JPH10204443A - Operation of apparatus for oil-making treatment of waste plastic - Google Patents

Operation of apparatus for oil-making treatment of waste plastic

Info

Publication number
JPH10204443A
JPH10204443A JP9009176A JP917697A JPH10204443A JP H10204443 A JPH10204443 A JP H10204443A JP 9009176 A JP9009176 A JP 9009176A JP 917697 A JP917697 A JP 917697A JP H10204443 A JPH10204443 A JP H10204443A
Authority
JP
Japan
Prior art keywords
gas
tank
oil
temperature
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9009176A
Other languages
Japanese (ja)
Inventor
Tomoko Kaneko
朋子 金子
Ryokichi Yamada
良吉 山田
Akira Yamada
章 山田
Norio Arashi
紀夫 嵐
Hisao Yamashita
寿生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9009176A priority Critical patent/JPH10204443A/en
Publication of JPH10204443A publication Critical patent/JPH10204443A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover light oil free from the contamination of heavy components by surely recycling the heavy components in cracked gas into a thermal decomposition tank in an oil-making treatment of waste plastics. SOLUTION: This apparatus consists of a thermal decomposition tank 1 for thermally decomposing waste plastics, a cooler 2 for cooling cracked gas generated in the thermal decomposition tank 1 to a specified temperature to liquefy a heavy component and recycling it to the thermal decomposition tank 1, a recycling tank 3 for removing misty heavy components from the cracked gas passed through the cooler 2, separating a heavy component from light gas and recycling the resultant heavy component to the thermal decomposition tank 1, a condenser 5 for cooling the light gas separated in the recycling tank 3 to condense and liquefy a part of the light gas to oil, and a gas-liquid separator 6 for separating the oil obtained in the condenser 5 from non-condensing gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃プラスチックの油
化処理装置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a waste plastic oil treatment apparatus.

【0002】[0002]

【従来の技術】近年、大量に排出される廃プラスチック
の処理が深刻な社会問題となっており、そのリサイクル
の必要性が高まっている。廃プラスチックのリサイクル
方法の一つに、廃プラスチックを熱分解し油化する方法
がある。しかし、廃プラスチックの単純熱分解により回
収される油はワックス状の成分や高分子量の成分を含ん
でいる。そのため、特開平3−86790 号や、特開平4−18
0995号公報に見られるように、廃プラスチックの熱分解
ガスを合成ゼオライトにより改質し、低沸点炭化水素油
を得る方法がある。ところが、合成ゼオライトを用いる
と、熱分解ガスの軽質化が促進されガス化が進むため油
の回収率が低下する。また、合成ゼオライト自身も、カ
ーボンの析出による劣化や、熱分解ガス中の塩化水素に
よる失活のために再生や交換が必要であり、ランニング
コストが増大する。
2. Description of the Related Art In recent years, treatment of waste plastic discharged in large quantities has become a serious social problem, and the need for recycling thereof has increased. One of the recycling methods of waste plastic is a method of thermally decomposing waste plastic into oil. However, the oil recovered by simple pyrolysis of waste plastic contains waxy components and high molecular weight components. Therefore, JP-A-3-86790 and JP-A-4-18.
As disclosed in JP-A-0995, there is a method of obtaining a low-boiling hydrocarbon oil by reforming a pyrolysis gas of waste plastic with synthetic zeolite. However, when synthetic zeolite is used, lightening of the pyrolysis gas is promoted and gasification proceeds, so that the oil recovery rate decreases. Further, the synthetic zeolite itself needs to be regenerated or replaced due to deterioration due to deposition of carbon and deactivation due to hydrogen chloride in the pyrolysis gas, which increases running costs.

【0003】合成ゼオライトによらない回収油の軽質化
方法として、特願平7−183809 号明細書に記載されてい
る還流槽を用いる方法がある。これは、熱分解槽で発生
した廃プラスチックの分解ガスを還流槽内で重質油と軽
質ガスとに分離し、分離された重質油を熱分解槽に還流
して繰り返し熱分解することで軽質化する方法である。
還流槽の温度は、熱分解槽で発生する分解ガスの温度よ
り低く設定されており、分解ガスは還流槽を通過する間
に所定の温度まで冷却される。還流槽には外部への放熱
による過冷却を補うためのヒータが外壁に設置されてお
り、熱分解槽で発生する分解ガスの発生量の変動にあわ
せヒータ出力を調整することにより還流槽出口における
分解ガス温度を所定の範囲に保っている。しかし、短時
間に還流槽に入る分解ガスの量が大幅に増加すると、ヒ
ータの出力調整では所定の温度範囲に維持できなくなり
還流槽内部の温度が上昇し、重質成分が還流槽を通過し
てしまう。その結果、回収油に重質成分が混入するだけ
でなく、還流槽の後流に塩素固定化剤を充填した塩素固
定化槽が接続している場合、塩素固定化剤に重質油のミ
ストが付着して分解ガスの通過孔を閉塞し、十分な塩素
固定化効果を得られなくなる。そのため、未反応の塩素
固定化剤を残したまま塩素固定化剤の交換が必要にな
り、操作が煩雑になるだけでなくランニングコストが増
大する。
As a method for lightening the recovered oil without using a synthetic zeolite, there is a method using a reflux tank described in Japanese Patent Application No. 7-183809. This is because the cracked gas of waste plastic generated in the pyrolysis tank is separated into heavy oil and light gas in the reflux tank, and the separated heavy oil is returned to the pyrolysis tank and repeatedly pyrolyzed. This is a way to reduce the weight.
The temperature of the reflux tank is set lower than the temperature of the decomposition gas generated in the thermal decomposition tank, and the decomposition gas is cooled to a predetermined temperature while passing through the reflux tank. A heater is installed on the outer wall of the reflux tank to compensate for supercooling due to heat radiation to the outside, and the heater output is adjusted at the outlet of the reflux tank by adjusting the heater output in accordance with fluctuations in the amount of cracked gas generated in the pyrolysis tank. The decomposition gas temperature is kept in a predetermined range. However, if the amount of cracked gas entering the reflux tank in a short time increases significantly, the output of the heater cannot be maintained within a predetermined temperature range by adjusting the output, so that the temperature inside the reflux tank rises and heavy components pass through the reflux tank. Would. As a result, when not only heavy components are mixed into the recovered oil, but also a chlorine fixation tank filled with a chlorine fixative is connected downstream of the reflux tank, heavy oil mist is added to the chlorine fixative. Adheres and closes the passage for the decomposition gas, making it impossible to obtain a sufficient chlorine fixing effect. Therefore, it is necessary to replace the chlorine fixing agent while leaving the unreacted chlorine fixing agent, which not only complicates the operation but also increases the running cost.

【0004】この問題を解決するために、熱分解槽と還
流槽の間に冷却器を設け、熱分解温度に関わらず還流槽
に流入する分解ガスの温度を一定にして上述した問題を
回避する方法がある。ところが、熱分解温度が高くなる
と冷却器で凝縮液化する成分が増加するため、冷却器内
の熱交換面状に厚い液層が生成し、熱伝達率が低下して
くる。その結果、高温の分解ガスが所定の温度まで冷却
されずに還流槽へ流入することとなり、同上の問題が生
じる。また、大量に発生する高温の分解ガスを確実に所
定の温度にまで冷却するには、広い熱交換面積を有する
冷却器が必要となり、設備コストが増大するという問題
もあった。
In order to solve this problem, a cooler is provided between the thermal decomposition tank and the reflux tank, and the above-mentioned problem is avoided by keeping the temperature of the cracked gas flowing into the reflux tank constant regardless of the thermal decomposition temperature. There is a way. However, when the thermal decomposition temperature increases, the components condensed and liquefied in the cooler increase, so that a thick liquid layer is formed on the heat exchange surface inside the cooler, and the heat transfer coefficient decreases. As a result, the high-temperature cracked gas flows into the reflux tank without being cooled to the predetermined temperature, and the same problem occurs. In addition, in order to surely cool a large amount of high-temperature cracked gas to a predetermined temperature, a cooler having a large heat exchange area is required, and there is a problem that equipment costs increase.

【0005】[0005]

【発明が解決しようとする課題】本発明で解決しようと
する課題は、廃プラスチックの熱分解油化処理で、高温
の熱分解ガスが大量に発生することを防止して、還流槽
における重質成分と軽質成分の分離を確実に行うための
手段を提供することにある。
A problem to be solved by the present invention is to prevent a large amount of high-temperature pyrolysis gas from being generated in the pyrolysis and oiling treatment of waste plastics, and to prevent heavy waste in the reflux tank. It is an object of the present invention to provide a means for reliably separating components from light components.

【0006】[0006]

【課題を解決するための手段】本発明は、廃プラスチッ
クを熱分解する熱分解槽と、前記熱分解槽で発生した分
解ガスを所定の温度に冷却して前記分解ガス中の重質成
分を凝縮液化する冷却器と、前記冷却器で凝縮液化した
重質成分とガス状の軽質成分を分離し、さらにガス状の
軽質成分に混入しているミスト状の重質成分を除去し、
前記冷却器で液化した重質成分とともに熱分解槽に還流
する還流槽と、前記還流槽で分離された前記軽質ガスを
冷却して一部を凝縮液化して油とする凝縮器と、前記凝
縮器にて得られた油と非凝縮ガスとを分離する気液分離
器とを含む廃プラスチック油化装置の運転方法におい
て、前記冷却器の出口におけるガス状軽質成分の温度が
所定の範囲内の値をとるように前記熱分解槽の加熱量を
制御することを特徴とする。詳しくは、冷却器を通過し
た軽質ガスの温度を検知する手段を設け、検知された温
度が所定の温度範囲の上限に達したときには熱分解槽の
加熱量を小さくし、また、所定の温度範囲の下限に達し
たときには熱分解槽の加熱量を大きくすることである。
According to the present invention, there is provided a pyrolysis tank for thermally decomposing waste plastics, and a decomposed gas generated in the pyrolysis tank is cooled to a predetermined temperature to remove heavy components in the decomposed gas. A cooler to be condensed and liquefied, the heavy component condensed and liquefied by the cooler and the gaseous light component are separated, and the mist-like heavy component mixed in the gaseous light component is further removed.
A reflux tank for returning to the pyrolysis tank together with the heavy component liquefied in the cooler, a condenser for cooling the light gas separated in the reflux tank and partially condensing and liquefying it as oil, and In a method for operating a waste plastic oil liquefaction apparatus including a gas-liquid separator for separating oil and a non-condensable gas obtained in a cooler, the temperature of the gaseous light component at the outlet of the cooler is within a predetermined range. The heating amount of the pyrolysis tank is controlled so as to take a value. Specifically, a means for detecting the temperature of the light gas that has passed through the cooler is provided, and when the detected temperature reaches the upper limit of the predetermined temperature range, the heating amount of the pyrolysis tank is reduced, and When the lower limit is reached, the heating amount of the pyrolysis tank is to be increased.

【0007】熱分解槽に貯まった熱分解残渣を熱分解槽
から抜き出す際に、熱分解温度を上げて缶液を蒸発させ
て残渣を乾燥させる焼切りと称する操作は、従来、熱分
解槽内の温度をモニターしながら缶液の蒸発乾固に必要
な温度まで一段階に昇温していた。この方法では、焼切
り操作に入った直後に一時的に温度レベルの高い分解ガ
スが大量に発生し、冷却器の冷却能力が追いつかず分解
ガスが高温のまま還流槽に流入することがあった。その
ため、所定の還流性能が得られず回収油に重質成分が混
入することがあった。しかし、本発明にしたがって冷却
器を通過した分解ガスの温度をモニターしながら熱分解
槽の加熱量を制御することにより、焼切り操作における
缶液のガス化速度を、廃プラスチックを熱分解槽に供給
している間の廃プラスチックのガス化速度と同程度に制
御できるため、焼切り操作でも所定の還流軽質化効果が
得られる。さらに、還流槽でミスト状の重質成が軽質ガ
スから確実に分離・除去されるため、塩素固定化剤が重
質成分により汚染されることがなくなり脱塩素効果が持
続して得られるようになった。さらに、分解ガスの発生
速度にばらつきがある場合、冷却器の選定は高温かつ大
量に分解ガスが発生する場合を基準にして行われるため
に規模の大きいものとなった。本発明は分解ガスの発生
速度を平均化できるため、冷却器の小型化が図れる。
[0007] When the pyrolysis residue stored in the pyrolysis tank is extracted from the pyrolysis tank, the operation of raising the pyrolysis temperature, evaporating the can solution, and drying the residue is conventionally called burning-off. While monitoring the temperature of the solution, the temperature was raised in one step to a temperature required for evaporating and drying the can solution. In this method, a large amount of decomposed gas having a high temperature level was temporarily generated immediately after entering the burning operation, and the cooling capacity of the cooler could not keep up and the decomposed gas flowed into the reflux tank at a high temperature in some cases. . As a result, a predetermined reflux performance was not obtained, and heavy components were sometimes mixed into the recovered oil. However, by controlling the heating amount of the pyrolysis tank while monitoring the temperature of the decomposition gas that has passed through the cooler according to the present invention, the gasification rate of the can solution in the burning operation can be reduced, and the waste plastic can be supplied to the pyrolysis tank. Since the gasification rate of the waste plastic during the supply can be controlled to the same level, a predetermined reflux lightening effect can be obtained even in the burning-off operation. Furthermore, since the mist-like heavy components are reliably separated and removed from the light gas in the reflux tank, the chlorine fixing agent is not contaminated by the heavy components, so that the dechlorination effect can be obtained continuously. became. Further, when there is a variation in the generation rate of the cracked gas, the selection of the cooler is performed on the basis of the case where the cracked gas is generated at a high temperature and in a large amount, so that the scale becomes large. In the present invention, since the generation speed of the decomposition gas can be averaged, the size of the cooler can be reduced.

【0008】[0008]

【発明の実施の形態】以下、実施例により本発明の内容
を具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the contents of the present invention will be specifically described with reference to examples.

【0009】図1は本発明の基本的な構成を具備した廃
プラスチック油化処理システムの実施例を示す。本シス
テムは、熱分解槽1,冷却器2,還流槽3,塩素固定化
槽4,凝縮器5,気液分離器6,油回収槽7,油送ポン
プ8,エアポンプ9,バーナ10,弁11から13,温
度センサ20から22,制御機30等から構成されてい
る。
FIG. 1 shows an embodiment of a waste plastic oil treatment system having the basic structure of the present invention. This system consists of a pyrolysis tank 1, a cooler 2, a reflux tank 3, a chlorine fixing tank 4, a condenser 5, a gas-liquid separator 6, an oil recovery tank 7, an oil feed pump 8, an air pump 9, a burner 10, and a valve. 11 to 13, temperature sensors 20 to 22, a controller 30, and the like.

【0010】まず、本実施例の動作について説明する。
図1で、廃プラスチック100は熱分解槽1に供給され
る。廃プラスチック100は、熱分解槽1内でバーナ1
0により加熱され分解ガス101が発生する。分解ガス
101は冷却器2に導入され、冷却水201により任意
の所定温度まで冷却されて重質成分が凝縮液化したのち
還流槽3に導入される。還流槽3で、液状重質成分10
2はガス状軽質成分103と分離され、重質成分102
は熱分解槽1に還流される。前記ガス状の軽質成分10
3は、還流槽3で所定の温度条件下でミスト状の重質成
分と完全に分離された後、塩素固定化槽4に導入され
る。塩素固定化槽4は、前記軽質ガス103が塩素固定
化槽4で凝縮液化しないように、還流槽3と同等の温度
あるいは5℃ないし10℃高い温度に保持されている。
万一、塩素固定化槽で発生した液状重質成分104は、
熱分解槽1へ還流される。塩素固定化槽4を通過したガ
ス状軽質成分105は、凝縮器5に導入され、冷却水2
02により任意の所定温度まで冷却された後、気液分離
器6で油106と非凝縮ガス107とに分離される。油
106の一部は油送ポンプ8によりバーナ10へ移送さ
れ、エアポンプ9により供給される空気とともに燃焼さ
れて、廃プラスチック100を熱分解するための熱源と
なる。非凝縮ガス107は系外へ放出される。
First, the operation of this embodiment will be described.
In FIG. 1, waste plastic 100 is supplied to a pyrolysis tank 1. The waste plastic 100 is burned into the burner 1 in the pyrolysis tank 1.
0 to generate decomposition gas 101. The cracked gas 101 is introduced into the cooler 2, cooled to an arbitrary predetermined temperature by the cooling water 201, and the heavy components are condensed and liquefied, and then introduced into the reflux tank 3. In the reflux tank 3, the liquid heavy component 10
2 is separated from the gaseous light component 103 and the heavy component 102
Is returned to the thermal decomposition tank 1. The gaseous light component 10
After being completely separated from the mist-like heavy components in the reflux tank 3 under a predetermined temperature condition, the liquid 3 is introduced into the chlorine fixing tank 4. The chlorine fixing tank 4 is maintained at a temperature equal to or higher than that of the reflux tank 3 by 5 to 10 ° C. so that the light gas 103 is not condensed and liquefied in the chlorine fixing tank 4.
In the unlikely event that the liquid heavy component 104 generated in the chlorine immobilization tank is
It is refluxed to the thermal decomposition tank 1. The gaseous light component 105 that has passed through the chlorine fixing tank 4 is introduced into the condenser 5,
After being cooled to an arbitrary predetermined temperature by 02, it is separated into oil 106 and non-condensable gas 107 by the gas-liquid separator 6. A part of the oil 106 is transferred to the burner 10 by the oil feed pump 8 and burned together with the air supplied by the air pump 9 to serve as a heat source for thermally decomposing the waste plastic 100. The non-condensable gas 107 is released outside the system.

【0011】次に制御系統について動作を述べる。ま
ず、廃プラスチック100を連続的に熱分解槽1へ供給
している間の分解ガス101の温度制御について述べ
る。廃プラスチックの加熱温度は、熱分解槽1内部に設
置されている温度センサ20で検出される。温度センサ
20で検出される温度は制御機30に入力され、制御機
30からの出力信号により、熱分解槽を加熱しているバ
ーナ10への油および空気の供給ラインに設けられた弁
12および13が調整されて、熱分解槽1の内部温度が
一定になるように制御される。熱分解槽1で発生した分
解ガス101は、冷却器2に導入される。冷却器2を通
過した分解ガス101の温度は、温度センサ21で検出
される。温度センサ21で検出される温度は制御機30
に入力され、そこからの出力信号により、冷却器2に供
給される冷却水201の供給ラインに設けられた弁11
が調整されて、冷却器2を通過した後の分解ガス101
の温度を制御している。
Next, the operation of the control system will be described. First, the temperature control of the decomposition gas 101 while the waste plastic 100 is continuously supplied to the pyrolysis tank 1 will be described. The heating temperature of the waste plastic is detected by a temperature sensor 20 installed inside the pyrolysis tank 1. The temperature detected by the temperature sensor 20 is input to the controller 30 and, based on an output signal from the controller 30, a valve 12 provided on a supply line of oil and air to the burner 10 heating the pyrolysis tank, 13 is adjusted so that the internal temperature of the pyrolysis tank 1 is controlled to be constant. The decomposition gas 101 generated in the thermal decomposition tank 1 is introduced into the cooler 2. The temperature of the decomposition gas 101 that has passed through the cooler 2 is detected by a temperature sensor 21. The temperature detected by the temperature sensor 21 is controlled by the controller 30.
And a valve 11 provided in a supply line of the cooling water 201 supplied to the cooler 2 in accordance with an output signal therefrom.
Is adjusted, and the decomposition gas 101 after passing through the cooler 2 is adjusted.
Is controlling the temperature.

【0012】次に、熱分解槽1内の缶液を蒸発させる場
合の制御について述べる。廃プラスチック100の供給
を終了すると、分解ガス101の発生量が次第に減少す
る。制御機30により冷却器2に供給される冷却水20
1の供給量を調節する弁11の開度がしぼられる。弁1
1の開度が任意の下限値に達すると、制御機30からの
出力信号によりバーナ10への油および空気の供給量を
調節している弁12および13の開度が大になり、バー
ナ10への油および空気の供給量が増加する。その結果
バーナ10の加熱量が増大して熱分解槽1の温度が上昇
し、缶液のガス化が開始する。温度センサ22で検出さ
れる冷却水201の温度は上昇し、制御機30により開
度が調整されている弁11は開度が大になる。弁11の
開度が任意に設定される閾値に達すると、弁11の開度
を維持したまま、制御機30からの出力信号により油お
よび空気の供給量を調節する弁12および13の開度が
しぼられる。その結果、バーナ10の出力が低下し、分
解ガス101の発生量が減少する。冷却水の供給量を調
節する弁11の開度は閾値の開度で維持されたままなの
で、分解ガス101の発生量の減少に伴い、温度センサ
21で検出される分解ガス101の温度が低下する。分
解ガス101の温度があらかじめ設定された閾値に達し
たところで、油および空気の供給量を調節する弁12お
よび13の開度を大にする信号が出力される。その結
果、バーナ10の加熱量が増大して熱分解槽1の温度が
上昇し、缶液のガス化が促進される。温度センサ21で
検出される分解ガス101の温度は、ガス量の増加に伴
い上昇し、制御機30にあらかじめ設定された閾値に達
する。そこで、制御機30から油および空気の供給量を
調節する弁12および13の開度を小にする信号が出力
される。以上のように、温度センサ21で検出される冷
却器を通過した後の分解ガス101の温度に基づいて、
熱分解槽1を加熱するバーナ10への油と空気の供給量
を調節することにより分解ガス101の発生量の平均化
が図れる。
Next, the control for evaporating the can solution in the pyrolysis tank 1 will be described. When the supply of the waste plastic 100 ends, the generation amount of the decomposition gas 101 gradually decreases. Cooling water 20 supplied to the cooler 2 by the controller 30
The opening degree of the valve 11 for adjusting the supply amount of 1 is reduced. Valve 1
1 reaches an arbitrary lower limit, the output signals from the controller 30 increase the opening degrees of the valves 12 and 13 that regulate the supply amounts of oil and air to the burner 10, and the burner 10 The supply of oil and air to the tank increases. As a result, the heating amount of the burner 10 increases, the temperature of the pyrolysis tank 1 increases, and gasification of the can solution starts. The temperature of the cooling water 201 detected by the temperature sensor 22 increases, and the opening of the valve 11 whose opening is adjusted by the controller 30 increases. When the opening of the valve 11 reaches an arbitrarily set threshold value, the opening of the valves 12 and 13 for adjusting the supply amounts of oil and air by the output signal from the controller 30 while maintaining the opening of the valve 11. Is squeezed. As a result, the output of the burner 10 decreases, and the generation amount of the decomposition gas 101 decreases. Since the opening of the valve 11 for adjusting the supply amount of the cooling water is maintained at the opening of the threshold value, the temperature of the decomposition gas 101 detected by the temperature sensor 21 decreases as the generation amount of the decomposition gas 101 decreases. I do. When the temperature of the cracked gas 101 reaches a preset threshold value, a signal for increasing the opening of the valves 12 and 13 for adjusting the supply amounts of oil and air is output. As a result, the heating amount of the burner 10 increases, the temperature of the pyrolysis tank 1 increases, and gasification of the can solution is promoted. The temperature of the decomposed gas 101 detected by the temperature sensor 21 increases as the gas amount increases, and reaches a threshold value preset in the controller 30. Therefore, the controller 30 outputs a signal for reducing the opening degree of the valves 12 and 13 for adjusting the supply amounts of oil and air. As described above, based on the temperature of the decomposed gas 101 after passing through the cooler detected by the temperature sensor 21,
By adjusting the supply amounts of oil and air to the burner 10 that heats the pyrolysis tank 1, the amount of generated decomposition gas 101 can be averaged.

【0013】図1の廃プラスチック油化処理システムに
よる実施例を述べる。廃プラスチックとして、ポリプロ
ピレン45kg,ポリエチレン22kg,ポリスチレン7k
g,ポリ塩化ビニル1kg,エポキシ樹脂18kg,フェノ
ール樹脂7kgの破砕混合物を用いた。還流槽3には、液
状の重質成分とガス状の軽質成分の分離を促進するため
に、直径15mmの磁製のボールを充填した。塩素固定化
槽4には、塩素固定化剤として直径4.8mm の水酸化カ
ルシウムのペレットを充填した。廃プラスチック100
kgを熱分解槽1に投入し、操作により油化した。廃プラ
スチックは、5kgずつ20回に分けて熱分解槽1に供給
した。廃プラスチックを供給している間の温度センサ2
0で検出される熱分解槽1の温度は420℃ないし43
0℃、温度センサ21で検出される冷却槽2出口での分
解ガス101の温度は270℃とした。廃プラスチック
の供給が終了した後、缶液を蒸発させるために熱分解槽
1は最終的に580℃まで昇温した。また、還流槽3の
温度は270℃、塩素固定化槽4の温度は280℃で維
持した。
An embodiment using the waste plastic oil treatment system of FIG. 1 will be described. 45 kg of waste plastic, 22 kg of polyethylene, 7 kg of polystyrene
g, 1 kg of polyvinyl chloride, 18 kg of epoxy resin, and 7 kg of phenol resin. The reflux tank 3 was filled with porcelain balls having a diameter of 15 mm in order to promote the separation of the liquid heavy component and the gaseous light component. The chlorine fixing tank 4 was filled with calcium hydroxide pellets having a diameter of 4.8 mm as a chlorine fixing agent. Waste plastic 100
kg was put into the pyrolysis tank 1 and turned into oil by the operation. The waste plastic was supplied to the pyrolysis tank 1 in 20 divided portions of 5 kg each. Temperature sensor 2 while supplying waste plastic
The temperature of the pyrolysis tank 1 detected at 0 is 420 ° C. to 43 ° C.
The temperature of the decomposition gas 101 at the outlet of the cooling bath 2 detected by the temperature sensor 21 was set to 270 ° C. After the supply of the waste plastic was completed, the temperature of the pyrolysis tank 1 was finally raised to 580 ° C. in order to evaporate the can solution. The temperature of the reflux tank 3 was maintained at 270 ° C., and the temperature of the chlorine fixing tank 4 was maintained at 280 ° C.

【0014】本実施例で回収された油の蒸留試験の結果
を表1に示す。
Table 1 shows the results of a distillation test of the oil recovered in this example.

【0015】[0015]

【表1】 [Table 1]

【0016】また、油の全塩素含有率は80ppm であっ
た。
The total chlorine content of the oil was 80 ppm.

【0017】比較例として、廃プラスチックの供給が終
了した後に、温度センサ20で検出される熱分解槽1の
温度を430℃から580℃まで一段階に昇温した。そ
の結果、分解ガス101の発生量が急激に増加し、冷却
器1の冷却能力が追いつかず温度センサ21で検出され
る分解ガス温度が270℃に維持できず、最高で350℃
にまで上昇した。比較例で回収された油の蒸留試験の結
果を表1に示す。また、油の全塩素含有率は1200pp
m であった。
As a comparative example, after the supply of the waste plastic was completed, the temperature of the pyrolysis tank 1 detected by the temperature sensor 20 was raised in one step from 430 ° C. to 580 ° C. As a result, the generation amount of the decomposition gas 101 increases rapidly, the cooling capacity of the cooler 1 cannot keep up, and the decomposition gas temperature detected by the temperature sensor 21 cannot be maintained at 270 ° C., and the maximum is 350 ° C.
Rose to. Table 1 shows the results of the distillation test of the oil recovered in the comparative example. The total chlorine content of the oil is 1200pp
m.

【0018】表1に示すように、本実施例で回収された
油は95%留出点が283℃であるのに対して、比較例
で回収された油の95%留出点は87℃も高く370℃
であった。
As shown in Table 1, the oil recovered in this example had a 95% distillation point of 283 ° C., whereas the oil recovered in the comparative example had a 95% distillation point of 87 ° C. 370 ℃
Met.

【0019】この結果から、本実施例によれば沸点が3
00℃以上の重質成分は還流され形質化されることがわ
かる。また、油の全塩素含有率を比較すると、本実施例
に従い回収した油では80ppmと低い値であるのに対
し、比較例の回収油では1200ppmという高い値であっ
た。この結果から、本発明により塩素固定化剤の塩素除
去効果が持続していることがわかる。
From these results, according to this embodiment, the boiling point is 3
It can be seen that heavy components having a temperature of 00 ° C. or higher are refluxed and transformed. When the total chlorine content of the oil was compared, the oil recovered according to this example had a low value of 80 ppm, whereas the recovered oil of the comparative example had a high value of 1200 ppm. From these results, it can be seen that the chlorine removing agent of the present invention maintains the chlorine removing effect.

【0020】[0020]

【発明の効果】高温の熱分解ガスが大量に発生すること
を防止して、還流槽における重質成分と軽質成分の分離
を確実に行うための手段を提供することができる。
According to the present invention, it is possible to provide a means for preventing a large amount of high-temperature pyrolysis gas from being generated and for reliably separating heavy and light components in the reflux tank.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的システムを表す説明図。FIG. 1 is an explanatory diagram showing a basic system of the present invention.

【符号の説明】[Explanation of symbols]

1…熱分解槽、2…冷却器、3…還流槽、4…塩素固定
化槽、5…凝縮器、6…気液分離器。
DESCRIPTION OF SYMBOLS 1 ... Thermal decomposition tank, 2 ... Cooler, 3 ... Reflux tank, 4 ... Chlorine fixation tank, 5 ... Condenser, 6 ... Gas-liquid separator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嵐 紀夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Norio Arashi 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Hisao Yamashita 7-1 Omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Inside the Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】廃プラスチックを熱分解する熱分解槽と、
前記熱分解槽で発生した分解ガスを所定の温度に冷却し
て前記分解ガス中の重質成分を凝縮液化する冷却器と、
前記冷却器で凝縮液化した重質成分とガス状の軽質成分
を分離し、さらにガス状の軽質成分に混入しているミス
ト状の重質成分を除去し、前記冷却器で液化した重質成
分とともに熱分解槽に還流する還流槽と、前記還流槽で
分離された前記軽質ガスを冷却して一部を凝縮液化して
油とする凝縮器と、前記凝縮器で得られた油と非凝縮ガ
スとを分離する気液分離器とを含む廃プラスチック油化
装置の運転方法において、前記冷却器の出口におけるガ
ス状の軽質成分の温度が所定の範囲内の値をとるように
前記熱分解槽の加熱量を制御することによって分解ガス
の発生速度を平均化することを特徴とする廃プラスチッ
ク油化処理装置の運転方法。
1. A pyrolysis tank for pyrolyzing waste plastics,
A cooler that cools the decomposition gas generated in the thermal decomposition tank to a predetermined temperature and condenses and liquefies heavy components in the decomposition gas,
The heavy component condensed and liquefied in the cooler is separated from the gaseous light component, the mist-like heavy component mixed in the gaseous light component is further removed, and the heavy component liquefied in the cooler is removed. A reflux tank for returning to the pyrolysis tank together with the condenser, a condenser for cooling the light gas separated in the reflux tank and partially condensing and liquefying the oil, and non-condensing with the oil obtained in the condenser. A method for operating a waste plastic oil liquefaction apparatus including a gas-liquid separator for separating gas from the gas, wherein the temperature of the gaseous light component at the outlet of the cooler takes a value within a predetermined range. A method for operating a waste plastic oil treatment apparatus, wherein the rate of generation of cracked gas is averaged by controlling the amount of heating of the waste plastics.
JP9009176A 1997-01-22 1997-01-22 Operation of apparatus for oil-making treatment of waste plastic Pending JPH10204443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9009176A JPH10204443A (en) 1997-01-22 1997-01-22 Operation of apparatus for oil-making treatment of waste plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9009176A JPH10204443A (en) 1997-01-22 1997-01-22 Operation of apparatus for oil-making treatment of waste plastic

Publications (1)

Publication Number Publication Date
JPH10204443A true JPH10204443A (en) 1998-08-04

Family

ID=11713265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9009176A Pending JPH10204443A (en) 1997-01-22 1997-01-22 Operation of apparatus for oil-making treatment of waste plastic

Country Status (1)

Country Link
JP (1) JPH10204443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604606A (en) * 2009-06-30 2009-12-16 惠州市奥美特环境科技有限公司 Resource recycle method for waste tubes
CN104974770A (en) * 2015-06-16 2015-10-14 李小林 Harmless oxygen-free carbonization treatment system for domestic garbage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604606A (en) * 2009-06-30 2009-12-16 惠州市奥美特环境科技有限公司 Resource recycle method for waste tubes
CN104974770A (en) * 2015-06-16 2015-10-14 李小林 Harmless oxygen-free carbonization treatment system for domestic garbage

Similar Documents

Publication Publication Date Title
RU2624710C1 (en) Gas treatment plant
US7847136B2 (en) Device and method for recovering fractional hydrocarbons from recycled plastic fractions and/or oily residues
US7569194B2 (en) Waste heat energy recovery method and system
US4322265A (en) Atmospheric glycol reclaimer with vapor recycle
CA2809118C (en) Natural gas dehydrator and system
JPS6128585A (en) Retreatment of carbonized gas upon cracking waste
JP2009536913A5 (en)
NO157887B (en) METHOD AND APPARATUS FOR CONTINUOUS CONDENSATION OF A STEAM COMPONENT IN A GAS MIXTURE.
US5362381A (en) Method and apparatus for conversion of waste oils
US3926591A (en) Regeneration of scrubbing agent used for the removal of co' 2 'and h' 2's from gases containing polymerizable hydrocarbons
US2749281A (en) Controlling rich oil with constant kettle temperature by varying the water content of the kettle section
JPH10204443A (en) Operation of apparatus for oil-making treatment of waste plastic
JPS5959787A (en) Dehydration of coal tar
CA2893218C (en) Natural gas dehydrator and system
US2180386A (en) Separation of acetylene from gaseous mixtures
US2725337A (en) Heater
CA1085336A (en) Multistage evaporator apparatus and method of distilling petroleum
JPS5829987B2 (en) Method for producing hydrocarbon oil from crosslinked polyethylene
US4194924A (en) Process for reclaiming aircraft fuel tank purging fluids
US2487184A (en) Butadiene purification
JP3621597B2 (en) Waste gas treatment apparatus and treatment method thereof
JPH10273676A (en) Apparatus for obtaining oil from waste plastic
US3304727A (en) Reflux condensation by heat exchange with a composite stream
US1848051A (en) High vacuum steam distillation
WO2011016797A1 (en) Low-energy waste gas cooling using direct contact condenser