JP3995774B2 - Novel α-fucosidase - Google Patents
Novel α-fucosidase Download PDFInfo
- Publication number
- JP3995774B2 JP3995774B2 JP30808097A JP30808097A JP3995774B2 JP 3995774 B2 JP3995774 B2 JP 3995774B2 JP 30808097 A JP30808097 A JP 30808097A JP 30808097 A JP30808097 A JP 30808097A JP 3995774 B2 JP3995774 B2 JP 3995774B2
- Authority
- JP
- Japan
- Prior art keywords
- fucosidase
- enzyme
- penicillium
- fucose
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、新規なα−フコシダーゼおよびこれを用いたα1-3フコシド結合を有する糖質の製造法に関する。
【0002】
【従来の技術】
フコース(Fuc)を含むオリゴ糖は、広く天然の糖タンパク質や糖脂質などの複合糖質糖鎖の構成成分として存在している。特に、フコースがN−アセチルグルコサミン(GlcNAc)に対してα1-3結合している構造が際だって多くみられる。例えば、糖鎖腫瘍抗原として知られているシアリルルイスX(sLeX)中、あるいは母乳中等にもFucα1-3GlcNAcという部分構造が存在している。そこでこのようなオリゴ糖の生理活性を詳細に研究し、且つ利用方法を研究するために、フコースを含むオリゴ糖の合成法の確立が求められている。
【0003】
しかしながら、フコースを含む糖鎖の合成は、一部のものが化学合成または酵素合成によりなされているのにすぎない。
【0004】
化学合成においては、種々のフコース含有オリゴ糖が合成されているが、いずれも工程数が長く、工業的生産には好ましくない。
【0005】
α1-3フコシド結合を有する糖質の酵素合成法に関しては、アスペルギルス・ニガー(Aspergillus niger)起源α−フコシダーゼを用いた転移反応による合成法についての報告がある(K. Ajisaka and M. Shirakabe, Carbohydr. Res., 224, 291-299(1992)および特開平4-99492)のみである。しかし、アスペルギルス・ニガー起源のα−フコシダーゼは有機溶媒に対して不安定である。通常、パラニトロフェニル−α−フコピラノシド(pNP-α-Fuc)などを糖供与体として酵素合成反応を行う場合には、この糖供与体は水よりも有機溶媒に溶解しやすいことから水と有機溶媒の混合溶媒を用いる場合が多い。したがって、有機溶媒に対して不安定であるということは、酵素合成反応において酵素を多く必要とするということにもなり、好ましい物性ではない。
【0006】
【発明が解決しようとする課題】
従って本発明の目的は、α1-3フコシド結合を有する糖質を効率的に合成するための有機溶媒に対し安定なα−フコシダーゼ、および該酵素を用いた当該糖質合成法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく種々検討した結果、前記α1-3フコシド結合を有する糖質を選択的に合成でき、且つ有機溶媒に対し安定な新規のα−フコシダーゼ[EC3.2.1.51]を見出し、本発明を完成した。すなわち、本発明は、特許請求の範囲に記載の各請求項からなる。以下本発明を詳細に説明する。
【0008】
【発明の実施の形態】
本発明のα−フコシダーゼを産生する微生物としては、ペニシリウム属に属する菌などがあげられる。このうち、ペニシリウム・マルチカラーもしくはペニシリウム・シトリナムが好ましい。これらの微生物からα−フコシダーゼを得るには、公知の方法、すなわち、当該微生物を培養して、その培養液上清あるいは微生物菌体から取得する方法が適用できる。あるいは、市販酵素、例えば、ラクターゼ製剤等に混在したα−フコシダーゼを精製して用いることができる。
【0009】
次にα1-3フコシド結合を有する糖質の製造法について述べる
α−フコシダーゼは本来加水分解酵素であるが、受容体濃度を高めると糖転移作用を触媒するようになる。糖供与体としては、フコイダン等の天然の糖質、パラニトロフェニル−α−フコピラノシド等の合成基質を用いることができるが、α−フコシル結合を非還元末端に持つ糖質であればいずれでもよい。糖受容体としては、グルコース(Glc)、N−アセチルグルコサミン、種々の糖、種々のアルコール類などのヒドロキシル基を持つ化合物を用いることができる。α1-3フコシド結合を有する糖質を合成する際は、フコース供与体とフコース受容体との量比は、1:0.1〜1:10であるが好ましくは1:0.2〜1:5である。尚、糖供与体と糖受容体とが同一化合物であっても何ら差し支えない。α1-3フコシド結合した糖質の製造には、精製した酵素を用いることが好ましいが、部分精製酵素あるいは培養液をそのまま、または培養液を粉末化した粗酵素を用いても何ら差し支えない。また、固定化酵素であっても構わない。
【0010】
以下、本発明の実施例を示し、さらに詳しく説明するが本発明はこれらの実施例に限定されない。
【0011】
【実施例】
実施例1 酵素の精製
ペニシリウム・マルチカラー(Penicillium multicolor)起源酵素標品ラクターゼP(ケイ・アイ化成社製)10gを10mMリン酸ナトリウム緩衝液(pH 7.4)30mlに懸濁し、4℃で攪拌した。約12時間後遠心分離(10,000 x g,10分)を行い、上清を10mMリン酸ナトリウム緩衝液(pH7.4)で平衡化したQ-Sepharose FFカラム(5cm x 20cm)に添加した。ついで、1M塩化ナトリウムを含む10mMリン酸ナトリウム緩衝液(pH7.4)の濃度勾配によりα−フコシダーゼを溶出させた。流速は2ml/minであった。
【0012】
▲1▼至適pHおよび安定pH
ペニシリウム・マルチカラー起源α−フコシダーゼ100μlを含む緩衝液(pH5.32〜8.25はリン酸緩衝液、pH3.34〜6.22は酢酸緩衝液、pH1.17〜3.72はグリシン緩衝液)1.5mlと5mM pNP-α-Fuc 500μlを混合し、37℃で反応させた。10分後、0.2M炭酸ナトリウム溶液2mlを加え、反応を停止させた。加水分解によって生成したパラニトロフェノール量を指標にした相対活性を図1に示す。pH5付近において高い酵素活性が認められた。
【0013】
安定pHを調べるためにペニシリウム・マルチカラー起源α−フコシダーゼ100μlを含む各pHの上記緩衝液1.5mlを25℃で保持した。24時間後、反応液100μl、0.1Mリン酸緩衝液(pH 5.33)1.4mlおよびpNP-α-Fuc 500μlを混合し、37℃で反応させた。10分後、0.2M炭酸ナトリウム溶液2mlを加え、反応を停止させた。加水分解によって生成したパラニトロフェノール量を指標にした相対活性を図2に示す。
【0014】
酵素活性はpH3〜7において25℃の処理を24時間しても失活しなかった。
【0015】
▲2▼至適温度
ペニシリウム・マルチカラー起源α−フコシダーゼ100μlを含む0.1Mリン酸緩衝液(pH 5.33)1.5mlおよびpNP-α-Fuc 500μlを混合し、各温度で反応させた。10分後、0.2M炭酸ナトリウム溶液2mlを加え、反応を停止させた。加水分解によって生成したパラニトロフェノール量を指標にした相対活性を図3に示す。
【0016】
図3から、ペニシリウム・マルチカラー起源α−フコシシダーゼの至適温度は50℃であった。
【0017】
▲3▼分子量
TSKゲルG3000SW(東ソー社製)によるゲルろ過法ではペニシリウム・マルチカラー起源α−フコシシダーゼの分子量は約180000であった。
【0018】
▲4▼有機溶媒に対する安定性
ペニシリウム・マルチカラー起源α−フコシダーゼ100μlおよび有機溶媒を10,20あるいは30(v/v)%を含む0.1Mリン酸緩衝液(pH 5.33)1.5mlを37℃で保持した。3時間後、反応液100μl、0.1Mリン酸緩衝液(pH 5.33)1.4mlおよびpNP-α-Fuc 500μlを混合し、37℃で反応させた。10分後、0.2M炭酸ナトリウム溶液2mlを加え、反応を停止させた。加水分解によって生成したパラニトロフェノール量を指標にしたα−フコシダーゼの残存活性を表1に示す。
【0019】
【表1】
【0020】
30%ジメチルスルホキシド(DMSO)中でアスペルギルス・ニガー起源α−フコシダーゼの3時間後の残存活性は約20%であったのに対し、ペニシリウム・マルチカラー起源α−フコシダーゼの3時間後の残存活性は約58%であった。また、20%ジオキサン中でのアスペルギルス・ニガー起源およびペニシリウム・マルチカラー起源α−フコシダーゼの3時間後の残存活性はそれぞれ約14%および約55%であった。これらの結果から、本発明のα−フコシシダーゼの方がアスペルギルス・ニガー起源のα−フコシシダーゼよりも有機溶媒中での安定性は高いことが示された。
【0021】
実施例2 ペニシリウム・マルチカラー起源α−フコシシダーゼを用いるFucα1-3Glcの製造法
100mgのpNP-α-Fuc及び500mgのGlcを1mlのジメチルホルムアミド(DMF)および10mlの0.1Mの酢酸ナトリウム緩衝液(pH5.0)からなる溶液に溶解し、これに0.6単位のα−フコシダーゼ(ペニシリウム・マルチカラー起源)を加え、37℃で振盪した。20時間後、反応液を100℃で5分間加熱して酵素を熱失活させた。この反応液を活性炭カラム(2.7cm x 50cm)に供し、水−40%エタノール水溶液の濃度勾配により生成物を単離したところ、35.2mgのFucα1-3Glcを得た。活性炭カラムからの糖の溶出パターンを図4に、生成物の13C−NMR(D2O, 125MHz)を図5に示す。
【0022】
実施例3 ペニシリウム・シトリナム起源α−フコシシダーゼを用いるFucα1-3Glcの製造法
100mgのpNP-α-Fuc及び500mgのGlcを1mlのDMFおよび10mlの0.1Mの酢酸ナトリウム緩衝液(pH5.0)からなる溶液に溶解し、これに6.8単位のペニシリウム・シトリナム(商品名「ヌクレアーゼアマノ(天野製薬社製)」)の酵素剤中に含まれるα−フコシダーゼを加え、37℃で振盪した。4.5時間後、反応液を100℃で5分間加熱して酵素を熱失活させた。その後、実施例2と同様に生成物を単離したところ、29.8mgのFucα1-3Glcを得た。
【0023】
実施例4 ペニシリウム・マルチカラー起源α−フコシシダーゼを用いるFucα1-3GlcNAcの製造法
100mgのpNP-α-Fuc及び500mgのGlcNAcを1mlのDMSOおよび5mlの0.1Mの酢酸ナトリウム緩衝液(pH5.0)からなる溶液に溶解し、これに4.7単位のα−フコシダーゼ(ペニシリウム・マルチカラー起源)を加え、37℃で振盪した。4時間後、反応液を100℃で5分間加熱して酵素を熱失活させた。この反応液を活性炭カラム(2.7cm x 50cm)に供し、水−30%メタノール水溶液の濃度勾配により生成物を単離したところ、43.2mgのFucα1-3GlcNAcを得た。
【0024】
【発明の効果】
本発明の有機溶媒に対して安定な新規のα−フコシダーゼを用いて、複合糖質糖鎖の重要な中間体であるFucα1-3Glc、Fucα1-3GlcNAcおよびその誘導体を
効率的に合成できる。
【0025】
【図面の簡単な説明】
【図1】本発明のペニシリウム・マルチカラー起源α−フコシダーゼのpH依存性を示す。○および□は、それぞれ酢酸緩衝液およびリン酸緩衝液を用いて測定したときの相対活性を示す。
【図2】本発明のペニシリウム・マルチカラー起源α−フコシダーゼのpH安定性を示す。○、□および△は、それぞれ酢酸緩衝液、リン酸緩衝液およびグリシン緩衝液を用いて測定したときの相対活性を示す。
【図3】本発明のペニシリウム・マルチカラー起源α−フコシダーゼの温度依存性を示す。
【図4】実施例2におけるフコシルオリゴ糖の溶出パターンを示す。
【図5】 Fucα1-3Glcの13C−NMRを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel α-fucosidase and a method for producing a carbohydrate having an α1-3 fucoside bond using the same.
[0002]
[Prior art]
Oligosaccharides containing fucose (Fuc) are widely present as components of complex carbohydrate sugar chains such as natural glycoproteins and glycolipids. In particular, a structure in which fucose is α1-3 bonded to N-acetylglucosamine (GlcNAc) is particularly prominent. For example, a partial structure called Fucα1-3GlcNAc also exists in sialyl Lewis X (sLe X ) known as a sugar chain tumor antigen or in breast milk. Therefore, in order to study the physiological activity of such oligosaccharides in detail and to study the utilization method, establishment of a method for synthesizing oligosaccharides containing fucose is required.
[0003]
However, the sugar chain containing fucose is only partially synthesized by chemical synthesis or enzymatic synthesis.
[0004]
In chemical synthesis, various fucose-containing oligosaccharides have been synthesized, but all of them have a long number of steps and are not preferable for industrial production.
[0005]
Regarding the enzymatic synthesis of carbohydrates having α1-3 fucoside bonds, there is a report on a synthesis method by a transfer reaction using α-fucosidase derived from Aspergillus niger (K. Ajisaka and M. Shirakabe, Carbohydr Res., 224, 291-299 (1992) and JP-A-4-99492). However, α-fucosidase derived from Aspergillus niger is unstable to organic solvents. Normally, when an enzyme synthesis reaction is performed using paranitrophenyl-α-fucopyranoside (pNP-α-Fuc) or the like as a sugar donor, the sugar donor is more easily dissolved in an organic solvent than water. A mixed solvent of solvents is often used. Therefore, being unstable with respect to an organic solvent means that a large amount of enzyme is required in the enzyme synthesis reaction, which is not a preferable physical property.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an α-fucosidase that is stable against an organic solvent for efficiently synthesizing a carbohydrate having an α1-3 fucoside bond, and a method for synthesizing the carbohydrate using the enzyme. is there.
[0007]
[Means for Solving the Problems]
As a result of various studies to solve the above-mentioned problems, the present inventors have been able to selectively synthesize the carbohydrate having the α1-3 fucoside bond and are stable against organic solvents, such as a novel α-fucosidase [EC3.2.1. .51] was found and the present invention was completed. That is, this invention consists of each claim as described in a claim. The present invention will be described in detail below.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the microorganism producing the α-fucosidase of the present invention include bacteria belonging to the genus Penicillium. Of these, penicillium multicolor or penicillium citrinum is preferable. In order to obtain α-fucosidase from these microorganisms, a known method, that is, a method of culturing the microorganism and obtaining it from the culture supernatant or microbial cells can be applied. Alternatively, α-fucosidase mixed in commercially available enzymes such as lactase preparations can be purified and used.
[0009]
Next, α-fucosidase, which describes a method for producing a carbohydrate having an α1-3 fucoside bond, is originally a hydrolase, but when the receptor concentration is increased, it will catalyze the sugar transfer action. As the sugar donor, a natural carbohydrate such as fucoidan and a synthetic substrate such as paranitrophenyl-α-fucopyranoside can be used, and any sugar can be used as long as it has an α-fucosyl bond at the non-reducing end. . As the sugar acceptor, compounds having hydroxyl groups such as glucose (Glc), N-acetylglucosamine, various sugars, various alcohols and the like can be used. When a carbohydrate having an α1-3 fucoside bond is synthesized, the amount ratio of the fucose donor to the fucose acceptor is 1: 0.1 to 1:10, preferably 1: 0.2 to 1: 5. It should be noted that the sugar donor and the sugar acceptor may be the same compound. For the production of an α1-3 fucoside-linked carbohydrate, it is preferable to use a purified enzyme, but it is possible to use a partially purified enzyme or a culture solution as it is or a crude enzyme obtained by pulverizing the culture solution. Further, it may be an immobilized enzyme.
[0010]
Examples of the present invention will be described below in more detail, but the present invention is not limited to these examples.
[0011]
【Example】
Example 1 Enzyme Purification 10 g of Penicillium multicolor origin enzyme preparation lactase P (manufactured by Kay Kasei Co., Ltd.) was suspended in 30 ml of 10 mM sodium phosphate buffer (pH 7.4) and stirred at 4 ° C. . After about 12 hours, centrifugation (10,000 × g, 10 minutes) was performed, and the supernatant was added to a Q-Sepharose FF column (5 cm × 20 cm) equilibrated with 10 mM sodium phosphate buffer (pH 7.4). Subsequently, α-fucosidase was eluted with a concentration gradient of 10 mM sodium phosphate buffer (pH 7.4) containing 1 M sodium chloride. The flow rate was 2 ml / min.
[0012]
(1) Optimum pH and stable pH
Buffer containing 100 μl of penicillium multicolor origin α-fucosidase (pH 5.32 to 8.25 is phosphate buffer, pH 3.34 to 6.22 is acetate buffer, pH 1.17 to 3.72 is glycine buffer) 1.5 ml and 5 mM pNP -α-Fuc 500 μl was mixed and reacted at 37 ° C. After 10 minutes, 2 ml of 0.2 M sodium carbonate solution was added to stop the reaction. The relative activity with the amount of paranitrophenol produced by hydrolysis as an index is shown in FIG. High enzyme activity was observed around pH 5.
[0013]
To examine the stable pH, 1.5 ml of the above buffer solution containing 100 μl of Penicillium multicolor origin α-fucosidase was kept at 25 ° C. After 24 hours, 100 µl of the reaction solution, 1.4 ml of 0.1 M phosphate buffer (pH 5.33) and 500 µl of pNP-α-Fuc were mixed and reacted at 37 ° C. After 10 minutes, 2 ml of 0.2 M sodium carbonate solution was added to stop the reaction. FIG. 2 shows the relative activity using the amount of paranitrophenol produced by hydrolysis as an index.
[0014]
The enzyme activity was not inactivated even when treated at 25 ° C. for 24 hours at pH 3-7.
[0015]
(2) Optimum temperature Penicillium multicolor origin α-fucosidase (100 μl) 0.1M phosphate buffer (pH 5.33) 1.5 ml and pNP-α-Fuc 500 μl were mixed and reacted at each temperature. After 10 minutes, 2 ml of 0.2 M sodium carbonate solution was added to stop the reaction. FIG. 3 shows the relative activity using the amount of paranitrophenol produced by hydrolysis as an index.
[0016]
From FIG. 3, the optimum temperature of Penicillium multicolor origin α-fucosidase was 50 ° C.
[0017]
(3) Molecular weight
In the gel filtration method using TSK gel G3000SW (manufactured by Tosoh Corporation), the molecular weight of penicillium multicolor origin α-fucosidase was about 180,000.
[0018]
(4) Stability against organic solvents: Penicillium multicolor α-
[0019]
[Table 1]
[0020]
The residual activity after 3 hours of Aspergillus niger α-fucosidase in 30% dimethyl sulfoxide (DMSO) was about 20%, whereas the residual activity of Penicillium multicolor α-fucosidase after 3 hours was About 58%. Further, the residual activities of Aspergillus niger origin and Penicillium multicolor origin α-fucosidase in 20% dioxane after 3 hours were about 14% and about 55%, respectively. From these results, it was shown that the α-fucosidase of the present invention has higher stability in an organic solvent than α-fucosidase derived from Aspergillus niger.
[0021]
Example 2 Production of Fucα1-3Glc using Penicillium multicolor α-fucosidase
100 mg of pNP-α-Fuc and 500 mg of Glc were dissolved in a solution consisting of 1 ml of dimethylformamide (DMF) and 10 ml of 0.1 M sodium acetate buffer (pH 5.0), and 0.6 unit of α-fucosidase ( Penicillium multicolor origin) was added and shaken at 37 ° C. After 20 hours, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme. This reaction solution was applied to an activated carbon column (2.7 cm × 50 cm) and the product was isolated by a concentration gradient of water-40% ethanol aqueous solution to obtain 35.2 mg of Fucα1-3Glc. The elution pattern of sugar from the activated carbon column is shown in FIG. 4, and the 13 C-NMR (D 2 O, 125 MHz) of the product is shown in FIG.
[0022]
Example 3 Production of Fucα1-3Glc using Penicillium citrinum-origin α-fucosidase
100 mg of pNP-α-Fuc and 500 mg of Glc were dissolved in a solution of 1 ml of DMF and 10 ml of 0.1 M sodium acetate buffer (pH 5.0), and 6.8 units of Penicillium citrinum (trade name “nuclease” Α-fucosidase contained in the enzyme preparation of Amano (Amano Pharmaceutical Co., Ltd.)) was added and shaken at 37 ° C. After 4.5 hours, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme. Thereafter, the product was isolated in the same manner as in Example 2 to obtain 29.8 mg of Fucα1-3Glc.
[0023]
Example 4 Production method of Fucα1-3GlcNAc using Penicillium multicolor α-fucosidase
100 mg of pNP-α-Fuc and 500 mg of GlcNAc were dissolved in a solution consisting of 1 ml of DMSO and 5 ml of 0.1 M sodium acetate buffer (pH 5.0), and 4.7 units of α-fucosidase (penicillium multicolor) Origin) and shaken at 37 ° C. After 4 hours, the reaction solution was heated at 100 ° C. for 5 minutes to inactivate the enzyme. This reaction solution was applied to an activated carbon column (2.7 cm × 50 cm), and the product was isolated by a concentration gradient of water-30% aqueous methanol solution to obtain 43.2 mg of Fucα1-3GlcNAc.
[0024]
【The invention's effect】
Using the novel α-fucosidase that is stable to the organic solvent of the present invention, Fucα1-3Glc, Fucα1-3GlcNAc and their derivatives, which are important intermediates of glycoconjugate sugar chains, can be efficiently synthesized.
