に好ましいのは0.5 〜3%の範囲であっ
た。一方、5%超という、あまりに大きな歪を加えた場
合には、コイル形状が悪化して却って好ましくない。こ
の原因は、圧延で歪を加えること自体に起因するものと
考えられる。これらの実験研究の結果、この発明の側歪
の少ない方向性けい素鋼の製造方法を新たに見いだした
のである。
[0012] Based on these results, after applying various strains of 0.05 to 10% to the edge (side edge) 20 mm of the actual decarburized annealing coil, the annealing separator containing MgO as a main component was added. At 1200 ° C, 10 ° C in a hydrogen atmosphere in a box-type annealing furnace.
Time finish annealing was performed. Thereafter, unreacted MgO was removed, and the strain generation depth at the coil edge was measured. Maximum strain depth at this time (Place the plate on a flat plate and place 1 mm
This refers to the length of the part to be lifted. ) Is shown in FIG. As shown in FIG. 3, a remarkable effect is observed in the range of 0.1 to 5%. Particularly preferred was a range of 0.5-3%. On the other hand, if an excessively large strain of more than 5% is applied, the coil shape deteriorates, which is rather undesirable. This cause is considered to be caused by the application of strain by rolling itself. As a result of these experimental studies, a new method for producing a grain-oriented silicon steel with reduced side strain according to the present invention has been found.

【0013】[0013]

【発明の実施の形態】この発明の方向性けい素鋼の製造
方法は、箱型焼鈍炉のコイル受け台と接する側のコイル
端部をコイル幅方向中央部と同時期又はより早い時期に
仕上焼鈍で二次再結晶させる手段を、この仕上焼鈍に先
立って施すことが特徴である。これにより、磁気特性や
形状の劣化を抑制しつつ、側歪を効果的に軽減すること
ができるという効果を奏する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing grain-oriented silicon steel according to the present invention, a coil end portion of a box type annealing furnace which is in contact with a coil cradle is finished at the same time as or earlier than the center portion in the coil width direction. It is characterized in that means for secondary recrystallization by annealing is performed prior to this finish annealing. As a result, there is an effect that side distortion can be effectively reduced while suppressing deterioration of magnetic characteristics and shape.

【0014】この発明における含けい素鋼の成分組成に
ついて述べる。出発材である含けい素鋼はしては、従来
公知の成分組成のもののいずれもが適合するが、代表組
成を掲げると次のとおりである。 C:0.01〜0.10wt% Cは熱間圧延、冷間圧延中の組織の均一微細化のみなら
ず、ゴス方位粒の発達に有用な成分であり、少なくとも
0.01wt%以上の添加が望ましい。しかしながら、0.10wt
%を超えて含有させると却ってゴス方位に乱れが生じる
ので上限は0.10wt%程度が望ましい。 Si:2.0 〜5.5 wt% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、5.5 wt%を上回る含有量では冷延性が損なわれ、一
方2.0 wt%に満たないと比抵抗が低下するだけでなく、
二次再結晶・純化のために行われる高温の最終仕上焼鈍
中にα−γ変態によって結晶方位のランダム化を生じ、
十分な鉄損改善効果が得られなくなるので、Si量は2.0
〜5.5 wt%とするのが好ましい。 Mn:0.02〜2.5 wt% Mnは、熱間脆化を防止するために少なくとも0.02wt%程
度の含有を必要とするが、あまりに多過ぎると磁気特性
を劣化させるので、上限は2.5 wt%程度に止めるのが好
ましい。また、この範囲の含有量でインヒビターとして
MnS, MnSe を析出させることができる。
The composition of the silicon-containing steel according to the present invention will be described. As the silicon steel as the starting material, any of the conventionally known component compositions is suitable, but the typical compositions are as follows. C: 0.01 to 0.10 wt% C is a component useful not only for uniform micronization of the structure during hot rolling and cold rolling but also for the development of Goss-oriented grains.
It is desirable to add 0.01 wt% or more. However, 0.10wt
%, The upper limit is preferably about 0.10 wt%, since the Goss orientation is disturbed if the content exceeds 0.1%. Si: 2.0 to 5.5 wt% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss. However, if the content exceeds 5.5 wt%, the cold-rolling property is impaired. Not only does resistance drop,
During the high-temperature final finish annealing performed for secondary recrystallization and purification, α-γ transformation causes randomization of crystal orientation,
Since a sufficient iron loss improvement effect cannot be obtained, the Si content is 2.0
It is preferably set to と す る 5.5 wt%. Mn: 0.02 to 2.5 wt% Mn needs to contain at least about 0.02 wt% in order to prevent hot embrittlement, but if it is too much, it deteriorates magnetic properties, so the upper limit is about 2.5 wt%. It is preferable to stop. In addition, the content of this range as an inhibitor
MnS and MnSe can be deposited.

【0015】二次再結晶によりゴス方位に揃う結晶粒を
高度に集積させるためには、二次再結晶に先立って鋼中
に均一微細に析出するインヒビターの存在が必須であ
る。このインヒビターとしては、いわゆるMnS ,Cu2-X
S ,MnSe,Cu2-X SeやAlN といった析出物型と、Sn,A
s, Sbなどの粒界偏析型とがある。析出物型のうちMnS
,Cu2-X S ,MnSe,Cu2-X Se系の場合には、S,Seの
1種又は2種:0.005 〜0.06wt% S,Seはいずれも、方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有用な成分である。かかる抑
制力確保の観点からは少なくとも0.005 wt%程度を必要
とするが、0.06wt%を超えるとその効果が損なわれるの
で、その下限、上限はそれぞれ0.005 wt%、0.06wt%程
度とするのが望ましい。また、Cuをインヒビター成分と
して用いる場合は、Cu:0.005 〜0.50wt%が望ましい。
AlN 系の場合には、Al:0.005 〜0.10wt%、N:0.004
〜0.015 wt% Al及びNの含有量の範囲についても、上述したMnS ,Cu
2-X S ,MnSe,Cu2-X Se系の場合と同様な理由により、
上述した範囲が好適である。ここに、上記したMnS ,Cu
2-X S ,MnSe,Cu2-X Se系及びAlN 系はそれぞれ併用す
ることがより望ましい。更に、粒界偏析系インヒビター
として、Sn,Sbは、Sn:0.01〜0.25wt%、Sb:0.005 〜
0.15wt%であり、これらの各インヒビター成分について
も単独又は複合使用のいずれでも良い。これらの上限は
これ以上添加すると飽和磁束密度が下がり良好な磁気特
性が得られないためである。更に、従来から知られてい
るCr,Te,Ge,As,Bi,Pなども磁気特性向上のために
添加することができる。これらの好適範囲はCr:0.01〜
0.15wt%、Te,As,Ge及びBi:0.005 〜0.1 wt%、P:
0.01〜0.2 wt%である。これらの各インヒビター成分に
ついても、単独又は複合使用いずれでも良い。
In order to highly accumulate crystal grains aligned in Goss orientation by secondary recrystallization, it is essential to have an inhibitor which precipitates uniformly and finely in steel prior to secondary recrystallization. This inhibitor includes so-called MnS, Cu 2-X
Precipitate types such as S, MnSe, Cu 2-X Se and AlN, and Sn, A
There are grain boundary segregation types such as s and Sb. MnS among precipitate types
, Cu 2-X S, MnSe, in the case of Cu 2-X Se system, S, 1 kind of Se or two: 0.005 ~0.06wt% S, both Se, the secondary directional silicon steel sheet It is a useful component as an inhibitor for controlling recrystallization. From the viewpoint of securing such suppressing power, at least about 0.005 wt% is required, but if it exceeds 0.06 wt%, its effect is impaired, so the lower and upper limits should be about 0.005 wt% and 0.06 wt%, respectively. desirable. When Cu is used as an inhibitor component, the content of Cu is desirably 0.005 to 0.50% by weight.
In the case of AlN system, Al: 0.005 to 0.10 wt%, N: 0.004
-0.015 wt% The range of the contents of Al and N is also the same as that of MnS, Cu described above.
2-X S, MnSe, Cu For the same reason as in the case of 2-X Se,
The above range is preferable. Here, the above-mentioned MnS, Cu
2-X S, MnSe, Cu 2-X Se system and AlN system may be more desirable combination, respectively. Further, as a grain boundary segregation inhibitor, Sn and Sb are as follows: Sn: 0.01 to 0.25 wt%, Sb: 0.005 to
0.15 wt%, and each of these inhibitor components may be used alone or in combination. These upper limits are due to the fact that the addition of more than this lowers the saturation magnetic flux density and makes it impossible to obtain good magnetic properties. Further, conventionally known Cr, Te, Ge, As, Bi, P and the like can be added for improving magnetic properties. The preferred range for these is Cr: 0.01 to
0.15 wt%, Te, As, Ge and Bi: 0.005 to 0.1 wt%, P:
It is 0.01 to 0.2 wt%. Each of these inhibitor components may be used alone or in combination.

【0016】次に、この発明の製造工程の条件について
述べる。素材として用いる含けい素鋼スラブは、連続鋳
造されたものもしくはインゴットより分塊圧延されたも
のを対象とするが、連続鋳造後に予備圧延されたスラブ
も対象に含まれることはいうまでもない。
Next, the conditions of the manufacturing process of the present invention will be described. The silicon-containing steel slab used as a material is intended to be continuously cast or slab-rolled from an ingot, but it goes without saying that slabs pre-rolled after continuous casting are also included.

【0017】上記含けい素鋼スラブは、スラブの加熱処
理によりインヒビターを溶体化する必要がある。この発
明では、溶体化の条件については特に制限するものでは
ないが、ガス炉又は誘導式電気加熱炉もしくは両者の組
み合わせによって各々のインヒビター成分の溶解度積以
上の温度で5分以上加熱することが望ましい。また、加
熱中もしくは加熱前に20%以下の軽圧下をすることによ
り、加熱後のスラブ組織を細粒化することも可能であ
る。加熱後のスラブは、通常の粗圧延を行いシートバー
を得た後、熱間仕上圧延に供する。次いで必要に応じて
熱延板焼鈍を行う。熱延板焼鈍後、二回冷延法を行う場
合は、一回目の冷延圧延を圧下率5〜50%程度で行う。
次いで中間焼鈍後、最終冷間圧延を施し、目標の板厚と
するが、最終冷間圧延を公知のように温間圧延もしくは
パス間時効処理することにより、より一次再結晶の集合
組織を改善することが可能ととなるのでこの発明の製造
方法として採用することは、より好ましい結果を得る。
一回強冷延法を行っても良いことはいうまでもない。最
終冷間圧延後、公知のように磁区細分化のため鋼板表面
に線状の溝を設ける処理を行うのも可能である。
In the above-mentioned silicon-containing steel slab, it is necessary to form a solution of the inhibitor by heat treatment of the slab. In the present invention, the conditions for the solution treatment are not particularly limited, but it is desirable to heat at a temperature equal to or higher than the solubility product of each inhibitor component for 5 minutes or more by a gas furnace or an induction electric heating furnace or a combination of both. . Further, it is also possible to make the slab structure after heating fine by reducing the pressure to 20% or less during or before heating. The slab after heating is subjected to ordinary rough rolling to obtain a sheet bar, and then subjected to hot finish rolling. Next, hot-rolled sheet annealing is performed as necessary. When performing the cold rolling twice after the hot rolled sheet annealing, the first cold rolling is performed at a rolling reduction of about 5 to 50%.
Next, after intermediate annealing, final cold rolling is performed to achieve a target sheet thickness, but the final cold rolling is subjected to warm rolling or inter-pass aging treatment in a known manner to further improve the texture of primary recrystallization. Therefore, adopting it as the manufacturing method of the present invention can obtain more preferable results.
It goes without saying that a single strong cold rolling method may be performed. After the final cold rolling, it is also possible to perform a process of providing a linear groove on the surface of the steel sheet for magnetic domain refinement as is known.

【0018】かかる方法により最終板厚とした鋼板に
は、公知の手法による一次再結晶焼鈍を施す。この後、
仕上焼鈍に先立ち、コイル受け台と接する側のコイル端
部をコイル幅方向中央部と同時期又はより早い時期に二
次再結晶させる手段を施す。好適手段としては、コイル
受け台と接触する側の脱炭焼鈍板のエッジ部に0.1 〜5
%の予歪を加える。予歪は、ロールもしくはプレスによ
る圧下によって加えることが望ましい。下限を0.1 %に
定めたのは、これ以下だと歪付加の効果が現れないため
である。また、5%以上の歪を加えるとコイル形状が悪
化してしまうからである。より好ましくは0.5 〜3%の
範囲である。予歪を付加する領域はコイル側端から5〜
100 mm程度である。
The steel sheet having the final thickness obtained by the above method is subjected to primary recrystallization annealing by a known method. After this,
Prior to the finish annealing, means for secondary recrystallization of the coil end on the side in contact with the coil cradle at the same time as or earlier than the center in the coil width direction is provided. As a preferable means, the edge of the decarburized annealed plate on the side that comes into contact with the coil receiver is 0.1 to 5 mm.
Add a% prestrain. The pre-strain is desirably applied by rolling down with a roll or a press. The lower limit is set to 0.1% because if it is less than this, the effect of distortion addition does not appear. Further, if a strain of 5% or more is applied, the coil shape is deteriorated. More preferably, it is in the range of 0.5 to 3%. The pre-strain area is 5 to 5 mm from the coil side end.
It is about 100 mm.

【0019】その後、焼鈍分離剤を塗布し、最終仕上焼
鈍を施す。最終仕上焼鈍後は、未反応の焼鈍分離剤を除
去した後、鋼板表面に絶縁コーティングを塗布して製品
となるが、必要に応じて絶縁コーティングの塗布前に鋼
板表面の鏡面化処理を施しても良いし、また、絶縁コー
ティングとして張力コーティングを用いても良い。ま
た、コーティングの塗布焼付け処理を、平坦化処理と兼
ねて行ってもよい。更に、二次再結晶後の鋼板には、鉄
損低減効果を得るため、公知の磁区細分化処理、すなわ
ちプラズマジェットやレーザー照射を線状領域に施した
り、突起ロールによる線状のへこみ領域を設けたりする
処理を施すこともできる。
Thereafter, an annealing separating agent is applied and a final finish annealing is performed. After the final finish annealing, after removing the unreacted annealing separator, an insulating coating is applied to the steel sheet surface to produce a product.If necessary, the steel sheet surface is mirror-finished before applying the insulating coating. Alternatively, a tension coating may be used as the insulating coating. Further, the coating baking treatment of the coating may be performed also as the flattening treatment. Further, in order to obtain an iron loss reduction effect, the steel sheet after the secondary recrystallization is subjected to a known magnetic domain refining treatment, that is, plasma jet or laser irradiation is performed on the linear region, or a linear dent region is formed by a projection roll. Alternatively, a process of providing the same may be performed.

【0020】[0020]

【実施例】C:0.07wt%、Si:3.2 wt%、Mn:0.07wt
%、S:0.020 wt%、Al:0.023 wt%及びN:0.0090を
含み、残部は鉄及び不可避時不純物からなる含けい素鋼
素材を、熱間圧延後、中間焼鈍を挟む2回の冷間圧延に
よって板厚0.23mm、板幅1200mmの冷間圧延板としたの
ち、連続脱炭焼鈍炉で860 ℃,140 秒の脱炭焼鈍を施し
た。この後、各コイルの片側のエッジ部30mmに0〜8%
の範囲の種々の歪をロール圧下で加えた。その後、MgO
を主成分とする焼鈍分離剤を塗布し、コイルに巻き取っ
た。次いで、歪を加えた側のエッジ部が箱型焼鈍炉のコ
イル受け台側になるようにコイルを炉内に配置したの
ち、1190℃,20時間の仕上焼鈍を水素雰囲気中で行っ
た。得られたコイルの歪発生深さを調査した結果を図4
に示す。同図より明らかなように、0.1 〜5%の歪をコ
イルエッジ部に加えたものは、コイル端部における歪の
発生を効果的に抑制することができる。また、図5に示
す様に5%を越える歪をコイルエッジ部に加えるとこの
部分の磁気特性が劣化することがわかる。このため5%
を越える歪を加える事は、形状を劣化させかつ磁気特性
も悪化させる。以上より0.1 〜5%の歪をコイルエッジ
に加える事により、形状と磁気特性を共に満足させる事
ができる。
[Example] C: 0.07 wt%, Si: 3.2 wt%, Mn: 0.07 wt
%, S: 0.020 wt%, Al: 0.023 wt%, and N: 0.0090, with the balance being silicon steel containing iron and unavoidable impurities. After cold rolling into a 0.23 mm thick and 1200 mm wide rolled sheet by rolling, the steel sheet was annealed at 860 ° C for 140 seconds in a continuous decarburizing annealing furnace. After this, 0-8% is applied to the edge 30mm on one side of each coil.
A variety of strains in the range were applied under roll pressure. Then MgO
Was applied, and wound around a coil. Next, the coil was placed in the furnace so that the edge on the side to which the strain was applied was on the side of the coil cradle of the box type annealing furnace, and then finish annealing at 1190 ° C. for 20 hours was performed in a hydrogen atmosphere. Fig. 4 shows the results of investigation of the strain generation depth of the obtained coil.
Shown in As can be seen from the figure, the case where the distortion of 0.1 to 5% is applied to the coil edge portion can effectively suppress the generation of the distortion at the coil end portion. Further, as shown in FIG. 5, when a strain exceeding 5% is applied to the coil edge portion, it can be seen that the magnetic characteristics of this portion are deteriorated. For this reason 5%
Applying a strain exceeding the range degrades the shape and magnetic properties. As described above, by applying a strain of 0.1 to 5% to the coil edge, both the shape and the magnetic characteristics can be satisfied.

【0021】[0021]

【発明の効果】かくしてこの発明によれば、方向性電磁
鋼板をコイル状態で仕上焼鈍するに際して、コイル受け
台と接する側のコイル端部における歪の発生を著しく軽
減することができる。
As described above, according to the present invention, when finish-annealing a grain-oriented electrical steel sheet in a coil state, it is possible to significantly reduce the occurrence of distortion at the coil end in contact with the coil cradle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各温度ごとの粒径と強度との関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between particle size and strength at each temperature.

【図2】付加した歪と二次再結晶温度との関係を示す図
である。
FIG. 2 is a diagram showing a relationship between an applied strain and a secondary recrystallization temperature.

【図3】付加した歪と最大歪深さとの関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between added strain and a maximum strain depth.

【図4】仕上焼鈍後のコイル全長歪と脱炭焼鈍板に付加
した歪量との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the total coil strain after finish annealing and the strain applied to a decarburized annealed plate.

【図5】仕上焼鈍後のコイルエッジ部の磁気特性と付加
した歪量との関係を示す図である。
FIG. 5 is a diagram showing a relationship between magnetic characteristics of a coil edge portion after finish annealing and an added strain amount.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 含けい素鋼スラブを熱間圧延した後、一
回又は中間焼鈍を挟む2回以上の冷間圧延を施し、次い
で脱炭焼鈍後、MgO を主成分とする焼鈍分離剤を塗布し
てから、箱型焼鈍炉にて仕上焼鈍を施す一連の工程から
なる方向性けい素鋼板の製造方法において、 箱型焼鈍炉のコイル受け台と接する側のコイル端部をコ
イル幅方向中央部と同時期又はより早い時期に仕上焼鈍
で二次再結晶させる手段を、この仕上焼鈍に先立って施
すことを特徴とする側歪の少ない方向性けい素鋼の製造
方法。
After the silicon-containing slab is hot-rolled, it is subjected to one or two or more cold-rollings with intermediate annealing, and after decarburizing annealing, an annealing separator mainly composed of MgO is added. A method for producing a grain-oriented silicon steel sheet comprising a series of steps of applying and then performing a finish annealing in a box-type annealing furnace, wherein a coil end on a side in contact with a coil cradle of the box-type annealing furnace is centered in a coil width direction. A method for performing secondary recrystallization by finish annealing at the same time as or earlier than the part, prior to the finish annealing.
【請求項2】 コイル受け台と接する側のコイル端部を
コイル幅方向中央部と同時期又はより早い時期に二次再
結晶させる手段が、コイル受け台と接触する側の脱炭焼
鈍板の端部に0.1 〜5%の予歪を、仕上焼鈍に先立って
加えるものである請求項1記載の側歪の少ない方向性け
い素鋼板の製造方法。
Means for secondary recrystallizing the coil end in contact with the coil cradle at the same time as or earlier than the center portion in the coil width direction; 2. The method for producing a grain-oriented silicon steel sheet according to claim 1, wherein a pre-strain of 0.1 to 5% is applied to the end portion before the finish annealing.
JP01244997A 1997-01-27 1997-01-27 Method for producing grain-oriented silicon steel sheet with low side strain Expired - Fee Related JP3643200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01244997A JP3643200B2 (en) 1997-01-27 1997-01-27 Method for producing grain-oriented silicon steel sheet with low side strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01244997A JP3643200B2 (en) 1997-01-27 1997-01-27 Method for producing grain-oriented silicon steel sheet with low side strain

Publications (2)

Publication Number Publication Date
JPH10204542A true JPH10204542A (en) 1998-08-04
JP3643200B2 JP3643200B2 (en) 2005-04-27

Family

ID=11805656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01244997A Expired - Fee Related JP3643200B2 (en) 1997-01-27 1997-01-27 Method for producing grain-oriented silicon steel sheet with low side strain

Country Status (1)

Country Link
JP (1) JP3643200B2 (en)

Also Published As

Publication number Publication date
JP3643200B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
KR102249920B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0567683B2 (en)
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4123679B2 (en) Method for producing grain-oriented electrical steel sheet
JP3643200B2 (en) Method for producing grain-oriented silicon steel sheet with low side strain
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP7264322B1 (en) Manufacturing method of grain-oriented electrical steel sheet
EP4353849A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss
JP2001262233A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet small in defect in shape
JP3463417B2 (en) Method for producing grain-oriented silicon steel sheet stably obtaining excellent magnetic properties
JP2004285402A (en) Manufacturing method of grain-oriented magnetic steel sheet
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2024503245A (en) Grain-oriented electrical steel sheet and its manufacturing method
JPS6254846B2 (en)
JP2807351B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees