JPH10201284A - Controller for brushless dc motor - Google Patents

Controller for brushless dc motor

Info

Publication number
JPH10201284A
JPH10201284A JP9001114A JP111497A JPH10201284A JP H10201284 A JPH10201284 A JP H10201284A JP 9001114 A JP9001114 A JP 9001114A JP 111497 A JP111497 A JP 111497A JP H10201284 A JPH10201284 A JP H10201284A
Authority
JP
Japan
Prior art keywords
edge
electrical angle
magnetic pole
signal
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001114A
Other languages
Japanese (ja)
Inventor
Kazuhiro Murata
和弘 村田
Yukie Fukuhara
幸英 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP9001114A priority Critical patent/JPH10201284A/en
Publication of JPH10201284A publication Critical patent/JPH10201284A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conduct sine-wave driving in an encodeless manner, by correcting and processing an electrical angle in a section by the average speed of the information of an edge signal, in which the acceleration of the edge signal is obtained actually under constant conditions, and a time until the electrical angle is changed at a fixed angle, and controlling the brushless DC motor. SOLUTION: A motor current signal is transmitted from a current detecting means 4 to an arithmetic processing section 10 for a correction processing means 8, while a pole-place signal is sent from a pole detecting means 5 to the arithmetic processing section 10 and an edge detecting means 6. The edge detecting means 6 detects the edge of a magnetic pole and outputs edge signals, and a counter means 7 measures the intervals of the edge signals by the resolution of a measuring clock. The correction processing means 8 obtains a fixed electrical angle from the pole-place signal by the arithmetic processing section 10, and an electrical angle in the section of the electrical angle is corrected by the average speed of the information of the edge signals, in which the acceleration of the edge signals in the section of the electrical angle is acquired actually under constant conditions, and a time until the electrical angle is changed at a fixed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、例えば電動の移
動体等に搭載される正弦波駆動方式により駆動するブラ
シレスDCモータの制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a brushless DC motor driven by a sine wave drive system mounted on, for example, an electric moving body.

【0002】[0002]

【従来の技術】例えば、ホールモータは永久磁石型同期
電動機の一種で、永久磁石の磁極位置をホールセンサを
用いて検出し帰還することにより脱調を防いでいるのが
特徴である。ACサーボと違い、ロータリエンコーダを
用いず、例えば120位相の180°通電三相インバー
タで駆動するのが一般的である。直流電動機と同様、イ
ンバータの直流電圧、あるいは、通電相のチョッパによ
り電流・速度を制御するためブラシレスDCモータとも
呼ばれる。この場合、ACサーボモータと違い、永久磁
石の着磁は台形波とすることが多く、通電相が切り替わ
る例えば60°毎にトルクリプルが生じる。このような
ブラシレスDCモータ(永久磁石型同期電動機)は、ブ
ラシ・整流子片がなく構造が簡単なため、安価・堅牢・
メンテナスフリーという優れた特徴があり、急速に需要
が増加している。さらに、回転子の慣性モーメントが小
さくなることも利点の一つである。
2. Description of the Related Art For example, a hall motor is a kind of a permanent magnet type synchronous motor, and is characterized by detecting a magnetic pole position of a permanent magnet using a Hall sensor and feeding back the same to prevent loss of synchronism. Unlike an AC servo, it is common to drive with, for example, a 120-phase 180 ° conducting three-phase inverter without using a rotary encoder. Like a DC motor, the DC voltage of an inverter or a current / speed is controlled by a chopper of an energized phase, so that it is also called a brushless DC motor. In this case, unlike the AC servomotor, the permanent magnet is often magnetized in a trapezoidal wave, and a torque ripple is generated, for example, every 60 ° when the energized phase is switched. Such a brushless DC motor (permanent magnet type synchronous motor) has a simple structure without brushes and commutator pieces, and is therefore inexpensive, robust, and inexpensive.
It has an excellent feature of maintenance-free, and demand is rapidly increasing. Another advantage is that the moment of inertia of the rotor is reduced.

【0003】[0003]

【発明が解決しようとする課題】しかし、トルクリプ
ル、高調波損失、弱め界磁制御などの観点からは正弦波
駆動が望ましく、その場合位置センサ、例えばロータリ
ーエンコーダを用いる必要がある。さらに、3相バイポ
ーラ駆動となり、総合的には直流機よりも高価になるの
が現状である。
However, sine wave driving is desirable from the viewpoint of torque ripple, harmonic loss, field weakening control, and the like. In that case, a position sensor, for example, a rotary encoder must be used. Further, at present, it is a three-phase bipolar drive, and is generally more expensive than a DC machine.

【0004】この発明は、かかる点に鑑みてなされたも
ので、磁極位置信号を基に回転子位置を推定し、エンコ
ーダレスで正弦波駆動を可能とするブラシレスDCモー
タの制御装置を提供することを目的としている。
The present invention has been made in view of the above points, and provides a brushless DC motor control device that estimates a rotor position based on a magnetic pole position signal and enables sine wave driving without an encoder. It is an object.

【0005】[0005]

【課題を解決するための手段】前記課題を解決し、かつ
目的を達成するために、請求項1記載のブラシレスDC
モータの制御装置は、ブラシレスDCモータの磁極を検
出する磁極検出手段と、この磁極検出手段から得られる
磁極位置信号から磁極のエッジ信号を検出するエッジ検
出手段と、前記エッジ信号の間隔を測定クロックの分解
能で計測するカウンタ手段と、前記磁極位置信号から所
定電気角を得、この電気角の区間内の電気角の補正を前
記区間内の前記エッジ信号の加速度が一定の条件で実際
に得られるエッジ信号の情報の平均速度、前記電気角が
所定角度変化するまでの時間により行う補正処理手段
と、この補正された電気角情報に基づき前記ブラシレス
DCモータを制御する制御手段とを備えることを特徴と
している。磁極位置信号を基に回転子位置を推定し、エ
ンコーダレスで正弦波駆動を可能とし、構造が簡単で安
価である。また、エッジ信号の加速度が一定の条件で実
際に得られるエッジ信号の情報の平均速度、電気角が所
定角度変化するまでの時間により補正を行うため、加減
速時も位置の誤差が少ないから効果的である。
In order to solve the above-mentioned problems and achieve the object, a brushless DC according to claim 1 is provided.
The motor control device includes: a magnetic pole detecting means for detecting a magnetic pole of the brushless DC motor; an edge detecting means for detecting an edge signal of the magnetic pole from a magnetic pole position signal obtained from the magnetic pole detecting means; and a measuring clock for measuring an interval between the edge signals. A predetermined electrical angle is obtained from the magnetic pole position signal, and the correction of the electrical angle in the section of the electrical angle is actually obtained under a constant condition of the acceleration of the edge signal in the section. It is characterized by comprising a correction processing means for performing the average speed of the information of the edge signal and a time until the electric angle changes by a predetermined angle, and a control means for controlling the brushless DC motor based on the corrected electric angle information. And The rotor position is estimated on the basis of the magnetic pole position signal, sine wave drive is possible without encoder, and the structure is simple and inexpensive. In addition, since the acceleration of the edge signal is corrected based on the average speed of the information of the edge signal actually obtained under a constant condition and the time until the electrical angle changes by a predetermined angle, the position error is small even during acceleration / deceleration, so that it is effective. It is a target.

【0006】[0006]

【発明の実施の形態】以下、この発明のブラシレスDC
モータの制御装置を添付図面に基づいて詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a brushless DC according to the present invention will be described.
The motor control device will be described in detail with reference to the accompanying drawings.

【0007】図1はブラシレスDCモータの制御装置の
構成を示すブロック図である。ブラシレスDCモータ1
は、例えば永久磁石型同期電動機の一種のホールモータ
であり、このブラシレスDCモータ1で負荷2を駆動す
る。このブラシレスDCモータ1は、ロータリエンコー
ダを用いず、例えば駆動手段3である120位相の18
0°通電三相インバータで駆動する。
FIG. 1 is a block diagram showing a configuration of a control device for a brushless DC motor. Brushless DC motor 1
Is a type of a hall motor of, for example, a permanent magnet type synchronous motor, and a brushless DC motor 1 drives a load 2. This brushless DC motor 1 does not use a rotary encoder, and has, for example, a 120-phase 18
It is driven by a 0 ° conducting three-phase inverter.

【0008】ブラシレスDCモータ1の制御装置は、電
流検出手段4、磁極検出手段5、エッジ検出手段6、カ
ウンタ手段7、補正処理手段8及び制御手段9から構成
される。ブラシレスDCモータ1の電流を電流検出手段
4で検出してモータ電流信号を補正処理手段8に備えら
れる演算処理部10に送る。また、磁極位置を磁極検出
手段5により検出して磁極位置信号(U,V,W相信
号)を演算処理部10及びエッジ検出手段6に送る。磁
極検出手段5として例えばホールセンサ(図示せず)を
用いて検出し帰還することにより脱調を防いでいる。ホ
ールセンサは、回転子の位置検出に半導体素子に生ずる
ホール効果を利用するものである。
The control device for the brushless DC motor 1 comprises current detecting means 4, magnetic pole detecting means 5, edge detecting means 6, counter means 7, correction processing means 8 and control means 9. The current of the brushless DC motor 1 is detected by the current detecting means 4 and a motor current signal is sent to an arithmetic processing unit 10 provided in the correction processing means 8. The magnetic pole position is detected by the magnetic pole detecting means 5 and a magnetic pole position signal (U, V, W phase signal) is sent to the arithmetic processing unit 10 and the edge detecting means 6. For example, a Hall sensor (not shown) is used as the magnetic pole detecting means 5 to detect and feed back to prevent step-out. The Hall sensor utilizes the Hall effect generated in the semiconductor element for detecting the position of the rotor.

【0009】磁極位置信号の出力(U,V,W相信号)
からエッジ検出手段6は、磁極のエッジを検出してエッ
ジ信号を出力する。カウンタ手段7は、エッジ信号の間
隔を測定クロックの分解能で計測する。補正処理手段8
は、演算処理部10により磁極位置信号から所定電気角
を得、この電気角の区間内の電気角の補正を区間内のエ
ッジ信号の加速度が一定の条件で実際に得られるエッジ
信号の情報の平均速度、前記電気角が所定角度変化する
までの時間により補正を行う。なお、ただし、時間計測
ができない低速時は、例えば6ステップの駆動とする。
Output of magnetic pole position signal (U, V, W phase signals)
The edge detecting means 6 detects the edge of the magnetic pole and outputs an edge signal. The counter means 7 measures the interval between the edge signals with the resolution of the measurement clock. Correction processing means 8
Obtains a predetermined electrical angle from the magnetic pole position signal by the arithmetic processing unit 10 and corrects the electrical angle in the electrical angle section by determining the information of the edge signal that is actually obtained under a constant condition of the acceleration of the edge signal in the section. The correction is performed based on the average speed and the time until the electrical angle changes by a predetermined angle. However, at low speeds where time cannot be measured, for example, drive is performed in six steps.

【0010】制御手段9は、PWM部11、ゲート駆動
部12にを備え、補正された電気角情報に基づき駆動手
段3を制御する。駆動手段3は、インバータの電力増幅
部13を備え、補正された電気角情報に基づきブラシレ
スDCモータ1を駆動し、磁極位置信号を基に回転子位
置を推定し、エンコーダレスで正弦波駆動を可能とし、
構造が簡単で安価である。また、エッジ信号の加速度が
一定の条件で実際に得られるエッジ信号の情報の平均速
度、電気角が所定角度変化するまでの時間により補正を
行うため、加減速時も位置の誤差が少ない。
The control unit 9 includes a PWM unit 11 and a gate drive unit 12, and controls the drive unit 3 based on the corrected electrical angle information. The driving unit 3 includes a power amplifying unit 13 of an inverter, drives the brushless DC motor 1 based on the corrected electrical angle information, estimates a rotor position based on a magnetic pole position signal, and performs sine wave driving without an encoder. Possible,
The structure is simple and inexpensive. Further, since the correction is performed based on the average speed of the edge signal information actually obtained under a constant condition of the edge signal and the time until the electrical angle changes by a predetermined angle, the position error is small even during acceleration / deceleration.

【0011】次に、磁極位置信号を基に回転子位置を推
定し、エンコーダレスの正弦波駆動を可能とする構造を
詳細に説明する。
Next, a structure for estimating the rotor position based on the magnetic pole position signal and enabling encoderless sine wave driving will be described in detail.