[0025]
[Brief description of the drawings]
FIG. 1 shows the pH dependence of the Penicillium multicolor α-fucosidase of the present invention. ○ and □ indicate relative activities when measured using an acetate buffer and a phosphate buffer, respectively.
FIG. 2 shows the pH stability of the Penicillium multicolor α-fucosidase of the present invention. ○, □, and Δ indicate relative activities when measured using an acetate buffer, a phosphate buffer, and a glycine buffer, respectively.
FIG. 3 shows the temperature dependence of the Penicillium multicolor α-fucosidase of the present invention.
4 shows the elution pattern of fucosyl oligosaccharides in Example 2. FIG.
FIG. 5 shows 13 C-NMR of Fucα1-3Glc.
Claims (2)
(1)至適pHおよび安定pH:至適pHはpH約5。pH3〜7において25℃の処理を24時間行っても失活しない。
(2)至適温度:至適温度は50℃。
(3)分子量:約180,000(TSKゲルG3000SWによるゲルろ過法)。An α-fucosidase having the following physicochemical properties derived from Penicillium multicolor having an action of selectively forming an α1-3 fucoside bond from a fucose compound α-linked with a fucose and a sugar receptor.
(1) Optimal pH and stable pH: The optimal pH is about pH 5. Even if it is treated at 25 ° C for 24 hours at pH 3-7, it does not deactivate.
(2) Optimal temperature: The optimal temperature is 50 ° C.
(3) Molecular weight: about 180,000 (gel filtration method using TSK gel G3000SW).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30808097A JP3995774B2 (en) | 1997-10-23 | 1997-10-23 | Novel α-fucosidase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30808097A JP3995774B2 (en) | 1997-10-23 | 1997-10-23 | Novel α-fucosidase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11123075A JPH11123075A (en) | 1999-05-11 |
JP3995774B2 true JP3995774B2 (en) | 2007-10-24 |
Family
ID=17976642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30808097A Expired - Fee Related JP3995774B2 (en) | 1997-10-23 | 1997-10-23 | Novel α-fucosidase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3995774B2 (en) |
-
1997
- 1997-10-23 JP JP30808097A patent/JP3995774B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11123075A (en) | 1999-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0710674B1 (en) | Method for producing a glucan having cyclic structure | |
JPH03503238A (en) | Enzymatic synthesis method of oligodextran useful for producing sugar substitutes and novel oligodextran | |
JP4043015B2 (en) | Method for producing glycosylated product | |
JP2000502565A (en) | Galactopyranosides and their use | |
CN103282508B (en) | Non-reducing end modified glucan, Its Preparation Method And Use | |
US5686132A (en) | Glucans having a cycle structure, and processes for preparing the same | |
JP2886249B2 (en) | Galactosyl-maltooligosaccharide derivative, method for producing the same and method for measuring α-amylase activity | |
JP3995774B2 (en) | Novel α-fucosidase | |
GB2193963A (en) | Branched oligosyl cyclodextrin | |
JP3365644B2 (en) | α-D-Glycosyl kasugamycin, process for producing the same, and antibacterial agent containing the same | |
US5827697A (en) | Process for preparing glucans having a cyclic structure | |
JP3916682B2 (en) | Method for producing glycoside | |
JP3124356B2 (en) | Dextran production method | |
JP2863263B2 (en) | Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-linked to the side chain part of a branched cyclodextrin by β-bond, and method for producing the same | |
JP2000125857A (en) | Alpha-l-fucosidase, and its production, strain and application | |
EP0263955A2 (en) | Process for the production of panosyl derivatives | |
JP2001292791A (en) | Method for producing n-acetyllactosmine | |
EP0560982A1 (en) | Process for producing sugar and transfusion | |
JP3809686B2 (en) | Method for producing glycoside by immobilized enzyme | |
JP3630378B2 (en) | Method for producing galactosylglycerols | |
JPH05244975A (en) | Production of alkylglycoside | |
JP3045509B2 (en) | Method for producing mannose-containing oligosaccharides | |
JP3682931B2 (en) | Method for producing galactosyl-maltooligosaccharide derivative | |
JP2840772B2 (en) | How to increase glucose yield | |
JP2797081B2 (en) | Aspergillus fumigatus mutant bacterium and method for producing chitosan-oligosaccharide using the bacterium or enzyme producing the bacterium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040604 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070801 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |