JPH10201170A - Bearingless electric rotating machine - Google Patents

Bearingless electric rotating machine

Info

Publication number
JPH10201170A
JPH10201170A JP1338897A JP1338897A JPH10201170A JP H10201170 A JPH10201170 A JP H10201170A JP 1338897 A JP1338897 A JP 1338897A JP 1338897 A JP1338897 A JP 1338897A JP H10201170 A JPH10201170 A JP H10201170A
Authority
JP
Japan
Prior art keywords
rotor
rotating machine
stator
winding
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1338897A
Other languages
Japanese (ja)
Other versions
JP3688420B2 (en
Inventor
Tadashi Sato
忠 佐藤
Susumu Osawa
将 大沢
Satoshi Mori
敏 森
Kazuki Sato
一樹 佐藤
Tadashi Kayashima
直史 茅島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Densan Ltd
Original Assignee
Ebara Corp
Ebara Densan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Densan Ltd filed Critical Ebara Corp
Priority to JP01338897A priority Critical patent/JP3688420B2/en
Publication of JPH10201170A publication Critical patent/JPH10201170A/en
Application granted granted Critical
Publication of JP3688420B2 publication Critical patent/JP3688420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform orthogonal biaxial control of a rotor in the radial direction and rotary driving force control thereof by passing a flux generated through magnetomotive force of a winding wound around the cylindrical surface on the inside of a stator through the cylindrical surface of the rotor and the vertical cross-section vertical of a rotary shaft. SOLUTION: Two rotors 11, 12 are arranged continuously in the direction of rotary shaft and connected through a magnetic material 13A. The magnetic material 13A serves as a magnetic path coupling the two rotors 11, 12. Flux passing through the rotors 11, 12 depends on the acting face of the rotor and the magnetic material 13A. A flux entering from (leaving to) a stator 10 partially passes through the magnetic material 13A to form a closed magnetic path passing through the rotors 11, 12. The stator 10 is provided with two sets of three-phase winding corresponding to the rotor, total six phase windings. These windings are fed with currents of same frequency and different amplitude having phase shift of 120 deg. so that a tetra-axial radial floating position control force, as well as a rotary driving force, acts on the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁力による回転子
の半径方向浮上方向位置を制御する機能を付加した、高
速もしくは超高速運転に好適な電動機又は発電機等の無
軸受回転機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearingless rotating machine such as an electric motor or a generator suitable for high-speed or ultra-high-speed operation, which has a function of controlling a position of a rotor in a radial floating direction by an electromagnetic force.

【0002】[0002]

【従来の技術】従来技術としては、円筒型固定子内に円
柱型回転子を組み込み、固定子に励磁回路を形成し、こ
こでm極の回転駆動磁界とこれに同期したm±2極の回
転制御磁界を重畳させることで、回転子に回転力を与え
ると同時に所定位置に浮上保持する位置制御力を作用さ
せる無軸受回転機械が知られている。これは、固定子に
回転駆動用の巻線と浮上位置制御用の巻線を備え、それ
ぞれに三相交流を流すことにより、極数の異なる回転磁
界を重畳して形成し、回転子の回転軸垂直断面に磁気的
作用を及ぼすものである。これにより、固定子内周面は
回転子を磁気的に吸引して、その浮上位置を制御して、
固定子に対して非接触支持が可能な回転位置決めの機能
を有すると共に、回転子に回転力を付与することができ
る。
2. Description of the Related Art As a prior art, a cylindrical rotor is incorporated in a cylindrical stator, and an exciting circuit is formed in the stator. 2. Description of the Related Art There is known a bearingless rotating machine in which a rotation control magnetic field is superimposed to apply a rotational force to a rotor and at the same time to apply a position control force for floating and holding at a predetermined position. In this method, a stator is provided with a winding for rotation driving and a winding for flying position control, and a three-phase alternating current is applied to each of them to form a rotating magnetic field having a different number of poles, thereby forming a rotating rotor. The magnetic effect is exerted on the section perpendicular to the axis. Thereby, the inner circumferential surface of the stator magnetically attracts the rotor and controls its floating position,
In addition to having a rotation positioning function capable of supporting the stator in a non-contact manner, a rotational force can be applied to the rotor.

【0003】この無軸受回転機械に用いる固定子巻線
は、回転子に回転機出力を付与するための通常の回転駆
動用の巻線に加え、位置制御用の巻線が必要になる。従
って、この構成の無軸受回転機械では、固定子に巻回す
る巻線が位置制御用巻線の分だけ増加し、構成が繁雑に
なる。また巻線が増えたために巻線電流を制御するため
の電力増幅器を始めとして、複雑な制御回路が必要とな
る。
[0003] The stator winding used in the bearingless rotating machine requires a position control winding in addition to a normal rotation driving winding for applying a rotating machine output to the rotor. Therefore, in the bearingless rotating machine having this configuration, the number of windings wound around the stator increases by the amount corresponding to the position control winding, and the configuration becomes complicated. Further, since the number of windings has increased, complicated control circuits such as a power amplifier for controlling the winding current are required.

【0004】従来技術の装置では、複数の独立した単極
巻線を用い、上記構成の無軸受回転機械と同様の磁束分
布を回転子と固定子間の空隙中に生成し、同様の作用効
果を得ている。この種の無軸受回転機械では、単極巻線
が、位置制御起磁力の極数と回転駆動制御起磁力の極数
の多い方の2倍以上必要になる。たとえば位置制御起磁
力の極数が4であり、回転駆動制御起磁力の極数が6の
場合は、単極巻線は12相以上が必要になる。
In the prior art apparatus, a plurality of independent single-pole windings are used to generate the same magnetic flux distribution in the air gap between the rotor and the stator as in the bearingless rotating machine having the above-described configuration, and the same operation and effect are obtained. Have gained. In this type of bearingless rotating machine, a single-pole winding is required to be at least twice as large as the greater of the number of poles of the position control magnetomotive force and the number of poles of the rotation drive control magnetomotive force. For example, when the number of poles of the position control magnetomotive force is 4 and the number of poles of the rotation drive control magnetomotive force is 6, 12 or more single-pole windings are required.

【0005】このため、巻線の固定子への巻回が複雑に
なるだけでなく、巻線の引き出し線本数が増加し、結線
が容易ではない。さらに巻線が増えたために巻線電流を
制御するための電力増幅器及びこれに関連した制御回路
が増加する。
[0005] Therefore, not only is the winding of the winding around the stator complicated, but also the number of lead wires of the winding is increased, and the connection is not easy. In addition, the increase in the number of windings increases the number of power amplifiers for controlling winding currents and associated control circuits.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述した事
情に鑑みて為されたもので、固定子巻線を簡素化しつ
つ、回転子を回転駆動制御すると共に、浮上位置制御を
行うことができる、新しい原理に基づく無軸受回転機械
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to simplify the stator winding, control the rotational driving of the rotor, and control the flying position. It is an object of the present invention to provide a bearingless rotating machine based on a new principle.

【0007】[0007]

【課題を解決するための手段】本発明の無軸受回転機械
は、円筒型回転子を円筒型固定子の内周に有する回転機
械において、固定子内側の円筒面に巻回される巻線の起
磁力によって生じる磁束が、該回転子円筒面と回転軸垂
直断面を通ることにより、該回転子の半径方向の直交す
る二軸の位置制御と該回転子の回転駆動力を制御するこ
とを特徴としている。
SUMMARY OF THE INVENTION A bearingless rotating machine according to the present invention is a rotating machine having a cylindrical rotor on the inner periphery of a cylindrical stator. The magnetic flux generated by the magnetomotive force passes through a cross section perpendicular to the rotor cylindrical surface and the rotation axis, thereby controlling the position of two axes orthogonal to each other in the radial direction of the rotor and controlling the rotational driving force of the rotor. And

【0008】また、2台の前記回転機械を回転軸方向に
並べ、回転軸が同一になるように該2台の回転機械の回
転子を磁性材で結合し、該回転機械の固定子内側の円筒
面に巻回される巻線の起磁力によって生じる磁束が、該
回転機械の一方の回転子円筒面と該磁性材と該回転機械
の他方の回転子円筒面を通ることにより、該双方の回転
子一個につき半径方向の直交する二軸の位置制御と、該
回転子の回転駆動力を制御することを特徴とする。
Further, the two rotating machines are arranged in the direction of the rotating shaft, and the rotors of the two rotating machines are connected with a magnetic material so that the rotating shafts are the same. The magnetic flux generated by the magnetomotive force of the winding wound on the cylindrical surface passes through one of the rotor cylindrical surfaces of the rotating machine, the magnetic material, and the other rotor cylindrical surface of the rotating machine, and thereby, It is characterized in that, for each rotor, position control is performed on two axes orthogonal to each other in the radial direction, and rotational driving force of the rotor is controlled.

【0009】また、前記固定子内側の円筒面に巻回され
る前記巻線によって生じる起磁力について、前記回転子
の回転軸に対して1/2回転させたときの起磁力分布
と、巻線電流の通電方向を逆にしたときの起磁力分布が
同一にならない該巻線を三相以上有することを特徴とす
る。
Further, the magnetomotive force generated by the winding wound on the cylindrical surface inside the stator, the magnetomotive force distribution when the rotor is rotated by half with respect to the rotation axis of the rotor, The present invention is characterized in that the windings have three or more phases in which the magnetomotive force distribution when the direction of current flow is reversed is not the same.

【0010】また、前記請求項3において、巻線が三相
の場合に、各巻線の巻線分布が120゜の位相差を有す
ることを特徴とする。
According to a third aspect of the present invention, when the windings have three phases, the winding distribution of each winding has a phase difference of 120 °.

【0011】また、前記回転軸が同一になるように2個
の回転子を磁性材で結合した無軸受回転機械において、
6本の前記巻線に通電する電流を制御するために六相電
力増幅器を用いたことを特徴とする。
Also, in a bearingless rotating machine in which two rotors are joined by a magnetic material so that the rotating shafts are the same,
A six-phase power amplifier is used to control the current flowing through the six windings.

【0012】また、前記請求項5の無軸受回転機械にお
いて、前記6本の巻線の端子の一方と前記電力増幅器を
6本の電流路で結び、該巻線端子の他方の6本をすべて
共通に結線させたことを特徴とする。
Further, in the bearingless rotating machine according to claim 5, one of the terminals of the six windings is connected to the power amplifier by six current paths, and all the other six terminals of the winding terminals are connected. It is characterized by common connection.

【0013】上述した本発明によれば、固定子巻線の起
磁力によって生じる磁束が回転子円周面と回転軸垂直断
面を通ることにより、回転子の円周方向に沿った磁束の
量を不平衡にすることができる。これにより、円周方向
に沿って単極巻線を3相配置して、それぞれ独立に一定
周波数の且つ位相が120゜異なる電流を供給すること
で、回転子に半径方向力を作用させると共に回転駆動で
きる。従って、回転子の回転駆動力と半径方向位置を制
御するための固定子巻線の構成が簡素化された。即ち、
固定子に巻回する巻線の相数を減少することにより、巻
線の固定子巻回の作業を簡略し、同時に巻線電流増幅器
の構成を最小限にとどめつつ、回転子を回転駆動すると
共に、浮上位置制御を行うことができる。
According to the present invention described above, the magnetic flux generated by the magnetomotive force of the stator winding passes through the rotor circumferential surface and a cross section perpendicular to the rotating shaft, thereby reducing the amount of magnetic flux along the circumferential direction of the rotor. Can be unbalanced. Thus, three phases of monopolar windings are arranged along the circumferential direction, and currents having a constant frequency and a phase difference of 120 ° are supplied independently, thereby applying a radial force to the rotor and rotating the rotor. Can be driven. Therefore, the configuration of the stator winding for controlling the rotational driving force and the radial position of the rotor has been simplified. That is,
By reducing the number of phases of the winding wound on the stator, the operation of winding the stator on the winding is simplified, and at the same time, the rotor is rotationally driven while the configuration of the winding current amplifier is minimized. In addition, the flying position control can be performed.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1は、本発明の無軸受回転機械の動作原
理を説明するためのものである。(a)は円筒型回転子
11を示し、その円筒状外周面を、以下、作用面と呼
ぶ。(b)に示すように円筒型回転子11の作用面は同
軸状に配置された円筒型固定子10の内周面と僅かな空
隙を介して対面している。この空隙の円周方向に沿った
磁束分布を非対象にするために、磁束は作用面以外から
も出入りするように積極的に磁路を設けて磁束を導く構
成としている。固定子の円筒型内周面内に設けられた巻
線に流れる電流(起磁力)により生じる磁束Ψは、磁性
材13Aを回転軸垂直断面に連接して配置することによ
り、回転子の作用面と回転軸垂直断面を通ることにな
る。従って、起磁力を三相の巻線を円周方向に沿って1
20°づつずらせて配置し、それぞれに同一周波数で位
相が120°ずれた振幅の異なる電流を供給すること
で、(c)に示すように回転子に回転駆動力を付与する
と共に、2軸の半径方向力を作用させることができる。
FIG. 1 illustrates the principle of operation of a bearingless rotating machine according to the present invention. (A) shows the cylindrical rotor 11, and its cylindrical outer peripheral surface is hereinafter referred to as an operation surface. As shown in (b), the working surface of the cylindrical rotor 11 faces the inner peripheral surface of the cylindrical stator 10 arranged coaxially via a slight gap. In order to make the magnetic flux distribution along the circumferential direction of the air gap asymmetric, a magnetic path is actively provided to guide the magnetic flux so that the magnetic flux enters and exits from other than the working surface. The magnetic flux 生 じ る generated by the current (magnetomotive force) flowing through the winding provided in the cylindrical inner peripheral surface of the stator is generated by connecting the magnetic material 13A to the section perpendicular to the rotation axis. And a section perpendicular to the rotation axis. Therefore, the magnetomotive force is reduced by one-turn along the circumferential direction of the three-phase winding.
By displacing them by 20 ° and supplying currents having the same frequency and a different phase with a phase shift of 120 ° to each other, a rotational driving force is applied to the rotor as shown in FIG. A radial force can be applied.

【0016】図2は、このような回転子11,12を回
転軸方向に2個連接して、その間を磁性材13Aで接続
したものである。この磁性材13Aは、2個の回転子1
1,12を結ぶ磁路となる。回転子11,12に出入り
する磁束は、回転子作用面と磁性材13Aからによる。
固定子から流入(出)した磁束の一部が磁性材13Aを
通ることになり、回転子11と12を経由して閉じた磁
路が形成される。固定子には、それぞれの回転子に対応
した三相巻線が2組、合計六相巻線が設けられている。
この巻線に上述した電流を供給することにより、(c)
に示すように回転駆動力と共に、4軸の半径方向浮上位
置制御力を回転子に作用させることができる。
FIG. 2 shows a structure in which two such rotors 11 and 12 are connected in the direction of the rotation axis, and the two are connected by a magnetic material 13A. The magnetic material 13A includes two rotors 1
It becomes a magnetic path connecting 1 and 12. The magnetic flux entering and exiting the rotors 11 and 12 is from the rotor working surface and the magnetic material 13A.
Part of the magnetic flux flowing in (out) from the stator passes through the magnetic material 13A, and a closed magnetic path is formed via the rotors 11 and 12. The stator is provided with two sets of three-phase windings corresponding to the respective rotors, for a total of six-phase windings.
By supplying the above-mentioned current to this winding, (c)
As shown in FIG. 7, the four-axis radial floating position control force can be applied to the rotor together with the rotational driving force.

【0017】図3は、本発明の4軸半径方向位置制御機
能を有する無軸受回転機械の回転軸に沿った断面図であ
る。二つの回転子11,12は回転軸13で連結されて
おり、この接続部13Aを磁路として利用するために磁
性材を用いている。回転軸13の両端には、回転子の位
置を検出するための変位センサ14,15が、回転機械
のケーシング17に固設されている。また、システムの
故障、停電等の不慮の事態で回転子の位置制御ができな
くなった時に、回転軸13を支持する非常用軸受18,
19がケーシング17に固設されている。正常な回転体
の浮上動作状態では、非常用軸受18,19と回転軸1
3は接触しないだけの間隔を有している。また、回転軸
13の中央には回転子の回転角度を検出する検出器20
が配置されている。
FIG. 3 is a sectional view taken along the rotating shaft of the bearingless rotating machine having the function of controlling the position of the four axes in the radial direction according to the present invention. The two rotors 11 and 12 are connected by a rotating shaft 13, and a magnetic material is used to use the connection 13A as a magnetic path. Displacement sensors 14 and 15 for detecting the position of the rotor are fixed to the casing 17 of the rotating machine at both ends of the rotating shaft 13. Also, when the position of the rotor cannot be controlled due to an accident such as a system failure or a power failure, an emergency bearing 18 for supporting the rotating shaft 13 is provided.
19 is fixed to the casing 17. In the normal floating state of the rotating body, the emergency bearings 18 and 19 and the rotating shaft 1
3 has an interval enough not to touch. A detector 20 for detecting the rotation angle of the rotor is provided at the center of the rotation shaft 13.
Is arranged.

【0018】回転子11,12は、本実施の形態では表
面に永久磁石が貼り付けてある永久磁石同期型を用いて
いるが、電機子反作用を積極的に利用する誘導型或いは
リラクタンス型回転子にも同様に適用できる。固定子2
1,22は、磁性材で形成されており、1個の固定子に
はそれぞれ三相の巻線が施されている。固定子21,2
2の端部からはコイルエンド23が突出している。
In the present embodiment, the rotors 11 and 12 are of a permanent magnet synchronous type having a permanent magnet attached to the surface, but are of an induction type or a reluctance type which actively utilize armature reaction. The same can be applied to Stator 2
Reference numerals 1 and 22 are formed of a magnetic material, and one stator is provided with a three-phase winding. Stators 21 and 2
A coil end 23 protrudes from the end of the second end.

【0019】固定子に巻回される巻線分布の概略を図4
に示す。巻線が空隙中になす起磁力が単極になるよう
に、U,V,W相の三相巻線が局部的に固定子に巻回さ
れている。図中の巻線は集中巻であるが、下記の動作原
理説明では分布巻を想定して、正弦波の起磁力分布を仮
定している。
FIG. 4 schematically shows the distribution of windings wound around the stator.
Shown in U-, V-, and W-phase three-phase windings are locally wound around the stator such that the magnetomotive force generated by the windings in the air gap is monopolar. Although the winding in the figure is a concentrated winding, the following description of the operating principle assumes a distributed winding and assumes a sinusoidal magnetomotive force distribution.

【0020】以下では、一方の回転子11と固定子21
とからなる回転機をL、他方の回転子12と固定子22
とからなる回転機をRと呼び、状態変数量を区別するた
めに、添字L,Rをつける。回転機Lの固定子巻線単位
電流によって生じる起磁力分布を AuL=N{cosθ+1} AvL=N{cos(θ+4π/3)+1} AwL=N{cos(θ+2π/3)+1} 同様に回転機Rについても AuR=N{cosθ+1} AvR=N{cos(θ+4π/3)+1} AwR=N{cos(θ+2π/3)+1} と定義する。
In the following, one of the rotor 11 and the stator 21
L, the other rotor 12 and stator 22
Is called R, and subscripts L and R are added to distinguish the state variable quantities. The magnetomotive force distribution generated by the stator winding unit current of the rotating machine L is given by AuL = N {cos θ + 1} AvL = N {cos (θ + 4π / 3) +1} AwL = N {cos (θ + 2π / 3) +1} R is also defined as AuR = N {cosθ + 1} AvR = N {cos (θ + 4π / 3) +1} AwR = N {cos (θ + 2π / 3) +1}.

【0021】また、回転機Lの各相に流れる電流をIu
L,IvL, IwL、回転機Rの各相に流れる電流をIuR,
IvR,IwRとする。回転子は永久磁石により着磁されて
おり、その磁束密度分布を Br(θ,ωt)=Br cos(θ−ωt) 但し、 ωt:回転子回転角度 と置く。
The current flowing through each phase of the rotating machine L is represented by Iu
L, IvL, IwL, and the current flowing through each phase of the rotating machine R are represented by IuR,
IvR and IwR. The rotor is magnetized by a permanent magnet, and its magnetic flux density distribution is given by Br (θ, ωt) = Br cos (θ−ωt) where ωt: rotor rotation angle.

【0022】回転子に永久磁石が敷設されていないとき
の、起磁力AuLが形成する磁束密度は、鉄芯磁気抵抗を
無視して、(1)式となる。
When no permanent magnet is laid on the rotor, the magnetic flux density formed by the magnetomotive force AuL is expressed by equation (1), ignoring the iron core magnetic resistance.

【数1】 g :回転子・固定子間の空隙長 μ0 :真空中の透磁率(Equation 1) g: air gap length between rotor and stator μ 0 : magnetic permeability in vacuum

【0023】任意の角度θにおける磁束密度は次式で表
される。 B(θ,ωt)=Br(θ,ωt)+BuL(θ)+BvL
(θ)+BwL(θ) 微小回転角度δθに蓄えられる磁気的エネルギーδWは
(2)式となる。
The magnetic flux density at an arbitrary angle θ is expressed by the following equation. B (θ, ωt) = Br (θ, ωt) + BuL (θ) + BvL
(Θ) + BwL (θ) The magnetic energy δW stored at the minute rotation angle δθ is given by the following equation (2).

【数2】 l:回転子の回転軸方向長 R:回転子半径(Equation 2) l: Rotor axis direction length R: Rotor radius

【0024】この空隙に蓄えられる全磁気エネルギーW
は、(3)式で計算される。
The total magnetic energy W stored in this gap
Is calculated by equation (3).

【数3】 そして、固定子・回転子間に働くトルクτはモータ片側
で、(4)式で表される。
(Equation 3) The torque τ acting between the stator and the rotor is expressed by the equation (4) on one side of the motor.

【数4】 モータL,R2台分では(Equation 4) For two motors L and R

【数5】 で表される。(Equation 5) It is represented by

【0025】図5は、非突極の回転子が滑らかな内面の
固定子内で偏心して位置している状態を示す。回転子が
固定子の中心に位置しているときの空隙長をg0 とす
る。回転子の偏心距離をα軸方向にα、β軸方向にβと
する。(b)図は中心付近での拡大図である。回転子半
径に比較して空隙長が十分小さいと仮定すると、回転子
の偏心により空隙長gは g=g0−α cosφ−β sinφ と表すことができる。
FIG. 5 shows a state in which a non-salient pole rotor is eccentrically located in a stator having a smooth inner surface. The length of the gap when the rotor is positioned in the center of the stator and g 0. The eccentric distance of the rotor is α in the α-axis direction and β in the β-axis direction. (B) is an enlarged view near the center. Assuming that the air gap length is sufficiently small compared to the rotor radius, the air gap length g can be expressed as g = g 0 −α cos φ−β sin φ due to the eccentricity of the rotor.

【0026】さらに、回転子の偏心がg0 に比較して十
分小さい、即ち、 |α|≪g0 、|β|≪g0 の仮定を用いると、単位面積当たりのパーミアンスPは P(φ)=(μ0/g0)(1−α cosφ/g0−β sinφ/
0) となる。起磁力Aが空隙中になす磁束密度分布Bは、 B=A/P で表されるので、空隙中の磁束密度総和は、 ΣB=Br+Bu+Bv+Bw となる。
Further, if the eccentricity of the rotor is sufficiently smaller than g 0 , that is, | α | ≪g 0 , | β | ≪g 0 , the permeance P per unit area becomes P (φ ) = (Μ 0 / g 0 ) (1−α cos φ / g 0 −β sin φ /
g 0 ). Since the magnetic flux density distribution B formed by the magnetomotive force A in the air gap is represented by B = A / P, the total magnetic flux density in the air gap becomes ΣB = Br + Bu + Bv + Bw.

【0027】この空隙中の全磁気エネルギーWの式は、The equation for the total magnetic energy W in this gap is:

【数6】 を用いて、α方向の力Fα、β方向の力Fβは、(Equation 6) , The force Fα in the α direction and the force Fβ in the β direction are

【数7】 (Equation 7)

【数8】 である。(Equation 8) It is.

【0028】以上より回転機L,Rそれぞれに作用する
制御力FαL ,FβL ,FαR ,FβR は、次式のよう
になる。
From the above, the control forces FαL, FβL, FαR, FβR acting on the rotary machines L, R are as follows.

【数9】 (Equation 9)

【0029】また、回転子・固定子間の対向面以外から
磁束が出入りしない条件として、
The condition that no magnetic flux enters or exits from other than the facing surface between the rotor and the stator is as follows.

【数10】 であり、これを簡単にして IuL+IvL+IwL+IuR+IvR+IwR=0 (5) となる。(Equation 10) By simplifying this, IuL + IvL + IwL + IuR + IvR + IwR = 0 (5)

【0030】三相電流I3L=(IUL,IVL,IWL)を、
二相電流I2L=(IαL ,IβL ,IOL)に変換する行
列をC32とすると I2 =C32 I3
The three-phase current I3L = (IUL, IVL, IWL)
If the matrix for converting the two-phase current I2L = (IαL, IβL, IOL) is C 32 , then I 2 = C 32 I 3

【数11】 [Equation 11]

【0031】また、二相電流を三相電流に変換する行列
をC23とすると I3 =C23I2 (6)
Further, when a matrix for transforming the two-phase currents into three-phase current and C 23 I3 = C 23 I2 ( 6)

【数12】 I3R=(IUR,IVR,IWR)、I2L(IαR ,IβR ,
IOR)についても同様である。
(Equation 12) I3R = (IUR, IVR, IWR), I2L (IαR, IβR,
The same applies to IOR).

【0032】トルクτ、制御力FαL,FβL,FαR,
FβR等を2相電流で表すと
The torque τ, the control forces FαL, FβL, FαR,
Expressing FβR etc. by two-phase current

【数13】 (Equation 13)

【0033】上式を、回転機の状態変数のみで構成され
る変数k1 〜k6で表すと、
If the above equation is represented by variables k1 to k6 consisting only of the state variables of the rotating machine,

【数14】 ・・・(7) で表される。[Equation 14] (7)

【0034】上式より回転機の二相電流は以下のように
なる。
From the above equation, the two-phase current of the rotating machine is as follows.

【数15】 ・・・(8)(Equation 15) ... (8)

【0035】制御ブロック図を図4に示す。二つの回転
子11,12は磁性材13Aを介して同一回転軸13に
固設されているため、同じ速度で回転する。この図の構
成では4軸浮上位置制御と回転出力制御が可能である。
その制御のために、回転子の半径方向位置を検出する回
転子変位検出器を4軸分14,15と回転子回転角度を
検出する回転角度検出器20が図3に示す無軸受回転機
械に備えられている。変位検出器14.15は回転軸1
3の両端に2個ずつ直交方向に取付けられ、半径方向変
位信号αL,βL、αR,βRを出力する。α,βは回転軸
垂直断面上にあり、回転軸に対して直交する位置関係に
ある。
FIG. 4 shows a control block diagram. Since the two rotors 11 and 12 are fixed to the same rotating shaft 13 via the magnetic material 13A, they rotate at the same speed. In the configuration shown in this figure, 4-axis floating position control and rotation output control are possible.
For this control, a rotor displacement detector for detecting the radial position of the rotor and a rotation angle detector 20 for detecting the rotor rotation angle for four axes 14 and 15 are used in the bearingless rotating machine shown in FIG. Provided. The displacement detector 14.15 is the rotation axis 1
3 are attached to both ends in the orthogonal direction, and output radial displacement signals αL, βL, αR, βR. α and β are on a section perpendicular to the rotation axis, and have a positional relationship orthogonal to the rotation axis.

【0036】尚、変位検出器は図示するような別置型で
はなく、固定子に巻回された巻線を利用してもよい。す
なわち、巻線のインダクタンスの変化から、回転子の位
置、姿勢を検出するインダクタンス型変位検出器として
利用することにより、別置型変位検出器を不要とするこ
とができる。これにより変位検出器のスペースを削減す
ることができる。
The displacement detector is not a separate type as shown in the figure, but may use a winding wound around a stator. That is, by using as an inductance type displacement detector for detecting the position and posture of the rotor from a change in the inductance of the winding, a separate type displacement detector can be dispensed with. Thereby, the space for the displacement detector can be reduced.

【0037】回転子半径方向位置信号αL,βL、αR,
βRと目標指令値αL* ,βL*、αR*,βR* と比較し、
その偏差を位置制御器30で演算して回転子半径方向位
置に対する制御力の指令値FαL * ,FβL * ,FαR
* ,FβR * を得る。
The rotor radial position signals αL, βL, αR,
βR and the target command value αL *, βL *, αR * , compared with βR *,
The deviation is calculated by the position controller 30, and the control force command values FαL * , FβL * , FαR with respect to the rotor radial position are calculated.
* , FβR * .

【0038】システムには、回転子の回転角度を検出す
る回転角度検出器20と、そこで得られた信号より回転
角度ωtを演算する回転角度演算器31、回転子の回転
速度ωを演算する回転速度演算器32を有している。回
転角度信号ωtを演算器1〜6にて、(7)式に基づく
演算を行い、係数k1 ,k2 ,k3 ,k4 ,k5 ,k6
を得る。求めた回転速度信号ωと回転速度目標信号ω*
と比較し、その偏差を速度制御器35で演算して回転子
回転駆動力τ* を発生する。ここまでで得られた状態量
FαL * ,FβL * ,FαR * ,FβR * ,k1 ,k2
,k3 ,k4 ,k5 ,k6 ,τ* を用いて演算器7,
演算器8で二相電流IαL * ,IβL * ,IOL* ,Iα
R * ,IβR * ,IOR* に上述した(8)式に基づき変
換する。
The system includes a rotation angle detector 20 for detecting the rotation angle of the rotor, a rotation angle calculator 31 for calculating the rotation angle ωt from the signals obtained therefrom, and a rotation angle calculator for calculating the rotation speed ω of the rotor. The speed calculator 32 is provided. The rotation angle signal ωt is calculated by the calculators 1 to 6 based on the equation (7), and the coefficients k1, k2, k3, k4, k5, k6
Get. The obtained rotation speed signal ω and the rotation speed target signal ω *
And the deviation is calculated by the speed controller 35 to generate a rotor rotation driving force τ * . The state quantities FαL * , FβL * , FαR * , FβR * , k1, k2 obtained so far
, K3, k4, k5, k6, .tau. *
The two-phase currents IαL * , IβL * , IOL * , Iα
R * , IβR * , and IOR * are converted based on the above equation (8).

【0039】このようにして得られた二相電流を、二相
三相変換器36で実際の巻線電流に対応した三相電流指
令値IUL* ,IVL* ,IWL* ,IUR* ,IVR,IWR*
変換する。
The two-phase currents obtained in this manner are converted into three-phase current command values IUL * , IVL * , IWL * , IUR * , IVR, IVR * corresponding to the actual winding currents by the two-phase / three-phase converter 36. Convert to IWR * .

【0040】本実施の形態では、(5)式で示されるよ
うに、電流指令値の総和が零になるので、回転機巻線電
流増幅器37は六相インバータを用いることが可能であ
る。六相インバータの構成と巻線との結線を図7に示
す。回転機L,Rにおいては、 IuL+IvL+IwL≠0 IuR+IvR+IwR≠0 であるので、回転機LのY結線巻線の中点CLと回転機
RのY結線巻線の中点CRとを導線Kで接続する必要が
ある。6本の巻線の端子の一方が、それぞれ6相インバ
ータ(電力増幅器)の出力端子に6本の電流路で接続さ
れ、6本の巻線の他方の端子が共通に接続されている。
In this embodiment, as shown by the equation (5), the sum of the current command values becomes zero, so that the rotating machine winding current amplifier 37 can use a six-phase inverter. FIG. 7 shows the configuration of the six-phase inverter and the connection between the windings. Rotating machine L, in the R, since it is IuL + IvL + IwL ≠ 0 IuR + IvR + IwR ≠ 0, the middle point C L Y-connection winding of a rotating machine L and a midpoint C R of the Y-connection winding of a rotating machine R in wire K Need to connect. One of the terminals of the six windings is connected to the output terminal of a six-phase inverter (power amplifier) via six current paths, and the other terminal of the six windings is commonly connected.

【0041】尚、上記実施例は回転子を軸方向に2個連
接して、その間を磁性材で連結して、回転子作用面に流
入(出)する磁束の一部を回転軸垂直断面に流出(入)
するようにしたものであるが、3個以上の回転子を連接
するようにしてもよい。又、回転子作用面に流入(出)
する磁束の一部を回転軸垂直断面に流出(入)させる構
造としては、回転軸に磁性材を用いる他に種々の態様が
考えられる。このように本発明の趣旨を逸脱することな
く、種々の変形実施例が可能である。
In the above embodiment, two rotors are connected in the axial direction, and the two are connected by a magnetic material so that a part of the magnetic flux flowing into (or out of) the working surface of the rotor can be partially cut in the vertical section of the rotating shaft. Outflow (in)
However, three or more rotors may be connected. Also, flows into (exits) the rotor working surface
As a structure for allowing a part of the generated magnetic flux to flow out (enter) in a section perpendicular to the rotation axis, various modes can be considered in addition to using a magnetic material for the rotation axis. Thus, various modifications can be made without departing from the spirit of the present invention.

【0042】[0042]

【発明の効果】以上説明したように本発明によれば、固
定子の駆動巻線に独立した制御巻線を巻回することな
く、もしくは多くの単相巻線を用いることなく、回転子
の半径方向位置制御と回転子駆動力の制御を同時に達成
できる。これに伴い、固定子巻線電流を制御するための
電力増幅器の台数を低減することができ、その構成を簡
素化できる。このため回転子を非接触で支持する磁気軸
受の制御用電磁石に相当する部分を大幅に省略でき、機
器の小型化と部品数の減少、それに伴う大幅なコストダ
ウンが実現可能となった。
As described above, according to the present invention, the rotor of the rotor can be driven without winding an independent control winding on the drive winding of the stator or using many single-phase windings. Radial position control and control of the rotor driving force can be achieved simultaneously. Accordingly, the number of power amplifiers for controlling the stator winding current can be reduced, and the configuration can be simplified. Therefore, a portion corresponding to a control electromagnet of a magnetic bearing that supports the rotor in a non-contact manner can be largely omitted, and downsizing of the device, reduction in the number of parts, and accompanying significant cost reduction can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の無軸受回転機械の動作原理を示す説明
図。
FIG. 1 is an explanatory diagram showing the operation principle of a bearingless rotating machine according to the present invention.

【図2】回転子を2個接続した場合の図1相当図。FIG. 2 is a diagram corresponding to FIG. 1 when two rotors are connected.

【図3】本発明の一実施形態の無軸受回転機械の縦断面
図。
FIG. 3 is a longitudinal sectional view of the bearingless rotary machine according to one embodiment of the present invention.

【図4】図3における固定子磁極の構造を示す断面図。FIG. 4 is a sectional view showing the structure of a stator magnetic pole in FIG. 3;

【図5】回転子の座標系を示す説明図。FIG. 5 is an explanatory diagram showing a coordinate system of a rotor.

【図6】前記無軸受回転機械の制御系のブロック図。FIG. 6 is a block diagram of a control system of the bearingless rotating machine.

【図7】前記無軸受回転機械の固定子巻線の結線図。FIG. 7 is a connection diagram of a stator winding of the bearingless rotating machine.

【符号の説明】[Explanation of symbols]

10,21,22 固定子 11,12 回転子 13 回転軸 13A 磁性材 14,15 変位センサ 20 回転角検出器 L,R 回転機 10, 21, 22 Stator 11, 12 Rotor 13 Rotation axis 13A Magnetic material 14, 15 Displacement sensor 20 Rotation angle detector L, R Rotating machine

フロントページの続き (72)発明者 森 敏 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 佐藤 一樹 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 茅島 直史 神奈川県藤沢市本藤沢4丁目1番1号 株 式会社荏原電産内Continuing from the front page (72) Inventor Satoshi Mori 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture Inside Ebara Research Institute, Ltd. (72) Inventor Kazuki Sato 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture (72) Inventor Naofumi Kajima 4-1-1 Motofujisawa, Fujisawa-shi, Kanagawa

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒型回転子を円筒型固定子の内周に有
する回転機械において、固定子内側の円筒面に巻回され
る巻線の起磁力によって生じる磁束が、該回転子円筒面
と回転軸垂直断面を通ることにより、該回転子の半径方
向の直交する二軸の位置制御と該回転子の回転駆動力を
制御することを特徴とする無軸受回転機械。
In a rotating machine having a cylindrical rotor on an inner periphery of a cylindrical stator, a magnetic flux generated by a magnetomotive force of a winding wound on a cylindrical surface inside the stator is generated by the rotor cylindrical surface. A bearingless rotating machine characterized by controlling the position of two axes orthogonal to each other in the radial direction of the rotor and controlling the rotational driving force of the rotor by passing through a cross section perpendicular to the rotation axis.
【請求項2】 2台の前記回転機械を回転軸方向に並
べ、回転軸が同一になるように該2台の回転機械の回転
子を磁性材で結合し、該回転機械の固定子内側の円筒面
に巻回される巻線の起磁力によって生じる磁束が、該回
転機械の一方の回転子円筒面と該磁性材と該回転機械の
他方の回転子円筒面を通ることにより、該双方の回転子
一個につき半径方向の直交する二軸の位置制御と、該回
転子の回転駆動力を制御することを特徴とする請求項1
記載の無軸受回転機械。
2. The two rotating machines are arranged in the direction of a rotating shaft, and the rotors of the two rotating machines are joined by a magnetic material so that the rotating shafts are the same. The magnetic flux generated by the magnetomotive force of the winding wound on the cylindrical surface passes through one of the rotor cylindrical surfaces of the rotating machine, the magnetic material, and the other rotor cylindrical surface of the rotating machine, and thereby, 2. The method according to claim 1, further comprising: controlling the position of two axes orthogonal to each other in the radial direction for each rotor, and controlling the rotational driving force of the rotor.
The bearingless rotating machine as described.
【請求項3】 前記固定子内側の円筒面に巻回される前
記巻線によって生じる起磁力について、前記回転子の回
転軸に対して1/2回転させたときの起磁力分布と、巻
線電流の通電方向を逆にしたときの起磁力分布が同一に
ならない該巻線を三相以上有することを特徴とする請求
項1又は2記載の無軸受回転機械。
3. A distribution of a magnetomotive force generated by the winding wound around a cylindrical surface inside the stator when the rotation is rotated by half of a rotation axis of the rotor. The bearingless rotating machine according to claim 1 or 2, wherein the windings have three or more phases in which the magnetomotive force distribution when the direction of current flow is reversed is not the same.
【請求項4】 前記請求項3において、巻線が三相の場
合に、各巻線の巻線分布が120゜の位相差を有するこ
とを特徴とする無軸受回転機械。
4. The bearingless rotating machine according to claim 3, wherein when the windings are three-phase, the winding distribution of each winding has a phase difference of 120 °.
【請求項5】 前記回転軸が同一になるように2個の回
転子を磁性材で結合した無軸受回転機械において、6本
の前記巻線に通電する電流を制御するために六相電力増
幅器を用いたことを特徴とする無軸受回転機械。
5. A six-phase power amplifier for controlling a current flowing through six windings in a bearingless rotating machine in which two rotors are joined by a magnetic material so that the rotating axes are the same. A bearing-less rotating machine characterized by using:
【請求項6】 前記請求項5の無軸受回転機械におい
て、前記6本の巻線の端子の一方と前記電力増幅器を6
本の電流路で結び、該巻線端子の他方の6本をすべて共
通に結線させたことを特徴とする無軸受回転機械。
6. The bearingless rotating machine according to claim 5, wherein one of the terminals of the six windings and the power amplifier are connected to each other.
A bearing-less rotating machine, wherein the current terminals are connected by three current paths, and the other six of the winding terminals are all connected in common.
JP01338897A 1997-01-09 1997-01-09 Bearingless rotating machine Expired - Fee Related JP3688420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01338897A JP3688420B2 (en) 1997-01-09 1997-01-09 Bearingless rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01338897A JP3688420B2 (en) 1997-01-09 1997-01-09 Bearingless rotating machine

Publications (2)

Publication Number Publication Date
JPH10201170A true JPH10201170A (en) 1998-07-31
JP3688420B2 JP3688420B2 (en) 2005-08-31

Family

ID=11831729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01338897A Expired - Fee Related JP3688420B2 (en) 1997-01-09 1997-01-09 Bearingless rotating machine

Country Status (1)

Country Link
JP (1) JP3688420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247823A (en) * 2001-02-15 2002-08-30 Sankyo Seiki Mfg Co Ltd Magnetic levitation type motor
US6933644B2 (en) 2001-05-18 2005-08-23 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitation motor
KR20230016550A (en) * 2021-07-26 2023-02-02 숭실대학교산학협력단 Three-phase coil configuration method of a bearingless slice motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247823A (en) * 2001-02-15 2002-08-30 Sankyo Seiki Mfg Co Ltd Magnetic levitation type motor
US6933644B2 (en) 2001-05-18 2005-08-23 Kabushiki Kaisha Sankyo Seiki Seisakusho Magnetic levitation motor
KR20230016550A (en) * 2021-07-26 2023-02-02 숭실대학교산학협력단 Three-phase coil configuration method of a bearingless slice motor

Also Published As

Publication number Publication date
JP3688420B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3664409B2 (en) Switched reluctance rotating machine
JP2000134891A (en) Synchronous motor and controller therefor
JP2001078389A (en) Magnetic levitation motor
JP3464077B2 (en) Synchronous machine
US10958119B2 (en) Rotary electric machine, rotary electric machine system, and machine
JP2006522578A (en) Synchronous electric machine having one stator and at least one rotor and related control device
JP3428769B2 (en) Synchronous motor rotor
JPH11243672A (en) Thrust-controllable rotary-type synchronous machine
JP2930254B2 (en) Self-levitation motor system
Ooshima et al. Performance evaluation and test results of a 11 000 r/min 4 kW surface-mounted permanent magnet-type bearingless motor
JP2002247823A (en) Magnetic levitation type motor
JP3688420B2 (en) Bearingless rotating machine
US6753631B2 (en) Magnetically levitated motor
JPH10136622A (en) Homopolar reluctance motor
JPH02193547A (en) Electromagnetic rotary machine with radial position controller for rotary body utilizing rotary magnetic field of motor
JP4032370B2 (en) Synchronous motor and synchronous motor control device
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JPH1080113A (en) Disc-type bearingless motor
JPH1070865A (en) Bearingless rotary equipment
JP2001103688A (en) Bearingless rotating machine
JP3705658B2 (en) Control system for permanent magnet type rotating electrical machine generating radial force
JP3506096B2 (en) Rotating electric machine
JPH1084661A (en) Magnetic levitation motor
EP1276223A1 (en) Current detection device
JPH0715900A (en) Synchronous machine and control method for synchronous machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Effective date: 20050428

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Effective date: 20050608

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees