JPH10204197A - Porous membrane, battery separator made thereof and production of the membrane - Google Patents

Porous membrane, battery separator made thereof and production of the membrane

Info

Publication number
JPH10204197A
JPH10204197A JP9008314A JP831497A JPH10204197A JP H10204197 A JPH10204197 A JP H10204197A JP 9008314 A JP9008314 A JP 9008314A JP 831497 A JP831497 A JP 831497A JP H10204197 A JPH10204197 A JP H10204197A
Authority
JP
Japan
Prior art keywords
stretching
film
porous membrane
porous
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008314A
Other languages
Japanese (ja)
Inventor
Yoshinobu Watanabe
義宣 渡辺
Hiroyuki Higuchi
浩之 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9008314A priority Critical patent/JPH10204197A/en
Publication of JPH10204197A publication Critical patent/JPH10204197A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details

Abstract

PROBLEM TO BE SOLVED: To provide a porous membrane having high air permeability and high mechanical strengths. SOLUTION: A nonporous film formed from a crystalline polymer is pre- stretched to a degree of reduction of thickness of 5-35% at a temperature from (Tm-50 deg.C) to Tm deg.C, while it is kept in the nonporous state. The film is then heat-treated and stretched to form a porous membrane. Preferably, the above stretching is carried out in two stages one of which consists of stretching at a temperature as low as -20 to 80 deg.C and the other of which consists of stretching at a temperature as high as (Tm-40) deg.C to Tm deg.C. It is desirable that the crystalline polymer is at least either of polyethylene and polypropylene. The porous membrane should have a porosity of 30-95% and have a tensile strength of 2,050kg/cm<2> or above in at least one direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質膜およびそ
れを用いた電池用セパレータ並びにその製造方法に関す
るものである。
The present invention relates to a porous membrane, a battery separator using the same, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、結晶性ポリマーから形成され
たフィルム(前駆体フィルム)に、その表裏両面を貫通
する微細孔を形成して多孔質膜を作製する技術が、種々
知られている。例えば、特公昭57−47017号公報
または特開平7−216118号公報等に記載の技術に
よれば、高い引張強度を有する多孔質膜が作製できる。
また、特開平2−276833号公報においては、多孔
質化する前の前駆体フィルムの強度の縦・横比の大きさ
を改善する技術が記載されている。
2. Description of the Related Art Conventionally, various techniques have been known for producing a porous film by forming fine holes penetrating both front and back surfaces of a film (precursor film) formed from a crystalline polymer. For example, according to the technology described in Japanese Patent Publication No. 57-47017 or JP-A-7-216118, a porous film having high tensile strength can be produced.
Japanese Patent Application Laid-Open No. Hei 2-276833 describes a technique for improving the strength-to-width ratio of the strength of a precursor film before it is made porous.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、多孔質
膜を使用する種々の分野において、引張強度等の機械的
強度がさらに高い多孔質膜が求められている。
However, in various fields using a porous membrane, a porous membrane having higher mechanical strength such as tensile strength has been demanded.

【0004】例えば、多孔質膜の用途の一つとして電池
用セパレータがあり、筒型電池に使用される電池用セパ
レータは、電池作製の際、電極とともに捲回される。こ
の捲回において、高強度のセパレータを用いれば捲回速
度を上げることができ、生産性の向上につながる。ま
た、電池用セパレータの機械的強度が高ければ、電池の
内部短絡を防ぐことができ、電池の安全性においても、
多孔質膜の機械的強度は重要である。
[0004] For example, one of the uses of a porous membrane is a battery separator, and a battery separator used for a cylindrical battery is wound together with an electrode when a battery is manufactured. In this winding, if a high-strength separator is used, the winding speed can be increased, which leads to an improvement in productivity. In addition, if the mechanical strength of the battery separator is high, it is possible to prevent internal short circuit of the battery, and in terms of battery safety,
The mechanical strength of the porous membrane is important.

【0005】また、多孔質膜は、分離膜、衣料用の通気
性フィルム等に使用されているが、これらの用途におい
ても、耐久性は重要であり、引張強度等の機械的強度の
向上が要求される。
[0005] In addition, porous membranes are used for separation membranes, breathable films for clothing, and the like. In these applications, durability is important, and improvement in mechanical strength such as tensile strength is required. Required.

【0006】このような要求に対し、前記特公昭57−
47017号公報および特開平7−216118号公報
に記載の技術では、充分な機械的強度を有する多孔質膜
を作製することができない。また、前記特開平2−27
6833号公報では、多孔質膜自身の機械的強度の向上
の問題に関しては、詳細に述べられていない。
In response to such a demand, the above-mentioned Japanese Patent Publication No.
The techniques described in JP-A-47017 and JP-A-7-216118 cannot produce a porous membrane having sufficient mechanical strength. In addition, Japanese Patent Laid-Open No. 2-27
Japanese Patent No. 6833 does not describe in detail the problem of improving the mechanical strength of the porous film itself.

【0007】したがって、本発明の目的は、引張強度等
の機械的強度が充分に高い多孔質膜およびそれを用いた
電池用セパレータ並びにその製造方法を提供することで
ある。
Accordingly, an object of the present invention is to provide a porous membrane having sufficiently high mechanical strength such as tensile strength, a battery separator using the same, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の多孔質膜は、結晶性ポリマーから形成さ
れ、空孔率が30〜95%の範囲であり、少なくとも一
方向の引張強度が2050kg/cm2 以上である。
In order to achieve the above object, a porous membrane of the present invention is formed from a crystalline polymer, has a porosity in the range of 30 to 95%, and has a tensile strength in at least one direction. The strength is 2050 kg / cm 2 or more.

【0009】すなわち、結晶性ポリマーから形成され、
空孔率が30〜95%の範囲であり、少なくとも一方向
の引張強度が2050kg/cm2 以上であれば、各種
分野の要求に応じることができる高い機械的強度を有す
る多孔質膜となる。
That is, it is formed from a crystalline polymer,
When the porosity is in the range of 30 to 95% and the tensile strength in at least one direction is 2050 kg / cm 2 or more, a porous film having high mechanical strength that can meet the requirements of various fields is obtained.

【0010】そして、本発明の電池用セパレータは、前
記本発明の多孔質膜からなる。前述のように、本発明の
多孔質膜は、充分な機械的強度を備えているため、これ
を電池用セパレータに適用すれば、例えば、筒型電池の
製造において、捲回速度を上げることができ、また得ら
れる電池の安全性も向上するようになる。
The battery separator of the present invention comprises the porous membrane of the present invention. As described above, since the porous membrane of the present invention has sufficient mechanical strength, if this is applied to a battery separator, for example, in the production of a cylindrical battery, the winding speed can be increased. And the safety of the resulting battery is improved.

【0011】つぎに、本発明の多孔質膜の製造方法は、
結晶性ポリマーの融点温度をTmとした場合、前記結晶
性ポリマーから形成されたフィルムを、(Tm−50
℃)以上Tm℃以下の温度条件下で厚み減少率5〜35
%となるように予備延伸をし、ついで熱処理したのち延
伸して多孔質化するという製造方法である。
Next, the method for producing a porous membrane of the present invention comprises:
When the melting point temperature of the crystalline polymer is Tm, the film formed from the crystalline polymer is (Tm-50)
° C) or more and Tm ° C or less but under a temperature condition of 5 to 35%.
%, Then pre-stretched, and then heat-treated and then stretched to make it porous.

【0012】この製造方法によれば、空孔率が30〜9
5%の範囲であり、少なくとも一方向の引張強度が20
50kg/cm2 以上の結晶性ポリマーから形成された
本発明の多孔質膜を製造することができる。
According to this manufacturing method, the porosity is 30 to 9
5%, and the tensile strength in at least one direction is 20%.
The porous membrane of the present invention formed from a crystalline polymer of 50 kg / cm 2 or more can be produced.

【0013】なお、本発明において、結晶性ポリマーの
融点Tmは、例えば、示差走査熱量計(DSC)を用い
た測定により、結晶性ポリマーの結晶融点(℃)として
得ることができる。また、前記フィルムが2種類以上の
結晶性ポリマーから形成されている場合、融点が低いほ
うの融点を前記結晶性ポリマーの融点Tmとする。
In the present invention, the melting point Tm of the crystalline polymer can be obtained as the crystalline melting point (° C.) of the crystalline polymer by, for example, measurement using a differential scanning calorimeter (DSC). When the film is formed of two or more types of crystalline polymers, the melting point having the lower melting point is defined as the melting point Tm of the crystalline polymer.

【0014】前記空孔率とは、多孔質膜の体積に対する
空孔の体積の割合である。
The porosity is the ratio of the volume of the pores to the volume of the porous film.

【0015】前記厚み減少率(%)は、下記の式(数
1)で表されるように、予備延伸前のフィルム厚み
(A)に対する予備延伸後のフィルム厚み(B)の百分
率である。
The thickness reduction rate (%) is a percentage of the film thickness (B) after the pre-stretching to the film thickness (A) before the pre-stretching, as represented by the following equation (Equation 1).

【0016】[0016]

【数1】厚み減少率(%)=(A/B)×100## EQU1 ## Thickness reduction rate (%) = (A / B) × 100

【0017】本発明の多孔質膜の製造方法において、前
記予備延伸は、前記結晶性ポリマーから形成された無孔
質フィルムの無孔構造を保持しながら行うことが好まし
い。
In the method for producing a porous membrane according to the present invention, the pre-stretching is preferably performed while maintaining a non-porous structure of a non-porous film formed from the crystalline polymer.

【0018】また、本発明の多孔質膜の製造方法におい
て、前記結晶性ポリマーは、ポリエチレンおよびポリプ
ロピレンの少なくとも一方のポリマーであることが好ま
しい。これらのポリマーは、耐薬品性、耐酸性および耐
アルカリ性等の諸特性に優れるからである。
In the method for producing a porous membrane according to the present invention, the crystalline polymer is preferably at least one of polyethylene and polypropylene. This is because these polymers are excellent in various properties such as chemical resistance, acid resistance and alkali resistance.

【0019】[0019]

【発明の実施の形態】つぎに、本発明の実施の形態につ
いて説明する。本発明の多孔質膜は、例えば、結晶性ポ
リマーから形成された無孔質フィルムを、前記所定の条
件で予備延伸を行い、ついで熱処理したのち延伸して多
孔質化することにより製造できる。
Next, an embodiment of the present invention will be described. The porous membrane of the present invention can be produced, for example, by pre-stretching a non-porous film formed from a crystalline polymer under the above-mentioned predetermined conditions, then heat-treating the film, and then stretching the film to make it porous.

【0020】前記結晶性ポリマーは、特に制限するもの
ではなく、例えば、ポリエチレン、ポリプロピレン、ポ
リ4メチルペンテン1、ポリブテン1等のポリオレフィ
ン類、ポリ弗化ビニル、ポリ弗化ビニリデン等のポリ弗
化オレフィン類、ポリエチレンテレフタレート、ポリエ
チレンナフタレート、ポリブチレンテレフタレート等の
ポリエステル類、ポリフェニレンスルフイド、ポリオキ
シメチレン、ポリアミド等があげられる。
The crystalline polymer is not particularly restricted but includes, for example, polyolefins such as polyethylene, polypropylene, poly (4-methylpentene 1) and polybutene 1, and polyfluorinated olefins such as polyvinyl fluoride and polyvinylidene fluoride. And polyesters such as polyethylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, polyphenylene sulfide, polyoxymethylene, polyamide and the like.

【0021】これらのなかで、微細孔を効率的に形成す
る上で、到達結晶化度が高い樹脂が好ましく、上記の中
でも、ポリオレフィン類、ポリ弗化オレフィン類、ポリ
アミド類、ポリオキシメチレン等が好ましい。特に好ま
しくは、耐薬品性、耐酸性、耐アルカリ性等の諸特性に
優れたポリオレフィン類であり、最適には、先に述べた
ように、ポリエチレン、ポリプロピレンである。なお、
これら結晶性ポリマーは、単独でも2種類以上併用して
もよい。
Among them, a resin having a high degree of attained crystallinity is preferable for efficiently forming micropores. Among the above, polyolefins, polyfluorinated olefins, polyamides, polyoxymethylene and the like are preferable. preferable. Particularly preferred are polyolefins having excellent properties such as chemical resistance, acid resistance, and alkali resistance, and most preferably, polyethylene and polypropylene, as described above. In addition,
These crystalline polymers may be used alone or in combination of two or more.

【0022】つぎに、前記結晶性ポリマーから形成され
た無孔質フィルムを予備延伸する。なお、前記結晶性ポ
リマーから無孔質フィルムを形成する方法は、通常のプ
ラスチック成形法で使用されるフィルム成形法が適用で
きる。
Next, the non-porous film formed from the crystalline polymer is pre-stretched. In addition, as a method of forming a nonporous film from the crystalline polymer, a film forming method used in a usual plastic forming method can be applied.

【0023】前記予備延伸は、前駆体フィルムをその無
孔構造を保ちながら延伸することが好ましい。また、延
伸温度は、(Tm−50)℃以上Tm℃以下の範囲であ
る。延伸温度がこれより低いと、フィルム破断が生じる
ことがあり、またフィルムのしわなどが生じ外観不良の
原因となる。また、前記温度範囲を超えると、フィルム
の多孔質化が困難となる。この温度条件の好ましい範囲
は、100〜125℃である。この予備延伸は、通常、
一軸方向の延伸であり、予備延伸の方法は特に制限され
ず、例えば、従来からフィルム延伸の分野で使用される
ロール延伸法、ロール圧延法、テンター延伸等を用いる
ことができる。予備延伸時における厚み減少率は5〜3
5%の範囲である必要がある。厚み減少率がこれより小
さいと。多孔質膜となった際、引張強度が高くならず、
また厚み減少率がこれより大きいとフィルムの破断が生
じたり、多孔質膜化が困難となるからである。この厚み
減少率の好ましい範囲は、7〜25%である。
In the pre-stretching, the precursor film is preferably stretched while maintaining its non-porous structure. The stretching temperature is in a range from (Tm-50) ° C to Tm ° C. If the stretching temperature is lower than this, the film may be broken, and the film may be wrinkled, resulting in poor appearance. If the temperature exceeds the above range, it becomes difficult to make the film porous. A preferable range of the temperature condition is 100 to 125 ° C. This pre-stretching is usually
The stretching is uniaxial, and the method of preliminary stretching is not particularly limited. For example, a roll stretching method, a roll rolling method, a tenter stretching, and the like conventionally used in the field of film stretching can be used. The thickness reduction rate during pre-stretching is 5 to 3
It must be in the range of 5%. If the thickness reduction rate is smaller than this. When it becomes a porous membrane, the tensile strength does not increase,
On the other hand, if the thickness reduction ratio is larger than this, the film will break or it will be difficult to form a porous film. A preferable range of the thickness reduction rate is 7 to 25%.

【0024】つぎに、予備延伸したフィルムを熱処理す
る。この熱処理の条件は特に制限されず、フィルムを形
成する結晶性ポリマーの種類等により適宜決定される。
通常、フィルムの結晶融点をTmとすると、熱処理温度
は、(Tm−40)℃以上(Tm−5)℃以下である。
ただしフィルム構成材料が2種以上のとき、結晶融点の
最も高いものをTma℃、最も低いものをTmb℃とす
ると、熱処理温度は(Tmb−40)℃〜(Tma−
5)℃である。また、熱処理の時間は、通常、約2秒〜
24時間である。このような熱処理を施すことにより、
フィルムの結晶化度が高められ、後に行われる延伸によ
る微細孔の形成が容易になり、空孔率の高い多孔質膜が
得られる。
Next, the pre-stretched film is heat-treated. The conditions for this heat treatment are not particularly limited, and are appropriately determined depending on the type of the crystalline polymer forming the film, and the like.
Usually, assuming that the crystal melting point of the film is Tm, the heat treatment temperature is (Tm-40) C or higher and (Tm-5) C or lower.
However, when there are two or more film constituent materials, the heat treatment temperature is (Tmb−40) ° C. to (Tma−), where Tma ° C. is the highest crystal melting point and Tmb ° C. the lowest.
5) It is ° C. The heat treatment time is usually about 2 seconds to
24 hours. By performing such a heat treatment,
The crystallinity of the film is increased, and the formation of fine pores by stretching performed later is facilitated, so that a porous film having a high porosity can be obtained.

【0025】つぎに、熱処理されたフィルムを延伸して
多孔質化する。この延伸は、通常、低温度条件で延伸を
行った後、高温度条件で延伸を行う2段階の延伸処理で
行うことが好ましい。
Next, the heat-treated film is stretched to be porous. Usually, this stretching is preferably performed by a two-stage stretching process in which stretching is performed at a low temperature condition and then stretching is performed at a high temperature condition.

【0026】前記低温度条件の延伸は、通常、−20〜
80℃の低温度領域で1軸方向で行われる。なお、以
下、−20〜80℃での延伸を「低温延伸」という。延
伸温度が、この範囲より低いと作業中にフィルム破断が
生じるおそれがあり、また延伸温度がこの範囲より高い
と多孔質膜化が困難になるおそれがある。前記延伸温度
の好ましい範囲は、0〜50℃である。また、延伸の方
法は、特に制限されず、従来から用いられている、ロー
ル延伸法、テンター延伸などを適用できる。低温延伸に
おける延伸倍率は、特に限定されるものではないが、通
常、約20〜400%、好ましくは約40〜300%で
ある。この延伸倍率(%)は、低温延伸前のフィルム寸
法(L)と低温延伸後におけるフィルム寸法(LB)か
ら、下記の式(数2)により求められる。
The stretching under the low temperature condition is usually performed at -20 to -20.
It is performed in a uniaxial direction in a low temperature region of 80 ° C. Hereinafter, the stretching at −20 to 80 ° C. is referred to as “low temperature stretching”. If the stretching temperature is lower than this range, the film may be broken during the operation, and if the stretching temperature is higher than this range, it may be difficult to form a porous film. A preferred range of the stretching temperature is 0 to 50 ° C. The stretching method is not particularly limited, and a roll stretching method, a tenter stretching method, and the like, which are conventionally used, can be applied. The stretching ratio in the low-temperature stretching is not particularly limited, but is usually about 20 to 400%, preferably about 40 to 300%. The stretching ratio (%) is obtained from the film size (L) before low-temperature stretching and the film size (LB) after low-temperature stretching by the following formula (Equation 2).

【0027】[0027]

【数2】 延伸倍率(%)=[(LB−L)/L]×100## EQU2 ## Stretching ratio (%) = [(LB-L) / L] × 100

【0028】つぎに、低温延伸されたフィルムは、フィ
ルムの結晶融点(℃)をTmとすると、(Tm−40)
℃以上Tm℃以下の高温度域で延伸される。ただし、フ
ィルムが2種類以上の結晶性ポリマーを用いて形成され
ている場合は、結晶融点の最も低いポリマーの融点をT
mb(℃)とすると、熱延伸温度は(Tmb−40)℃
〜Tmb℃とする。以下、この温度領域での延伸を「高
温延伸」という。高温延伸の温度範囲を上記範囲とする
のは、前記低温延伸と同様の理由であり、延伸温度が前
記範囲より低いと作業中にフィルム破断が生じるおそれ
があり、また延伸温度が前記範囲より高いと多孔質膜化
が困難になるおそれがあるからである。高温延伸は、通
常、前記低温延伸時における延伸方向と同方向に行われ
るが、他の方向へ行ってもよい。また、延伸方法は、特
に制限されず、前記低温延伸と同様の方法が採用でき
る。高温延伸時における延伸倍率は特に限定されるもの
ではないが、通常、約10〜500%、好ましくは約1
00〜300%である。この延伸倍率は、低温延伸前の
フィルム寸法(L)、低温延伸後(高温延伸前)のフィ
ルム寸法(LB)および高温延伸後のフィルム寸法(L
H)から、下記の式(数3)により求められる。
Next, in the case of a film stretched at a low temperature, the crystal melting point (° C.) of the film is defined as Tm.
The film is stretched in a high temperature range of not lower than Tm and not higher than Tm ° C. However, when the film is formed using two or more types of crystalline polymers, the melting point of the polymer having the lowest crystalline melting point is defined as T.
mb (° C.), the hot stretching temperature is (Tmb−40) ° C.
To Tmb ° C. Hereinafter, the stretching in this temperature range is referred to as “high-temperature stretching”. The reason for setting the temperature range of the high-temperature stretching to the above range is the same as the low-temperature stretching described above. If the stretching temperature is lower than the above range, the film may be broken during the operation, and the stretching temperature is higher than the above range. This is because the formation of a porous film may be difficult. The high temperature stretching is usually performed in the same direction as the stretching direction at the time of the low temperature stretching, but may be performed in another direction. The stretching method is not particularly limited, and the same method as the low-temperature stretching can be employed. The stretching ratio at the time of high temperature stretching is not particularly limited, but is usually about 10 to 500%, preferably about 1 to 500%.
00 to 300%. The draw ratios are as follows: the film size before low-temperature stretching (L), the film size after low-temperature stretching (before high-temperature stretching) (LB), and the film size after high-temperature stretching (L
H) is obtained from the following equation (Equation 3).

【0029】[0029]

【数3】 延伸倍率(%)=[(LH−LB)/L]×100## EQU00003 ## Stretching ratio (%) = [(LH-LB) / L] .times.100

【0030】このようにして本発明の多孔質膜が得られ
るが、寸法安定性を向上させるため、さらに、以下に示
す収縮処理およびヒートセットの少なくとも一方の処理
を行うことが好ましいく、特に好ましくは両方の処理を
行うことである。
Thus, the porous membrane of the present invention is obtained. In order to improve the dimensional stability, it is preferable to further perform at least one of the following shrinking treatment and heat setting, and particularly preferably Is to perform both processes.

【0031】前記収縮処理は、多孔質膜に前記低温延伸
および高温延伸の際に作用する応力が残留しており、こ
の残留応力により多孔質膜が延伸方向に収縮して寸法変
化を生じ易いので、延伸後に延伸方向の寸法を収縮させ
ておくことにより、寸法安定性を高める処理である。こ
の収縮処理は、例えば、延伸温度と同程度の加熱条件下
で行うことができる。収縮の度合いは任意でよいが、通
常、延伸後のフィルム寸法が約10〜40%減少する程
度とする。
In the shrinkage treatment, the stress acting during the low-temperature stretching and the high-temperature stretching remains in the porous film, and the residual stress causes the porous film to shrink in the stretching direction and easily cause a dimensional change. This is a process for improving the dimensional stability by contracting the dimension in the stretching direction after stretching. This shrinking treatment can be performed, for example, under heating conditions similar to the stretching temperature. Although the degree of shrinkage may be arbitrarily determined, it is usually set to such an extent that the film size after stretching is reduced by about 10 to 40%.

【0032】前記ヒートセットは、多孔質膜の延伸方向
の寸法が変化しないように規制し、延伸温度またはそれ
以上の温度で加熱する処理である。このヒートセットに
よっても前記収縮処理同様に寸法安定性を優れたものと
することができる。
The heat setting is a treatment in which the dimension of the porous membrane in the stretching direction is controlled so as not to change, and heating is performed at a stretching temperature or higher. By this heat setting, the dimensional stability can be improved similarly to the shrinkage treatment.

【0033】本発明の多孔質膜は、少なくとも一方向の
引張強度が2050kg/cm2 以上であり、空孔率3
0〜95%である。なお、空孔率が、前記範囲より低い
と通気性が低下し、例えば電池用セパレータに使用され
る際、電池の放電特性を低下させるおそれがある。ま
た、空孔率が前記範囲より高いと、通気性は向上する
が、多孔質膜としての機械的強度、耐久性の低下につな
がる。前記空孔率の好ましい範囲は、35〜60%であ
る。
The porous membrane of the present invention has a tensile strength in at least one direction of at least 2050 kg / cm 2 and a porosity of 3
0 to 95%. If the porosity is lower than the above range, the air permeability decreases, and for example, when used for a battery separator, the discharge characteristics of the battery may be reduced. On the other hand, if the porosity is higher than the above range, the air permeability is improved, but the mechanical strength and durability of the porous film are reduced. A preferred range of the porosity is 35 to 60%.

【0034】本発明の多孔質膜は、少なくとも一方向の
引張強度が2050kg/cm2 以上であり機械強度に
優れている。このような高強度の多孔質膜は、各分野で
求められており、実際使用された場合、作業性、生産
性、耐久性の向上につながり、また本発明の多孔質膜は
高通気性でもある。したがって、本発明の多孔質膜は、
電池用セパレータ、分離膜、建築用通気性フィルム、衣
料用フィルム等の種々の用途に適用できる。
The porous membrane of the present invention has a tensile strength in at least one direction of at least 2050 kg / cm 2 and is excellent in mechanical strength. Such a high-strength porous membrane is required in various fields, and when actually used, leads to improvement in workability, productivity, and durability, and the porous membrane of the present invention has a high permeability. is there. Therefore, the porous membrane of the present invention,
It can be applied to various uses such as battery separators, separation membranes, architectural breathable films, and clothing films.

【0035】本発明の多孔質膜を電池用セパレータとし
て使用する場合は、そのままの状態で使用してもよい
し、その他の支持材等を組み合わせて使用してもよい。
When the porous membrane of the present invention is used as a battery separator, it may be used as it is, or may be used in combination with other supporting materials.

【0036】[0036]

【実施例】つぎに、実施例について比較例と併せて説明
する。 (実施例1)メルトインデックス(MI)0.5のポリ
プロピレン(PP)とMI1.3で密度0.966の高
密度ポリエチレン(HDPE)を材料とした3層(構
成:外層PP(14μm)、中間層PP/HDPE=2
/8(10μm))からなる総厚み38μmの結晶性ポ
リマー前駆体フィルムを準備した。なお、前記中間層に
おける2/8は、重量比である。
Next, examples will be described together with comparative examples. Example 1 Three layers made of polypropylene (PP) having a melt index (MI) of 0.5 and high density polyethylene (HDPE) having an MI of 1.3 and a density of 0.966 (composition: outer layer PP (14 μm), intermediate layer) Layer PP / HDPE = 2
/ 8 (10 μm)) to prepare a crystalline polymer precursor film having a total thickness of 38 μm. Note that 2/8 in the intermediate layer is a weight ratio.

【0037】この前駆体フィルムを、ロール温度120
℃、厚み減少率7%となるようにロール延伸で予備延伸
を行った。ついで、予備延伸したフィルムを、表面温度
148℃の金属ロールに80秒間接触させ熱処理した。
そして、このフィルムを50℃で80%低温延伸し、つ
いで120℃で180%高温延伸し、さらに120℃で
最大延伸時のフィルム長さを基準に20%収縮させ、厚
み26μmの多孔質膜を得た。この多孔質膜は空孔率4
5%、引張強度2070kg/cm2 であった。なお、
前記引張強度は、引張強度試験機を用いて測定し、空孔
率は、下記の式(数4)により求めた。下記式において
試料とは、測定に供した多孔質膜である。
The precursor film was rolled at a roll temperature of 120.
Preliminary stretching was carried out by roll stretching so that the temperature was reduced to 7 ° C and the thickness reduction rate became 7%. Next, the pre-stretched film was brought into contact with a metal roll having a surface temperature of 148 ° C. for 80 seconds and heat-treated.
Then, the film is stretched at 50 ° C. at a low temperature of 80%, then stretched at a temperature of 120 ° C. at a high temperature of 180%, and further shrinked at 120 ° C. by 20% based on the film length at the time of the maximum stretching. Obtained. This porous membrane has a porosity of 4
5% and a tensile strength of 2,070 kg / cm 2 . In addition,
The tensile strength was measured using a tensile strength tester, and the porosity was determined by the following equation (Equation 4). In the following formula, the sample is the porous membrane used for the measurement.

【0038】[0038]

【数4】空孔率(%)=[1−(試料重量)/(試料面
積×厚み×樹脂密度)]×100
Porosity (%) = [1− (sample weight) / (sample area × thickness × resin density)] × 100

【0039】(実施例2)予備延伸での厚み減少率を1
2%にした以外は、実施例1と同様にして厚み24μm
の多孔質膜を得た。この多孔質膜について、実施例1と
同様にして測定を行った結果、空孔率44%、引張強度
2100kg/cm2 であった。
(Example 2) The thickness reduction rate in pre-stretching was 1
Except for 2%, the thickness was 24 μm in the same manner as in Example 1.
Was obtained. This porous membrane was measured in the same manner as in Example 1, and as a result, the porosity was 44% and the tensile strength was 2100 kg / cm 2 .

【0040】(実施例3)予備延伸での厚み減少率を2
1%にした以外は、実施例1と同様にして厚み22μm
の多孔質膜を得た。この多孔質膜について、実施例1と
同様にして測定を行った結果、空孔率42%、引張強度
2200kg/cm2 であった。
Example 3 The rate of thickness reduction in pre-stretching was 2
Except for 1%, the thickness was 22 μm as in Example 1.
Was obtained. The porous membrane was measured in the same manner as in Example 1. As a result, the porosity was 42% and the tensile strength was 2200 kg / cm 2 .

【0041】(実施例4)予備延伸での厚み減少率を3
0%にした以外は、実施例1と同様にして厚み21μm
の多孔質膜を得た。この多孔質膜について、実施例1と
同様にして測定を行った結果、空孔率40%、引張強度
2300kg/cm2 であった。
Example 4 The rate of thickness reduction in pre-stretching was 3
Except for 0%, the thickness was 21 μm in the same manner as in Example 1.
Was obtained. This porous membrane was measured in the same manner as in Example 1, and as a result, the porosity was 40% and the tensile strength was 2300 kg / cm 2 .

【0042】(比較例1)予備延伸を行わない以外は、
実施例1と同様にして厚み29μmの多孔質膜を得た。
この多孔質膜について、実施例1と同様にして測定を行
った結果、空孔率44%、引張強度1600kg/cm
2 であった。
(Comparative Example 1) Except that pre-stretching was not performed,
A porous film having a thickness of 29 μm was obtained in the same manner as in Example 1.
The porous membrane was measured in the same manner as in Example 1. As a result, the porosity was 44% and the tensile strength was 1600 kg / cm.
Was 2 .

【0043】(比較例2)予備延伸での厚み減少率を3
8%にした以外は、実施例1と同様にして厚み14μm
の多孔質膜を得た。この多孔質膜について、実施例1と
同様にして測定を行った結果、空孔率が26%で、通気
性の良くない膜となった。
(Comparative Example 2) The thickness reduction rate in the preliminary stretching was 3
Except that the thickness was 8%, the thickness was 14 μm in the same manner as in Example 1.
Was obtained. The porous membrane was measured in the same manner as in Example 1. As a result, the porosity was 26%, and the membrane had poor air permeability.

【0044】(比較例3)市販のPP製多孔質膜フィル
ム(厚さ27μm、空孔率39%)を用い実施例1と同
様にして引張強度を測定したところ1670kg/cm
2 であった。
Comparative Example 3 The tensile strength was measured in the same manner as in Example 1 using a commercially available porous membrane film made of PP (thickness: 27 μm, porosity: 39%).
Was 2 .

【0045】[0045]

【発明の効果】以上のように、本発明の多孔質膜は、高
通気性であり、従来の多孔質膜と比べて引張強度等の機
械的強度が高く、各種分野の要求を充分に満たすもので
ある。このため、本発明の多孔質膜を、例えば、筒型電
池の電池用セパレータとして使用すれば、その捲回速度
を速めることができ、電池の生産性を向上させることが
できる。また、電池の内部短絡も効果的に防止できるた
め、電池の安全性および信頼性の向上が期待できる。さ
らに、本発明の多孔質膜を、例えば、分離膜、建築用通
気フィルム、衣料用通気フィルムに適用すると、高性能
で耐久性に優れた分離膜、建築用通気フィルム、衣料用
通気フィルムとなる。
As described above, the porous membrane of the present invention has high air permeability, has high mechanical strength such as tensile strength as compared with conventional porous membranes, and sufficiently satisfies various fields. Things. Therefore, when the porous membrane of the present invention is used, for example, as a battery separator for a cylindrical battery, the winding speed can be increased, and the productivity of the battery can be improved. In addition, since the internal short circuit of the battery can be effectively prevented, improvement in the safety and reliability of the battery can be expected. Furthermore, when the porous membrane of the present invention is applied to, for example, a separation membrane, a building ventilation film, and a clothing ventilation film, a high-performance and highly durable separation membrane, a construction ventilation film, and a clothing ventilation film are obtained. .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結晶性ポリマーから形成され、空孔率が
30〜95%の範囲であり、少なくとも一方向の引張強
度が2050kg/cm2 以上である多孔質膜。
1. A porous membrane formed from a crystalline polymer, having a porosity in the range of 30 to 95% and a tensile strength in at least one direction of at least 2050 kg / cm 2 .
【請求項2】 請求項1に記載の多孔質膜からなる電池
用セパレータ。
2. A battery separator comprising the porous membrane according to claim 1.
【請求項3】 結晶性ポリマーの融点温度をTmとした
場合、前記結晶性ポリマーから形成された無孔質フィル
ムを、(Tm−50℃)以上Tm℃以下の温度条件下で
厚み減少率5〜35%となるように予備延伸を行い、つ
いで熱処理したのち延伸して多孔質化する多孔質膜の製
造方法。
3. When the melting point temperature of the crystalline polymer is Tm, the non-porous film formed from the crystalline polymer is reduced in thickness by 5% under a temperature condition of (Tm−50 ° C.) or more and Tm ° C. or less. A method for producing a porous film in which pre-stretching is performed so as to be 35% and then heat-treated and then stretched to make it porous.
【請求項4】 予備延伸を、結晶性ポリマーから形成さ
れた無孔質フィルムの無孔構造を保持しながら行う請求
項3記載の多孔質膜の製造方法。
4. The method for producing a porous membrane according to claim 3, wherein the pre-stretching is performed while maintaining the non-porous structure of the non-porous film formed from the crystalline polymer.
【請求項5】 結晶性ポリマーが、ポリエチレンおよび
ポリプロピレンの少なくとも一方のポリマーである請求
項3または4記載の多孔質膜の製造方法。
5. The method for producing a porous membrane according to claim 3, wherein the crystalline polymer is at least one polymer of polyethylene and polypropylene.
JP9008314A 1997-01-21 1997-01-21 Porous membrane, battery separator made thereof and production of the membrane Pending JPH10204197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008314A JPH10204197A (en) 1997-01-21 1997-01-21 Porous membrane, battery separator made thereof and production of the membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008314A JPH10204197A (en) 1997-01-21 1997-01-21 Porous membrane, battery separator made thereof and production of the membrane

Publications (1)

Publication Number Publication Date
JPH10204197A true JPH10204197A (en) 1998-08-04

Family

ID=11689705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008314A Pending JPH10204197A (en) 1997-01-21 1997-01-21 Porous membrane, battery separator made thereof and production of the membrane

Country Status (1)

Country Link
JP (1) JPH10204197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649816B1 (en) * 2004-03-09 2006-11-27 셀가드 인코포레이티드 Method of making a composite microporous membrane
CN105679984A (en) * 2016-03-29 2016-06-15 浙江地坤键新能源科技有限公司 Non-porous separator and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649816B1 (en) * 2004-03-09 2006-11-27 셀가드 인코포레이티드 Method of making a composite microporous membrane
CN105679984A (en) * 2016-03-29 2016-06-15 浙江地坤键新能源科技有限公司 Non-porous separator and application thereof

Similar Documents

Publication Publication Date Title
KR100409017B1 (en) Multi-component composite membrane and method for preparing the same
JP3779875B2 (en) Microporous membrane and method for producing the same
US6602593B1 (en) Battery separators with reduced splitting propensity
JP3011309B2 (en) Battery separator and method of manufacturing the same
JPH07304110A (en) Laminated porous film and production thereof
JP2010265414A (en) Microporous film, method for producing the same and battery separator
JP2016032934A (en) Manufacturing method of polyolefin-based multilayer composite porous film
JP5731762B2 (en) Microporous film, method for producing the same, and battery separator
JPH1050286A (en) Manufacture of separator for battery
JP2012015073A (en) Microporous film, method for producing the same, and battery separator
JP3436055B2 (en) Battery separator
JP3508510B2 (en) Laminated porous film and method for producing the same
JPH10204197A (en) Porous membrane, battery separator made thereof and production of the membrane
JP5765960B2 (en) Method for producing microporous film and battery separator
JP5258034B2 (en) Method for producing laminated microporous film
JP6294176B2 (en) Method for producing microporous film
JP5361363B2 (en) Laminated microporous film and method for producing the same
JP2004335255A (en) Manufacturing method of polyolefine microporous membrane
KR101753981B1 (en) Polypropylene lithium ion battery separator for high wettability of electrolyte
JPH10241659A (en) Manufacture of porous film for battery separator
JP2000063551A (en) Porous film and separator for battery
JP6040777B2 (en) Polypropylene porous membrane
JP2000299094A (en) Porous film layered product and battery separator using it
KR102322730B1 (en) Manufacturing method for a multilayered composite separator having strong interlayer adhesion
JPH0679659B2 (en) Method for producing porous polypropylene hollow fiber or film