JPH10199566A - Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel - Google Patents

Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel

Info

Publication number
JPH10199566A
JPH10199566A JP9001241A JP124197A JPH10199566A JP H10199566 A JPH10199566 A JP H10199566A JP 9001241 A JP9001241 A JP 9001241A JP 124197 A JP124197 A JP 124197A JP H10199566 A JPH10199566 A JP H10199566A
Authority
JP
Japan
Prior art keywords
solid electrolyte
anode container
strength
electrolyte tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001241A
Other languages
Japanese (ja)
Inventor
Masanobu Mori
政信 森
Yoshifumi Kawamura
善文 河村
Toshimoto Kitagawa
敏司 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP9001241A priority Critical patent/JPH10199566A/en
Publication of JPH10199566A publication Critical patent/JPH10199566A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent causing damage to the various joints and members of a sodium-sulfur battery, and the tube bottom of a solid electrolyte tube, by providing a construction, having given deforming strength, on a positive electrode vessel. SOLUTION: In this positive electrode vessel 6 for a sodium-sulfur battery, deforming strength; in the axial direction of the constriction 10 of the positive electrode vessel 6 to force generated by the vessel 6 and a solid electrolyte tube 2 due to the terminal expansion difference between the vessel 6 and the tube 2 from the solidification temperature of sodium polysulfide to room temperature; is set so as to be less than the tube bottom strength of the tube 2. This can prevent damage to the tube bottom of the tube 2 because a load; applied to the tube bottom of the tube 2 due to the solidification of the sodium polysulfide and sulfur at the time of the lowering of battery temperature, and the thermal contraction difference between the tube 2 and the vessel 6; preferentially deforms the constriction 10 provided on the vessel 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、ナトリウム−硫
黄電池において、陽極活物質である硫黄又はそれを含浸
させた導電材を収納する陽極容器及びそれを用いたナト
リウム−硫黄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly, to an anode container containing sulfur as an anode active material or a conductive material impregnated with the same, and a sodium-sulfur battery using the same.

【0002】[0002]

【従来の技術】 ナトリウム−硫黄電池は、一方に陰極
活物質であるナトリウム、他方には陽極活物質である硫
黄を配し、両者をナトリウムイオンに対して選択的な透
過性を有するベータアルミナ固体電解質で隔離し、30
0〜350℃で作動させる高温二次電池である。
2. Description of the Related Art A sodium-sulfur battery is a beta-alumina solid having sodium, which is a cathode active material, and sulfur, which is an anode active material, on one side, and both having selective permeability to sodium ions. Isolate with electrolyte, 30
It is a high temperature secondary battery operated at 0 to 350 ° C.

【0003】 このようなナトリウム−硫黄電池の構成
は、例えば図1に示すように、陽極活物質である硫黄を
含浸したカーボンフェルト等の陽極用導電材11を収容
する有底円筒状の陽極容器6と、ナトリウム12を貯留
するとともに、ナトリウムイオンを選択的に透過させる
機能を有する有底円筒状の固体電解質管(ベータアルミ
ナ管)2とからなっている。ナトリウム12と固体電解
質管2の間にナトリウム保護管を介在させる場合もあ
る。陽極容器6は筒状体13と陽極容器蓋8から成る。
固体電解質管2は、筒状体13の上端部と、例えばアル
ファアルミナ製の絶縁体リング1及びリング状底部18
とフランジ19とを有する円筒状金具7を介して接合さ
れる。
A configuration of such a sodium-sulfur battery is, as shown in FIG. 1, for example, a bottomed cylindrical anode container for accommodating an anode conductive material 11 such as carbon felt impregnated with sulfur as an anode active material. 6 and a bottomed cylindrical solid electrolyte tube (beta-alumina tube) 2 having a function of storing sodium 12 and selectively transmitting sodium ions. In some cases, a sodium protection tube is interposed between the sodium 12 and the solid electrolyte tube 2. The anode container 6 includes a cylindrical body 13 and an anode container lid 8.
The solid electrolyte tube 2 includes an upper end portion of the cylindrical body 13, an insulator ring 1 made of, for example, alpha alumina, and a ring-shaped bottom portion 18.
And a cylindrical metal fitting 7 having a flange 19.

【0004】 この接合状態をより詳細に説明すると、
図2(a)のように、絶縁体リング1は、リング状底部
18及びフランジ19を有する円筒状金具7の円筒内に
挿入されて接合剤14により底部で熱圧接合されるとと
もに、その内周面が固体電解質管2の上端部と接合ガラ
ス15により接合されており、更に、円筒状金具7のフ
ランジ19の下面と陽極容器6の上端部が溶接されてい
る。
[0004] This joining state will be described in more detail.
As shown in FIG. 2A, the insulator ring 1 is inserted into a cylinder of a cylindrical metal fitting 7 having a ring-shaped bottom portion 18 and a flange 19, and is thermally and pressure-bonded at the bottom portion by a bonding agent 14, and the inside of the ring. The peripheral surface is joined to the upper end of the solid electrolyte tube 2 by the joining glass 15, and the lower surface of the flange 19 of the cylindrical metal fitting 7 and the upper end of the anode container 6 are welded.

【0005】 以上の構成を有するナトリウム−硫黄電
池17において、放電時にはナトリウム12は電子を放
出してナトリウムイオンとなり、これが固体電解質管2
内を透過して陽極側に移動し、陽極用導電材11中の硫
黄及び外部回路を通ってきた電子と反応して多硫化ナト
リウムを生成し、2V程度の電圧を発生する。一方、充
電時には、放電とは逆にナトリウム及び硫黄の生成反応
が起こる。
[0005] In the sodium-sulfur battery 17 having the above configuration, at the time of discharge, the sodium 12 emits electrons to become sodium ions.
It passes through the inside and moves to the anode side, reacts with the sulfur in the anode conductive material 11 and the electrons passed through the external circuit to generate sodium polysulfide, and generates a voltage of about 2V. On the other hand, at the time of charging, a reaction of producing sodium and sulfur occurs in reverse to the discharging.

【0006】 ところで、ナトリウム−硫黄電池17
は、電池作動時と停止時の間に温度差があり、停止時の
温度降下の際には、多硫化ナトリウム又は硫黄が固化
し、固体電解質管2と陽極容器6は相互に拘束すること
になる。そして、電池降温時には、固体電解質管2及び
陽極容器6は共に熱収縮するが、金属である陽極容器6
の熱収縮は大きく、この陽極容器6の収縮が熱収縮の小
さい固体電解質管2に抑制されるため、固体電解質管2
と陽極容器6とを結合させている絶縁体リング1と円筒
状金具7との接合部4に下方への荷重が働く(図2
(a)の矢印方向)。又、絶縁体リング1と固体電解質
管2との接合部3、円筒状金具7と陽極容器6との溶接
部5、筒状体13と陽極容器蓋8との溶接部9にも荷重
がかかり、これらの接合部が破壊されることがあった。
さらに、絶縁体リング1そのものが破壊されたり、荷重
により円筒状金具7が湾曲する場合がある他、図2
(b)に示すように、陽極容器6の熱収縮が固体電解質
管2の熱収縮より大きいことにより、固体電解質管2の
管底及び管底近傍の硫黄又は多硫化ナトリウム20が、
固体電解質管2の管底に押し付けられ、固体電解質管2
の管底が破損する場合もあった。
Incidentally, the sodium-sulfur battery 17
There is a temperature difference between when the battery is operating and when the battery is stopped, and when the temperature drops when the battery is stopped, sodium polysulfide or sulfur solidifies, and the solid electrolyte tube 2 and the anode container 6 are mutually restrained. When the temperature of the battery is lowered, both the solid electrolyte tube 2 and the anode container 6 thermally contract, but the metal anode container 6
The thermal contraction of the anode container 6 is large, and the contraction of the anode container 6 is suppressed by the solid electrolyte tube 2 having a small thermal contraction.
A downward load acts on the joint 4 between the insulator ring 1 and the cylindrical metal fitting 7 that connects the anode container 6 and the anode ring 6 (FIG. 2).
(A direction of the arrow). In addition, a load is also applied to the joint 3 between the insulator ring 1 and the solid electrolyte tube 2, the weld 5 between the cylindrical metal fitting 7 and the anode container 6, and the weld 9 between the cylindrical body 13 and the anode container lid 8. In some cases, these joints were broken.
Further, the insulator ring 1 itself may be broken, or the cylindrical metal fitting 7 may be bent by a load.
As shown in (b), since the heat shrinkage of the anode container 6 is larger than the heat shrinkage of the solid electrolyte tube 2, the sulfur or sodium polysulfide 20 at the tube bottom of the solid electrolyte tube 2 and near the tube bottom is reduced.
Pressed against the bottom of the solid electrolyte tube 2, the solid electrolyte tube 2
In some cases, the bottom of the tube was damaged.

【0007】 そこで、従来より、多硫化ナトリウム又
は硫黄の固化及び固体電解質管2と陽極容器6との熱収
縮差に起因する上記の破損を防止するため、陽極容器6
の一部にくびれ10を形成してバネ効果を持たせ、荷重
を低減する等の対策が行われている。
Therefore, conventionally, in order to prevent the above-mentioned breakage due to solidification of sodium polysulfide or sulfur and a difference in heat shrinkage between the solid electrolyte tube 2 and the anode container 6, the anode container 6
Some measures have been taken, such as forming a constriction 10 in a part of the part to provide a spring effect to reduce the load.

【0008】[0008]

【発明が解決しようとする課題】 しかしながら、上記
のような対策を施した場合であっても、上記の接合部、
溶接部及び固体電解質管2の管底が強度的に弱かったり
すると破損が生じることがあった。
However, even when the above-described countermeasures are taken, the above-described joint,
When the welded portion and the bottom of the solid electrolyte tube 2 were weak in strength, breakage sometimes occurred.

【0009】[0009]

【課題を解決するための手段】 本発明は、このような
状況に鑑みてなされたものであり、その目的とするとこ
ろは、ナトリウム−硫黄電池の強度信頼性を向上するた
めに、電池降温時の多硫化ナトリウム及び硫黄の固化、
並びに固体電解質管、陽極容器の熱収縮差により生じる
荷重を吸収できるような陽極容器を提供することにあ
る。
Means for Solving the Problems The present invention has been made in view of such a situation, and an object of the present invention is to improve the strength reliability of a sodium-sulfur battery when the battery temperature drops. Solidification of sodium polysulfide and sulfur,
Another object of the present invention is to provide an anode container capable of absorbing a load caused by a difference in thermal contraction between the solid electrolyte tube and the anode container.

【0010】 即ち、本発明によれば、有底の固体電解
質管の内部に陰極活物質としてナトリウムを配し、固体
電解質管の外部に陽極活物質として硫黄を配するナトリ
ウム−硫黄電池において固体電解質管を挿入接合した絶
縁体リングと円筒状金具を介して接合され、溶融硫黄を
収容する有底円筒形状の陽極容器であって、周囲に軸方
向に伸縮するくびれを有し、多硫化ナトリウムの凝固温
度から室温までの陽極容器と固体電解質管との熱膨張差
に起因して陽極容器と固体電解質管との発生する力に対
する、上記くびれの軸方向における変形強度が、室温か
らナトリウム−硫黄電池の使用の際の最高温度までの温
度域において、固体電解質管の管底強度より小さい陽極
容器が提供される。
That is, according to the present invention, in a sodium-sulfur battery in which sodium is provided as a cathode active material inside a bottomed solid electrolyte tube and sulfur is provided as an anode active material outside the solid electrolyte tube, It is a bottomed cylindrical anode container that is joined via an insulator ring and a cylindrical fitting to which a tube is inserted and joined, and contains molten sulfur, and has a neck that expands and contracts in the axial direction around it. The deformation strength in the axial direction of the constriction against the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature to room temperature is from room temperature to the sodium-sulfur battery. In the temperature range up to the maximum temperature at the time of use of the present invention, an anode container having a smaller tube bottom strength of the solid electrolyte tube is provided.

【0011】 上記の陽極容器において、上記のくびれ
の軸方向における変形強度は、上記の温度域において、
固体電解質管の管底強度の3/5より小さいこと、又は
固体電解質管の管底強度のワイブル分布から求められる
破壊率が、1×10-4以下となる値であることが好まし
い。
In the above-mentioned anode container, the deformation strength of the above-mentioned constriction in the axial direction is as follows:
It is preferable that the value be smaller than 3/5 of the tube bottom strength of the solid electrolyte tube, or a value such that the destruction rate obtained from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1 × 10 −4 or less.

【0012】 又、上記の陽極容器において、上記のく
びれの軸方向における変形強度は、室温から多硫化ナト
リウムの凝固温度までの温度域において、固体電解質管
の管底強度より小さいことが好ましく、固体電解質管の
管底強度の3/5より小さいこと、又は固体電解質管の
管底強度のワイブル分布から求められる破壊率が、1×
10-4以下となる値であることがより好ましい。
In the anode container, the deformation strength of the constriction in the axial direction is preferably smaller than the tube bottom strength of the solid electrolyte tube in a temperature range from room temperature to the solidification temperature of sodium polysulfide. The fracture rate determined from the tube bottom strength of the electrolyte tube being less than 3/5 or the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1 ×
The value is more preferably 10 -4 or less.

【0013】 又、本発明によれば、有底の固体電解質
管の内部に陰極活物質として溶融金属ナトリウムを配
し、固体電解質管の外部に陽極活物質として溶融硫黄を
配するナトリウム−硫黄電池において、上記固体電解質
管を挿入接合した絶縁体リングと円筒状金具を介して接
合され、溶融硫黄を収容する有底円筒形状の陽極容器で
あって、その周囲に軸方向に伸縮するくびれを有し、多
硫化ナトリウムの凝固温度から室温までの陽極容器と固
体電解質管との熱膨張差に起因して陽極容器と固体電解
質管との発生する力に対する、上記くびれの軸方向にお
ける変形強度が、室温から当該ナトリウム−硫黄電池の
使用の際の最高温度までの温度域において、絶縁体リン
グの軸方向引っ張り強度、絶縁体リングと円筒状金具と
の接合部の軸方向引っ張り強度、絶縁体リングと固体電
解質管との接合部の軸方向引っ張り強度、円筒状金具の
座屈強度、陽極容器自体の引っ張り強度、陽極容器と円
筒状金具との溶接部の強度及び固体電解質管の管底強度
のうち最小のものより小さい陽極容器が提供される。
Further, according to the present invention, a sodium-sulfur battery in which molten metal sodium is disposed as a cathode active material inside a bottomed solid electrolyte tube, and molten sulfur is disposed as an anode active material outside the solid electrolyte tube. , A bottomed cylindrical anode container which is joined via a cylindrical fitting to an insulator ring into which the solid electrolyte tube is inserted and joined, and contains molten sulfur, and has a constriction around its periphery that expands and contracts in the axial direction. The deformation strength in the axial direction of the constriction against the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature, In the temperature range from room temperature to the maximum temperature during use of the sodium-sulfur battery, the tensile strength of the insulator ring in the axial direction, and the axial tensile strength of the joint between the insulator ring and the cylindrical metal fittings. Tensile strength, axial tensile strength of joint between insulator ring and solid electrolyte tube, buckling strength of cylindrical fitting, tensile strength of anode vessel itself, strength of welded part between anode vessel and cylindrical fitting, solid electrolyte An anode container is provided that is smaller than the minimum tube bottom strength.

【0014】 上記の陽極容器において、室温から多硫
化ナトリウムの凝固点までの温度域において、上記のく
びれの軸方向における変形強度が、上記の条件を満たす
ことが好ましい。
In the above anode container, it is preferable that the deformation strength in the axial direction of the constriction satisfies the above condition in a temperature range from room temperature to the solidification point of sodium polysulfide.

【0015】 又、陽極容器は、筒状体の一端に陽極容
器蓋を溶接することにより形成したものであってもよ
く、その場合は、多硫化ナトリウムの凝固温度から室温
までの陽極容器と固体電解質管との熱膨張差に起因して
陽極容器と固体電解質管との発生する力に対する、上記
くびれの軸方向における変形強度が、上記の温度域にお
いて、さらに筒状体と陽極容器蓋の溶接部の強度より小
さいことが必要である。
The anode container may be formed by welding an anode container lid to one end of a cylindrical body. In this case, the anode container and the solid are cooled from the solidification temperature of sodium polysulfide to room temperature. The deformation strength in the axial direction of the constriction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference between the thermal expansion of the electrolyte tube and the solid electrolyte tube is greater than the welding strength between the cylindrical body and the anode container lid in the above temperature range. It is necessary to be smaller than the strength of the part.

【0016】 又、上記の陽極容器において、上記のく
びれの軸方向における変形強度が、室温からナトリウム
−硫黄電池の使用の際の最高温度までの温度域におい
て、絶縁体リングの軸方向引っ張り強度、絶縁体リング
と円筒状金具との接合部の軸方向引っ張り強度、絶縁体
リングと当該固体電解質管との接合部の軸方向引っ張り
強度、円筒状金具の座屈強度、陽極容器自体の引っ張り
強度、陽極容器と当該円筒状金具との溶接部の強度及び
固体電解質管の管底強度のうち最小のものの2/3より
小さいことが好ましい。
Further, in the above-mentioned anode container, the deformation strength in the axial direction of the above-mentioned constriction is such that, in a temperature range from room temperature to the maximum temperature when the sodium-sulfur battery is used, the tensile strength of the insulator ring in the axial direction is obtained. Axial tensile strength of the joint between the insulator ring and the cylindrical metal fitting, axial tensile strength of the joint between the insulator ring and the solid electrolyte tube, buckling strength of the cylindrical metal fitting, tensile strength of the anode container itself, It is preferable that the strength of the welded portion between the anode container and the cylindrical metal fitting and the bottom strength of the solid electrolyte tube be smaller than 2/3 of the minimum strength.

【0017】 この場合において、室温から多硫化ナト
リウムの凝固点までの温度域において、多硫化ナトリウ
ムの凝固温度から室温までの陽極容器と固体電解質管と
の熱膨張差に起因して陽極容器と固体電解質管との発生
する力に対する、上記くびれの軸方向における変形強度
が、上記の条件を満たすことが好ましい。
In this case, in the temperature range from room temperature to the freezing point of sodium polysulfide, the difference between the thermal expansion of the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature results in the difference between the anode container and the solid electrolyte tube. It is preferable that the deformation strength in the axial direction of the constriction with respect to the force generated with the tube satisfies the above condition.

【0018】 さらに、陽極容器が筒状体の一端に陽極
容器蓋を溶接して成る場合は、上記のくびれの軸方向に
おける変形強度が、筒状体と陽極容器蓋の溶接部の強度
も2/3より小さいことが好ましい。
Further, when the anode container is formed by welding the lid of the anode container to one end of the cylindrical body, the deformation strength in the axial direction of the constriction and the strength of the welded portion between the cylindrical body and the lid of the anode container are also two. It is preferably smaller than / 3.

【0019】 又、上記の陽極容器において、上記のく
びれの軸方向における変形強度が、室温から当該ナトリ
ウム−硫黄電池の使用の際の最高温度までの温度域にお
いて、絶縁体リングと円筒状金具との接合部の軸方向に
おける引っ張り強度の、ワイブル分布から求められる破
壊率が、1×10-4以下となる値であることが好まし
い。
Further, in the above-mentioned anode container, the insulator ring and the cylindrical metal fitting have a deformation strength in the axial direction of the above-mentioned constriction in a temperature range from room temperature to a maximum temperature when the sodium-sulfur battery is used. It is preferable that the fracture rate of the tensile strength in the axial direction of the joint portion obtained from the Weibull distribution be a value of 1 × 10 −4 or less.

【0020】 上記のくびれの軸方向における変形強度
が、室温から多硫化ナトリウムの凝固点までの温度域に
おいて、上記の条件を満たすことが好ましい。
It is preferable that the deformation strength in the axial direction of the constriction satisfies the above condition in a temperature range from room temperature to the freezing point of sodium polysulfide.

【0021】 さらに、本発明によれば、有底の固体電
解質管の内部に陰極活物質として溶融金属ナトリウムを
配し、固体電解質管の外部に陽極活物質として溶融硫黄
を配し、その溶融硫黄を収容する陽極容器が、固体電解
質管を挿入接合した絶縁体リングと円筒状金具を介して
接合されるナトリウム−硫黄電池であって、上記の陽極
容器を用いたナトリウム−硫黄電池が提供される。
Further, according to the present invention, molten metal sodium is disposed as a cathode active material inside a bottomed solid electrolyte tube, and molten sulfur is disposed as an anode active material outside the solid electrolyte tube. Is a sodium-sulfur battery joined via a cylindrical metal fitting to an insulator ring into which a solid electrolyte tube is inserted and joined, and a sodium-sulfur battery using the above-described anode container is provided. .

【0022】 上記のナトリウム−硫黄電池において、
陽極容器及び円筒状金具はアルミニウム又はアルミニウ
ム合金からなり、固体電解質管はβアルミナから成り、
絶縁体リングはαアルミナから成ることが好ましい。
In the above sodium-sulfur battery,
The anode container and the cylindrical fitting are made of aluminum or an aluminum alloy, the solid electrolyte tube is made of β-alumina,
Preferably, the insulator ring comprises alpha alumina.

【0023】[0023]

【発明の実施の形態】 本発明においては、多硫化ナト
リウムの凝固温度から室温までの陽極容器と固体電解質
管との熱膨張差に起因して陽極容器と固体電解質管との
発生する力に対する、陽極容器のくびれの軸方向におけ
る変形強度が、固体電解質管の管底強度より小さくなる
ように設定される。このようにすることにより、電池降
温時の多硫化ナトリウム及び硫黄の固化、並びに固体電
解質管、陽極容器の熱収縮差により、固体電解質管の管
底にかかる荷重は、陽極容器に設けたくびれを優先的に
変形させるため、固体電解質管の管底の破損を防止する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the force generated by the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature, The deformation strength in the axial direction of the neck of the anode container is set to be smaller than the tube bottom strength of the solid electrolyte tube. By doing so, the load applied to the bottom of the solid electrolyte tube due to the solidification of sodium polysulfide and sulfur at the time of battery temperature drop and the difference in thermal contraction between the solid electrolyte tube and the anode container causes the constriction provided in the anode container to decrease. Since the tube is preferentially deformed, damage to the bottom of the solid electrolyte tube can be prevented.

【0024】 上記のくびれの軸方向における変形強度
は、上記の温度域において、固体電解質管の管底強度の
3/5より小さいこと、又は、固体電解質管の管底強度
のワイブル分布から求められる破壊率が、1×10-4
下、より好ましくは1×10-5以下となるような値であ
ることが好ましい。
The deformation strength in the axial direction of the constriction is determined from the fact that the tube bottom strength of the solid electrolyte tube is smaller than 3/5 or the Weibull distribution of the tube bottom strength of the solid electrolyte tube in the above temperature range. It is preferable that the destruction rate is a value that is 1 × 10 −4 or less, more preferably 1 × 10 −5 or less.

【0025】 ナトリウム−硫黄電池を点検等のために
温度降下させる場合、多硫化ナトリウムの固化の影響が
出始めるのは200℃付近からである。又、点検の際、
ナトリウム−硫黄電池は最終的に室温まで冷却される。
従って、上記の関係は、少なくとも室温である15℃か
ら、多硫化ナトリウムの固化が始まる200℃の温度域
において成立することが好ましい。しかし、より好まし
くは、ナトリウム−硫黄電池の作動温度である300〜
350℃をカバーする温度域、即ち、15℃から350
℃までの温度域において上記の関係が成り立つことが望
ましい。
When the temperature of the sodium-sulfur battery is lowered for inspection or the like, the effect of solidification of sodium polysulfide starts to appear from around 200 ° C. Also, at the time of inspection,
The sodium-sulfur battery is finally cooled to room temperature.
Therefore, it is preferable that the above relationship be satisfied at least in a temperature range from 15 ° C., which is room temperature, to 200 ° C., at which solidification of sodium polysulfide starts. However, more preferably, the operating temperature of the sodium-sulfur battery is 300 to
Temperature range covering 350 ° C, that is, from 15 ° C to 350 ° C
It is desirable that the above relationship be satisfied in a temperature range up to ° C.

【0026】 又、本発明においては、多硫化ナトリウ
ムの凝固温度から室温までの陽極容器と固体電解質管と
の熱膨張差に起因して陽極容器と固体電解質管との発生
する力に対する、陽極容器のくびれの軸方向における変
形強度が、絶縁体リングの軸方向引っ張り強度、絶縁体
リングと円筒状金具との接合部の軸方向引っ張り強度、
絶縁体リングと固体電解質管との接合部の軸方向引っ張
り強度、円筒状金具の座屈強度、陽極容器自体の引っ張
り強度、陽極容器と円筒状金具との溶接部の強度及び固
体電解質管の管底強度のうち最小のものより小さくなる
ように設定される。又、好ましくはこれらのうちで最小
のものの2/3より小さく、より好ましくは1/2より
小さくすることが望ましい。このようにすることによ
り、電池降温時の多硫化ナトリウム及び硫黄の固化、並
びに固体電解質管、陽極容器の熱収縮差により生じる荷
重は、陽極容器に設けたくびれを優先的に変形させるた
め、他の部位にかかる荷重を軽減することができる。上
記の接合部、部材等のなかでは、絶縁体リングと円筒状
金具との接合部が最も弱く、破損が多い。従って、くび
れを変形させるために必要な最小荷重は、この接合部の
軸方向引っ張り強度を基準に決められるのが一般的であ
る。
Further, in the present invention, the anode container is provided with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The deformation strength in the axial direction of the constriction is the axial tensile strength of the insulator ring, the axial tensile strength of the joint between the insulator ring and the cylindrical fitting,
Axial tensile strength of joint between insulator ring and solid electrolyte tube, buckling strength of cylindrical fitting, tensile strength of anode container itself, strength of weld between anode container and cylindrical fitting, solid electrolyte tube tube It is set to be smaller than the minimum one of the bottom strengths. Further, it is preferable that it is smaller than 2/3 of the smallest of these, more preferably smaller than 1/2. By doing so, the solidification of sodium polysulfide and sulfur when the battery temperature drops, and the load caused by the difference in heat shrinkage of the solid electrolyte tube and the anode container preferentially deforms the neck provided in the anode container. Can be reduced. Among the above-mentioned joints, members, and the like, the joint between the insulator ring and the cylindrical fitting is the weakest, and is frequently damaged. Therefore, the minimum load required to deform the constriction is generally determined based on the axial tensile strength of the joint.

【0027】 陽極容器が、筒状体と陽極容器蓋とを溶
接して形成されている場合には、くびれの変形強度を、
その溶接部の強度よりも小さくすることが必要である。
筒状体と陽極容器蓋との溶接部にも荷重がかかるからで
ある。
When the anode container is formed by welding the cylindrical body and the anode container lid, the deformation strength of the constriction is
It is necessary to make the strength smaller than the strength of the weld.
This is because a load is also applied to the welded portion between the cylindrical body and the anode container lid.

【0028】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、陽極容
器のくびれの軸方向における変形強度は、絶縁体リング
と円筒状金具との接合部の軸方向における引っ張り強度
の、ワイブル分布から求められる破壊率が、1×10-4
以下となるような値であることが好ましいが、1×10
-6以下となるような値であることがより好ましい。
Axial deformation of the neck of the anode container with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature As for the strength, the breaking rate of the tensile strength in the axial direction of the joint between the insulator ring and the cylindrical metal fitting, which is determined from the Weibull distribution, is 1 × 10 −4.
It is preferable that the value be as follows, but 1 × 10
The value is more preferably -6 or less.

【0029】 前記と同様の理由により、上記の関係
は、少なくとも室温である15℃から、多硫化ナトリウ
ムの固化が始まる200℃の温度域において成立するこ
とが好ましい。しかし、より好ましくは、ナトリウム−
硫黄電池の作動温度である300〜350℃をカバーす
る温度域、即ち、15℃から350℃までの温度域にお
いて上記の関係が成り立つことが望ましい。
For the same reason as described above, the above-mentioned relationship is preferably satisfied at least in a temperature range from room temperature of 15 ° C. to 200 ° C. at which solidification of sodium polysulfide starts. However, more preferably, sodium-
It is desirable that the above relationship be satisfied in a temperature range covering the operating temperature of the sulfur battery of 300 to 350 ° C., that is, a temperature range of 15 ° C. to 350 ° C.

【0030】 陽極容器のくびれの強度は、材質の選
択、陽極容器の厚さ、くびれの形状を変えること等によ
り調節される。陽極容器の素材としては、アルミニウム
又はアルミニウム合金を使用することが軽量かつ安価で
あるため好ましいが、特にAl−Mn系、又はAl−M
g系の合金を用いることが好ましい。具体的には、Al
−Mn系としてはA3003又はA3004、Al−M
g系としてはA5052を用いることが好ましい。
The strength of the neck of the anode container is adjusted by selecting a material, changing the thickness of the anode container, changing the shape of the neck, and the like. As the material of the anode container, it is preferable to use aluminum or an aluminum alloy because it is lightweight and inexpensive, but in particular, Al-Mn or Al-M
It is preferable to use a g-based alloy. Specifically, Al
A3003 or A3004 as the Mn system, Al-M
It is preferable to use A5052 as the g-system.

【0031】 上記の陽極容器を用いてナトリウム−硫
黄電池を作製する場合には、固体電解質管にはβアルミ
ナを用いることが好ましい。絶縁体リングとしてはαア
ルミナを用いることが好ましい。円筒状金具としては陽
極容器と同じ素材を用いることが好ましいが、アルミニ
ウム合金を用いることが特に好ましい。
When a sodium-sulfur battery is manufactured using the above-described anode container, β-alumina is preferably used for the solid electrolyte tube. It is preferable to use α-alumina as the insulator ring. Although it is preferable to use the same material as the anode container as the cylindrical metal fitting, it is particularly preferable to use an aluminum alloy.

【0032】[0032]

【実施例】 本発明を実施例を用いてさらに詳しく説明
するが、本発明はこれらの実施例に限られるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0033】(実施例1〜4) 陽極容器に設けたくび
れの軸方向における変形強度が、室温からナトリウム−
硫黄電池の使用の際の最高温度までの温度域において、
固体電解質管の管底強度より小さくなるように設定した
陽極容器を用いてナトリウム−硫黄電池を作製し、昇降
温試験を行うことにより、固体電解質管の管底における
破損の発生を調べた。固体電解質管は、外径が45m
m、筒状部の肉厚が1.6mm、管底の肉厚が1.6m
mであり、管底の形状が半球状のものを用いた。又、管
底強度は9.8kN(1000kg)であり、その3/
5の値は5.9kNであった。又、固体電解質管の管底
強度のワイブル分布から求められる破壊率が1×10-4
となる荷重の値は6.5kNであった。なお、表1に、
作製したナトリウム−硫黄電池に種々の大きさの荷重を
かけることにより、固体電解質管の管底の推定破壊率を
各荷重に対して求めた値を示す。なお、管底強度は、図
3に示すように、開口部を下にして垂直に立てた固体電
解質管2の管底に、強度測定治具16により下方への荷
重をかけて破壊試験を行うことにより測定した。管底の
推定破壊率は、管底強度の測定値に基づいて作成したワ
イブル曲線より求めた。
(Examples 1 to 4) The deformation strength in the axial direction of the constriction provided in the anode container was changed from room temperature to sodium-
In the temperature range up to the maximum temperature when using a sulfur battery,
A sodium-sulfur battery was manufactured using an anode container set so as to be smaller than the tube bottom strength of the solid electrolyte tube, and the occurrence of breakage at the tube bottom of the solid electrolyte tube was examined by performing a temperature rise / fall test. The solid electrolyte tube has an outer diameter of 45m
m, the thickness of the cylindrical part is 1.6 mm, and the thickness of the tube bottom is 1.6 m
m, and a tube bottom having a hemispherical shape was used. The bottom strength of the tube is 9.8 kN (1000 kg).
The value of 5 was 5.9 kN. Further, the destruction rate determined from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1 × 10 −4.
Was 6.5 kN. In Table 1,
The values obtained by applying various loads to the produced sodium-sulfur battery and calculating the estimated fracture rate of the tube bottom of the solid electrolyte tube for each load are shown. In addition, as shown in FIG. 3, the tube bottom strength is measured by applying a downward load to the tube bottom of the solid electrolyte tube 2 with the opening portion downward by a strength measuring jig 16 to perform a destructive test. Was measured. The estimated fracture rate of the tube bottom was obtained from a Weibull curve created based on the measured value of the tube bottom strength.

【0034】[0034]

【表1】 [Table 1]

【0035】 くびれの変形強度は、実施例1、2及び
3においては、それぞれ、8.8kN(900kg)、
7.4kN(750kg)及び6.9kN(700k
g)とした。又、実施例4においては5.9kN(50
0kg)、即ち、管底強度の破壊率が、1×10-4とな
る値より小さな値とした。なお、くびれの変形強度には
くびれの引っ張り強度を用いた。又、くびれの変形強度
の測定は以下のように行った。まず、図4(a)に示す
ように、陽極容器と同じ材質から成るパイプ21にくび
れ10を形成し、このパイプ21に上下方向への引っ張
り荷重をかけ、図4(b)に示すように、荷重とくびれ
に生じた変位の大きさとの関係をグラフにした。次に、
荷重測定変位に対応する荷重を上記のグラフより求め、
その値をくびれの変形強度とした。なお、変位の大きさ
は、くびれの長さ22を変位計にて測定することにより
求めた。
In Examples 1, 2, and 3, the deformation strength of the neck was 8.8 kN (900 kg), respectively.
7.4 kN (750 kg) and 6.9 kN (700 kN)
g). In Example 4, 5.9 kN (50 kN
0 kg), that is, a value smaller than the value at which the fracture rate of the tube bottom strength becomes 1 × 10 −4 . In addition, the tensile strength of the neck was used as the deformation strength of the neck. The measurement of the deformation strength of the constriction was performed as follows. First, as shown in FIG. 4A, a constriction 10 is formed in a pipe 21 made of the same material as the anode container, and a tensile load is applied to the pipe 21 in the vertical direction, as shown in FIG. The relationship between the load and the magnitude of the displacement caused by the constriction was plotted on a graph. next,
Find the load corresponding to the load measurement displacement from the above graph,
The value was defined as the constriction deformation strength. The magnitude of the displacement was determined by measuring the length of the neck 22 with a displacement meter.

【0036】 昇降温試験は、各実施例につき1000
本の電池を製作し、室温から330℃までの昇降温を3
度繰り返した後に、管底に破損が生じた固体電解質管の
数を調べることにより行った。又、最初の昇温時にナト
リウム−硫黄電池の充放電を行った。
The temperature rise / fall test was 1000 for each example.
Battery, and raise and lower the temperature from room temperature to
After repeating this process, the number of solid electrolyte tubes having a broken tube bottom was checked. In addition, charging and discharging of the sodium-sulfur battery were performed at the first temperature rise.

【0037】 昇温試験により管底に破損が生じた固体
電解質管の数を表2に示す。
Table 2 shows the number of solid electrolyte tubes whose tube bottom was damaged by the temperature rise test.

【0038】(比較例1) くびれの変形強度を固体電
解質管の管底強度と同じ値である9.8kN(1000
kg)とした点を除いては、実施例1〜4と同様の固体
電解質管を用い、実施例1〜4と同様の条件で昇降温試
験を行うことにより、固体電解質管の管底における破損
の発生を調べた。管底に破損が生じた固体電解質管の数
を表2に示す。
(Comparative Example 1) The deformation strength of the neck is 9.8 kN (1000) which is the same value as the tube bottom strength of the solid electrolyte tube.
(kg) except that the solid electrolyte tube was the same as in Examples 1 to 4, and a temperature rise / fall test was performed under the same conditions as in Examples 1 to 4. Was investigated. Table 2 shows the number of solid electrolyte tubes having a broken tube bottom.

【0039】[0039]

【表2】 [Table 2]

【0040】(実施例5〜7) 陽極容器に設けたくび
れの軸方向における変形強度が、室温からナトリウム−
硫黄電池の使用の際の最高温度までの温度域において、
固体電解質管の管底強度より小さくなるように設定した
陽極容器を用いてナトリウム−硫黄電池を作製し、昇降
温試験を行うことにより、固体電解質管の管底における
破損の発生を調べた。固体電解質管は、外径が45m
m、筒状部の肉厚が1.6mm、管底の肉厚が1.6m
mであり、管底の形状が1/4球状、即ち、球を、その
任意の中心線に直角に配向し、かつその中心線の端から
1/4の点を通る平面で切断した際の、小さい方の断片
が有する曲面に相当する形状の管底を有するものを用い
た。又、管底強度は7.9kN(810kg)であり、
その3/5の値は4.7kNであった。又、固体電解質
管の管底強度のワイブル分布から求められる破壊率が1
×10-4となる荷重の値は4.8kNであった。なお、
表3に、作製したナトリウム−硫黄電池に種々の大きさ
の荷重をかけることにより、固体電解質管の管底の推定
破壊率を各荷重に対して求めた値を示す。
(Examples 5 to 7) The deformation strength in the axial direction of the constriction provided in the anode container was changed from room temperature to sodium-
In the temperature range up to the maximum temperature when using a sulfur battery,
A sodium-sulfur battery was manufactured using an anode container set so as to be smaller than the tube bottom strength of the solid electrolyte tube, and the occurrence of breakage at the tube bottom of the solid electrolyte tube was examined by performing a temperature rise / fall test. The solid electrolyte tube has an outer diameter of 45m
m, the thickness of the cylindrical part is 1.6 mm, and the thickness of the tube bottom is 1.6 m
m, and the shape of the tube bottom is a 1/4 sphere, that is, when the sphere is cut at a plane oriented at right angles to an arbitrary center line and passing through a point 1/4 from the end of the center line. A tube having a tube bottom having a shape corresponding to the curved surface of the smaller piece was used. The tube bottom strength is 7.9kN (810kg),
The value of 3/5 was 4.7 kN. In addition, the destruction rate obtained from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1%.
The value of the load to be × 10 -4 was 4.8 kN. In addition,
Table 3 shows values obtained by applying loads of various sizes to the produced sodium-sulfur batteries and estimating a fracture rate of the bottom of the solid electrolyte tube for each load.

【0041】[0041]

【表3】 [Table 3]

【0042】 くびれの変形強度は、実施例5から順
に、それぞれ、7.4kN(750kg)、5.9kN
(600kg)及び4.9kN(500kg)とした。
昇降温試験は実施例1〜4と同様の条件で行った。
The deformation strength of the neck was 7.4 kN (750 kg) and 5.9 kN, respectively, in order from Example 5.
(600 kg) and 4.9 kN (500 kg).
The temperature rise / fall test was performed under the same conditions as in Examples 1 to 4.

【0043】 昇温試験により管底に破損が生じた固体
電解質管の数を表4に示す。
Table 4 shows the number of solid electrolyte tubes whose tube bottom was damaged by the temperature rise test.

【0044】(比較例2) くびれの変形強度を固体電
解質管の管底強度より大きい8.8kN(900kg)
とした点を除いては、実施例5〜7と同様の固体電解質
管を用い、実施例5〜7と同様の条件で昇降温試験を行
うことにより、固体電解質管の管底における破損の発生
を調べた。管底に破損が生じた固体電解質管の数を表4
に示す。
(Comparative Example 2) The deformation strength of the neck is 8.8 kN (900 kg), which is larger than the tube bottom strength of the solid electrolyte tube.
Using the same solid electrolyte tubes as in Examples 5 to 7 and performing a temperature rise / fall test under the same conditions as in Examples 5 to 7, the occurrence of breakage at the tube bottom of the solid electrolyte tubes Was examined. Table 4 shows the number of solid electrolyte tubes with broken bottoms.
Shown in

【0045】[0045]

【表4】 [Table 4]

【0046】(実施例8〜11) 陽極容器に設けたく
びれの軸方向における変形強度が、室温からナトリウム
−硫黄電池の使用の際の最高温度までの温度域におい
て、固体電解質管の管底強度より小さくなるように設定
した陽極容器を用いてナトリウム−硫黄電池を作製し、
昇降温試験を行うことにより、固体電解質管の管底にお
ける破損の発生を調べた。固体電解質管は、外径が45
mm、筒状部の肉厚が1.6mm、管底の肉厚が3.0
mmであり、管底の形状が1/4球状のものを用いた。
又、管底強度は12.3kN(1250kg)であり、
その3/5の値は7.4kNであった。又、固体電解質
管の管底強度のワイブル分布から求められる破壊率が1
×10-4となる荷重の値は8.0kNであった。なお、
表5に、作製したナトリウム−硫黄電池に種々の大きさ
の荷重をかけることにより、固体電解質管の管底の推定
破壊率を各荷重に対して求めた値を示す。
(Examples 8 to 11) The deformation strength in the axial direction of the constriction provided in the anode container is from the room temperature to the maximum temperature when the sodium-sulfur battery is used. Making a sodium-sulfur battery using an anode container set to be smaller,
The occurrence of breakage at the bottom of the solid electrolyte tube was examined by performing a temperature rise / fall test. The solid electrolyte tube has an outer diameter of 45
mm, the thickness of the cylindrical portion is 1.6 mm, and the thickness of the tube bottom is 3.0.
mm and the shape of the tube bottom was a 1/4 sphere.
Also, the tube bottom strength is 12.3 kN (1250 kg),
The value of 3/5 was 7.4 kN. In addition, the destruction rate obtained from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1%.
The value of the load to be × 10 -4 was 8.0 kN. In addition,
Table 5 shows values obtained by applying loads of various magnitudes to the produced sodium-sulfur batteries and estimating the fracture rate of the bottom of the solid electrolyte tube for each load.

【0047】[0047]

【表5】 [Table 5]

【0048】 くびれの変形強度は、実施例8、9及び
10においては、それぞれ、10.8kN(1100k
g)、9.8kN(1000kg)及び8.8kN(9
00kg)とした。又、実施例11においては7.4k
N(750kg)、即ち、管底強度の破壊率が、1×1
-4となる荷重の値より小さな値とした。昇降温試験は
実施例1〜4と同様の条件で行った。
In Examples 8, 9 and 10, the deformation strength of the neck was 10.8 kN (1100 kN), respectively.
g), 9.8 kN (1000 kg) and 8.8 kN (9
00 kg). In the eleventh embodiment, 7.4 k
N (750 kg), that is, the failure rate of the tube bottom strength is 1 × 1
The value was set to a value smaller than the value of the load to be 0 -4 . The temperature rise / fall test was performed under the same conditions as in Examples 1 to 4.

【0049】 昇温試験により管底に破損が生じた固体
電解質管の数を表6に示す。
Table 6 shows the number of solid electrolyte tubes whose tube bottom was damaged by the temperature rise test.

【0050】(比較例3) くびれの変形強度を固体電
解質管の管底強度と同じ値である12.3kN(125
0kg)とした点を除いては、実施例8〜11と同様の
固体電解質管を用い、実施例8〜11と同様の条件で昇
降温試験を行うことにより、固体電解質管の管底におけ
る破損の発生を調べた。管底に破損が生じた固体電解質
管の数を表6に示す。
(Comparative Example 3) The deformation strength of the neck is 12.3 kN (125) which is the same value as the bottom strength of the solid electrolyte tube.
0 kg), using the same solid electrolyte tube as in Examples 8 to 11, and performing a temperature rise / fall test under the same conditions as in Examples 8 to 11, to thereby damage the solid electrolyte tube at the bottom of the tube. Was investigated. Table 6 shows the number of solid electrolyte tubes in which the tube bottom was damaged.

【0051】[0051]

【表6】 [Table 6]

【0052】 くびれの変形強度を固体電解質管の管底
強度より小さくすることにより、くびれの変形強度を固
体電解質管の管底強度と同等以上とした場合に比べ、固
体電解質管の管底の破損を1/10以下に減らすことが
できた。又、くびれの変形強度を、固体電解質管の管底
強度のワイブル分布から求められる破壊率が1×10-4
となる荷重の値より小さな値とした場合には、管底の破
損が起こる頻度を10-3未満に抑えることができた。
By making the deformation strength of the neck smaller than the tube bottom strength of the solid electrolyte tube, the damage of the tube bottom of the solid electrolyte tube can be reduced compared to the case where the deformation strength of the neck is made equal to or more than the tube bottom strength of the solid electrolyte tube. Was reduced to 1/10 or less. In addition, the deformation strength of the constriction is determined by determining that the destruction rate obtained from the Weibull distribution of the bottom strength of the solid electrolyte tube is 1 × 10 -4
When the load value was smaller than the load value, the frequency of breakage of the tube bottom could be suppressed to less than 10 -3 .

【0053】(実施例12) 作製したナトリウム−硫
黄電池に種々の大きさの荷重をかけることにより、その
絶縁体リングと円筒状金具との接合部(以下、TCB接
合部)の推定破壊率を各荷重に対して求めた。その結果
を元に、くびれ部分を変形させるのに必要な荷重を適宜
調節した陽極容器を作製し、その陽極容器を用いてナト
リウム−硫黄電池を作製した。
Example 12 By applying loads of various magnitudes to the manufactured sodium-sulfur battery, the estimated destruction rate of the joint (hereinafter, TCB joint) between the insulator ring and the cylindrical metal fitting was reduced. It was determined for each load. Based on the results, an anode container was prepared in which the load required to deform the constricted portion was appropriately adjusted, and a sodium-sulfur battery was manufactured using the anode container.

【0054】 表7に、素材強度がそれぞれ350MP
a及び490MPaである2種の絶縁体リングを用い
て、種々の大きさの荷重に対するTCB接合部の推定破
壊率を測定した結果を示す。なお、推定破壊率は以下の
ようにして求めた。まず、図5に示すように、絶縁体リ
ング1の外周に円筒状金具7を接合した上で、円筒状金
具7の上部及び絶縁体リング1の下部に強度測定治具1
6をあてがい、矢印方向に荷重をかけることによりTC
B接合部の破壊強度を測定した。TCB接合部の推定破
壊率は、破壊強度の測定値に基づいて作成したワイブル
曲線より求めた。
Table 7 shows that the material strength was 350MP each.
5 shows the results of measuring the estimated failure rates of the TCB joints with respect to loads of various magnitudes using two types of insulator rings, a and 490 MPa. The estimated destruction rate was determined as follows. First, as shown in FIG. 5, a cylindrical metal fitting 7 is joined to the outer periphery of the insulator ring 1, and a strength measuring jig 1 is provided above the cylindrical metal fitting 7 and below the insulator ring 1.
6 by applying a load in the direction of the arrow.
The breaking strength of the B joint was measured. The estimated fracture rate of the TCB joint was determined from a Weibull curve created based on the measured values of the fracture strength.

【0055】[0055]

【表7】 [Table 7]

【0056】 より小さい推定破壊率に対応した破壊荷
重を基準として、陽極容器のくびれ部分の変形荷重を設
定することが望ましい。しかし、くびれ部分の変形荷重
をあまりに小さく設定すると、くびれ自体の機械的強度
が低くなり、電池の耐久性に悪影響を与える。
It is desirable to set the deformation load of the constricted part of the anode container on the basis of the fracture load corresponding to the smaller estimated failure rate. However, if the deformation load of the constricted portion is set too small, the mechanical strength of the constricted portion itself is reduced, which adversely affects the durability of the battery.

【0057】 表7の結果より、例えば推定破壊率を1
-5以下にしたい場合は、490MPaから成る絶縁体
リングを用いることが好ましいことがわかる。表7の測
定結果を基準に前記の陽極容器を作製し、それを用いて
ナトリウム−硫黄電池を作製した結果、TCB接合部等
の破損を防ぐことができ、良好な結果を得ることができ
た。
From the results in Table 7, for example, the estimated destruction rate is 1
If you want to 0 -5 or less, it can be seen that it is preferable to use an insulator ring of 490 MPa. The anode container was manufactured based on the measurement results in Table 7, and a sodium-sulfur battery was manufactured using the anode container. As a result, breakage of the TCB junction and the like could be prevented, and good results could be obtained. .

【0058】[0058]

【発明の効果】 本発明のナトリウム−硫黄電池用陽極
容器は、所定の変形強度を有するくびれを有するため、
電池降温時に、多硫化ナトリウムの固化、及び陽極容器
と固体電解質管との熱膨張差に起因して生じる歪みを効
果的に吸収し、ナトリウム−硫黄電池の各種接合部及び
各種部材並びに固体電解質管の管底に破損が生じるのを
防止することができる。従って、ナトリウム−硫黄電池
の耐久性を高めることができる。
Effect of the Invention The anode container for a sodium-sulfur battery of the present invention has a neck having a predetermined deformation strength,
When the temperature of the battery drops, it effectively absorbs the strain caused by the solidification of sodium polysulfide and the difference in thermal expansion between the anode container and the solid electrolyte tube, and various junctions and members of the sodium-sulfur battery and the solid electrolyte tube This can prevent the bottom of the tube from being damaged. Therefore, the durability of the sodium-sulfur battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ナトリウム−硫黄電池の構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a structure of a sodium-sulfur battery.

【図2】 (a)固体電解質管と筒状体との結合状態を
示す模式図である。(b)固体電解質管の管底にかかる
荷重を示す説明図である。
FIG. 2 (a) is a schematic view showing a connection state between a solid electrolyte tube and a tubular body. (B) It is explanatory drawing which shows the load applied to the tube bottom of a solid electrolyte tube.

【図3】 固体電解質管の管底強度の測定方法を示す模
式図である。
FIG. 3 is a schematic diagram showing a method for measuring the tube bottom strength of a solid electrolyte tube.

【図4】 (a)くびれの変形強度の測定方法を示す模
式図、及び(b)荷重とくびれに生じた変位の大きさと
の関係を示すグラフの一例である。
4A is a schematic diagram illustrating a method for measuring the deformation strength of a neck, and FIG. 4B is an example of a graph illustrating a relationship between a load and a magnitude of a displacement caused by the neck.

【図5】 TCB接合部の破壊強度の測定方法を示す模
式図である。
FIG. 5 is a schematic view showing a method for measuring the breaking strength of a TCB joint.

【符号の説明】[Explanation of symbols]

1・・・絶縁体リング、2・・・固体電解質管、3・・・絶縁体
リングと固体電解質管との接合部、4・・・絶縁体リング
と円筒状金具との接合部、5・・・円筒状金具と陽極容器
との溶接部、6・・・陽極容器、7・・・円筒状金具、8・・・
陽極容器蓋、9・・・筒状体と陽極容器蓋との溶接部、1
0・・・くびれ、11・・・陽極用導電材、12・・・溶融金属
ナトリウム、13・・・筒状体、14・・・接合剤、15・・・
接合ガラス、16・・・強度測定治具、17・・・ナトリウム
−硫黄電池、18・・・リング状底部、19・・・フランジ、
20・・・硫黄又は多硫化ナトリウム、21・・・パイプ、2
2・・・くびれの長さ。
DESCRIPTION OF SYMBOLS 1 ... Insulator ring, 2 ... Solid electrolyte tube, 3 ... Joint part between insulator ring and solid electrolyte pipe, 4 ... Joint part between insulator ring and cylindrical metal fitting, 5 ... ..Welded portion between cylindrical fitting and anode container, 6 ... Anode container, 7 ... Cylindrical fitting, 8 ...
Anode container lid, 9 ... Welded part between cylindrical body and anode container lid, 1
0: constriction, 11: conductive material for anode, 12: molten metal sodium, 13: tubular body, 14: bonding agent, 15 ...
Bonding glass, 16: strength measuring jig, 17: sodium-sulfur battery, 18: ring-shaped bottom, 19: flange,
20: sulfur or sodium polysulfide, 21: pipe, 2
2. The length of the constriction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 敏司 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ────────────────────────────────────────────────── ─── Continued from the front page (72) Inventor Satoshi Kitagawa 2-56, Suda-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Insulator Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 有底の固体電解質管の内部に陰極活物質
としてナトリウムを配し、当該固体電解質管の外部に陽
極活物質として硫黄を配するナトリウム−硫黄電池にお
いて 当該固体電解質管を挿入接合した絶縁体リングと円筒状
金具を介して接合され、当該溶融硫黄を収容する有底円
筒形状の陽極容器であって、 周囲に軸方向に伸縮するくびれを有し、 多硫化ナトリウムの凝固温度から室温までの陽極容器と
固体電解質管との熱膨張差に起因して陽極容器と固体電
解質管との発生する力に対する、当該くびれの軸方向に
おける変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、当該固体電解質管の管底強度
より小さいことを特徴とする陽極容器。
1. A sodium-sulfur battery in which sodium is arranged as a cathode active material inside a bottomed solid electrolyte tube and sulfur is arranged outside the solid electrolyte tube as an anode active material. A cylindrical anode container with a bottom that is joined to the insulator ring that has been made through the cylindrical fitting and that contains the molten sulfur, has a neck that expands and contracts in the axial direction around it, and The deformation strength in the axial direction of the constriction against the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube up to room temperature is from room temperature to the use of the sodium-sulfur battery. An anode container characterized by having a lower tube bottom strength of the solid electrolyte tube in a temperature range up to the maximum temperature at the time of (1).
【請求項2】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固温度までの温度域にお
いて、当該固体電解質管の管底強度より小さい請求項1
に記載の陽極容器。
2. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The strength is lower than the tube bottom strength of the solid electrolyte tube in a temperature range from room temperature to a solidification temperature of sodium polysulfide.
The anode container according to item 1.
【請求項3】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、当該固体電解質管の管底強度
の3/5より小さい請求項1に記載の陽極容器。
3. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The anode container according to claim 1, wherein the strength is less than 3/5 of the tube bottom strength of the solid electrolyte tube in a temperature range from room temperature to a maximum temperature when the sodium-sulfur battery is used.
【請求項4】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固温度までの温度域にお
いて、当該固体電解質管の管底強度の3/5より小さい
請求項2に記載の陽極容器。
4. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The anode container according to claim 2, wherein the strength is less than 3/5 of the tube bottom strength of the solid electrolyte tube in a temperature range from room temperature to a solidification temperature of sodium polysulfide.
【請求項5】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、当該固体電解質管の管底強度
のワイブル分布から求められる破壊率が、1×10-4
下となる値である請求項1に記載の陽極容器。
5. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. Strength, in a temperature range from room temperature to the maximum temperature when the sodium-sulfur battery is used, a value at which the destruction rate obtained from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is 1 × 10 −4 or less. The anode container according to claim 1, which is:
【請求項6】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固温度までの温度域にお
いて、当該固体電解質管の管底強度のワイブル分布から
求められる破壊率が、1×10-4以下となる値である請
求項2に記載の陽極容器。
6. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The strength is such that in a temperature range from room temperature to the solidification temperature of sodium polysulfide, the destruction rate obtained from the Weibull distribution of the tube bottom strength of the solid electrolyte tube is a value that is 1 × 10 −4 or less. Anode container as described.
【請求項7】 有底の固体電解質管の内部に陰極活物質
としてナトリウムを配し、当該固体電解質管の外部に陽
極活物質として硫黄を配するナトリウム−硫黄電池にお
いて当該固体電解質管を挿入接合した絶縁体リングと円
筒状金具を介して接合され、当該溶融硫黄を収容する有
底円筒形状の陽極容器であって、 周囲に軸方向に伸縮するくびれを有し、 多硫化ナトリウムの凝固温度から室温までの陽極容器と
固体電解質管との熱膨張差に起因して陽極容器と固体電
解質管との発生する力に対する、当該くびれの軸方向に
おける変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、 当該絶縁体リングの軸方向引っ張り強度、 当該絶縁体リングと円筒状金具との接合部の軸方向引っ
張り強度、 当該絶縁体リングと当該固体電解質管との接合部の軸方
向引っ張り強度、 当該円筒状金具の座屈強度、 当該陽極容器自体の引っ張り強度、 当該陽極容器と当該円筒状金具との溶接部の強度、 及び当該固体電解質管の管底強度のうち最小のものより
小さいことを特徴とする陽極容器。
7. A sodium-sulfur battery in which sodium is disposed as a cathode active material inside a bottomed solid electrolyte tube, and sulfur is disposed outside the solid electrolyte tube, and the solid electrolyte tube is inserted and joined. A cylindrical anode container with a bottom that is joined to the insulator ring that has been made through the cylindrical fitting and that contains the molten sulfur, has a neck that expands and contracts in the axial direction around it, and The deformation strength in the axial direction of the constriction against the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube up to room temperature is from room temperature to the use of the sodium-sulfur battery. In the temperature range up to the maximum temperature at the time of the above, the axial tensile strength of the insulator ring, the axial tensile strength of the joint between the insulator ring and the cylindrical metal fitting, the insulation The axial tensile strength of the joint between the body ring and the solid electrolyte tube, the buckling strength of the cylindrical fitting, the tensile strength of the anode container itself, the strength of the weld between the anode container and the cylindrical fitting, and An anode container characterized by being smaller than the minimum tube bottom strength of the solid electrolyte tube.
【請求項8】 多硫化ナトリウムの凝固温度から室温ま
での陽極容器と固体電解質管との熱膨張差に起因して陽
極容器と固体電解質管との発生する力に対する、当該く
びれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固温度までの温度域にお
いて、 当該絶縁体リングの軸方向引っ張り強度、 当該絶縁体リングと円筒状金具との接合部の軸方向引っ
張り強度、 当該絶縁体リングと当該固体電解質管との接合部の軸方
向引っ張り強度、 当該円筒状金具の座屈強度、 当該陽極容器自体の引っ張り強度、 当該陽極容器と当該円筒状金具との溶接部の強度、 及び当該固体電解質管の管底強度のうち最小のものより
小さい請求項7に記載の陽極容器。
8. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. In the temperature range from room temperature to the solidification temperature of sodium polysulfide, the tensile strength of the insulator ring in the axial direction, the tensile strength of the joint between the insulator ring and the cylindrical metal fitting, the tensile strength of the insulator ring, Axial tensile strength of the joint with the solid electrolyte tube, buckling strength of the cylindrical fitting, tensile strength of the anode container itself, strength of a weld between the anode container and the cylindrical fitting, and the solid electrolyte The anode container according to claim 7, wherein the tube bottom strength of the tube is smaller than the minimum one.
【請求項9】 筒状体の一端に陽極容器蓋を溶接して成
り、 多硫化ナトリウムの凝固温度から室温までの陽極容器と
固体電解質管との熱膨張差に起因して陽極容器と固体電
解質管との発生する力に対する、当該くびれの軸方向に
おける変形強度が、 当該温度域において、 さらに当該筒状体と当該陽極容器蓋の溶接部の強度より
小さい請求項7又は8に記載の陽極容器。
9. An anode container lid is welded to one end of a cylindrical body, and the anode container and the solid electrolyte are caused by a difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The anode container according to claim 7 or 8, wherein the deformation strength in the axial direction of the constriction with respect to the force generated by the tube is smaller than the strength of the welded portion between the cylindrical body and the anode container lid in the temperature range. .
【請求項10】 多硫化ナトリウムの凝固温度から室温
までの陽極容器と固体電解質管との熱膨張差に起因して
陽極容器と固体電解質管との発生する力に対する、当該
くびれの軸方向における変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、 当該絶縁体リングの軸方向引っ張り強度、 当該絶縁体リングと円筒状金具との接合部の軸方向引っ
張り強度、 当該絶縁体リングと当該固体電解質管との接合部の軸方
向引っ張り強度、 当該円筒状金具の座屈強度、 当該陽極容器自体の引っ張り強度、 当該陽極容器と当該円筒状金具との溶接部の強度、 及び当該固体電解質管の管底強度のうち最小のものの2
/3より小さい請求項7に記載の陽極容器。
10. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. In the temperature range from room temperature to the maximum temperature when the sodium-sulfur battery is used, the tensile strength of the insulator ring in the axial direction, the tensile strength of the joint between the insulator ring and the cylindrical fitting in the axial direction The axial tensile strength of the joint between the insulator ring and the solid electrolyte tube, the buckling strength of the cylindrical fitting, the tensile strength of the anode vessel itself, and the strength of the weld between the anode vessel and the cylindrical fitting. 2 of the smallest of the strength and the bottom strength of the solid electrolyte tube.
The anode container according to claim 7, which is smaller than / 3.
【請求項11】 多硫化ナトリウムの凝固温度から室温
までの陽極容器と固体電解質管との熱膨張差に起因して
陽極容器と固体電解質管との発生する力に対する、当該
くびれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固点までの温度域におい
て、 当該絶縁体リングの軸方向引っ張り強度、 当該絶縁体リングと円筒状金具との接合部の軸方向引っ
張り強度、 当該絶縁体リングと当該固体電解質管との接合部の軸方
向引っ張り強度、 当該円筒状金具の座屈強度、 当該陽極容器自体の引っ張り強度、 当該陽極容器と当該円筒状金具との溶接部の強度、 及び当該固体電解質管の管底強度のうち最小のものの2
/3より小さい請求項8に記載の陽極容器。
11. The deformation of the constriction in the axial direction with respect to the force generated between the anode container and the solid electrolyte tube due to the difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. In the temperature range from room temperature to the freezing point of sodium polysulfide, the tensile strength of the insulator ring in the axial direction, the tensile strength of the joint between the insulator ring and the cylindrical metal fitting, the strength of the insulator ring and the Axial tensile strength of the joint with the solid electrolyte tube, buckling strength of the cylindrical metal fitting, tensile strength of the anode container itself, strength of a weld between the anode container and the cylindrical metal fitting, and the solid electrolyte tube 2 of the smallest tube bottom strengths
The anode container according to claim 8, which is smaller than / 3.
【請求項12】 筒状体の一端に陽極容器蓋を溶接して
成り、 多硫化ナトリウムの凝固温度から室温までの陽極容器と
固体電解質管との熱膨張差に起因して陽極容器と固体電
解質管との発生する力に対する、当該くびれの軸方向に
おける変形強度が、 当該温度域において、 さらに当該筒状体と当該陽極容器蓋の溶接部の強度の2
/3より小さい請求項10又は11に記載の陽極容器。
12. An anode container lid is formed by welding an anode container lid to one end of a cylindrical body. The anode container and the solid electrolyte are caused by a difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. The deformation strength in the axial direction of the constriction with respect to the force generated by the tube is 2% of the strength of the welded portion between the cylindrical body and the anode container lid in the temperature range.
The anode container according to claim 10 or 11, which is smaller than / 3.
【請求項13】 多硫化ナトリウムの凝固温度から室温
までの陽極容器と固体電解質管との熱膨張差に起因して
陽極容器と固体電解質管との発生する力に対する、当該
くびれの軸方向における変形強度が、 室温から当該ナトリウム−硫黄電池の使用の際の最高温
度までの温度域において、 当該絶縁体リングと円筒状金具との接合部の軸方向にお
ける引っ張り強度の、ワイブル分布から求められる破壊
率が、1×10-4以下となる値である請求項7に記載の
陽極容器。
13. An axial deformation of the constriction due to a force generated between the anode container and the solid electrolyte tube due to a difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. In the temperature range from room temperature to the maximum temperature when the sodium-sulfur battery is used, the fracture rate obtained from the Weibull distribution of the tensile strength in the axial direction of the joint between the insulator ring and the cylindrical metal fitting. Is a value that is 1 × 10 −4 or less.
【請求項14】 多硫化ナトリウムの凝固温度から室温
までの陽極容器と固体電解質管との熱膨張差に起因して
陽極容器と固体電解質管との発生する力に対する、当該
くびれの軸方向における変形強度が、 室温から多硫化ナトリウムの凝固点までの温度域におい
て、 当該絶縁体リングと円筒状金具との接合部の軸方向にお
ける引っ張り強度の、ワイブル分布から求められる破壊
率が、1×10-4以下となる値である請求項8に記載の
陽極容器。
14. An axial deformation of the constriction due to a force generated between the anode container and the solid electrolyte tube due to a difference in thermal expansion between the anode container and the solid electrolyte tube from the solidification temperature of sodium polysulfide to room temperature. In the temperature range from room temperature to the solidification point of sodium polysulfide, the fracture rate of the tensile strength in the axial direction of the joint between the insulator ring and the cylindrical metal fitting, which is obtained from the Weibull distribution, is 1 × 10 −4. The anode container according to claim 8, which has the following values.
【請求項15】 有底の固体電解質管の内部に陰極活物
質としてナトリウムを配し、当該固体電解質管の外部に
陽極活物質として硫黄を配し、当該硫黄を収容する陽極
容器が、当該固体電解質管を挿入接合した絶縁体リング
と円筒状金具を介して接合されるナトリウム−硫黄電池
であって、 請求項1〜14のいずれかの請求項に記載の陽極容器を
用いたことを特徴とするナトリウム−硫黄電池。
15. An anode vessel containing sodium as a cathode active material inside a bottomed solid electrolyte tube, sulfur as an anode active material outside the solid electrolyte tube, and an anode container containing the sulfur, A sodium-sulfur battery joined via an insulator ring and a cylindrical fitting to which an electrolyte tube is inserted and joined, wherein the anode container according to any one of claims 1 to 14 is used. Sodium-sulfur battery.
【請求項16】 当該陽極容器及び当該円筒状金具がア
ルミニウム又はアルミニウム合金からなり、当該固体電
解質管がβアルミナから成り、当該絶縁体リングがαア
ルミナから成る請求項15に記載のナトリウム−硫黄電
池。
16. The sodium-sulfur battery according to claim 15, wherein the anode container and the cylindrical metal fitting are made of aluminum or an aluminum alloy, the solid electrolyte tube is made of β-alumina, and the insulator ring is made of α-alumina. .
JP9001241A 1997-01-08 1997-01-08 Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel Pending JPH10199566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001241A JPH10199566A (en) 1997-01-08 1997-01-08 Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001241A JPH10199566A (en) 1997-01-08 1997-01-08 Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel

Publications (1)

Publication Number Publication Date
JPH10199566A true JPH10199566A (en) 1998-07-31

Family

ID=11495973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001241A Pending JPH10199566A (en) 1997-01-08 1997-01-08 Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel

Country Status (1)

Country Link
JP (1) JPH10199566A (en)

Similar Documents

Publication Publication Date Title
US6114059A (en) Cylinder-shaped secondary battery
US4294897A (en) Sealing of ceramic electrolyte tubes in electrochemical cells
CN105374475A (en) Electrical feed-through and the use thereof
US4419418A (en) Individual rechargeable electric cell
US5320915A (en) Glass sealing of electrochemical storage cell structures
JP2002216739A (en) Connecting structure of conductive connection tab of battery
JPH10199566A (en) Positive electrode vessel for sodium-sulfur battery, and sodium-sulfur battery using the vessel
US3380857A (en) Hermetic seal closure
JP3131125B2 (en) Anode container for sodium-sulfur battery and sodium-sulfur battery using the same
US20220123393A1 (en) Battery and method of manufacturing same
JP3704241B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
US4140841A (en) Sulfur electrode, sulfur electrode container and methods of manufacture
JP3532457B2 (en) Bonding structure between an insulating ring and an anode cylindrical metal fitting in a sodium-sulfur battery
JP4574196B2 (en) Joining structure of insulating ring and anode cylindrical fitting in sodium-sulfur battery
JPH11277153A (en) Formation of constriction to cylindrical member
US9806380B2 (en) High temperature electrochemical cell structures, and methods for making
US9105896B2 (en) Metal rings for active brazing in sodium-based thermal batteries
RU2087998C1 (en) Metal-ceramic assembly of sulfur-sodium storage battery
JPH05205709A (en) Welded pressure container, for metal oxide-hydrogen battery use, utilizing flexible welded ring
JP3350507B2 (en) Sodium-sulfur battery
JPS6226767A (en) Sodium-sulfur battery
JP2001223020A (en) Sodium battery
JP2001338624A (en) Anode container for sodium-sulfur cell
JPH06275317A (en) Joint structure of insulator ring and metal fitting for sodium-sulfur battery
JPS5842170A (en) Nonaqueous electrolyte cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010925