【0012】図2は電気角推定のフローチャート、図3
は磁極位置信号の計測を説明する図である。磁極検出手
段の出力の磁気位置信号(U,V,W相信号)を図3に
示し、この磁気位置信号により、60°毎に電気角(回
転子位置)が得られる。ブラシレスDCモータ1の制御
には、位置制御を行うために正確な回転子位置を知る必
要があり、このために60°区間の補正を行う。この補
正法には、研究レベルでは速度オブザーバを用いている
が、数学モデルの精度・同定機構の確立など実用上は問
題が残る。とりわけ、正確な位置を知る機会が電気角6
0°に一度では、オブザーバゲインを上げることができ
ず収束性に問題があり実用できないと考えられる。最
近、ハードウェアで60°区間をN分割する方法が検討
されたが、加速時の誤差が大きいため一定速の運転に向
いていると考えられる。そこで、マイコンを用いセンサ
の周期を基に加速時の補償を行うことでさらに実用領域
を広げる手段が必要になる。しかし、何か固定条件がな
ければ推定は難しくここでは、電気角60°区間の加速
度が一定として推定する。
FIG. 2 is a flowchart of the electrical angle estimation, and FIG.
FIG. 4 is a diagram for explaining measurement of a magnetic pole position signal. The magnetic position signals (U, V, W phase signals) output from the magnetic pole detecting means are shown in FIG. In order to control the brushless DC motor 1, it is necessary to know an accurate rotor position in order to perform position control. For this purpose, a correction in a 60 ° section is performed. Although this method uses a velocity observer at the research level, practical problems remain, such as establishing the accuracy and identification mechanism of mathematical models. In particular, the opportunity to know the exact position is electrical angle 6
Once at 0 °, the observer gain cannot be increased, and there is a problem in the convergence, so that it is considered impossible to use it. Recently, a method of dividing the 60 ° section into N by hardware has been studied, but it is considered that the method is suitable for driving at a constant speed due to a large error during acceleration. Therefore, means for further expanding the practical area by performing compensation during acceleration based on the sensor cycle using a microcomputer is required. However, it is difficult to estimate without any fixed conditions. In this case, it is assumed that the acceleration in the 60 ° electrical angle section is constant.

【0013】任意の60°区間を考えると、速度は60
°区間の平均速度のみを知り得る。いま、図2におい
て、ステップS1で変数初期化を行い、ステップS2で
電気角の更新を行い、図3に示す磁極位置信号(U,
V,W相信号)から時間tが経過したときの位置を求め
る。
Considering an arbitrary 60 ° section, the speed is 60
° Only know the average speed of the section. Now, in FIG. 2, the variables are initialized in step S1, the electric angle is updated in step S2, and the magnetic pole position signals (U,
V, W-phase signal), and the position at the time t has elapsed.

【0014】 [0014]

【0015】その場合、以下の式が成立する。In this case, the following equation is established.

【0016】 [0016]

【0017】速度の瞬時値はわからないが、Although the instantaneous value of the speed is not known,

【0018】 [0018]

【0019】従って、回転子位置は(4)式となる。な
お、これは2極の場合を表し、それ以外では速度・加速
度に極対数を掛けた値となる。
Therefore, the position of the rotor is given by equation (4). Note that this represents the case of two poles, and otherwise represents a value obtained by multiplying the speed / acceleration by the number of pole pairs.

【0020】 [0020]

【0021】しかし、加速度は常に一定ではなく位置推
定に誤差を生じる。この誤差の原因を加速度の誤差のみ
であると仮定すると、
However, the acceleration is not always constant and causes an error in position estimation. Assuming that the only cause of this error is the acceleration error,

【0022】 [0022]

【0023】ここで、オーバーラインの付いている記号
は、計算値(推定値)を表す。
Here, the symbol with an overline indicates a calculated value (estimated value).

【0024】 [0024]

【0025】このΔθを基に加速度の誤差を求めると
(8)式となり、次の区間ではこの誤差を計算に用いた
加速度に加えて用いることで加速中の位置推定誤差を小
さくでき、適用範囲が広がると考えられる。
When the error of the acceleration is obtained based on this Δθ, the equation (8) is obtained. In the next section, the error in the position estimation during acceleration can be reduced by using this error in addition to the acceleration used in the calculation. Is thought to spread.

【0026】 [0026]

【0027】しかし、速度分解能が低い場合に加速度を
直接速度の時間微分で求める場合、平均化処理等を施さ
なければ値にばらつきを生じることが多い。従って、誤
差を積分する方式の方が値のばらつきが小さく、速度分
解能が低い場合に適している。
However, when the acceleration is directly obtained by time derivative of the speed when the speed resolution is low, the value often varies unless an averaging process is performed. Therefore, the method of integrating the error is suitable when the value variation is small and the speed resolution is low.

【0028】(4)、(8)、(9)式の計算は、CP
Uで行い、実際にプログラムを作ることで確認できる。
また、位置推定の(4)式は50〜10Oμs程度の推
定間隔でよく実現可能である。なお、最低速度は時間計
測するカウンタの周波数とビット長で決まる。
Equations (4), (8), and (9) are calculated using CP
This can be confirmed by making a program at U.
Further, the expression (4) for position estimation can be well realized at an estimation interval of about 50 to 100 μs. The minimum speed is determined by the frequency and bit length of the counter for measuring time.

【0029】[0029]

【発明の効果】前記したように、請求項1記載の発明で
は、磁極位置信号を基に回転子位置を推定し、エンコー
ダレスで正弦波駆動を可能とし、構造が簡単で安価であ
る。また、エッジ信号の加速度が一定の条件で実際に得
られるエッジ信号の情報の平均速度、電気角が所定角度
変化するまでの時間により補正を行うため、加減速時も
位置の誤差が少ないから効果的である。
As described above, according to the first aspect of the present invention, the rotor position is estimated on the basis of the magnetic pole position signal, sine wave driving can be performed without an encoder, and the structure is simple and inexpensive. In addition, since the acceleration of the edge signal is corrected based on the average speed of the information of the edge signal actually obtained under a constant condition and the time until the electrical angle changes by a predetermined angle, the position error is small even during acceleration / deceleration, so that it is effective. It is a target.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ブラシレスDCモータの制御装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a control device for a brushless DC motor.

【図2】電気角推定のフローチャートである。FIG. 2 is a flowchart of electric angle estimation.

【図3】磁極位置信号の計測を説明する図である。FIG. 3 is a diagram illustrating measurement of a magnetic pole position signal.

【符号の説明】[Explanation of symbols]

1 ブラシレスDCモータ 5 磁極検出手段 6 エッジ検出手段 7 カウンタ手段 8 補正処理手段 9 制御手段 DESCRIPTION OF SYMBOLS 1 Brushless DC motor 5 Magnetic pole detection means 6 Edge detection means 7 Counter means 8 Correction processing means 9 Control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ブラシレスDCモータの磁極を検出する磁
極検出手段と、この磁極検出手段から得られる磁極位置
信号から磁極のエッジ信号を検出するエッジ検出手段
と、前記エッジ信号の間隔を測定クロックの分解能で計
測するカウンタ手段と、前記磁極位置信号から所定電気
角を得、この電気角の区間内の電気角の補正を前記区間
内の前記エッジ信号の加速度が一定の条件で実際に得ら
れるエッジ信号の情報の平均速度、前記電気角が所定角
度変化するまでの時間により行う補正処理手段と、この
補正された電気角情報に基づき前記ブラシレスDCモー
タを制御する制御手段とを備えることを特徴とするブラ
シレスDCモータの制御装置。
1. A magnetic pole detecting means for detecting a magnetic pole of a brushless DC motor, an edge detecting means for detecting an edge signal of a magnetic pole from a magnetic pole position signal obtained from the magnetic pole detecting means, and an interval between the edge signals as a measurement clock. Counter means for measuring with a resolution, and a predetermined electrical angle obtained from the magnetic pole position signal, and correction of the electrical angle in the section of the electrical angle is performed on the edge at which the acceleration of the edge signal in the section is actually obtained under a constant condition. An average speed of signal information, correction processing means for performing the time until the electrical angle changes by a predetermined angle, and control means for controlling the brushless DC motor based on the corrected electrical angle information, Control device for brushless DC motor.
JP9001114A 1997-01-08 1997-01-08 Controller for brushless dc motor Pending JPH10201284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001114A JPH10201284A (en) 1997-01-08 1997-01-08 Controller for brushless dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001114A JPH10201284A (en) 1997-01-08 1997-01-08 Controller for brushless dc motor

Publications (1)

Publication Number Publication Date
JPH10201284A true JPH10201284A (en) 1998-07-31

Family

ID=11492444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001114A Pending JPH10201284A (en) 1997-01-08 1997-01-08 Controller for brushless dc motor

Country Status (1)

Country Link
JP (1) JPH10201284A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009576A (en) * 2001-06-18 2003-01-10 Matsushita Electric Ind Co Ltd Rotor position detector
WO2003043173A3 (en) * 2001-11-16 2004-02-19 Matsushita Electric Ind Co Ltd Motor controller
JP2006006067A (en) * 2004-06-18 2006-01-05 Nidec Shibaura Corp Brushless dc motor driving apparatus
KR101056476B1 (en) * 2009-11-09 2011-08-11 주식회사 케피코 Low speed mode control device of BCD motor and its control method
JP2013090567A (en) * 2011-10-14 2013-05-13 Deere & Co Method and system for estimating rotor angle of electric machine
JP2014108034A (en) * 2012-11-30 2014-06-09 Yaskawa Electric Corp Motor controller and motor control method
KR20140076039A (en) * 2012-12-12 2014-06-20 한국전자통신연구원 Motor driving module, operating method for the same, and brushless dc motor system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009576A (en) * 2001-06-18 2003-01-10 Matsushita Electric Ind Co Ltd Rotor position detector
JP4715043B2 (en) * 2001-06-18 2011-07-06 パナソニック株式会社 Rotor position detector
WO2003043173A3 (en) * 2001-11-16 2004-02-19 Matsushita Electric Ind Co Ltd Motor controller
US6906494B2 (en) 2001-11-16 2005-06-14 Matsushita Electric Industrial Co., Ltd. Motor controller
JP2006006067A (en) * 2004-06-18 2006-01-05 Nidec Shibaura Corp Brushless dc motor driving apparatus
KR101056476B1 (en) * 2009-11-09 2011-08-11 주식회사 케피코 Low speed mode control device of BCD motor and its control method
JP2013090567A (en) * 2011-10-14 2013-05-13 Deere & Co Method and system for estimating rotor angle of electric machine
JP2014108034A (en) * 2012-11-30 2014-06-09 Yaskawa Electric Corp Motor controller and motor control method
KR20140076039A (en) * 2012-12-12 2014-06-20 한국전자통신연구원 Motor driving module, operating method for the same, and brushless dc motor system

Similar Documents

Publication Publication Date Title
JP3454212B2 (en) Motor control device
EP2587662B1 (en) Method and system for estimating a rotor angle of an electric machine
JP3661642B2 (en) Motor control device and control method thereof
US4772839A (en) Rotor position estimator for switched reluctance motor
US6850022B2 (en) Method and system for determining electronic commutation in brushless DC machines irrespective of the placement of rotor position sensors
US6738718B2 (en) Method and apparatus for measuring torque and flux current in a synchronous motor
JP2001204190A (en) Device for estimating initial magnetic pole position and its error adjustment method
EP1821401B1 (en) Improved method and apparatus for movable element position detection in an electrically commutated machine
US8664905B2 (en) Control of brushless motor
JP4120420B2 (en) Motor control device
KR101448677B1 (en) Apparatus and method for estimating rotor position of brushless dc motor
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
JP2001211698A (en) Synchronous motor controller
JPH10201284A (en) Controller for brushless dc motor
EP1416623B1 (en) Method and system for determining electronic commutation in brushless DC machines irrespective of the placement of rotor position sensors
JP4051833B2 (en) Vector controller for permanent magnet synchronous motor
CN105322860B (en) Without sensor permanent magnet direct driving motor rotor initial angle detection means and method
US7058537B2 (en) Method and device for detecting a rotational speed comprising an estimation of a measured value at low rotational speeds
JP3472533B2 (en) Motor control device
JP2012186911A (en) Motor control device
JPH08126379A (en) Driver and control method for dc brushless motor
JP2001145381A (en) Controller of motor
JP2007082380A (en) Synchronous motor control device
JPWO2019207754A1 (en) Electric motor control device
JP4312993B2 (en) Inverter control method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050523