JPH10201472A - Method for producing α-galactosidase and galactooligosaccharide - Google Patents

Method for producing α-galactosidase and galactooligosaccharide

Info

Publication number
JPH10201472A
JPH10201472A JP9025774A JP2577497A JPH10201472A JP H10201472 A JPH10201472 A JP H10201472A JP 9025774 A JP9025774 A JP 9025774A JP 2577497 A JP2577497 A JP 2577497A JP H10201472 A JPH10201472 A JP H10201472A
Authority
JP
Japan
Prior art keywords
galactosidase
derived
genus
microorganism belonging
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9025774A
Other languages
Japanese (ja)
Other versions
JP3856405B2 (en
Inventor
Hiroshi Fujimoto
浩 藤本
Katsumi Ajisaka
勝美 鯵坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP02577497A priority Critical patent/JP3856405B2/en
Publication of JPH10201472A publication Critical patent/JPH10201472A/en
Application granted granted Critical
Publication of JP3856405B2 publication Critical patent/JP3856405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】 【構成】 本発明は、Galα1-3Galを選択的に合成する
作用を有する微生物由来のα−ガラクトシダーゼおよ
び、ガラクトオリゴ糖またはガラクトース誘導体と糖ま
たはアルコールとを含有する水溶液で、本発明のα−ガ
ラクトシダーゼによる酵素反応を行わせしめて、α1-3
ガラクトシド結合を有する糖質を製造する方法である。 【効果】 本発明の製造方法によって得られる化合物
は、Galα1-3Galα−OpNP等のα1-3ガラクトシド結合し
た糖質であり、異種移植の拒絶反応抑制剤等の医薬品お
よびその合成原料として有用である。
(57) [Summary] The present invention relates to an aqueous solution containing a microorganism-derived α-galactosidase having an action of selectively synthesizing Galα1-3Gal, and an aqueous solution containing a galactooligosaccharide or a galactose derivative and a sugar or alcohol. The enzymatic reaction with α-galactosidase of the present invention
This is a method for producing a saccharide having a galactoside bond. The compound obtained by the production method of the present invention is a carbohydrate linked to α1-3 galactoside such as Galα1-3Galα-OpNP, and is useful as a drug such as a rejection inhibitor for xenografts and a raw material for synthesizing the same. .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微生物由来の新規
なα−ガラクトシダーゼおよびα1-3ガラクトシド結合
を有する糖質の製造法に関する。
TECHNICAL FIELD The present invention relates to a novel microorganism-derived α-galactosidase and a method for producing a saccharide having an α1-3 galactoside bond.

【0002】[0002]

【従来の技術】近年、免疫抑制剤などの進歩により臓器
移植の成績は画期的に向上している。それに伴い、臓器
移植の適応範囲も驚異的に拡大し、急激なドナー不足の
状態が欧米を中心に出現している。その対策として、免
疫学的にも生理学的にもヒトに近いブタをドナーとした
いわゆる"discordant"異種移植が検討されている。
2. Description of the Related Art In recent years, the results of organ transplantation have been dramatically improved due to advances in immunosuppressants and the like. Along with this, the scope of application for organ transplantation has expanded tremendously, and a sudden shortage of donors has emerged, mainly in Europe and the United States. As a countermeasure, so-called "discordant" xenotransplantation using pigs, which are immunologically and physiologically similar to humans, is being studied.

【0003】ところで、ブタをドナーとして発生する超
急性拒絶反応を抑制するための手段として、1)ヒト補
体抑制因子(DAF、HRF-20、MCP-1)の導入、2)ヒトが
ブタに対して持っている自然液性抗体〔大部分はブタの
ガラクトース糖鎖抗原:Galα1-3Galに対するもの〕の
不活性化の2つが考えられる。糖鎖抗原Galα1-3Galに
対する液性抗体(ヒト抗Galα1-3Gal抗体)の不活性化
の例として、Galα1-3Gal構造を有する糖質を投与する
と、該抗体が中和され、超急性拒絶反応が抑制されると
いう報告がある(D. K. C. Cooper, E. Koren, and R. O
riol, Xeno, vol.2, 22-25(1994)。すなわち、Galα1-3
Gal構造を有する糖質の有効量投与は、異種移植患者の
拒絶反応を抑制する作用がある。
[0003] By the way, as means for suppressing hyperacute rejection which occurs in pigs as donors, 1) introduction of human complement inhibitory factors (DAF, HRF-20, MCP-1), 2) human Inactivation of the natural humoral antibody (mostly against the galactose sugar chain antigen of pig: Galα1-3Gal) is considered. As an example of the inactivation of a humoral antibody against the carbohydrate antigen Galα1-3Gal (human anti-Galα1-3Gal antibody), administration of a carbohydrate having a Galα1-3Gal structure neutralizes the antibody and causes hyperacute rejection. (DKC Cooper, E. Koren, and R.O.
riol, Xeno, vol. 2, 22-25 (1994). That is, Galα1-3
Administration of an effective amount of a saccharide having a Gal structure has an effect of suppressing rejection in a xenograft patient.

【0004】α1-3ガラクトシド結合を有する糖質の合
成法に関しては、α−ガラクトシダーゼを用いた転移反
応による合成法についての報告がある(P. M. Dey, Phy
tochemistry, 1979, vol.18, 35-38および特公平8-2459
2)が、本報告のα−ガラクトシダーゼを用いた転移反
応では、α1-6結合したガラクトオリゴ糖が主生成物と
して得られ、α1-3結合したガラクトオリゴ糖を安価で
安定的に合成することは不可能である。
As for the method for synthesizing a saccharide having an α1-3 galactoside bond, there is a report on a method for synthesizing by a transfer reaction using α-galactosidase (PM Dey, Phy
tochemistry, 1979, vol.18, 35-38 and Tokuhei 8-2459
2) However, in the transfer reaction using α-galactosidase in this report, α1-6-linked galactooligosaccharides are obtained as the main product, and it is not possible to synthesize α1-3-linked galacto-oligosaccharides inexpensively and stably. It is possible.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、α1-3ガラクトシド結合を有する糖質を安価で安定
的に合成するための微生物由来の新規なα−ガラクトシ
ダーゼ、および該酵素を用いた当該糖質合成法を提供す
ることにある。
Accordingly, an object of the present invention is to provide a novel α-galactosidase derived from a microorganism for inexpensively and stably synthesizing a saccharide having an α1-3 galactoside bond, and to use the enzyme. The present invention provides a method for synthesizing a saccharide.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく種々検討した結果、前記α1-3ガラクトシ
ド結合を有する糖質を選択的に合成できる新規の微生物
由来α−ガラクトシダーゼ[EC3.2.1.22]を見出し、本発
明を完成した。すなわち、本発明は、特許請求の範囲に
記載の各請求項からなる。以下本発明を詳細に説明す
る。
Means for Solving the Problems As a result of various studies to solve the above problems, the present inventors have found that a novel microorganism-derived α-galactosidase which can selectively synthesize the saccharide having the α1-3 galactoside bond [ EC 3.2.1.22], and completed the present invention. That is, the present invention includes the claims described in the claims. Hereinafter, the present invention will be described in detail.

【0007】[0007]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0008】本発明のα−ガラクトシダーゼを産生する
微生物としては、例えば、ペニシリウム(Penicillium)
属、アスペルギルス(Aspergillus)属、あるいはストレ
プトミセス(Streptomyces)属に属する菌などがあげられ
る。このうち、ペニシリウム・フニキュロサムもしくは
アスペルギルス・オリザエが好ましい。これらの微生物
からα−ガラクトシダーゼを得るには、公知の方法、す
なわち、当該微生物を培養して、その培養液上清あるい
は微生物菌体から取得する方法が適用できる。あるい
は、市販酵素、例えば、セルラーゼ製剤等に混在したα
−ガラクトシダーゼを精製して用いることができる。
[0008] As microorganisms producing the α- galactosidase present invention, for example, Penicillium (Penicillium)
Genus Aspergillus (Aspergillus) genus, or a Streptomyces (Streptomyces) bacteria belonging to the genus, and the like. Of these, penicillium funiculosum or Aspergillus oryzae is preferred. In order to obtain α-galactosidase from these microorganisms, a known method, that is, a method of culturing the microorganism and obtaining it from a culture supernatant or microbial cells can be applied. Alternatively, commercially available enzymes, for example, α mixed in cellulase preparations and the like
-Galactosidase can be purified and used.

【0009】次にα1-3ガラクトシド結合を有する糖質
の製造法について述べる
Next, a method for producing a saccharide having an α1-3 galactoside bond will be described.

【0010】α−ガラクトシダーゼは本来加水分解酵素
であるが、基質濃度を高めると糖転移作用を触媒するよ
うになる。糖供与体としては、ラフィノース、メリビオ
ース等の天然の糖質、パラニトロフェニル−α−ガラク
トピラノシド(pNP-α-Gal)等の合成基質を用いることが
できるが、α−ガラクトシル結合を非還元末端に持つ糖
質であればいずれでもよい。糖受容体としては、ガラク
トース、ガラクトオリゴ糖、種々の糖、種々のアルコー
ル類などのヒドロキシル基を持つ化合物を用いることが
できる。α1-3ガラクトシド結合を有する糖質を合成す
る際は、ガラクトース供与体とガラクトース受容体との
量比は、1:0.1〜1:10であるが好ましくは1:0.2〜1:5で
ある。尚、糖供与体と糖受容体とが同一化合物であって
も何ら差し支えない。α1-3ガラクトシド結合した糖質
の製造には、精製した酵素を用いることが好ましいが、
部分精製酵素あるいは培養液をそのまま、または培養液
を粉末化した粗酵素を用いても何ら差し支えない。ま
た、固定化酵素であっても構わない。
Although α-galactosidase is a hydrolase in nature, increasing the substrate concentration catalyzes the transglycosylation. As the sugar donor, natural saccharides such as raffinose and melibiose, and synthetic substrates such as paranitrophenyl-α-galactopyranoside (pNP-α-Gal) can be used. Any carbohydrate can be used as long as it has a reducing terminal. As the sugar acceptor, compounds having a hydroxyl group such as galactose, galactooligosaccharide, various sugars and various alcohols can be used. When synthesizing a saccharide having an α1-3 galactoside bond, the ratio between the galactose donor and the galactose acceptor is 1: 0.1 to 1:10, preferably 1: 0.2 to 1: 5. Note that the sugar donor and the sugar acceptor may be the same compound without any problem. For the production of α1-3 galactoside-linked saccharide, it is preferable to use a purified enzyme,
The partially purified enzyme or the culture solution may be used as it is, or a crude enzyme obtained by pulverizing the culture solution may be used. Further, an immobilized enzyme may be used.

【0011】以下、本発明の実施例を示し、さらに詳し
く説明するが本発明はこれらの実施例に限定されない。
Hereinafter, embodiments of the present invention will be shown and described in more detail, but the present invention is not limited to these embodiments.

【0012】[0012]

【実施例】【Example】

実施例1 酵素の精製 ペニシリウム・フニキュロサム(Penicillium funiculos
um)起源酵素標品セルラーゼ(シグマ社製)8.37gを水2
5.1mlに懸濁し、4℃で攪拌した。約12時間後遠心分離
(10,000 x g,10分)を行い、上清を10mMリン酸ナトリ
ウム緩衝液(pH7.4)で平衡化したQ-Sepharose FFカラム
(2.5cmx25cm)に添加した。ついで、1M塩化ナトリウム
を含む10mMリン酸ナトリウム緩衝液(pH7.4)の濃度勾配
によりα−ガラクトシダーゼを溶出させた。流速は1ml/
minであった。
Example 1 Purification of Enzyme Penicillium funiculos
um ) 8.37 g of cellulase (Sigma) from the original enzyme
It was suspended in 5.1 ml and stirred at 4 ° C. After about 12 hours, centrifugation (10,000 × g, 10 minutes) was performed, and the supernatant was added to a Q-Sepharose FF column (2.5 cm × 25 cm) equilibrated with 10 mM sodium phosphate buffer (pH 7.4). Then, α-galactosidase was eluted with a concentration gradient of 10 mM sodium phosphate buffer (pH 7.4) containing 1 M sodium chloride. Flow rate is 1ml /
min.

【0013】作用:Action:

【0014】[0014]

【化2】 Embedded image

【0015】R-OHは、ガラクトース、ガラクトオリゴ
糖、種々の糖、種々のアルコール及び種々のフェノール
類などのヒドロキシル基を持つ化合物を示す。
R-OH is a compound having a hydroxyl group such as galactose, galactooligosaccharide, various sugars, various alcohols and various phenols.

【0016】至適pHおよび安定pH 本発明のα−ガラクトシダーゼ1μlを含む緩衝液(pH1.8
1〜11.2はブリトン・ロビンソン緩衝液、pH3.34〜6.22
は酢酸緩衝液、pH1.17〜3.72はグリシン緩衝液)2mlと5m
M pNP-α-Gal 500μlを混合し、37℃で反応させた。10
分後、0.2M炭酸ナトリウム溶液2mlを加え、反応を停止
させた。加水分解によって生成したパラニトロフェノー
ル量を指標にした比活性を図1に示す。pH3.0〜3.5の間
において高い酵素活性が認められた。
Optimum pH and stable pH Buffer containing 1 μl of the α-galactosidase of the present invention (pH 1.8
1-11.1 is Briton-Robinson buffer, pH 3.34-6.22
Is acetate buffer, pH 1.17 to 3.72 is glycine buffer) 2 ml and 5 m
500 μl of M pNP-α-Gal was mixed and reacted at 37 ° C. Ten
After a minute, 2 ml of a 0.2 M sodium carbonate solution was added to stop the reaction. FIG. 1 shows the specific activity using the amount of paranitrophenol produced by hydrolysis as an index. High enzyme activity was observed between pH 3.0 and 3.5.

【0017】安定pHを調べるために本発明のα−ガラク
トシダーゼ1μlを含む各pHのブリトン・ロビンソン緩衝
液100μlを37℃で保持した。20時間後、至適pHの測定と
同様の方法で加水分解によって生成したパラニトロフェ
ノール量を測定した。結果を図2に示す。
To determine the stable pH, 100 μl of Briton-Robinson buffer at each pH containing 1 μl of the α-galactosidase of the present invention was kept at 37 ° C. Twenty hours later, the amount of paranitrophenol produced by hydrolysis was measured in the same manner as in the measurement of the optimum pH. The results are shown in FIG.

【0018】酵素活性はpH3.5〜6.5において37℃の処理
を10分しても失活しなかった。
The enzyme activity was not inactivated even after 10 minutes of treatment at 37 ° C. at pH 3.5 to 6.5.

【0019】至適温度および作用適温の範囲 本発明のα−ガラクトシダーゼ1μlを含むブリトン・ロ
ビンソン緩衝液(pH2.49)100μlと5mM pNP-α-Gal 500μ
lを混合し、20〜70℃で反応させた。10分後、0.2M炭酸
ナトリウム溶液2mlを加え、反応を停止させた。加水分
解によって生成したパラニトロフェノール量を指標にし
た比活性を図3に示す。
Optimum temperature range and optimum temperature range for action 100 μl of Briton-Robinson buffer (pH 2.49) containing 1 μl of α-galactosidase of the present invention and 500 μm of 5 mM pNP-α-Gal
were mixed and reacted at 20-70 ° C. After 10 minutes, 2 ml of a 0.2 M sodium carbonate solution was added to stop the reaction. FIG. 3 shows the specific activity using the amount of paranitrophenol produced by hydrolysis as an index.

【0020】図3から、本発明のα−ガラクトシダーゼ
の至適温度は50℃であり、70℃では完全に失活した。
FIG. 3 shows that the optimum temperature of the α-galactosidase of the present invention was 50 ° C., and that it was completely inactivated at 70 ° C.

【0021】また、本発明のα−ガラクトシダーゼ1μl
を含むブリトン・ロビンソン緩衝液(pH3.48)100μlを25
〜60℃で30分間保持した。その後、至適pHの測定と同様
の方法で加水分解によって生成したパラニトロフェノー
ル量を測定した。結果を図4に示す。
Further, 1 μl of the α-galactosidase of the present invention
100 μl of Briton-Robinson buffer (pH 3.48) containing 25
Hold at 6060 ° C. for 30 minutes. Thereafter, the amount of paranitrophenol produced by hydrolysis was measured in the same manner as in the measurement of the optimum pH. FIG. 4 shows the results.

【0022】pH3.48においては25〜40℃では30分処理し
ても安定であった。
At pH 3.48, the treatment was stable at 25 to 40 ° C. for 30 minutes.

【0023】分子量 TSKゲルG300SW(東ソー社製)によるゲルろ過法では44
000であった。
Molecular weight TSK gel G300SW (manufactured by Tosoh Corporation) has a gel filtration method of 44.
000.

【0024】実施例2 オリゴ糖の製造法 100mgのpNp-α-Galを300μlのジメチルホルムアミドお
よび700μlの0.1Mのリン酸カリウム緩衝液(pH6.0)から
なる溶液に溶解し、これに13.3単位のα−ガラクトシダ
ーゼ(ペニシリウム・フニキュロサム起源)を加え、37
℃で振盪した。6日後、反応液を100℃で5分間加熱し
て酵素を熱失活させた。この反応液をセファデックスG
−10カラム(5cm x 100cm)に供して生成物の精製を
行い、6.1mgのGalα1-3Galα1-OpNPを得た。該二糖誘導
体のパラニトロフェニル基は既知の方法(特願平7-3190
22)により脱離することができ、遊離の二糖Galα1-3Ga
lとすることが可能である。
Example 2 Method for Producing Oligosaccharide 100 mg of pNp-α-Gal was dissolved in a solution consisting of 300 μl of dimethylformamide and 700 μl of 0.1 M potassium phosphate buffer (pH 6.0), and 13.3 units were added thereto. Α-galactosidase (of Penicillium funiculosum origin) and 37
Shake at ℃. Six days later, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme. Sephadex G
The product was purified on a -10 column (5 cm × 100 cm) to obtain 6.1 mg of Galα1-3Galα1-OpNP. The paranitrophenyl group of the disaccharide derivative can be obtained by a known method (Japanese Patent Application No. 7-3190).
22) and free disaccharide Galα1-3Ga
l.

【0025】糖の溶出パターンを図5に、生成物の13
−NMR(D2O, 125MHz)を図6に示す。
[0025] The elution pattern of the sugar in Figure 5, the product 13 C
FIG. 6 shows the NMR (D 2 O, 125 MHz).

【0026】また、アスペルギルス・オリザエ(商品名
「オリエンターゼONS(阪急バイオインダストリー社
製)」)あるいはストレプトミセス属起源(商品名「グ
ルコースイソメラーゼ(ナガセ生化学工業社製)」)の
酵素剤中に含まれるα−ガラクトシダーゼを用いて転移
反応を行った時の反応液のHPLCを図7に示す。さら
に、
In addition, the enzyme preparation of Aspergillus oryzae (trade name "Orientase ONS (manufactured by Hankyu Bioindustry)") or Streptomyces genus (trade name "glucose isomerase (produced by Nagase Seikagaku Corporation)") is used. FIG. 7 shows HPLC of the reaction solution when the transfer reaction was performed using the included α-galactosidase. further,

【発明の効果】本発明の微生物由来の新規なα−ガラク
トシダーゼを用いて、異種臓器移植における超急性拒絶
反応を有効に抑えることのできる二糖Galα1-3Gal誘導
体を効率的に合成できる。
Industrial Applicability The novel α-galactosidase derived from the microorganism of the present invention can efficiently synthesize a disaccharide Galα1-3Gal derivative which can effectively suppress hyperacute rejection in xenograft transplantation.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のペニシリウム・フニキュロサム起源α
−ガラクトシダーゼのpH依存性を示す。○、□および△
は、それぞれブリトン・ロビンソン緩衝液、酢酸緩衝液
およびグリシン緩衝液を用いて測定したときの比活性を
示す。
FIG. 1: Penicillium funiculosum origin α of the present invention
-Shows the pH dependence of galactosidase. ○, □ and △
Indicates the specific activity as measured using a Briton-Robinson buffer, an acetate buffer, and a glycine buffer, respectively.

【図2】本発明のペニシリウム・フニキュロサム起源α
−ガラクトシダーゼのpH安定性を示す。
FIG. 2: Penicillium funiculosum origin α of the present invention
-Shows the pH stability of galactosidase.

【図3】本発明のペニシリウム・フニキュロサム起源α
−ガラクトシダーゼの温度依存性を示す。
FIG. 3. Penicillium funiculosum origin α of the present invention
-Shows the temperature dependence of galactosidase.

【図4】本発明のペニシリウム・フニキュロサム起源α
−ガラクトシダーゼの温度安定性を示す。
FIG. 4: Penicillium funiculosum origin α of the present invention
-Shows the temperature stability of galactosidase.

【図5】実施例2におけるガラクトオリゴ糖の溶出パタ
ーンを示す。
FIG. 5 shows an elution pattern of galactooligosaccharides in Example 2.

【図6】Galα1-3Galα1-OpNPの13C−NMRを示す。FIG. 6 shows 13 C-NMR of Galα1-3Galα1-OpNP.

【図7】実施例2において(a)アスペルギルス・オリザ
エあるいは(b)ストレプトミセス属起源の酵素剤中に含
まれるα−ガラクトシダーゼを用いて転移反応を行った
時の反応液のHPLCを示す。
FIG. 7 shows HPLC of a reaction solution obtained by performing a transfer reaction using α-galactosidase contained in (a) Aspergillus oryzae or (b) an enzyme preparation derived from Streptomyces in Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:69) (C12N 9/40 C12R 1:465) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C12R 1:69) (C12N 9/40 C12R 1: 465)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガラクトースがα−結合したガラクトシ
ド化合物と糖受容体とからα1-3ガラクトシド結合を選
択的に形成する作用を有する微生物由来のα−ガラクト
シダーゼ。
1. A microorganism-derived α-galactosidase having an action of selectively forming an α1-3 galactoside bond from a galactoside compound having α-linked galactose and a sugar receptor.
【請求項2】 ペニシリウム(Penicillium)属に属する
微生物由来の請求項1記載のα−ガラクトシダーゼ。
2. The α-galactosidase according to claim 1, which is derived from a microorganism belonging to the genus Penicillium .
【請求項3】 アスペルギルス(Aspergillus)属に属す
る微生物由来の請求項1記載のα−ガラクトシダーゼ。
3. The α-galactosidase according to claim 1, which is derived from a microorganism belonging to the genus Aspergillus .
【請求項4】 ストレプトミセス(Streptomyces)属に属
する微生物由来の請求項1記載のα−ガラクトシダー
ゼ。
4. The α-galactosidase according to claim 1, which is derived from a microorganism belonging to the genus Streptomyces .
【請求項5】 ペニシリウム属に属する微生物が、ペニ
シリウム・フニキュロサム(funiculosum)種である請求
項2記載のα−ガラクトシダーゼ。
5. The α-galactosidase according to claim 2, wherein the microorganism belonging to the genus Penicillium is a Penicillium funiculosum species.
【請求項6】 アスペルギルス属に属する微生物が、ア
スペルギルス・オリザエ(oryzae)種である請求項3記載
のα−ガラクトシダーゼ。
6. A microorganism belonging to the genus Aspergillus is Aspergillus oryzae (oryzae) are species according to claim 3, wherein the α- galactosidase.
【請求項7】 次の理化学的性質を有する請求項5記載
のα−ガラクトシダーゼ 作用: 【化1】 R-OHは、ガラクトース、ガラクトオリゴ糖、種々の糖、
種々のアルコール及び種々のフェノール類などのヒドロ
キシル基を有する化合物を示す。 基質特異性:転移反応においてGalα1-3Gal-ORを生成
する。 至適pHおよび安定pH:至適pHはpH3.0〜3.5。pH3.5〜
6.5において37℃の処理を10分行っても失活しない。 至適温度および作用適温の範囲:至適温度は50℃、pH
3.48において25〜40℃では30分処理しても安定。 分子量:44000(TSKゲルG300SWによるゲルろ過
法)。
7. The α-galactosidase action according to claim 5, which has the following physicochemical properties: R-OH is galactose, galactooligosaccharide, various sugars,
3 shows compounds having hydroxyl groups such as various alcohols and various phenols. Substrate specificity: Generates Galα1-3Gal-OR in the transfer reaction. Optimal pH and stable pH: The optimal pH is pH 3.0 to 3.5. pH3.5 ~
Inactivation at 37 ° C for 10 minutes at 6.5 does not deactivate. Optimum temperature and optimal temperature range: optimal temperature is 50 ℃, pH
Stable at 3.48 at 25-40 ° C for 30 minutes. Molecular weight: 44000 (gel filtration method using TSK gel G300SW).
【請求項8】 請求項1〜7のいずれかに記載のα−ガ
ラクトシダーゼを用いることを特徴とするα1-3ガラク
トシド結合を有する糖質の製造方法。
8. A method for producing a saccharide having an α1-3 galactoside bond, comprising using the α-galactosidase according to any one of claims 1 to 7.
JP02577497A 1997-01-27 1997-01-27 Method for producing α-galactosidase and galactooligosaccharide Expired - Fee Related JP3856405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02577497A JP3856405B2 (en) 1997-01-27 1997-01-27 Method for producing α-galactosidase and galactooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02577497A JP3856405B2 (en) 1997-01-27 1997-01-27 Method for producing α-galactosidase and galactooligosaccharide

Publications (2)

Publication Number Publication Date
JPH10201472A true JPH10201472A (en) 1998-08-04
JP3856405B2 JP3856405B2 (en) 2006-12-13

Family

ID=12175206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02577497A Expired - Fee Related JP3856405B2 (en) 1997-01-27 1997-01-27 Method for producing α-galactosidase and galactooligosaccharide

Country Status (1)

Country Link
JP (1) JP3856405B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002018614A1 (en) * 2000-08-30 2004-09-30 天野エンザイム株式会社 Method for increasing yield of oligosaccharide containing α-galactosyl group and anti-candida composition
US7060483B1 (en) 1999-10-22 2006-06-13 Seikagaku Corporation DNA encoding endo-β-galactosidase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060483B1 (en) 1999-10-22 2006-06-13 Seikagaku Corporation DNA encoding endo-β-galactosidase
US7393672B2 (en) 1999-10-22 2008-07-01 Seikagaku Corporation DNA coding for endo-β-galactosidase
JPWO2002018614A1 (en) * 2000-08-30 2004-09-30 天野エンザイム株式会社 Method for increasing yield of oligosaccharide containing α-galactosyl group and anti-candida composition

Also Published As

Publication number Publication date
JP3856405B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
Dey et al. Biochemistry of α‐galactosidases
Scigelova et al. Glycosidases—a great synthetic tool
US5786196A (en) Bacteria and enzymes for production of alternan fragments
Kainuma et al. Action of pancreatic alpha-amylase and sweet potato beta-amylase on 62-and 63-α-glucosylmalto-oligosaccharides
Kimura Molecular anatomy of α-glucosidase
US20040101938A1 (en) Method of elevating yield of oligosacchatides containing alpha -galactosyl and anti-candida compositions
Takasaki et al. Maltotetraose-producing amylase from Bacillus sp. MG-4
Weignerová et al. α-Galactosidases and their applications in biotransformations
JPH07107972A (en) Production of soluble flavonoid
US4328313A (en) Method of producing a plaque dispersing enzyme
JPH10201472A (en) Method for producing α-galactosidase and galactooligosaccharide
Kadowaki et al. Transglycosylation activity of β-N-acetylhexosaminidase from Penicillium oxalicum and its application to synthesis of a drug carrier
Mase et al. Purification and characterization of a novel glucoamylase from Acremonium sp. YT-78
Burtseva et al. Distribution of O-glycosylhydrolases in marine fungi of the Sea of Japan and the Sea of Okhotsk: characterization of exocellular N-acetyl-β-D-glucosaminidase of the marine fungus Penicillium canescens
JP2000125857A (en) α-L-fucosidase, its production method, strain and use
JP2688854B2 (en) Method for producing α-galactosidase with strong transglycosylation activity
JP3916682B2 (en) Method for producing glycoside
JPH05140178A (en) Oligo-alpha-galactose composition
JP4161181B2 (en) Novel process for producing carbohydrates including cordierigosaccharides and nigerooligosaccharides, and cells and enzymes used therefor, and processes for producing the same
JP2912843B2 (en) Process for producing alkyl β-rutinoside and novel alkyl β-rutinoside
JP2688782B2 (en) Process for producing thermostable α-galactosidase with strong transglycosylation activity and its complex
JPH06339376A (en) New beta-galactosidase and its production
JP2623507B2 (en) Method for producing maltooligosaccharides
JP4328482B2 (en) Method for producing non-reducing disaccharide containing α-galactosyl group
JP3995774B2 (en) Novel α-fucosidase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees