JPH10201294A - Driving circuit for three-phase step motor - Google Patents

Driving circuit for three-phase step motor

Info

Publication number
JPH10201294A
JPH10201294A JP185697A JP185697A JPH10201294A JP H10201294 A JPH10201294 A JP H10201294A JP 185697 A JP185697 A JP 185697A JP 185697 A JP185697 A JP 185697A JP H10201294 A JPH10201294 A JP H10201294A
Authority
JP
Japan
Prior art keywords
circuit
phase excitation
phase
drive
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP185697A
Other languages
Japanese (ja)
Inventor
Shoji Oiwa
昭二 大岩
Kazuhide Yamazaki
和英 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Japan Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Servo Corp filed Critical Japan Servo Corp
Priority to JP185697A priority Critical patent/JPH10201294A/en
Publication of JPH10201294A publication Critical patent/JPH10201294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drive circuit which is inexpensive and little in vibration and noise by detecting the timing of two-phase excitation and three-phase excitation from the drive pulses of external input, and changing the duty of a PWM circuit so as to let a total current flow a little at two-phase excitation and much at three-phase excitation. SOLUTION: A timing logic circuit 2 detects the timing of the two-phase excitation and three-phase excitation of a three-phase excitation winding 5 from the input of a drive pulse generating circuit 1, and outputs a signal, and an electronic switch 12 operates with the output signal of the timing logic circuit 2 and the reference voltage of a reference voltage generating circuit 11d. A PWM circuit 7 varies the total current with the output signal of the electronic switch 12 and the signal of the current detector 6 for detecting the total sum of a drive current, and a current application control means 7a within the PWM circuit 7 changes the pulse width so as to let the total current flow a little at two-phase excitation and much at three-phase excitation. Then, a base drive circuit 3 drives an inverter circuit 4 with the output signal of the PWM circuit 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は,星状に結線した3相励
磁巻線を有する固定子と、永久磁石を有する回転子から
成るモータの駆動制御を行う3相ステップモータの駆動
回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive circuit for a three-phase step motor for controlling the drive of a motor having a stator having three-phase excitation windings connected in a star shape and a rotor having permanent magnets. It is.

【0002】[0002]

【従来の技術】従来より、星状結線の3相励磁巻線を施
した固定子と、上記固定子と所定の空隙をもって対向し
且つ永久磁石を含む回転子とで構成した永久磁石形3相
ステップモータにおいて、励磁巻線に流す駆動電流を所
望の電流値に制御する場合、各相に双方向の電流を流せ
るようにブリッジ接続した主回路を構成し、このブリッ
ジ回路をスイッチング操作することで励磁巻線に流れる
電流値を制御している。その電流制御の方法は励磁巻線
に流れる総電流を抵抗などを使用し検出して、電流指令
値と比較し、比較結果に基づくパルス信号によってパル
ス幅制御(以下,PWMと略称する)方式で定電流制御
が行われている。PWM方式にすることでインバータ回
路のスイッチ素子の損失を低減し素子も小型化される。
また、定電流制御することで環境温度変化や自己発熱に
よる温度変化に対してモータのトルク変化が少なくな
る。
2. Description of the Related Art Conventionally, a permanent magnet type three-phase stator comprising a stator having a star-connected three-phase excitation winding and a rotor including a permanent magnet and facing the stator with a predetermined gap. In the case of controlling the drive current flowing through the excitation winding to a desired current value in the stepping motor, a bridge-connected main circuit is formed so that a bidirectional current can flow in each phase, and the bridge circuit is switched by performing a switching operation. The value of the current flowing through the exciting winding is controlled. The current control method is to detect the total current flowing through the exciting winding using a resistor or the like, compare the detected current with a current command value, and perform pulse width control (hereinafter abbreviated as PWM) using a pulse signal based on the comparison result. Constant current control is being performed. By using the PWM method, the loss of the switch element of the inverter circuit is reduced, and the element is also downsized.
In addition, the constant current control reduces a change in the motor torque with respect to a change in the environmental temperature or a change in the temperature due to self-heating.

【0003】図3は従来の3相ステップモータの駆動回
路構成図の一例である。図に示すように、5はU相、V
相、W相の巻線を星状結線した3相励磁巻線で、回転子
に永久磁石を備え、固定子の極歯と回転子の極歯の関係
は最適の形に構成されている。その詳細説明は特開平2
−269458号公報等に開示されている。
FIG. 3 is an example of a drive circuit configuration diagram of a conventional three-phase step motor. As shown in the figure, 5 is U phase, V
A three-phase excitation winding in which the phase and W phase windings are connected in a star shape. The rotor is provided with permanent magnets, and the relationship between the pole teeth of the stator and the pole teeth of the rotor is configured in an optimal manner. The detailed description is given in
-269458.

【0004】また、Vccは駆動電源、1は駆動パルス発
生回路、14はU、V、W相に通電する順序を指定する
ロジック回路、4は各相のスイッチ素子と環流素子で構
成されるインバータ回路である。インバータ回路4は決
められたロジック信号により3相励磁巻線5に通電す
る。6は3相励磁巻線5の各相に流れる駆動電流の総和
を検出するために設けられた抵抗とフィルタを構成する
抵抗、コンデンサから成る電流検出器である。電流検出
器6で検出された駆動電流は電圧信号に変換されてPW
M回路7に入力される。PWM回路7内には、誤差増幅
回路、発振回路、鋸波発生回路、比較回路が含まれい
る。入力された駆動電流の電圧信号は基準電圧発生装置
13の電圧と突き合わせが行われる。その結果の差分電
圧が上記比較回路へ入力され、鋸波状キャリア信号とレ
ベル比較が行われて、上記差分電圧のレベルに応じたパ
ルス幅を有するパルス信号が生成される。該パルス信号
は、ベース駆動回路3で各相上アームのスイッチ素子を
駆動するのに適したベース信号を出力し、該ベース信号
によってPWM回路7のキャリア周波数で各相スイッチ
素子のオン・オフ制御が行われる。この結果、3相励磁
巻線5のU、V、W相巻線には上記パルス信号のパルス
幅に見合った駆動電流が通電される。
Further, Vcc is a driving power supply, 1 is a driving pulse generating circuit, 14 is a logic circuit for specifying the order of energizing the U, V, and W phases, and 4 is an inverter composed of a switching element and a circulating element of each phase. Circuit. The inverter circuit 4 energizes the three-phase excitation winding 5 according to the determined logic signal. Reference numeral 6 denotes a current detector including a resistor provided for detecting the sum of drive currents flowing through each phase of the three-phase excitation winding 5, a resistor and a capacitor constituting a filter. The drive current detected by the current detector 6 is converted to a voltage signal and
It is input to the M circuit 7. The PWM circuit 7 includes an error amplification circuit, an oscillation circuit, a sawtooth wave generation circuit, and a comparison circuit. The input drive current voltage signal is matched with the voltage of the reference voltage generator 13. The resulting difference voltage is input to the comparison circuit, and the level is compared with the sawtooth carrier signal to generate a pulse signal having a pulse width corresponding to the level of the difference voltage. The pulse signal outputs a base signal suitable for driving the switch element of each phase upper arm by the base drive circuit 3, and the base signal controls ON / OFF of each phase switch element at the carrier frequency of the PWM circuit 7. Is performed. As a result, a drive current corresponding to the pulse width of the pulse signal is supplied to the U, V, and W phase windings of the three-phase excitation winding 5.

【0005】図4は図3の各部の信号波形を示すタイミ
ングチャート図である。(a)は駆動パルス発生回路1
の出力であり、(b)〜(g)はロジック回路14の出
力で、U、V、W相に対する通電ロジックであり、イン
バータ回路4の6個のトランジスタに対応する信号で
u、dはそれぞれの相の上アーム、下アームを示す。
(h)〜(j)はU、V、W相に通電される電流波形
で、正方向と負方向に流れるバイポーラ通電となつてい
る。また、PWM回路7のキャリア周波数は40kHz
と高く、PWM回路7のリップルは電流波形には現れな
い。U、V、W各相の電流の総和である総電流は(k)
に示すように、(1.0)で一定となるように電流制御
されるため、各相の電流レベルは通電区間(h)により
(0.5)、(1.0)、(0)と変化する。また、通
電区間〜は駆動ステップ毎の状態を示すもので、
は2相励磁、は3相励磁状態にあることがわ
かる。この様な2相励磁と3相励磁を組み合わせた励磁
方式を2−3相励磁方式と呼ぶ。
FIG. 4 is a timing chart showing signal waveforms at various parts in FIG. (A) is a drive pulse generation circuit 1
(B) to (g) are outputs of the logic circuit 14 and are energizing logics for the U, V, and W phases. Signals corresponding to the six transistors of the inverter circuit 4 are u and d, respectively. The upper arm and lower arm of the phase are shown.
(H) to (j) are current waveforms applied to the U, V, and W phases, which are bipolar currents flowing in the positive and negative directions. The carrier frequency of the PWM circuit 7 is 40 kHz.
The ripple of the PWM circuit 7 does not appear in the current waveform. The total current, which is the sum of the currents of the U, V, and W phases, is (k)
As shown in the figure, since the current is controlled so as to be constant at (1.0), the current level of each phase is (0.5), (1.0), (0) depending on the energizing section (h). Change. The energized section ~ shows the state of each drive step,
It can be seen that is in a two-phase excitation state and is in a three-phase excitation state. Such an excitation system combining the two-phase excitation and the three-phase excitation is called a 2-3-phase excitation system.

【0006】図8は各通電区間に発生するトルクをベク
トルで示した図である。図に示すように、太線矢印は
〜の通電区間におけるU、V、W相に発生する120
度位相のずれたトルクベクトルの和であり、図中の数字
(0.5)、(1.0)、(1.5)、(1.73)は
トルクベクトルの大きさを示すものである。例えば、3
相励磁の通電区間の場合図4の各相電流値より、トル
クベクトルの和はU相(0.5,∠0)、V相(1.
0,∠2π/3)、W相(0.5,∠4π/3)から
(1.5,∠5π/3)と求まる。同様にして2相励磁
の通電区間の場合U相(1.0,∠0)、V相(1.
0,∠2π/3)、W相(0)から(1.73,∠11
π/6)と求まる。これより2相励磁時は3相励磁時
に比べトルクベクトルが大きいことがわかる。以上の
ような一定電流制御回路の構成においては、通電区間に
よりトルクベクトルの大きさが異なり、回転トルクの不
均一性が生じている。
FIG. 8 is a diagram showing the torque generated in each energizing section as a vector. As shown in the figure, the bold arrows indicate the 120 generated in the U, V, and W phases in the energized section of.
It is the sum of the torque vectors that are out of phase by degrees, and the numbers (0.5), (1.0), (1.5), and (1.73) in the figure indicate the magnitude of the torque vector. . For example, 3
In the case of the phase excitation conduction section, the sum of the torque vectors is U phase (0.5, ∠0) and V phase (1.
0, ∠2π / 3) and (1.5, ∠5π / 3) from the W phase (0.5, ∠4π / 3). Similarly, in the energizing section of the two-phase excitation, the U phase (1.0, $ 0) and the V phase (1.
0, ∠2π / 3), W phase (0) to (1.73, ∠11
π / 6). This shows that the torque vector is larger during two-phase excitation than during three-phase excitation. In the configuration of the constant current control circuit as described above, the magnitude of the torque vector varies depending on the energizing section, and the rotational torque becomes non-uniform.

【0007】[0007]

【発明が解決しようとする課題】しかし、このような3
相ステップモータの駆動回路においては、回転トルクの
不均一性のために振動や騒音が大きくなってしまう。こ
の問題を解決するためにマイクロステップ駆動のような
回路が提案されているが回路構成が複雑且つ高価となる
場合が多く、簡易で安価な回路構成で振動や騒音を低減
したPWM駆動回路の実現が望まれている。
However, such a 3
In a drive circuit of a phase step motor, vibration and noise increase due to non-uniformity of rotation torque. In order to solve this problem, a circuit such as a micro step drive has been proposed. However, the circuit configuration is often complicated and expensive, and a simple and inexpensive circuit configuration is used to realize a PWM drive circuit with reduced vibration and noise. Is desired.

【0008】本発明は上述の課題を解決するためになさ
れたもので、安価で振動や騒音の少ない3相ステップモ
ータの駆動回路を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has as its object to provide a drive circuit for a three-phase step motor which is inexpensive and has little vibration and noise.

【0009】[0009]

【問題を解決するための手段】この目的を達成するた
め、本発明においては、外部入力の駆動パルスから2相
励磁と3相励磁のタイミングを検出するタイミングロジ
ック回路と、上記タイミングロジック回路の出力信号に
より上記3相励磁巻線への総電流を可変制御するPWM
回路と、2相励磁時は総電流を少なく、3相励磁時には
総電流を多く流すように上記PWM回路のパルス幅を変
化させる通電制御手段とを設ける。
According to the present invention, there is provided a timing logic circuit for detecting two-phase excitation and three-phase excitation timing from a driving pulse of an external input, and an output of the timing logic circuit. PWM for variably controlling the total current to the three-phase excitation winding by a signal
A circuit and energization control means for changing the pulse width of the PWM circuit so as to reduce the total current during two-phase excitation and increase the total current during three-phase excitation are provided.

【0010】また、上記駆動パルスのパルス幅が5〜2
0%である初期区間で、上記励磁巻線への総電流を上記
駆動パルスの到来毎に初期区間のみ約1/2に低減させ
る低減パルス発生回路を設ける。
The pulse width of the driving pulse is 5 to 2
A reduction pulse generating circuit is provided for reducing the total current to the exciting winding to about の み only in the initial section every time the drive pulse arrives in the initial section of 0%.

【0011】[0011]

【発明の実施の形態】図2は本発明に係る3相ステップ
モータの駆動回路の実施の形態を示す図である。図に示
すように、駆動パルス発生回路1の入力から、3相励磁
巻線5の2相励磁と3相励磁のタイミングを検出し信号
を出力するタイミングロジック回路2と、タイミングロ
ジック回路2の出力信号と基準電圧発生装置11からの
基準電圧で動作する電子スイッチ12と、電子スイッチ
12の出力信号と駆動電流の総和を検出する電流検出器
6との信号により、総電流を可変制御するPWM回路7
と、PWM回路7内に設けられた、2相励磁時は総電流
を少なく、3相励磁時には総電流を多く流すようにパル
ス幅を変化させる通電制御手段7aと、PWM回路7の
出力信号によりインバータ回路4を駆動するベース駆動
回路3とから構成されている。電子スイッチ12は3相
励磁巻線5の総電流値指令である電圧値を切り換えてP
WM回路7へ入力する。つまり、3相励磁の通電区間
では従来と同じく電流比(0.5)、と(1.0)
で通電して、2相励磁の通電区間では電流比を
(0.87)で通電する。
FIG. 2 is a diagram showing an embodiment of a drive circuit for a three-phase step motor according to the present invention. As shown in the figure, a timing logic circuit 2 for detecting the timing of two-phase excitation and three-phase excitation of a three-phase excitation winding 5 from an input of a drive pulse generation circuit 1 and outputting a signal, and an output of the timing logic circuit 2 A PWM circuit that variably controls the total current based on a signal and a signal from an electronic switch 12 that operates with a reference voltage from a reference voltage generator 11 and a signal from an output signal of the electronic switch 12 and a current detector 6 that detects the sum of driving currents. 7
And an energization control means 7a provided in the PWM circuit 7 for changing the pulse width so as to reduce the total current during two-phase excitation and increase the total current during three-phase excitation, and the output signal of the PWM circuit 7 And a base drive circuit 3 for driving the inverter circuit 4. The electronic switch 12 switches the voltage value, which is the total current value command of the three-phase excitation winding 5, and
Input to the WM circuit 7. In other words, the current ratios (0.5) and (1.0) in the energizing section of the three-phase excitation are the same as in the past.
, And the current is applied at a current ratio of (0.87) in the energizing section of the two-phase excitation.

【0012】図5は上記の動作を示すタイミングチャー
ト図である。図に示すように、駆動パルス(a)毎に電
流値指令信号(b)を発生させて、総電流を2相励磁時
には電流比(0.87)、3相励磁時には電流比(1.
0)に設定することにより、3相励磁巻線5の各相の電
流比が上記(0.5)、(0.87)、(1.0)とな
るように、通電制御手段7aにより定電流制御している
(c)、(d)、(e)。各通電区間(g)の総電流を
(f)に示した。
FIG. 5 is a timing chart showing the above operation. As shown in the figure, a current value command signal (b) is generated for each drive pulse (a), and the total current is a current ratio (0.87) at the time of two-phase excitation, and a current ratio (1.
0), the current control means 7a determines the current ratio of each phase of the three-phase excitation winding 5 to (0.5), (0.87), (1.0). The current is controlled (c), (d), and (e). The total current in each energizing section (g) is shown in (f).

【0013】図9は図2の駆動回路で駆動した時のトル
クベクトル図である。図に示すように、通電区間で各
相のベクトルはU相(0.5,∠0)、V相(1.0,
∠2π/3)、W相(0.5,∠4π/3)でトルクベ
クトルの総和は(1.5,∠5π/3)となり、通電区
間で各相のベクトルはU相(0.87,∠0)、V相
(0.87,∠2π/3)、W相(0)でトルクベクト
ルの総和は(1.5,∠11π/6)となる。従来の図
8と比較すると2相励磁と3相励磁との発生トルクの大
きさが一致することがわかる。
FIG. 9 is a torque vector diagram when driven by the drive circuit of FIG. As shown in the figure, the vectors of each phase in the energization section are U-phase (0.5, ∠0) and V-phase (1.0,
∠2π / 3), the sum of the torque vectors in the W phase (0.5, ∠4π / 3) is (1.5, ∠5π / 3), and the vector of each phase is U phase (0.87 , ∠0), V phase (0.87, ∠2π / 3), and W phase (0), the sum of the torque vectors is (1.5, ∠11π / 6). Compared with FIG. 8 of the related art, it can be seen that the magnitudes of the generated torques of the two-phase excitation and the three-phase excitation match.

【0014】上述のように、PWM方式で各相の総電流
を設定した値に定電流制御することで、駆動パルス毎に
発生するトルクベクトルは一定の大きさに制御され、モ
ータは高い駆動周波数まで安定に動作し、振動、騒音も
低減される。
As described above, by controlling the total current of each phase to a set value by the PWM method, the torque vector generated for each drive pulse is controlled to a constant magnitude, and the motor operates at a high drive frequency. It operates stably until now, and vibration and noise are reduced.

【0015】また、本発明の駆動回路の構成は非常に簡
素化されていて小型で安価に製作でき、IC化も容易で
あり大幅なコストダウンも可能となる。
Further, the configuration of the drive circuit of the present invention is extremely simplified, and can be manufactured at a small size and at a low cost.

【0016】図1は本発明に係る3相ステップモータの
駆動回路の別の実施の形態を示す図で、図2を更に改善
したものである。図に示すように、10は駆動パルスの
1周期毎にその周波数で一定パルス幅となる低減パルス
を発生する低減パルス発生回路であり、低減パルス発生
回路10の出力信号で電子スイッチ8をオン・オフする
ことで、総電流指令となる基準電圧発生装置9からの基
準電圧を1/2に低減させてPWM回路7に入力する。
FIG. 1 is a diagram showing another embodiment of a drive circuit for a three-phase step motor according to the present invention, which is a further improvement of FIG. As shown in the figure, reference numeral 10 denotes a reduction pulse generation circuit that generates a reduction pulse having a constant pulse width at the frequency of each drive pulse period. By turning it off, the reference voltage from the reference voltage generator 9, which is the total current command, is reduced to 1 / and input to the PWM circuit 7.

【0017】図6は上記の動作を示すタイミングチャー
ト図である。図に示すように、駆動パルス(a)に同期
して一定幅Tの低減パルス(c)を発生させている。こ
の低減パルス(c)は駆動パルス(a)の周波数の5〜
20%パルス幅に設定しているため、駆動パルス(a)
の周波数が変化した際自動的に低減パルス幅Tは変化
し、常に同じパルス幅比となつている。こうして、駆動
パルス毎にその周波数の5〜20%の通電区間で各相の
電流は1/2となるように通電制御手段を用いて制御し
ている。通電区間(h)毎の総電流を(g)に示した。
FIG. 6 is a timing chart showing the above operation. As shown in the figure, a reduction pulse (c) having a constant width T is generated in synchronization with the drive pulse (a). This reduction pulse (c) has a frequency of 5 to 5
Since the pulse width is set to 20%, the driving pulse (a)
Automatically changes when the frequency changes, the pulse width ratio always becomes the same. In this way, the current of each phase is controlled by the current control means so that the current of each phase becomes で in the power supply section of 5 to 20% of the frequency for each drive pulse. The total current for each energizing section (h) is shown in (g).

【0018】図10は図1の駆動回路で駆動した時のト
ルクベクトル図である。図に示すように、太破線矢印が
この低減パルス発生時のトルクベクトルとなる。例え
ば、通電区間の時間Tでは低減パルス発生時のトルク
ベクトルの総和は(0.25,∠0)+(0.5,∠2
π/3)+(0.25,∠4π/3)=(0.75,∠
5π/3)となり、時間Tを過ぎるとトルクベクトルの
総和は2倍の(1.5,∠5π/3)となる。
FIG. 10 is a torque vector diagram when driven by the drive circuit of FIG. As shown in the figure, a thick broken arrow indicates a torque vector when the reduction pulse is generated. For example, at the time T of the energizing section, the sum of the torque vectors when the reduction pulse is generated is (0.25, ∠0) + (0.5, ∠2).
π / 3) + (0.25, {4π / 3) = (0.75, ∠
5π / 3), and after the time T, the sum of the torque vectors becomes twice (1.5, ∠5π / 3).

【0019】図7は通電区間におけるU相の電流変化
と加速度センサによるモータ振動の測定値である。
(a)は従来の図4の通電方式によるもので、(b)は
本発明を用いた通電方式によるものであり、トルクが2
段階に滑らかに発生するため、振動のオーバシュート、
アンダーシュート、整定時間が大幅に改善されているこ
とがわかる。また、低減パルスの幅は駆動パルス周期の
5〜20%で且つ電流値の低減量は1/2が振動や騒音
に最も効果的であることが実験値から把握されている。
FIG. 7 shows the measured values of the U-phase current change and the motor vibration by the acceleration sensor during the energizing section.
(A) is based on the conventional energizing method shown in FIG. 4, and (b) is based on the energizing method using the present invention.
Occurrence of vibration overshoot,
It can be seen that undershoot and settling time have been greatly improved. Further, it is understood from experimental values that the width of the reduction pulse is 5 to 20% of the driving pulse period and the amount of reduction of the current value is 最 も which is most effective for vibration and noise.

【0020】上述のように、低減パルスを付加した駆動
回路に於いては、駆動パルス周波数が大きく変化して
も、低減パルス幅の割合は変化せず、幅広い周波数領域
で更に一層振動と騒音を低減することが可能となった。
As described above, in the drive circuit to which the reduction pulse is added, even if the drive pulse frequency greatly changes, the ratio of the reduction pulse width does not change, and vibration and noise are further reduced in a wide frequency range. It became possible to reduce.

【0021】[0021]

【発明の効果】以上の説明のように、本発明に係る3相
ステップモータの駆動回路においては、PWM方式で各
相の総電流を定電流制御することで、駆動パルス毎に発
生するトルクベクトルは一定の大きさに制御されるの
で、3相ステップモータは高い駆動周波数まで安定に動
作し、振動、騒音も低減される。また、駆動回路の構成
は非常に簡素化されていて小型で安価に製作でき、IC
化も容易であり大幅なコストダウンも可能となる。
As described above, in the drive circuit of the three-phase step motor according to the present invention, the total current of each phase is controlled by the PWM method at a constant current, so that the torque vector generated for each drive pulse is obtained. Is controlled to a constant magnitude, so that the three-phase step motor operates stably up to a high driving frequency, and vibration and noise are reduced. In addition, the configuration of the driving circuit is very simplified, and it can be manufactured small and inexpensively.
It is also easy to implement and significant cost reduction is possible.

【0022】また、駆動パルスのパルス幅が5〜20%
である初期区間で、励磁巻線への総電流を駆動パルスの
到来毎に初期区間のみ約1/2に低減させる低減パルス
発生回路を備えたときには、幅広い周波数領域で更に一
層振動と騒音を低減することが可能となった。
The driving pulse has a pulse width of 5 to 20%.
In the initial section, when a reduction pulse generation circuit is provided that reduces the total current to the exciting winding to about の み only in the initial section every time a drive pulse arrives, vibration and noise are further reduced over a wide frequency range. It became possible to do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る3相ステップモータの駆動回路の
別の実施の形態を示す回路構成図である。
FIG. 1 is a circuit diagram showing another embodiment of a drive circuit for a three-phase step motor according to the present invention.

【図2】本発明に係る3相ステップモータの駆動回路の
実施の形態を示す回路構成図である。
FIG. 2 is a circuit diagram showing an embodiment of a drive circuit for a three-phase step motor according to the present invention.

【図3】従来の3相ステップモータの駆動回路構成図で
ある。
FIG. 3 is a drive circuit configuration diagram of a conventional three-phase step motor.

【図4】従来の3相ステップモータの駆動回路で駆動し
た時の動作タイミングチャート図である。
FIG. 4 is an operation timing chart when driven by a conventional drive circuit of a three-phase step motor.

【図5】図2の駆動回路での動作タイミングチャート図
である。
FIG. 5 is an operation timing chart of the drive circuit of FIG. 2;

【図6】図1の駆動回路での動作タイミングチャート図
である。
FIG. 6 is an operation timing chart of the drive circuit of FIG. 1;

【図7】ある通電区間での相電流の変化とモータ振動特
性を示す図である。
FIG. 7 is a diagram showing a change in phase current and a motor vibration characteristic in a certain energizing section.

【図8】従来の3相ステップモータの駆動回路で駆動し
た時のトルクベクトル図である。
FIG. 8 is a torque vector diagram when driven by a conventional three-phase step motor drive circuit.

【図9】図2の駆動回路で駆動した時のトルクベクトル
図である。
FIG. 9 is a torque vector diagram when driven by the drive circuit of FIG. 2;

【図10】図1の駆動回路で駆動した時のトルクベクト
ル図である。
FIG. 10 is a torque vector diagram when driven by the drive circuit of FIG. 1;

【符号の説明】[Explanation of symbols]

1 :駆動パルス発生回路 2 :タイミングロジック回路 3 :ベース駆動回路 4 :インバータ回路 5 :3相励磁巻線 6 :電流検出器 7 :PWM回路 7a:通電制御手段 8 :電子スイッチ 9 :基準電圧発生装置 10 :低減パルス発生回路 11 :基準電圧発生装置 12 :電子スイッチ 13 :基準電圧発生装置 14 :ロジック回路 1: drive pulse generation circuit 2: timing logic circuit 3: base drive circuit 4: inverter circuit 5: three-phase excitation winding 6: current detector 7: PWM circuit 7a: conduction control means 8: electronic switch 9: reference voltage generation Apparatus 10: Reduction pulse generation circuit 11: Reference voltage generation apparatus 12: Electronic switch 13: Reference voltage generation apparatus 14: Logic circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】星状結線の3相励磁巻線を施した固定子
と、上記固定子と所定の空隙をもって対向し且つ永久磁
石を含む回転子とで構成した永久磁石形3相ステップモ
ータを、2−3相励磁方式で上記3相励磁巻線にバイポ
ーラ通電で駆動制御する3相ステップモータの駆動回路
において、外部入力の駆動パルスから2相励磁と3相励
磁のタイミングを検出するタイミングロジック回路と、
上記タイミングロジック回路の出力信号により上記3相
励磁巻線への総電流を可変制御するPWM回路と、2相
励磁時は総電流を少なく、3相励磁時には総電流を多く
流すように上記PWM回路のデューティを変化させる通
電制御手段とを備えたことを特徴とする3相ステップモ
ータの駆動回路。
1. A permanent magnet type three-phase stepping motor comprising a stator having a star-connected three-phase excitation winding and a rotor including a permanent magnet and facing the stator with a predetermined gap. Timing logic for detecting the timing of two-phase excitation and three-phase excitation from a driving pulse of an external input in a drive circuit of a three-phase step motor that drives and controls the three-phase excitation winding by bipolar conduction in a 2-3-phase excitation method Circuit and
A PWM circuit that variably controls the total current to the three-phase excitation winding based on an output signal of the timing logic circuit; and a PWM circuit that reduces the total current during two-phase excitation and increases the total current during three-phase excitation. A drive circuit for a three-phase step motor, comprising: an energization control unit that changes a duty of the motor.
【請求項2】上記駆動パルスのパルス幅が5〜20%で
ある初期区間で、上記励磁巻線への総電流を上記駆動パ
ルスの到来毎に初期区間のみ約1/2に低減させる低減
パルス発生回路を備えたことを特徴とする請求項1に記
載の3相ステップモータの駆動回路。
2. A reduced pulse for reducing the total current to the exciting winding to about 1/2 only in the initial section every time the drive pulse arrives in an initial section in which the pulse width of the drive pulse is 5 to 20%. The drive circuit for a three-phase step motor according to claim 1, further comprising a generation circuit.
JP185697A 1997-01-09 1997-01-09 Driving circuit for three-phase step motor Pending JPH10201294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP185697A JPH10201294A (en) 1997-01-09 1997-01-09 Driving circuit for three-phase step motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP185697A JPH10201294A (en) 1997-01-09 1997-01-09 Driving circuit for three-phase step motor

Publications (1)

Publication Number Publication Date
JPH10201294A true JPH10201294A (en) 1998-07-31

Family

ID=11513194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP185697A Pending JPH10201294A (en) 1997-01-09 1997-01-09 Driving circuit for three-phase step motor

Country Status (1)

Country Link
JP (1) JPH10201294A (en)

Similar Documents

Publication Publication Date Title
US6236174B1 (en) Method and apparatus for driving a polyphase, brushless DC motor
JP4959460B2 (en) Motor starting device and motor starting method
JP3204644B2 (en) Driving device and driving method for electric motor
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
JP2002199778A (en) Motor drive
JP2000078882A (en) Rectifier circuit for sensor-less three-phase bldc motor
CN112448623A (en) Motor driving circuit and method
JP2871653B2 (en) Inverter drive circuit for motor
JP2009247089A (en) Method of controlling inverters for brushless motors and device using the same
WO2021200389A1 (en) Motor control device, motor system, and motor control method
JPH09154294A (en) Driving of brushless dc motor
JPH10201294A (en) Driving circuit for three-phase step motor
JPH06197593A (en) Pwm-controlled motor device
JP2008043073A (en) Method and unit for controlling speed of brushless motor
JP2003209988A (en) Brushless motor drive system, brushless motor driving method, and computer program
JPH07245983A (en) Sensorless brushless motor
JPH10234195A (en) Method and apparatus for speed control of motor
JP4389746B2 (en) Inverter control device
JP2004096915A (en) Method and apparatus for controlling synchronous motor
JP2003116294A (en) Synchronous operation unit
JPH11187691A (en) Driving device of brushless motor
JPH0993979A (en) Controller of brushless motor
JP4147382B2 (en) DC brushless motor parallel drive circuit
JP4136368B2 (en) DC brushless motor parallel drive circuit
JP4269920B2 (en) Brushless motor drive device