JPH10199480A - Lighting system and display device having the system - Google Patents

Lighting system and display device having the system

Info

Publication number
JPH10199480A
JPH10199480A JP9000995A JP99597A JPH10199480A JP H10199480 A JPH10199480 A JP H10199480A JP 9000995 A JP9000995 A JP 9000995A JP 99597 A JP99597 A JP 99597A JP H10199480 A JPH10199480 A JP H10199480A
Authority
JP
Japan
Prior art keywords
fluorescent tube
cathode fluorescent
cold cathode
tube
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9000995A
Other languages
Japanese (ja)
Inventor
Hiroshi Torihara
広志 鳥原
Takayoshi Tanabe
隆祥 田辺
Kenichi Ukai
健一 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9000995A priority Critical patent/JPH10199480A/en
Priority to KR1019970079075A priority patent/KR100355728B1/en
Priority to EP97123047A priority patent/EP0852391B1/en
Priority to DE69738899T priority patent/DE69738899D1/en
Priority to US09/002,673 priority patent/US6066920A/en
Publication of JPH10199480A publication Critical patent/JPH10199480A/en
Priority to KR1020020017877A priority patent/KR100428920B1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To quicken brightness standing at low temperature, eliminate use of a heater for starting, simplify constitution, and reduce cost by adequately setting the dimension of a glass tube of a florescent part, and setting a heat capacity per length of the glass tube in the specified value or lower. SOLUTION: A display device 100 comprises a transmission type display element 8 such as a liquid crystal display element, and a lighting system 110 which illuminates the display element 8 from the back side and has a small heat capacity, high heat cold cathode fluorescent tube 1. In the small heat capacity, high heat cold cathode fluorescent tube 1, the thickness dt of a glass tube to the inner diameter da=0.20cm of the glass tube is set thin, for example to dt=0.03cm, and heat capacity per length (1cm) of the glass tube of 0.035Wsec/ deg.C is obtained. By making the heat capacity of the glass tube small, the glass tube is quickly heated by heat energy generating by emission of gas sealed, and brightness standing at low temperature is quickened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷陰極蛍光管を有
する照明装置およびそれを備えた表示装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a lighting device having a cold cathode fluorescent tube and a display device provided with the same.

【0002】[0002]

【従来の技術】従来、車載用ナビゲータや車載用テレビ
あるいは車載用メータの表示装置等の液晶表示装置で
は、直下式バックライトやエッジライト方式の照明装置
が広く利用されている。これらの液晶表示装置用の照明
装置の光源には、冷陰極蛍光管が利用されている。冷陰
極蛍光管は、白熱電球に比べて発光効率が優れ、発熱が
少なく、長寿命であり、しかも薄型形状が可能であり且
つ輝度(光束)分布が良好であるという利点を有してい
る。
2. Description of the Related Art Conventionally, in a liquid crystal display device such as a display device of a vehicle-mounted navigator, a vehicle-mounted television, or a vehicle-mounted meter, a direct-type backlight or an edgelight-type lighting device has been widely used. A cold cathode fluorescent tube is used as a light source of a lighting device for these liquid crystal display devices. Cold-cathode fluorescent tubes have the advantages of higher luminous efficiency, less heat generation, longer life, moreover, a thin shape and a better luminance (luminous flux) distribution than incandescent lamps.

【0003】しかしながら、従来の一般的な冷陰極蛍光
管は、その特性が使用環境温度の影響を受けるという問
題があった。これは、従来の冷陰極蛍光管の特性が、そ
の内部に封入されている水銀の蒸気圧に依存することに
起因している。最も著しい影響を受けるのが、低温時の
輝度(光束)立ち上がり特性(始動特性)と低温時の輝
度である。例えば、車載用の照明装置は、約40℃から
氷点下30℃(熱帯や極地)までの広い温度範囲で使用
される。上記の従来の冷陰極蛍光管は、周囲温度が約4
0℃のときに発光効率が最大となり、約5〜約40℃の
温度範囲においては実用上問題ない。しかしながら、低
温時、例えば、氷点下30℃近傍で使用されると、所定
の輝度に達するまでに長時間を要したり点灯し難くくな
るという問題がある。
[0003] However, the conventional general cold-cathode fluorescent tube has a problem that its characteristics are affected by the ambient temperature. This is because the characteristics of the conventional cold cathode fluorescent tube depend on the vapor pressure of mercury sealed therein. The most significant influences are low-temperature luminance (luminous flux) rising characteristics (starting characteristics) and low-temperature luminance. For example, lighting devices for vehicles are used in a wide temperature range from about 40 ° C. to 30 ° C. below freezing (tropical or polar). The conventional cold cathode fluorescent tube described above has an ambient temperature of about 4
The luminous efficiency is maximized at 0 ° C, and there is no practical problem in a temperature range of about 5 to about 40 ° C. However, when used at a low temperature, for example, at around 30 ° C. below freezing, there is a problem that it takes a long time to reach a predetermined luminance or it is difficult to light.

【0004】低温時の輝度の立ち上がりや低温時の輝度
を改善するために、特開昭63−224140号公報
は、冷陰極蛍光管の表面温度を上げるための自己温度制
御型発熱体を冷陰極蛍光管の周囲に設けた構成を開示し
ている。また、特開平7−43680号公報は、冷陰極
蛍光管を温めるためのヒータを設け、冷陰極蛍光管の表
面温度を温度検出素子および温度検出回路を用いて常に
計測し、ヒータ電源とインバータ電源を制御することに
よって、ヒータに供給する電力を制御する構成を開示し
ている。
In order to improve the luminance rise at low temperatures and the luminance at low temperatures, Japanese Patent Application Laid-Open No. 63-224140 discloses a self-temperature control type heating element for increasing the surface temperature of a cold cathode fluorescent tube. It discloses a configuration provided around a fluorescent tube. Japanese Patent Application Laid-Open No. 7-43680 discloses that a heater for warming a cold cathode fluorescent tube is provided, and the surface temperature of the cold cathode fluorescent tube is constantly measured using a temperature detecting element and a temperature detecting circuit. Is disclosed to control the power supplied to the heater by controlling the power.

【0005】更に、他の方法として、点灯開始時だけ冷
陰極蛍光管に流す電流を大きくし、低温時の輝度の立ち
上がりを改善する方法が提案されている。例えば、特開
昭61−74298号公報は、点灯から輝度立ち上がり
期間内の一定時間だけ、冷陰極蛍光管電流を定格値より
増大させる制御手段を備えた構成を開示している。
Further, as another method, a method has been proposed in which the current flowing through the cold cathode fluorescent tube is increased only at the start of lighting to improve the rise of luminance at low temperatures. For example, Japanese Unexamined Patent Publication No. Sho 61-74298 discloses a configuration provided with a control means for increasing the cold cathode fluorescent tube current from a rated value for a certain period of time within a luminance rising period from lighting.

【0006】さらに、特開昭59−60880号公報
は、起動時から一定時間スイッチ回路の遮断電流を増や
し、冷陰極蛍光管のエネルギーを増大させる方法を開示
している。
Further, Japanese Patent Application Laid-Open No. 59-60880 discloses a method of increasing the cutoff current of a switch circuit for a certain period of time from the time of starting to increase the energy of a cold cathode fluorescent tube.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
従来技術には、下記の問題があった。
However, the above-mentioned prior art has the following problems.

【0008】冷陰極蛍光管を加熱するために自己温度制
御発熱体やヒータを用いる方法は、それ自身が冷陰極蛍
光管の表面に密着しており、冷陰極蛍光管の光束を遮る
ので、光束の損失が大きく、照明光量が少なくなるとい
う問題がある。その上、ヒータの制御回路が誤動作する
と、ヒータの熱暴走が生じるという問題点もある。さら
に、ヒータ自身や制御回路を含めた関連部品が従来構成
部品の他に必要になるため、大幅なコストアップを強い
られる。また、ヒータに供給する電力(典型的には数十
ワット)が余分に必要となり、特に冬期にバッテリー温
度が氷点下に低下している車の照明装置を点灯する場合
等には、バッテリーに対する負荷はもちろんのこと車自
体への影響も無視できなくなる。
In the method of using a self-temperature control heating element or a heater to heat a cold cathode fluorescent tube, the method itself is in close contact with the surface of the cold cathode fluorescent tube and blocks the light beam of the cold cathode fluorescent tube. However, there is a problem that the loss of light is large and the amount of illumination light is reduced. In addition, there is a problem that when the control circuit of the heater malfunctions, thermal runaway of the heater occurs. Further, since related parts including the heater itself and the control circuit are required in addition to the conventional constituent parts, the cost is greatly increased. In addition, extra power (typically several tens of watts) to be supplied to the heater is required, and the load on the battery is reduced especially when lighting a lighting device of a car whose battery temperature is below freezing in winter. Of course, the effect on the car itself cannot be ignored.

【0009】起動時から一定時間冷陰極蛍光管電流を増
大させて低温始動を改善する方法では、起動時に定格値
よりも大きい電流を流すので、冷陰極蛍光管に与えるダ
メージが大きく、冷陰極蛍光管の寿命が短くなるという
問題がある。また、この方法は、上述のヒータを用いた
方法と比べると低温時の輝度立ち上がりの改善効果が十
分では無く、ヒータを用いる方法と併用されることが多
い。
In the method of improving cold start by increasing the current of the cold cathode fluorescent lamp for a certain period of time from the start, a current larger than the rated value flows at the start, so that the cold cathode fluorescent tube is greatly damaged and the cold cathode fluorescent lamp is damaged. There is a problem that the life of the tube is shortened. In addition, this method does not have a sufficient effect of improving the luminance rise at a low temperature as compared with the above-described method using a heater, and is often used in combination with a method using a heater.

【0010】本発明は、上記課題を解決するためになさ
れたものであり、その目的とするところは、低温時の動
作特性に優れた照明装置とその照明装置を用いた表示装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a lighting device having excellent operating characteristics at low temperatures and a display device using the lighting device. It is in.

【0011】[0011]

【課題を解決するための手段】本発明の照明装置は、蛍
光部のガラス管の単位長さ(1cm)当たりの熱容量が
0.035Wsec/℃以下である冷陰極蛍光管を有
し、そのことによって上記目的が達成される。
The lighting device of the present invention has a cold cathode fluorescent tube having a heat capacity per unit length (1 cm) of the glass tube of the fluorescent portion of 0.035 Wsec / ° C. or less. The above object is achieved by the above.

【0012】前記冷陰極蛍光管の蛍光部のガラス管の単
位長さ(1cm)当たりの熱容量(Wsec/℃)Cと
熱抵抗(℃/W)Rとの積で与えられる構造因子時定数
τsが11秒以下であり、R=(Ts−T)/{(Vc
cft−Vp)・Iccft/L}であり、Vccft
は蛍光管電圧(Vrms)、Vpは蛍光管電極電圧降下
(Vrms)、Iccftは蛍光管電流(Arms)、
Lは蛍光管の長さ(cm)、Tは周囲温度(℃)、Ts
は飽和管壁温度(℃)であり、冷陰極蛍光管を点灯した
状態で、冷陰極蛍光管の管壁の温度が定常状態に達した
ときの温度であることが好ましい。
A structural factor time constant τ s given by a product of a heat capacity (Wsec / ° C.) C and a thermal resistance (° C./W) R per unit length (1 cm) of the glass tube of the fluorescent portion of the cold cathode fluorescent tube. Is 11 seconds or less, and R = (Ts−T) / {(Vc
cft−Vp) · Iccft / L}, and Vccft
Is a fluorescent tube voltage (Vrms), Vp is a fluorescent tube electrode voltage drop (Vrms), Iccft is a fluorescent tube current (Arms),
L is the length of the fluorescent tube (cm), T is the ambient temperature (° C), Ts
Is the saturated tube wall temperature (° C.), and is preferably the temperature when the temperature of the tube wall of the cold cathode fluorescent tube reaches a steady state with the cold cathode fluorescent tube turned on.

【0013】前記冷陰極蛍光管のガラス管断面積をDt
(mm2)、封入ガス断面積をDg(mm2)、ガラス管
内径をda(mm2)としたとき、 Dt/Dg<2/d
aの関係式を満たすことが更に好ましい。
The cross-sectional area of the glass tube of the cold cathode fluorescent tube is Dt.
(Mm 2), Dg the filling gas cross sectional area (mm 2), when the glass tube inner diameter da (mm 2), Dt / Dg <2 / d
More preferably, the relational expression a is satisfied.

【0014】前記冷陰極蛍光管の蛍光部のガラス管の単
位体積(1cm3)当たりの発熱量Wv(W)と、蛍光
管電流Iccft(mArms)とが、Wv/ Icc
ft≧0.5の関係を満たすことが好ましい。
The calorific value Wv (W) per unit volume (1 cm 3 ) of the glass tube of the fluorescent portion of the cold cathode fluorescent tube and the fluorescent tube current Iccft (mArms) are Wv / Icc.
It is preferable to satisfy the relationship of ft ≧ 0.5.

【0015】前記冷陰極蛍光管の輝度立ち上がりの時定
数τが、点灯開始周囲温度T(℃)の−10℃から+2
5℃の範囲において、τ≦−0.0006T3+0.0
288T2−0.4668T+26.8の関係を満たす
ことが好ましい。
The time constant τ at which the luminance of the cold cathode fluorescent lamp rises is from −10 ° C. of the lighting start ambient temperature T (° C.) to +2.
In the range of 5 ° C., τ ≦ −0.0006T 3 +0.0
It is preferable to satisfy the relationship of 288T 2 −0.4668T + 26.8.

【0016】前記冷陰極蛍光管の輝度立ち上がり特性の
指数前因子A(飽和相対輝度の指数前因子A0に対する
百分率)は、前記点灯開始周囲温度範囲内で、A≧0.
92T+60の関係を満たすことが好ましい。
The pre-exponential factor A (percentage of the saturated relative luminance to the pre-exponential factor A 0) of the luminance rise characteristic of the cold cathode fluorescent tube is within the range of A ≧ 0.
It is preferable to satisfy the relationship of 92T + 60.

【0017】前記冷陰極蛍光管の前記指数前因子の前記
点灯開始周囲温度範囲内における活性化エネルギーが
3.0kcal/mol以下であることが好ましい。
[0017] It is preferable that the activation energy of the cold cathode fluorescent tube in the ambient temperature range of the lighting start of the exponential factor is 3.0 kcal / mol or less.

【0018】前記冷陰極蛍光管の蛍光部の全表面積の9
5%以上が空気に接触しており、該冷陰極蛍光管からの
光の50%以上が照明に利用されることが好ましい。
9 of the total surface area of the fluorescent portion of the cold cathode fluorescent tube
Preferably, 5% or more is in contact with air, and 50% or more of the light from the cold cathode fluorescent tube is used for illumination.

【0019】前記冷陰極蛍光管からの光の出射側に選択
偏光シートをさらに有することが好ましい。
It is preferable that a selective polarizing sheet is further provided on the light emission side of the cold cathode fluorescent tube.

【0020】動作状態において、前記冷陰極蛍光管に一
定値の管電流が供給されてもよく、前記冷陰極蛍光管の
周囲温度を検出する温度検出器と、該温度検出器によっ
て検出された温度に基づいて所定の管電流を設定する演
算装置とを更に有し、点灯開始周囲温度に基づいて該冷
陰極蛍光管に供給される管電流が制御されてもよい。
In the operating state, a constant current may be supplied to the cold-cathode fluorescent tube, and a temperature detector for detecting an ambient temperature of the cold-cathode fluorescent tube, and a temperature detected by the temperature detector And a calculating device for setting a predetermined tube current based on the current, and the tube current supplied to the cold cathode fluorescent tube may be controlled based on the lighting start ambient temperature.

【0021】本発明の照明装置は、前記冷陰極蛍光管の
周囲温度を検出する温度検出工程と、該温度検出器によ
って検出された温度に基づいて所定の管電流を設定する
工程と、を有し、そのことによって、点灯開始周囲温度
に基づいて該冷陰極蛍光管に供給する管電流を制御する
工程を包含する方法によって駆動されてもよい。
The lighting device of the present invention has a temperature detecting step of detecting an ambient temperature of the cold cathode fluorescent tube, and a step of setting a predetermined tube current based on the temperature detected by the temperature detector. In this case, the light-emitting device may be driven by a method including a step of controlling a tube current supplied to the cold-cathode fluorescent tube on the basis of the ambient temperature at which the lamp is started.

【0022】本発明の表示装置は、上記の照明装置と、
該照明装置からの光を受ける透過型表示素子とを有し、
そのことによって上記目的が達成される。ある実施例に
おいて、前記透過型表示素子は液晶表示素子である。
A display device according to the present invention includes:
Having a transmissive display element that receives light from the lighting device,
Thereby, the above object is achieved. In one embodiment, the transmissive display device is a liquid crystal display device.

【0023】以下に、本発明の作用を説明する。The operation of the present invention will be described below.

【0024】本発明の照明装置が備える冷陰極蛍光管
は、従来の冷陰極蛍光管よりも小さな熱容量を有してい
る。冷陰極蛍光管に加えられるエネルギーは、発光とし
てだけでなく、熱としも放出されるので、冷陰極蛍光管
の熱容量を小さくすることによって、冷陰極蛍光管自身
からの発熱を利用して、冷陰極蛍光管を速く加熱するこ
とが可能となる。
The cold cathode fluorescent tube provided in the lighting device of the present invention has a smaller heat capacity than a conventional cold cathode fluorescent tube. The energy applied to the cold cathode fluorescent tube is released not only as light emission but also as heat.Therefore, by reducing the heat capacity of the cold cathode fluorescent tube, the heat generated from the cold cathode fluorescent tube itself is used to cool the cold cathode fluorescent tube. The cathode fluorescent tube can be heated quickly.

【0025】さらに、本発明の照明装置が備える冷陰極
蛍光管は、従来の冷陰極蛍光管よりも熱発生量が大きい
ので、冷陰極蛍光管が速く加熱される。
Further, since the cold cathode fluorescent tube provided in the lighting device of the present invention generates a larger amount of heat than the conventional cold cathode fluorescent tube, the cold cathode fluorescent tube is heated quickly.

【0026】また、偏光選択反射シートを備えることに
よって、冷陰極蛍光管からの発光を効率よく照明に利用
することができる。
Further, by providing the polarization selective reflection sheet, light emitted from the cold cathode fluorescent tube can be efficiently used for illumination.

【0027】[0027]

【発明の実施の形態】以下に本発明の実施の形態を説明
する。本発明による表示装置100を図1に示す。図1
(a)は表示装置100の模式図であり、表示装置10
0は、照明装置110と透過型表示素子(例えば液晶表
示素子)8を備える。
Embodiments of the present invention will be described below. FIG. 1 shows a display device 100 according to the present invention. FIG.
(A) is a schematic diagram of the display device 100 and the display device 10.
0 includes a lighting device 110 and a transmissive display element (for example, a liquid crystal display element) 8.

【0028】図1(b)は表示装置100が有する照明
装置110の1B−1B断面図である。照明装置110
は、後述する小熱容量高発熱型冷陰極蛍光管1と、反射
シート2、導光体3、拡散シート4、プリズムシート
(例えば、3M社のBEFシート)5、選択偏光反射シ
ート6、および拡散シート7を備える。本発明の照明装
置110の従来の照明装置との違いは、小熱容量高発熱
型冷陰極蛍光管1を有すること、及び選択偏光反射シー
ト6を有することである。
FIG. 1B is a cross-sectional view of the illumination device 110 of the display device 100 taken along line 1B-1B. Lighting device 110
Are a small heat capacity high heat type cold cathode fluorescent tube 1 described later, a reflection sheet 2, a light guide 3, a diffusion sheet 4, a prism sheet (for example, a 3M BEF sheet) 5, a selective polarization reflection sheet 6, and a diffusion sheet. The seat 7 is provided. The difference between the lighting device 110 of the present invention and the conventional lighting device is that the lighting device 110 has the small heat capacity and high heat generation type cold cathode fluorescent tube 1 and the selective polarization reflection sheet 6.

【0029】小熱容量高発熱型冷陰極蛍光管1は、従来
の冷陰極蛍光管よりもその熱容量が小さく、且つ発熱量
が多い冷陰極蛍光管である。図1に示した構成において
は、冷陰極蛍光管1の蛍光部の表面のほとんどが空気に
接触しており、そのことによって、他の構成部材と十分
に断熱されているので、冷陰極蛍光管1の小熱容量で高
発熱であるという特徴が十分に利用される。十分な断熱
効果を得るためには、冷陰極蛍光管1の全表面積の約9
5%以上が空気に接触していることが好ましく、約98
%以上が空気に接触していることがさらに好ましい。ま
た、冷陰極蛍光管1からの光の50%以上が導光体3に
導かれ、照明に利用されように構成されるのが、利用効
率の観点から好ましい。光の利用効率と断熱性とを考慮
して、冷陰極蛍光管1の配置は決められる。
The small heat capacity, high heat generation type cold cathode fluorescent tube 1 is a cold cathode fluorescent tube having a smaller heat capacity and a larger calorific value than a conventional cold cathode fluorescent tube. In the configuration shown in FIG. 1, most of the surface of the fluorescent portion of the cold cathode fluorescent tube 1 is in contact with air, and is thereby sufficiently insulated from other components. The feature of high heat generation with a small heat capacity of 1 is fully utilized. In order to obtain a sufficient heat insulating effect, it is necessary to reduce the total surface area of
Preferably 5% or more is in contact with air, about 98%
More preferably, at least% are in contact with air. Further, it is preferable from the viewpoint of utilization efficiency that 50% or more of the light from the cold cathode fluorescent tube 1 is guided to the light guide 3 and used for illumination. The arrangement of the cold cathode fluorescent tubes 1 is determined in consideration of light use efficiency and heat insulation.

【0030】なお、選択偏光反射シート6は、拡散シー
ト4とプリズムシート5との間に配しても良く、拡散シ
ート7を省略してもよい。また、用途に応じて、選択偏
光反射シート6を省略することもできる。液晶表示素子
のように、特定の直線偏光のみを利用する表示素子を用
いる場合には、選択偏光反射シート6を用いることによ
って輝度を向上することができる。
The selective polarization reflection sheet 6 may be disposed between the diffusion sheet 4 and the prism sheet 5, and the diffusion sheet 7 may be omitted. Further, the selective polarization reflection sheet 6 can be omitted depending on the application. When a display element that uses only specific linearly polarized light, such as a liquid crystal display element, is used, the luminance can be improved by using the selective polarization reflection sheet 6.

【0031】以下に、本発明の照明装置及び表示装置の
特徴を詳細に説明する。本発明の照明装置及び表示装置
は上述の構成に限られず、以下の説明から分かるよう
に、用途に応じて、個々の特徴を備える構成要素を個別
に利用することができる。
Hereinafter, features of the illumination device and the display device of the present invention will be described in detail. The lighting device and the display device of the present invention are not limited to the above-described configurations, and as will be understood from the following description, components having individual characteristics can be used individually according to the application.

【0032】(小熱容量型冷陰極蛍光管)本発明の照明
装置は、熱容量の小さな冷陰極蛍光管を備えている。小
熱容量型の冷陰極蛍光管は、冷陰極蛍光管の内部で発生
する熱エネルギーが外部へ放出されるのを抑制するの
で、冷陰極蛍光管自身を速く加熱することができる。
(Small Heat Capacity Cold Cathode Fluorescent Tube) The lighting device of the present invention includes a cold cathode fluorescent tube having a small heat capacity. The small-heat-capacity cold-cathode fluorescent tube suppresses heat energy generated inside the cold-cathode fluorescent tube from being released to the outside, so that the cold-cathode fluorescent tube itself can be rapidly heated.

【0033】通常、冷陰極蛍光管自身が放出する熱エネ
ルギーは、冷陰極蛍光管を形成するガラス管で熱が吸
収、伝搬され、冷陰極蛍光管を加熱するために有効に利
用されていない。これは、従来の冷陰極蛍光管を形成す
るガラス管の熱容量が冷陰極蛍光管の発熱量に対して大
きすぎることによる。
Normally, the heat energy emitted by the cold cathode fluorescent tube itself is absorbed and propagated by the glass tube forming the cold cathode fluorescent tube, and is not effectively used for heating the cold cathode fluorescent tube. This is because the heat capacity of the glass tube forming the conventional cold cathode fluorescent tube is too large for the calorific value of the cold cathode fluorescent tube.

【0034】冷陰極蛍光管に用いられるガラス管の熱容
量を小さくすることによって、ガラス管が速く温まり、
冷陰極蛍光管内部を速く温めることが可能になる。本発
明のの小熱容量型冷陰極蛍光管は、ガラス管の単位長さ
(1cm)当たりの熱容量Cが下記の(数1)に示され
る式(1)で表され、熱容量Cが0.035Wsec/℃
以下であるものをいう。特に、ガラス管の内径daは
0.20cm以下のものが好ましい。
By reducing the heat capacity of the glass tube used for the cold cathode fluorescent tube, the glass tube warms up quickly,
It is possible to quickly warm the inside of the cold cathode fluorescent tube. In the small-heat-capacity cold-cathode fluorescent tube of the present invention, the heat capacity C per unit length (1 cm) of the glass tube is represented by the following equation (1), and the heat capacity C is 0.035 Wsec. / ℃
Refers to the following. In particular, the inner diameter da of the glass tube is preferably 0.20 cm or less.

【0035】[0035]

【数1】 C=4.2・(π/4)・{(db2−da2)・s1・δ1} ・・・(1) ここで、Cはガラス管の熱容量(Wsec/℃)、db
はガラス管の外径(cm)、daはガラス管の内径(c
m)、s1はガラス材料の比熱(cal/g・℃)、δ
1はガラス材料の密度(g/cm3)をそれぞれ表す。
C = 4.2 · (π / 4) · {(db 2 −da 2 ) · s1 · δ1} (1) where C is the heat capacity (Wsec / ° C.) of the glass tube. db
Is the outer diameter of the glass tube (cm), da is the inner diameter of the glass tube (c
m), s1 is the specific heat of the glass material (cal / g · ° C.), δ
1 represents the density (g / cm 3 ) of the glass material, respectively.

【0036】本発明で用いられる冷陰極蛍光管のガラス
管と従来のガラス管の典型的な数値を下記の表1に示
す。表1の数値は、ガラス管の単位長さ(1cm)当た
りの数値を示したが、実験においては、電極間距離が1
5cmのガラス管を使用した。
Table 1 below shows typical values of the glass tube of the cold cathode fluorescent tube used in the present invention and the conventional glass tube. The numerical values in Table 1 indicate the numerical values per unit length (1 cm) of the glass tube, but in the experiment, the distance between the electrodes was 1 unit.
A 5 cm glass tube was used.

【0037】[0037]

【表1】 特性値 本発明 従来例 C (Wsec/℃) 0.0290 0.0526 C (cal/℃) 6.92E−3 1.25E−2 db(cm) 0.26 0.30 da(cm) 0.20 0.20 ガラスの厚さ(cm) 0.03 0.05 s1(cal/g・℃) 0.14 0.14 δ1(g/cm3) 2.28 2.28 表1に示したように、本発明の冷陰極蛍光管の熱容量C
は、従来の冷陰極蛍光管の熱容量の約55%であり、非
常に小さい。その結果、起動時に冷陰極蛍光管の発熱に
よって、冷陰極蛍光管自身が効率良く温められるので、
輝度の立ち上がり特性が改善される。
[Table 1] Characteristic value Present invention Conventional example C (Wsec / ° C) 0.0290 0.0526 C (cal / ° C) 6.92E-3 1.25E-2 db (cm) 0.26 0.30 da (cm) 0. 20 0.20 Glass thickness (cm) 0.03 0.05 s1 (cal / g. ° C.) 0.14 0.14 δ1 (g / cm 3 ) 2.28 2.28 As shown in Table 1. The heat capacity C of the cold cathode fluorescent tube of the present invention
Is about 55% of the heat capacity of the conventional cold cathode fluorescent tube, which is very small. As a result, the cold cathode fluorescent tubes themselves are efficiently heated by the heat generated by the cold cathode fluorescent tubes during startup,
The rising characteristic of the luminance is improved.

【0038】本発明に用いられる冷陰極蛍光管の好まし
い熱容量の範囲を更に簡単な関係式で表すことができ
る。冷陰極蛍光管の断面について、冷陰極蛍光管のガス
が封入されている断面積をDg(ガラス管の内径で決ま
る)とし、冷陰極蛍光管のガラス管の断面積をDt(ガ
ラス管の外径と内径とで決まる)とすると、冷陰極蛍光
管のDgが同じなら(封入ガスから発生する熱エネルギ
ーの量が同じなら)、Dtの小さい冷陰極蛍光管を用い
る方が、冷陰極蛍光管からの発熱を冷陰極蛍光管自身を
温めるために効率的に利用できる。すなわち、Dt/D
gの値が小さい冷陰極蛍光管を用いる方が有利である。
表1に示した冷陰極蛍光管についてのこれらのパラメー
タを表2に示す。
The preferable heat capacity range of the cold cathode fluorescent tube used in the present invention can be expressed by a simpler relational expression. Regarding the cross section of the cold cathode fluorescent tube, the cross-sectional area of the cold cathode fluorescent tube in which gas is sealed is defined as Dg (determined by the inner diameter of the glass tube), and the cross-sectional area of the glass tube of the cold cathode fluorescent tube is defined as Dt (outside of the glass tube). If the cold cathode fluorescent tube has the same Dg (if the amount of heat energy generated from the sealed gas is the same), it is better to use a cold cathode fluorescent tube with a small Dt. The heat generated from the cold cathode fluorescent tube itself can be efficiently used to warm the tube itself. That is, Dt / D
It is more advantageous to use a cold cathode fluorescent tube having a small value of g.
Table 2 shows these parameters for the cold cathode fluorescent tubes shown in Table 1.

【0039】[0039]

【表2】 本発明 従来例 Dg(mm2) 3.14 3.14 Dt(mm2) 2.167 3.925 Dt/Dg 0.69 1.25 本発明に用いられる冷陰極蛍光管は、Dt/Dgの値が
1.0以下のものが好ましい。この関係は、Dt/Dg
<2/da(mm単位)の関係に一般化できる。更に、
冷陰極蛍光管のガラス管の表面を介して行われる熱エネ
ルギー損失を少なくするために、ガラス管の表面積は小
さい方が好ましい。また、ガラス管は他の部材と接触せ
ず、空気によって断熱されていることが好ましい。
[Table 2] The present invention Dg (mm 2 ) 3.14 3.14 Dt (mm 2 ) 2.167 3.925 Dt / Dg 0.69 1.25 The cold cathode fluorescent tube used in the present invention is a Dt / Dg. Those having a value of 1.0 or less are preferred. This relationship is Dt / Dg
It can be generalized to the relationship of <2 / da (in mm). Furthermore,
It is preferable that the surface area of the glass tube is small in order to reduce the heat energy loss caused through the surface of the glass tube of the cold cathode fluorescent tube. Further, the glass tube is preferably insulated by air without contacting other members.

【0040】次に、ガラス管の熱抵抗Rについて、検討
した結果を説明する。ガラス管の熱抵抗Rは、下記の数
2に示した式(2)で表される。
Next, the result of the study on the thermal resistance R of the glass tube will be described. The thermal resistance R of the glass tube is represented by the following equation (2).

【0041】[0041]

【数2】 R=1/K ・・・(2) K=(hw+hr・ηo)・π・db (理論式) K={(Vccft−Vp)・Iccft/L}/(Ts−T) (実験式) ここで、Rは熱抵抗(℃/W)、Kは熱伝導度(W/
℃)、hwは対流による熱放散係数(W/℃・c
2)、hrは輻射による熱放散係数(W/℃・c
2)、ηoは完全黒体の輻射係数に対する材料のそれと
の比、dbはガラス管の外径(cm)であり、Vccf
tは蛍光管電圧(Vrms)、Vpは蛍光管電極電圧降
下(Vrms)、Iccftは蛍光管電流(Arm
s)、Lは蛍光管の長さ(cm)、Tsは飽和管壁温度
(℃)、Tは周囲温度(℃)である。飽和管壁温度Ts
とは、冷陰極蛍光管を点灯した状態で、冷陰極蛍光管の
管壁の温度が定常状態に達したときの温度をいう。一般
に、上記の理論式からKを求めることは不可能なので、
上記実験式に基づいて、Kを求めた。
R = 1 / K (2) K = (hw + hr · ηo) · π · db (theoretical formula) K = {(Vccft−Vp) · Iccft / L} / (Ts−T) ( Where R is the thermal resistance (° C./W) and K is the thermal conductivity (W /
° C), hw is the heat dissipation coefficient by convection (W / ° C
m 2 ), hr is the heat dissipation coefficient due to radiation (W / ° C.
m 2 ), η o is the ratio of that of the material to the radiation coefficient of the perfect black body, db is the outer diameter (cm) of the glass tube, Vccf
t is the fluorescent tube voltage (Vrms), Vp is the fluorescent tube electrode voltage drop (Vrms), and Iccft is the fluorescent tube current (Arm).
s) and L are the length (cm) of the fluorescent tube, Ts is the saturated tube wall temperature (° C), and T is the ambient temperature (° C). Saturated tube wall temperature Ts
The term “temperature” refers to a temperature when the temperature of the tube wall of the cold cathode fluorescent tube reaches a steady state with the cold cathode fluorescent tube turned on. In general, it is impossible to find K from the above theoretical formula,
K was determined based on the above empirical formula.

【0042】表1及び2に示したdbが0.26cmの
ガラス管について、Vpが150V、Lが16.5c
m、Tが25℃の場合における熱抵抗Rを上記式(2)
の実験式を用いて、Vccft、Iccft、及びTを
変化させて求めた結果を表3に示す。
With respect to the glass tube having a db of 0.26 cm shown in Tables 1 and 2, Vp is 150 V and L is 16.5 c
When m and T are 25 ° C., the thermal resistance R is calculated by the above equation (2).
Table 3 shows the results obtained by changing Vccft, Iccft, and T using the empirical formula (1).

【0043】また、dbが0.30cmのガラス管につ
いてのKは、対流による熱放散係数hwがdbの−1/
4乗に比例することから、上記理論式によるKがdb
(ガラス管の外径)の3/4乗に比例するので、dbが
0.26cmに対する実験値に換算係数1.113を乗
じて求めた。その結果を合わせて、表3に示す。
For a glass tube with a db of 0.30 cm, K is a heat dissipation coefficient hw due to convection of -1 / 1 / db of db.
Since it is proportional to the fourth power, K according to the above theoretical equation is db
Since it is proportional to the (3/4) power of (outer diameter of glass tube), it was obtained by multiplying an experimental value for db of 0.26 cm by a conversion coefficient of 1.113. The results are shown in Table 3.

【0044】[0044]

【表3】 [Table 3]

【0045】表3の結果から明らかなように、本発明の
冷陰極蛍光管の熱伝導度は、従来の冷陰極蛍光管の熱伝
導度よりも10%以上小さく、放熱し難いことが分か
る。すなわち、冷陰極蛍光管からの発熱量が同じである
と、より効率よく冷陰極蛍光管自身を加熱できることが
分かる。
As is apparent from the results in Table 3, the thermal conductivity of the cold cathode fluorescent tube of the present invention is smaller than that of the conventional cold cathode fluorescent tube by 10% or more, and it is difficult to radiate heat. That is, it can be seen that when the calorific value from the cold cathode fluorescent tube is the same, the cold cathode fluorescent tube itself can be more efficiently heated.

【0046】次に、冷陰極蛍光管の輝度の立ち上がりの
時定数について、検討した結果を説明する。単位長さ
(1cm)当たりのガラス管の立ち上がりの時定数τs
は、ガラス管の単位長さ(1cm)当たりの熱容量Cと
熱抵抗Rとを用いて、(数3)に示す式(3)で与えら
れる。この時定数は、冷陰極蛍光管の構造で決まる時定
数なので、特に、構造因子時定数τsと表す。
Next, the result of the study on the time constant of the rise of the luminance of the cold cathode fluorescent tube will be described. Time constant τs of rise of glass tube per unit length (1cm)
Is given by Equation (3) shown in (Equation 3) using the heat capacity C and the heat resistance R per unit length (1 cm) of the glass tube. Since this time constant is a time constant determined by the structure of the cold cathode fluorescent tube, it is particularly represented as a structure factor time constant τs.

【0047】[0047]

【数3】 τs = C・R ・・・(3) 前述の本発明(dbが0.26cm)と従来例(dbが
0.30cm)の冷陰極蛍光管について得られた結果を
表4に示す
Τs = C · R (3) Table 4 shows the results obtained for the above-described cold cathode fluorescent tubes of the present invention (db is 0.26 cm) and the conventional example (db is 0.30 cm). Show

【0048】[0048]

【表4】 本発明 従来例 db=0.26 db=0.30 τs (sec) 9.08 14.77 C (Wsec/℃) 0.00291 0.00526 R (℃/W) 312.3 280.5 なお、Rの値は、表3のKの値から求めた。表4の結果
から明らかなように、本発明による冷陰極蛍光管のτs
は、従来例に比べて非常に短く、加熱され易い構造を有
していることが分かる。本発明で好適に用いられる冷陰
極蛍光管のτsは、11sec以下であることが好まし
い。
[Table 4] Present invention db = 0.26 db = 0.30 τs (sec) 9.08 14.77 C (Wsec / ° C) 0.00291 0.00526 R (° C / W) 312.3 280.5 The value of R is , From the value of K in Table 3. As is clear from the results in Table 4, τs of the cold cathode fluorescent tube according to the present invention was
It can be seen that has a structure that is much shorter than the conventional example and is easily heated. The τs of the cold cathode fluorescent tube suitably used in the present invention is preferably 11 sec or less.

【0049】本発明と従来例の冷陰極蛍光管について、
種々の周囲温度における実際の輝度立ち上がり時定数τ
(実測値、単位秒)を求めた結果を図2および表5に示
す。このτを実測時定数と呼ぶ。図2において、τh、
τjは、それぞれ本発明および従来例の冷陰極蛍光管に
ついての実測時定数を示す。
Regarding the present invention and the conventional cold cathode fluorescent tube,
Actual brightness rise time constant τ at various ambient temperatures
FIG. 2 and Table 5 show the results obtained (actual measurement values, unit seconds). This τ is called an actual measurement time constant. In FIG. 2, τh,
τj indicates actual measurement time constants of the cold cathode fluorescent tubes of the present invention and the conventional example, respectively.

【0050】[0050]

【表5】 本発明 従来例 周囲温度(℃) db=0.26 db=0.30 −20 −10 30.0 48.0 0 21.8 43.3 25 18.0 34.5 表5の結果から明らかなように、本発明の冷陰極蛍光管
は従来例に比べて、短いτを有しており、短時間で加熱
されることが分かる。上述したようにτsは冷陰極蛍光
管の輝度立ち上がり特性の相対的な評価に用いることが
できるものの、表4のτsの値は表5のτの値はと異な
っており、冷陰極蛍光管の構造だけでは輝度立ち上がり
の実際の時定数を正確に評価できないことが分かる。
[Table 5] Ambient temperature (° C.) of the present invention Conventional example db = 0.26 db = 0.30 −20 −10 30.0 48.0 0 21.8 43.3 25 18.0 34.5 As is clear from the results in Table 5, the present invention It can be seen that the cold cathode fluorescent tube of the present invention has a shorter τ compared to the conventional example, and is heated in a short time. As described above, τs can be used for relative evaluation of the luminance rise characteristics of the cold cathode fluorescent tube, but the value of τs in Table 4 is different from the value of τ in Table 5, and It can be seen that the actual time constant of the luminance rise cannot be accurately evaluated only by the structure.

【0051】図2において、本発明の冷陰極蛍光管に好
適に用いられる時定数τの範囲を求めた。実測値を3次
の多項式で近似した曲線(カーブフィッティング)に基
づいて、得られた好ましいτの境界曲線を図2に示し
た。この境界曲線よりも下の領域(τ≦−0.0006
3+0.0288T2−0.4668T+26.8、T
は周囲温度/℃)が好ましい。
In FIG. 2, the range of the time constant τ suitably used for the cold cathode fluorescent tube of the present invention was determined. FIG. 2 shows a preferable boundary curve of τ obtained based on a curve (curve fitting) obtained by approximating a measured value by a third-order polynomial. Area below this boundary curve (τ ≦ −0.0006)
T 3 + 0.0288T 2 -0.4668T + 26.8 , T
Is preferably ambient temperature / ° C.).

【0052】さらに、冷陰極蛍光管のτの周囲温度依存
性を検討した結果を以下に説明する。冷陰極蛍光管の輝
度の立ち上がり時の時間依存性I(t)は、下記の(数
4)に示す式(4)で表される。
Further, the result of studying the dependence of τ of the cold cathode fluorescent tube on the ambient temperature will be described below. The time dependency I (t) of the brightness of the cold cathode fluorescent lamp at the time of rising is expressed by the following equation (4).

【0053】[0053]

【数4】 I(t)=A・{1−exp(−t/η・C・R)}+B・t ・・・( 4) η=τ/C・R ここで、I(t)は、時刻tにおける冷陰極蛍光管の輝
度(cd/m2)、Aは点灯開始時の周囲温度における
飽和輝度(cd/m2)、ηは上述のτとτsとの関係を
示す係数でηhは本発明ηjは従来例それぞれ示し、B
は冷陰極蛍光管の輝度上昇速度係数(cd/m2se
c)を表す。前述した本発明と従来例の冷陰極蛍光管に
ついて得られた結果を表6に示す。
I (t) = A · {1−exp (−t / η · C · R)} + B · t (4) η = τ / C · R where I (t) is , The luminance of the cold cathode fluorescent tube at time t (cd / m 2 ), A is the saturation luminance at the ambient temperature at the start of lighting (cd / m 2 ), and η is a coefficient indicating the above-mentioned relationship between τ and τs. Indicates the present invention ηj is a conventional example, and B
Is the brightness increase rate coefficient (cd / m 2 sec) of the cold cathode fluorescent tube.
c). Table 6 shows the results obtained for the above-described cold cathode fluorescent tubes of the present invention and the conventional example.

【0054】[0054]

【表6】 本発明db=0.26 従来例db=0.30 周囲温度(℃) ηh ηj −20 −10 3.3 3.2 0 2.4 2.9 25 2.0 2.3 表6の結果から明らかなように、ηも温度によって変化
する。
[Table 6] Present invention db = 0.26 Conventional example db = 0.30 Ambient temperature (° C.) ηh ηj -20 -10 3.3 3.2 0 2.4 2.9 25 2.0 2.3 As is clear from the results in Table 6. , Η also vary with temperature.

【0055】次に、上記(4)式における指数前因子A
の温度依存性について検討した。指数前因子Aを下記
(数5)に示す(5)式で表し、活性化エネルギーΔE
を求めた。
Next, the pre-exponential factor A in the above equation (4)
Temperature dependence was studied. The pre-exponential factor A is expressed by the following equation (5), and the activation energy ΔE
I asked.

【0056】[0056]

【数5】 A=A0・exp(−ΔE/kb・T) ・・・ (5) ここで、A0は飽和相対輝度の指数前因子、ΔEは活性
化エネルギー(kcal/mol)、kbはボルツマン
定数、Tは点灯開始周囲温度(℃)である。
A = A0 · exp (−ΔE / kb · T) (5) where A0 is a pre-exponential factor of saturation relative luminance, ΔE is activation energy (kcal / mol), and kb is Boltzmann. The constant, T, is the lighting start ambient temperature (° C.).

【0057】実験結果とそのアレニウスプロットおよび
それから求めたΔEは活性化エネルギーをそれぞれ図
3、図4、表7および表8に示す。なお表中の値は、A
0に対する百分率で表記している。
The experimental results, their Arrhenius plots, and ΔE obtained therefrom indicate the activation energies shown in FIGS. 3, 4, 7 and 8, respectively. The value in the table is A
Expressed as a percentage of 0.

【0058】[0058]

【表7】 T(℃) 本発明 Ah Aj(従来例) −20 50% −10 61% 14% 0 71% 25 92% 68% [Table 7] T (° C.) The present invention Ah Aj (conventional example) -20 50% -10 61% 14% 0 71% 25 92% 68%

【0059】[0059]

【表8】 本発明 従来例 ΔE(kcal/mol) 2.0 7.0 上記の結果から分かるように、本発明による冷陰極蛍光
管の活性化エネルギーは従来例に比べて非常に小さく、
広い温度範囲に亘って、安定な熱特性を有していること
が分かる。また、種々検討の結果、本発明で好適に用い
られる冷陰極蛍光管の活性化エネルギーは、−10℃〜
+25℃の周囲温度において、3.0kcal/mol
以下であることが好ましい。指数前因子Aは、上記温度
範囲内で、A≧0.92T+60であることが好まし
い。
[Table 8] Present Invention Conventional Example ΔE (kcal / mol) 2.0 7.0 As can be seen from the above results, the activation energy of the cold cathode fluorescent tube according to the present invention is much smaller than that of the conventional example,
It can be seen that it has stable thermal characteristics over a wide temperature range. Further, as a result of various studies, the activation energy of the cold cathode fluorescent tube suitably used in the present invention is from −10 ° C.
3.0 kcal / mol at an ambient temperature of + 25 ° C.
The following is preferred. The pre-exponential factor A preferably satisfies A ≧ 0.92T + 60 within the above temperature range.

【0060】本発明と従来例の冷陰極蛍光管の輝度立ち
上がり特性を種々の周囲温度において、測定した結果を
図5及び図6に示す。これらの図から明らかなように、
本発明の照明装置の輝度立ち上がり特性は、従来のもの
と比較して、格段に優れていることが分かる。
FIGS. 5 and 6 show the results of measuring the luminance rise characteristics of the cold cathode fluorescent tubes of the present invention and the conventional example at various ambient temperatures. As evident from these figures,
It can be seen that the luminance rise characteristics of the lighting device of the present invention are much better than those of the related art.

【0061】(高発熱型冷陰極蛍光管)低温時での十分
な輝度立ち上がりが確保出来るようにするために、従来
の冷陰極蛍光管よりも熱発生量の大きい冷陰極蛍光管を
用いた照明装置をつくれば解決できる。冷陰極蛍光管の
発熱量を増やせば、冷陰極蛍光管中の水銀が温められ水
銀蒸気が著しく増加するので、結果的に照明装置の輝度
が増大する。この発熱量を増加させるには、大別して2
つの方法がある。第1の方法は、冷陰極蛍光管のガス圧
力を従来のものよりも高くするという方法である。第2
の方法は、冷陰極蛍光管の中の封入ガスの内アルゴンガ
スの混合比を増加させるという方法である。
(High heat generation type cold-cathode fluorescent tube) In order to ensure a sufficient luminance start-up at low temperatures, illumination using a cold-cathode fluorescent tube which generates a larger amount of heat than a conventional cold-cathode fluorescent tube. It can be solved by making the device. If the calorific value of the cold cathode fluorescent tube is increased, mercury in the cold cathode fluorescent tube is warmed and mercury vapor is significantly increased, and as a result, the brightness of the lighting device is increased. In order to increase this calorific value, roughly
There are two ways. The first method is to increase the gas pressure of the cold cathode fluorescent tube compared to the conventional one. Second
Is to increase the mixing ratio of the argon gas in the sealed gas in the cold cathode fluorescent tube.

【0062】第1の方法において冷陰極蛍光管のガス圧
力を高くすると冷陰極蛍光管の発熱量が増加する理由を
以下に説明する。冷陰極蛍光管中で運動する電離された
原子の平均自由行程が短くなり従来の冷陰極蛍光管より
も原子同士の衝突回数が多くなり、その結果、発熱量が
増加する。本発明において、ガス圧は約100Torr以上
が好ましく、更に、約120Torr以上が好ましい。
The reason why the calorific value of the cold cathode fluorescent tube increases when the gas pressure of the cold cathode fluorescent tube is increased in the first method will be described below. The mean free path of the ionized atoms moving in the cold-cathode fluorescent tube is shortened, and the number of collisions between the atoms is increased as compared with the conventional cold-cathode fluorescent tube. As a result, the calorific value increases. In the present invention, the gas pressure is preferably about 100 Torr or more, and more preferably about 120 Torr or more.

【0063】第2の方法において、冷陰極蛍光管の中の
封入ガスの内アルゴンガスの混合比を増加させると冷陰
極蛍光管の発熱量が増加する理由を以下に説明する。通
常冷陰極蛍光管には、ネオンガスとアルゴンガスの混合
ガスが封入されている。アレゴンガスはネオンガスに比
べ原子量比較で約2倍重いので、アルゴンガスが衝突す
る際に発生する熱量はネオンガスより大きい。従って、
アルゴンガスの比率を増すことによって、冷陰極蛍光管
の発熱量を増加することができる。
In the second method, the reason why the heating value of the cold cathode fluorescent tube increases when the mixing ratio of the argon gas in the filling gas in the cold cathode fluorescent tube increases will be described below. Usually, a mixed gas of neon gas and argon gas is sealed in the cold cathode fluorescent tube. Since the argon gas is approximately twice as heavy as the neon gas in comparison with the neon gas, the heat generated when the argon gas collides is larger than the neon gas. Therefore,
By increasing the ratio of the argon gas, the calorific value of the cold cathode fluorescent tube can be increased.

【0064】本発明においては、アルゴンガス/ネオン
ガスの比を約40/60以上とすることによって、発熱
量を増加させる。図7から10に示した本発明の冷陰極
蛍光管のガス圧は120Torrで、アルゴンガス/ネオン
ガスの比は40/60である。また、従来例の冷陰極蛍
光管のガス圧は60Torrで、アルゴンガス/ネオンガス
の比は5/95である。
In the present invention, the calorific value is increased by setting the ratio of argon gas / neon gas to about 40/60 or more. The gas pressure of the cold cathode fluorescent tube of the present invention shown in FIGS. 7 to 10 is 120 Torr, and the ratio of argon gas / neon gas is 40/60. The gas pressure of the conventional cold cathode fluorescent tube is 60 Torr, and the ratio of argon gas / neon gas is 5/95.

【0065】図7及び8に示すように、管電流に対する
発熱量(単位長さ当たりおよび単位体積当たり)は、本
発明の冷陰極蛍光管は従来例のものよりも優れているこ
とがわかる。本発明で好適に用いられる冷陰極蛍光管の
好ましい特性としては、単位体積当たりの発熱量をWv
(W)とし、蛍光管電流をIccft(mArms)とした
とき、Wv/Iccft≧0.5であることが好ましい。こ
れは、図8中の直線の上部に対応する。
As shown in FIGS. 7 and 8, it is understood that the calorific value (per unit length and per unit volume) with respect to the tube current is superior to that of the conventional cold cathode fluorescent tube of the present invention. Preferred characteristics of the cold-cathode fluorescent tube suitably used in the present invention include a heating value per unit volume of Wv
(W), and when the fluorescent tube current is Iccft (mArms), it is preferable that Wv / Iccft ≧ 0.5. This corresponds to the upper part of the straight line in FIG.

【0066】図9は、本発明の冷陰極蛍光管と従来例の
冷陰極蛍光管について蛍光管電流に対する蛍光管電圧の
関係を示す。本発明の冷陰極蛍光管は従来例のものより
も、蛍光管電圧が高いことが分かる。本発明の冷陰極蛍
光管と従来例の冷陰極蛍光管について、蛍光管消費電力
を図10に示す。図10から明らかなように、本発明の
冷陰極蛍光管は従来のものより消費電力が大きい。この
ように、本発明の冷陰極蛍光管は、陽光柱での消費電力
が大きいので、蛍光部でのガスによる発熱量が、従来例
の冷陰極蛍光管よりも大きいことが分かる。
FIG. 9 shows the relationship between the fluorescent tube current and the fluorescent tube voltage for the cold cathode fluorescent tube of the present invention and the conventional cold cathode fluorescent tube. It can be seen that the cold cathode fluorescent tube of the present invention has a higher fluorescent tube voltage than that of the conventional example. FIG. 10 shows the fluorescent lamp power consumption of the cold cathode fluorescent tube of the present invention and the conventional cold cathode fluorescent tube. As is clear from FIG. 10, the cold cathode fluorescent tube of the present invention consumes more power than the conventional one. As described above, since the cold cathode fluorescent tube of the present invention consumes a large amount of power in the positive column, it can be seen that the calorific value of the fluorescent portion due to gas is larger than that of the conventional cold cathode fluorescent tube.

【0067】(冷陰極蛍光管の制御方法)本発明による
照明装置を車載用の表示装置に適用した場合を例に、そ
の制御方法を説明する。上述したように本発明による冷
陰極蛍光管は、優れた輝度立ち上がり特性を有している
ので、従来のように低温起動時にブーストする必要がな
い。しかしながら、勿論ブーストすることによって、低
温時の輝度立ち上がり特性を更に改善することができ
る。以下の説明においては、ブーストを併用する場合を
も含めて説明する。
(Control Method of Cold Cathode Fluorescent Tube) The control method will be described by taking, as an example, a case where the lighting device according to the present invention is applied to an in-vehicle display device. As described above, the cold-cathode fluorescent tube according to the present invention has excellent luminance rising characteristics, and therefore does not need to be boosted at the time of low-temperature startup as in the related art. However, by boosting, it is of course possible to further improve the luminance rise characteristics at low temperatures. In the following description, the case where boost is used together will be described.

【0068】例えば、車載用の表示装置の周囲温度によ
って、動作モードを選択する。周囲温度が車内の空調に
よって制御される温度範囲(約15〜30℃)よりも著
しく低い場合(例えば、−30℃付近)には、定格電流
(例えば4mArms)よりも高い電流(例えば5mArm
s)を短時間流す。空調によって制御される温度範囲以
上の温度にある場合には、起動時から定格電流を流せば
よい。
For example, the operation mode is selected according to the ambient temperature of the display device mounted on the vehicle. If the ambient temperature is significantly lower (e.g., around -30 [deg.] C.) than the temperature range controlled by air conditioning in the vehicle (e.g., around -30 [deg.] C.), a current higher than the rated current (e.g., 4 mA Arms) (e.g., 5 mA Arm).
s) for a short time. When the temperature is equal to or higher than the temperature range controlled by the air conditioning, the rated current may be supplied from the start.

【0069】この動作モード選択は、例えば、図11に
示した制御回路系で、図12に示したフローに従って実
行される。表示装置の近傍に設けられた温度検出器によ
って、周囲温度を測定し、その周囲温度を演算装置が受
け取り、管電流の設定を決定し、定格電流又はブースト
電流を流すように、駆動装置に信号を与える。信号を受
けた駆動装置は、照明装置に所定の管電流を供給するよ
うに運転を開始し、冷陰極蛍光管が点灯する。
This operation mode selection is executed, for example, by the control circuit system shown in FIG. 11 according to the flow shown in FIG. The ambient temperature is measured by a temperature detector provided near the display device, the arithmetic device receives the ambient temperature, determines the setting of the tube current, and sends a signal to the drive device so that the rated current or the boost current flows. give. The driving device that has received the signal starts operation so as to supply a predetermined tube current to the lighting device, and the cold cathode fluorescent tube is turned on.

【0070】(選択偏光反射シート)照明装置から照射
される光の偏光方向を制御し、表示装置に最適な偏光方
向に変更して光の利用効率を上げ、システムとして高輝
度化を可能にするという方法がある。この方法には大別
して2つの方法がある。
(Selective Polarization Reflecting Sheet) The polarization direction of the light emitted from the illumination device is controlled, the polarization direction is changed to the optimal polarization direction for the display device, the light use efficiency is increased, and the system can have high brightness. There is a method. This method is roughly classified into two methods.

【0071】第1の方法は、S偏光成分は反射し、P偏
光成分は透過する選択偏光反射シートを用いるという方
法である。構造の詳細については特開平6−51399
に開示されている。
A first method is to use a selective polarization reflection sheet that reflects the S-polarized light component and transmits the P-polarized light component. For details of the structure, see JP-A-6-51399.
Is disclosed.

【0072】第2の方法は、左円偏光成分は反射し、右
円偏光成分は透過する選択偏光反射シートとλ/4板と
を用いる方法である。構造の詳細については米国特許第
5506704号に開示されている。
The second method is a method using a selective polarization reflection sheet and a λ / 4 plate that reflects left circularly polarized light components and transmits right circularly polarized light components. Details of the structure are disclosed in U.S. Pat. No. 5,506,704.

【0073】これらのシートは、照明装置の上に備えら
れる表示装置が偏光を利用するもの(例えば、液晶表示
装置)であると有効に輝度増加に寄与する。
These sheets effectively contribute to an increase in luminance when the display device provided on the lighting device uses polarized light (for example, a liquid crystal display device).

【0074】[0074]

【実施例】【Example】

(実施例1)実施例1として、図1の構造で選択偏光反
射シート6を用いない照明装置に、偏光を利用して表示
する表示素子を搭載し、表9および図13(b)で示さ
れるように小熱容量高発熱型冷陰極蛍光管に流す電流は
4.5mArmsと一定にした場合のマイナス30℃の
時の輝度立ち上がり特性を図13(a)に示す。表9
に、実施例と比較例の冷陰極蛍光管電流と選択偏光反射
シートの有無の条件をまとめて示す。
(Example 1) As Example 1, a display element for displaying by utilizing polarized light is mounted on an illuminating device having the structure shown in FIG. 1 and not using the selective polarization reflection sheet 6, and is shown in Table 9 and FIG. As shown in FIG. 13A, the luminance rise characteristic at −30 ° C. when the current flowing through the cold cathode fluorescent tube having a small heat capacity and a high heat generation is fixed at 4.5 mArms is shown in FIG. Table 9
The following summarizes the cold cathode fluorescent tube current and the conditions for the presence or absence of the selective polarization reflection sheet in the examples and comparative examples.

【0075】(実施例2)実施例2として、実施例1の
構造に直線偏光を利用する選択偏光反射シート6を用い
た照明装置に、偏光を利用して表示する表示素子を搭載
し、表9および図13(b)で示すように小熱容量高発
熱型冷陰極蛍光管に流す電流は4.5mArmsと一定
にした場合のマイナス30℃の時の輝度立ち上がり特性
を図13(a)に示す。
(Embodiment 2) As Embodiment 2, a display device for displaying by using polarized light is mounted on an illuminating device using the selective polarization reflection sheet 6 using linearly polarized light in the structure of Embodiment 1, and As shown in FIGS. 9 and 13 (b), FIG. 13 (a) shows the luminance rise characteristics at −30 ° C. when the current flowing through the small heat capacity, high heat generation type cold cathode fluorescent tube is constant at 4.5 mArms. .

【0076】(実施例3)実施例3として、実施例2に
用いた直線偏光を利用した選択偏光反射シート6を円偏
光を利用した選択偏光反射シートにかえた照明装置に、
偏光を利用して表示する表示素子を搭載し、表9および
図13(b)で示すように小熱容量高発熱型冷陰極蛍光
管に流す電流は4.5mArmsと一定にした場合のマ
イナス30℃の時の輝度立ち上がり特性を図13(a)
に示す。
(Example 3) As Example 3, an illuminating device in which the selective polarization reflection sheet 6 using linearly polarized light used in Example 2 was replaced with a selective polarization reflection sheet using circularly polarized light was used.
-30 ° C. when a display element for displaying light using polarized light is mounted and the current flowing through the cold cathode fluorescent tube having a small heat capacity and a high heat generation is fixed at 4.5 mArms as shown in Table 9 and FIG. FIG. 13A shows the luminance rise characteristics at the time of FIG.
Shown in

【0077】(実施例4)実施例4として、実施例1の
構造において小熱容量高発熱型冷陰極蛍光管の管電流を
表9および図13(b)で示すように、点灯開始の1分
以内は冷陰極蛍光管電流をやや多めの6.0mArms
とし、点灯1分以上は冷陰極蛍光管電流を4.5mAr
msに低下させるという制御を行った場含のマイナス3
0℃の時の輝度立ち上がり特性を図13(a)に示す。
Example 4 As Example 4, as shown in Table 9 and FIG. 13B, the tube current of the small heat capacity, high heat generation type cold cathode fluorescent tube in the structure of Example 1 was measured for one minute after the start of lighting. In the figure, the current of the cold cathode fluorescent lamp is slightly larger, 6.0 mArms.
The cold-cathode fluorescent tube current is 4.5 mAr for lighting for 1 minute or more.
-3 including the case where control to lower to ms was performed
FIG. 13A shows the luminance rise characteristics at 0 ° C.

【0078】(実施例5)実施例5として、実施例2の
構造において小熱容量高発熱型冷陰極蛍光管電流を表9
および図13(b)で示すように、点灯開始の1分以内
は冷陰極蛍光管電流をやや多めの6.0mArmsと
し、点灯1分以上は冷陰極蛍光管電流を4.5.mAr
msに低下させるという制御を行った場合のマイナス3
0℃の時の輝度立ち上がり特性を図13(a)に示す。
Fifth Embodiment As a fifth embodiment, in the structure of the second embodiment, the current of the cold cathode fluorescent tube having a small heat capacity and a high heat generation is shown in Table 9.
As shown in FIG. 13 and FIG. 13 (b), the cold cathode fluorescent lamp current is set at a slightly larger value of 6.0 mArms within one minute after the start of lighting, and the cold cathode fluorescent lamp current is set at 4.5. mAr
minus 3 when the control to decrease the current value to ms is performed.
FIG. 13A shows the luminance rise characteristics at 0 ° C.

【0079】(実施例6)実施例6として、実施例3の
構造において小熱容量高発熱型冷陰極蛍光管電流を表9
および図13(b)で示すように、点灯開始の1分以内
は冷陰極蛍光管電流をやや多めの6.0mArmsと
し、点灯1分以上は冷陰極蛍光管電流を4.5mArm
sに低下させるという制御を行った場合のマイナス30
℃の時の輝度立ち上がり特性を図13(a)に示す。
Example 6 As Example 6, the current of the cold cathode fluorescent tube having a small heat capacity and a high heat generation in the structure of Example 3 is shown in Table 9.
As shown in FIG. 13 (b), the current of the cold cathode fluorescent lamp is set slightly higher at 6.0 mArms within one minute of the start of lighting, and the current of the cold cathode fluorescent lamp is set at 4.5 mArms for one minute or more of lighting.
-30 when the control to decrease to s is performed
FIG. 13A shows the luminance rise characteristics at a temperature of ° C.

【0080】(比較例1)比較例1として、図1の構造
で選択偏光反射シート6を用いない照明装置に、従来使
用していた冷陰極蛍光管を設置し、表9および図13
(b)に示すように点灯開始1分間は定格の7.0mA
rmsよりも大きい9.0mArmsとし、点灯1分以
上で定格の7.0mArmsに戻した場合のマイナス3
0℃の時の輝度立ち上がり特性を図13(a)に示す。
(Comparative Example 1) As Comparative Example 1, a cold cathode fluorescent tube conventionally used was installed in an illuminating device having the structure shown in FIG.
As shown in (b), the rated current is 7.0 mA for one minute from the start of lighting.
-3 which is 9.0 mArms, which is larger than rms, and returns to the rated 7.0 mArms after lighting for 1 minute or more.
FIG. 13A shows the luminance rise characteristics at 0 ° C.

【0081】(比較例2)比較例2として、図1の構造
で選択偏光反射シート6を用いない照明装置に、従来使
用していた冷陰極蛍光管を設置し、ヒータを直接冷陰極
蛍光管に取り付けた。表9および図13(b)及び
(c)に示すように冷陰極蛍光管電流は7.0mArm
sと一定にし、ヒータに投入する電力は5Wと一定とし
た。この場合のマイナス30℃の時の輝度立ち上がり特
性を図13(a)に示す。
(Comparative Example 2) As Comparative Example 2, a cold cathode fluorescent tube conventionally used was installed in an illuminating device having the structure shown in FIG. Attached to. As shown in Table 9 and FIGS. 13B and 13C, the cold cathode fluorescent lamp current was 7.0 mArm.
s, and the power supplied to the heater was fixed at 5 W. FIG. 13A shows the luminance rise characteristics at −30 ° C. in this case.

【0082】図13(a)の各場合における輝度立ち上
がり特性の結果から、本発明の実施例は従来の技術に比
べて格段に輝度立ち上がりが改善されたことが分かる。
また、本発明の実施例4〜6において、ブースト電流を
供給した場合においても、輝度の変動は−25%以内で
あり、非常に安定した輝度立ち上がり特性を示す。ここ
で、輝度変動とは、ブースト電流から定格電流に切り換
えた時に生じる輝度低下の割合のことをいう。この輝度
変動は、{(Bn/Bb)−1}・100(%)で与え
られる。ここで、Bnは定格電流切換え時の輝度、Bb
はブースト最終時の輝度である。
From the results of the luminance rise characteristics in each case of FIG. 13A, it can be seen that the embodiment of the present invention has significantly improved luminance rise as compared with the prior art.
Further, in Examples 4 to 6 of the present invention, even when a boost current is supplied, the fluctuation of the luminance is within -25%, and the luminance rising characteristics are very stable. Here, the luminance fluctuation refers to a rate of a luminance decrease that occurs when switching from the boost current to the rated current. This luminance variation is given by {(Bn / Bb) -1} · 100 (%). Here, Bn is the luminance at the time of switching the rated current, Bb
Is the luminance at the end of the boost.

【0083】[0083]

【表9】 点灯後のランプ電流(管電流) 選択偏光反射シートの有無 (mArms) 1分まで 1分以上 直線偏光型 円偏光型 実施例1 4.5 4.5 なし なし 実施例2 4.5 4.5 有り なし 実施例3 4.5 4.5 なし 有り 実施例4 6.0 4.5 なし なし 実施例5 6.0 4.5 有り なし 実施例6 6.0 4.5 なし 有り 比較例1 9.0 7.0 −− −− 比較例2 7.0 7.0 −− −− [Table 9] Lamp current after lighting (tube current) Presence / absence of selective polarizing reflection sheet (mArms) Up to 1 minute 1 minute or more Linear polarization type Circular polarization type Example 1 4.5 4.5 None None Example 2 4.5 4.5 Yes No Example 3 4.5 4.5 No Yes Example 4 6.0 4.5 No No Example 5 6.0 4.5 Yes No Example 6 6.0 4.5 No Yes Comparative Example 1 9 0.0 7.0 --- --- Comparative Example 2 7.0 7.0 --- ---

【0084】[0084]

【発明の効果】以上実施例で説明したように、本発明の
小熱容量高発熱型冷陰極蛍光管と選択偏光反射シートを
具備した照明装置を用いた表示装置は低温時の輝度立ち
上がりがヒータを装備したものよりも良くなり、当初の
目的であった低温時の輝度立ち上がりの課題を解決でき
た。この発明の解決方法の優れている点は、ヒータを使
用していないということから安全性という点で優れてい
る。さらに、ヒータ関連回路も必要無いことから大幅な
コストの削減が可能である。また、ヒータを取り付ける
組み立て費も必要無い。加えて、ヒータを用いて冷陰極
蛍光管を温める場合は、間接的に熱エネルギーを与える
ため照明装置の冷陰極蛍光管以外の構成部材に伝導や幅
射で照明装置の不要な温度上昇を招いていたが、小熱容
量高発熱型冷陰極蛍光管の場合は、熱エネルギーを与え
たい冷陰極蛍光管内部に直接与えられることができ、ヒ
ータを用いないので省電力化が可能になる。さらに、小
熱容量高発熱型冷陰極蛍光管の周辺は空気層で遮断され
ているので、照明装置の不要な温度上昇は抑制される利
点もある。そして、この小熱容量高発熱型冷陰極蛍光管
の低温時の輝度立ち上がりは従来のヒータを用いた場合
とことなり、点灯開始してしばらくすれば輝度の飽和が
おこるので、電流を調整しても輝度のふらつきが小さく
てすむ。 次に、ヒータを使用しないで点灯初期に冷陰
極蛍光管電流を過大に流す場合と比べても、本発明では
冷陰極蛍光管電流を従来のものより小さくできることが
できるので、省電力化や冷陰極蛍光管の長寿命化が可能
になる。また、本来の目的である低温時の輝度立ち上が
り特性も点灯初期に冷陰極蛍光管電流を過大に流す場含
に比べ断然良好である。
As described in the above embodiments, the display device using the illumination device provided with the small heat capacity and high heat generation type cold cathode fluorescent tube of the present invention and the selective polarization reflection sheet has a heater whose brightness rises at low temperature. It was better than the one equipped, and solved the problem of initial brightness rise at low temperature, which was the original purpose. The advantage of the solution of the present invention is that it does not use a heater and thus is excellent in terms of safety. Further, since a heater-related circuit is not required, a significant cost reduction can be achieved. Also, there is no need to assemble the heater. In addition, when a cold cathode fluorescent tube is heated using a heater, heat energy is applied indirectly to the components other than the cold cathode fluorescent tube of the lighting device, which leads to unnecessary temperature rise of the lighting device due to conduction or radiation. However, in the case of a cold cathode fluorescent tube having a small heat capacity and a high heat generation, heat energy can be directly supplied to the inside of the cold cathode fluorescent tube to which heat energy is to be applied, and power can be saved because a heater is not used. Furthermore, since the periphery of the cold cathode fluorescent tube having a small heat capacity and a high heat generation is blocked by an air layer, there is an advantage that unnecessary temperature rise of the lighting device is suppressed. The low-heat-capacity, high-heat-type cold-cathode fluorescent tubes have a low-temperature luminance rise at the time of using a conventional heater, and a short time after the start of lighting, luminance saturation occurs. Small fluctuations in brightness. Next, compared with the case where the cold cathode fluorescent lamp current is excessively supplied at the initial stage of lighting without using a heater, the present invention can make the cold cathode fluorescent lamp current smaller than that of the conventional one, so that power saving and cooling can be achieved. It is possible to extend the life of the cathode fluorescent tube. Further, the luminance rising characteristic at a low temperature, which is the original purpose, is much better than that in a case where the cold cathode fluorescent lamp current is excessively supplied at the initial stage of lighting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の表示装置100および照明装置110
を示す図である。(a)は表示装置100の模式図であ
り、(b)は表示装置100が有する照明装置110の
1B−1B断面図である。
FIG. 1 shows a display device 100 and a lighting device 110 according to the present invention.
FIG. (A) is a schematic diagram of the display device 100, and (b) is a 1B-1B cross-sectional view of a lighting device 110 included in the display device 100.

【図2】本発明と従来例の輝度立ち上がり時定数の点灯
開始周囲温度依存性を示すグラフである。
FIG. 2 is a graph showing a lighting start ambient temperature dependency of a luminance rising time constant of the present invention and a conventional example.

【図3】本発明と従来例の輝度立ち上がり特性の指数前
因子の点灯開始周囲温度依存性を示すグラフである。
FIG. 3 is a graph showing a lighting start ambient temperature dependency of a factor before exponent of a luminance rise characteristic of the present invention and a conventional example.

【図4】本発明と従来例の輝度立ち上がり特性の指数前
因子の点灯開始周囲温度依存性を示すアレニウスプロッ
トである。
FIG. 4 is an Arrhenius plot showing a lighting start ambient temperature dependency of a factor before exponent of a luminance rise characteristic of the present invention and a conventional example.

【図5】本発明による冷陰極蛍光管の輝度立ち上がり特
性を示すグラフである。
FIG. 5 is a graph showing a luminance rising characteristic of the cold cathode fluorescent tube according to the present invention.

【図6】従来の冷陰極蛍光管の輝度立ち上がり特性を示
すグラフである。
FIG. 6 is a graph showing a luminance rising characteristic of a conventional cold cathode fluorescent tube.

【図7】本発明と従来例の冷陰極蛍光管の単位長さ当た
りの発熱量の蛍光管電流依存性を示すグラフである。
FIG. 7 is a graph showing a fluorescent tube current dependency of a calorific value per unit length of the cold cathode fluorescent tubes of the present invention and a conventional example.

【図8】本発明と従来例の冷陰極蛍光管の単位体積当た
りの発熱量の蛍光管電流依存性を示すグラフである。
FIG. 8 is a graph showing the dependence of the calorific value per unit volume of the cold cathode fluorescent tubes of the present invention and the conventional example on the fluorescent tube current.

【図9】本発明と従来例の冷陰極蛍光管における蛍光管
電流と蛍光管電圧との関係を示すグラフである。
FIG. 9 is a graph showing a relationship between a fluorescent tube current and a fluorescent tube voltage in the cold cathode fluorescent tubes of the present invention and the conventional example.

【図10】本発明と従来例の冷陰極蛍光管における蛍光
管電流と蛍光管消費電力電圧との関係を示すグラフであ
る。
FIG. 10 is a graph showing the relationship between the fluorescent lamp current and the fluorescent lamp power consumption voltage in the cold cathode fluorescent tubes of the present invention and the conventional example.

【図11】本発明の照明装置の制御回路系を示すブロッ
ク図である。
FIG. 11 is a block diagram showing a control circuit system of the lighting device of the present invention.

【図12】本発明の照明装置の駆動方法を示すフローチ
ャートである。
FIG. 12 is a flowchart illustrating a driving method of the lighting device of the present invention.

【図13】本発明による実施例と比較例の冷陰極蛍光管
の輝度立ち上がり特性と駆動条件を示す図である。
(a)は実施例と比較例の輝度立ち上がり特性、(b)
は実施例と比較例における管電流、(c)は比較例2で
用いたヒータへの供給電力をそれぞれ示す。
FIG. 13 is a diagram showing luminance rising characteristics and driving conditions of cold cathode fluorescent tubes according to an example of the present invention and a comparative example.
(A) is a luminance rise characteristic of the example and the comparative example, (b)
Represents the tube current in the example and the comparative example, and (c) represents the power supplied to the heater used in the comparative example 2, respectively.

【符号の説明】[Explanation of symbols]

1 小熱容量高発熱型冷陰極蛍光管 2 反射シート 3 導光体 4 拡散シート 5 レンズシート 6 選択偏光反射シート 7 拡散シート 8 表示素子 100 表示装置 110 照明装置 DESCRIPTION OF SYMBOLS 1 Small heat capacity high heat generation type cold cathode fluorescent tube 2 Reflection sheet 3 Light guide 4 Diffusion sheet 5 Lens sheet 6 Selective polarization reflection sheet 7 Diffusion sheet 8 Display element 100 Display device 110 Illumination device

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 蛍光部のガラス管の単位長さ(1cm)
当たりの熱容量が0.035Wsec/℃以下である冷
陰極蛍光管を有する照明装置。
1. Unit length (1 cm) of a glass tube of a fluorescent part
A lighting device having a cold cathode fluorescent tube having a heat capacity per unit of 0.035 Wsec / ° C. or less.
【請求項2】 前記冷陰極蛍光管の蛍光部のガラス管の
単位長さ(1cm)当たりの熱容量( Wsec/℃)
Cと熱抵抗(℃/W)Rとの積で与えられる構造因子時
定数τsが11秒以下であり、R=(Ts−T)/
{(Vccft−Vp)・Iccft/L}であり、V
ccftは蛍光管電圧(Vrms)、Vpは蛍光管電極
電圧降下(Vrms)、Iccftは蛍光管電流(Ar
ms)、Lは蛍光管の長さ(cm)、Tは周囲温度
(℃)、Tsは飽和管壁温度(℃)であり、冷陰極蛍光
管を点灯した状態で、冷陰極蛍光管の管壁の温度が定常
状態に達したときの温度である請求項1に記載の照明装
置。
2. The heat capacity (Wsec / ° C.) per unit length (1 cm) of the glass tube of the fluorescent portion of the cold cathode fluorescent tube.
The structure factor time constant τs given by the product of C and the thermal resistance (° C./W)R is 11 seconds or less, and R = (Ts−T) /
{(Vccft−Vp) · Iccft / L}, and V
ccft is a fluorescent tube voltage (Vrms), Vp is a fluorescent tube electrode voltage drop (Vrms), and Iccft is a fluorescent tube current (Ar
ms), L is the length (cm) of the fluorescent tube, T is the ambient temperature (° C.), Ts is the wall temperature of the saturated tube (° C.). The lighting device according to claim 1, wherein the temperature of the wall is a temperature when the wall reaches a steady state.
【請求項3】 前記冷陰極蛍光管のガラス管断面積をD
t(mm2)、封入ガス断面積をDg(mm2)、ガラス
管内径をda(mm2)としたとき、 Dt/Dg<2/
daの関係式を満たす請求項1または2に記載の照明装
置。
3. The cold-cathode fluorescent tube has a glass tube cross-sectional area of D
t (mm 2 ), the sealed gas cross-sectional area is Dg (mm 2 ), and the inner diameter of the glass tube is da (mm 2 ): Dt / Dg <2 /
The lighting device according to claim 1, wherein the lighting device satisfies a relational expression of da.
【請求項4】 前記冷陰極蛍光管の蛍光部のガラス管の
単位体積(1cm3)当たりの発熱量Wv(W)と、蛍
光管電流Iccft(mArms)とが、Wv/ Ic
cft≧0.5の関係を満たす請求項1から3のいずれ
かに記載の照明装置。
4. A calorific value Wv (W) per unit volume (1 cm 3 ) of a glass tube of a fluorescent portion of the cold cathode fluorescent tube and a fluorescent tube current Iccft (mArms) are Wv / Ic.
The lighting device according to claim 1, wherein a relationship of cft ≧ 0.5 is satisfied.
【請求項5】 前記冷陰極蛍光管の輝度立ち上がりの時
定数τが、点灯開始周囲温度T(℃)の−10℃から+
25℃の範囲において、τ≦−0.0006T3+0.
0288T2−0.4668T+26.8の関係を満た
す請求項1から4のいずれかに記載の照明装置。
5. The time constant τ at which the luminance of the cold cathode fluorescent lamp rises from −10 ° C. of the lighting start ambient temperature T (° C.) to + 10 ° C.
In the range of 25 ° C., τ ≦ −0.0006T 3 +0.
The lighting device according to claim 1, wherein the lighting device satisfies a relationship of 0288T 2 −0.4668T + 26.8.
【請求項6】 前記冷陰極蛍光管の輝度立ち上がり特性
の指数前因子A(飽和相対輝度の指数前因子A0に対す
る百分率)は、前記点灯開始周囲温度範囲内で、A≧
0.92T+60の関係を満たす請求項5に記載の照明
装置。
6. The exponential factor A (percentage of the saturated relative luminance to the exponential factor A0) of the luminance rise characteristic of the cold cathode fluorescent tube is: A ≧ A ≧
The lighting device according to claim 5, wherein a relationship of 0.92T + 60 is satisfied.
【請求項7】 前記冷陰極蛍光管の前記指数前因子の前
記点灯開始周囲温度範囲内における活性化エネルギーが
3.0kcal/mol以下である請求項6に記載の照
明装置。
7. The lighting device according to claim 6, wherein the activation energy of the cold-cathode fluorescent tube in the ambient temperature range of the lighting start of the pre-exponential factor is 3.0 kcal / mol or less.
【請求項8】 前記冷陰極蛍光管の蛍光部の全表面積の
95%以上が空気に接触しており、該冷陰極蛍光管から
の光の50%以上が照明に利用される請求項1から7の
いずれかに記載の照明装置。
8. The cold cathode fluorescent tube according to claim 1, wherein 95% or more of the total surface area of the fluorescent portion is in contact with air, and 50% or more of the light from the cold cathode fluorescent tube is used for illumination. The lighting device according to any one of claims 7 to 10.
【請求項9】 前記冷陰極蛍光管からの光の出射側に選
択偏光シートをさらに有する請求項1から8のいずれか
に記載の照明装置。
9. The lighting device according to claim 1, further comprising a selective polarizing sheet on a light emission side of the cold cathode fluorescent tube.
【請求項10】 動作状態において、前記冷陰極蛍光管
に一定値の管電流が供給される請求項1から9に記載の
照明装置。
10. The illuminating device according to claim 1, wherein a lamp current of a constant value is supplied to the cold cathode fluorescent tube in an operating state.
【請求項11】 前記冷陰極蛍光管の周囲温度を検出す
る温度検出器と、該温度検出器によって検出された温度
に基づいて所定の管電流を設定する演算装置とを更に有
し、点灯開始周囲温度に基づいて該冷陰極蛍光管に供給
される管電流が制御される請求項1から9のいずれかに
記載の照明装置。
11. A lighting device further comprising: a temperature detector for detecting an ambient temperature of the cold cathode fluorescent tube; and a computing device for setting a predetermined tube current based on the temperature detected by the temperature detector. The lighting device according to claim 1, wherein a tube current supplied to the cold cathode fluorescent tube is controlled based on an ambient temperature.
【請求項12】 前記冷陰極蛍光管の周囲温度を検出す
る温度検出工程と、該温度検出器によって検出された温
度に基づいて所定の管電流を設定する工程と、を有し、
そのことによって、点灯開始周囲温度に基づいて該冷陰
極蛍光管に供給する管電流を制御する工程を包含する請
求項1から9のいずれかに記載の照明装置の駆動方法。
12. A temperature detecting step of detecting an ambient temperature of the cold cathode fluorescent tube, and a step of setting a predetermined tube current based on the temperature detected by the temperature detector,
The method according to any one of claims 1 to 9, further comprising the step of controlling a tube current supplied to the cold-cathode fluorescent tube based on a lighting start ambient temperature.
【請求項13】 請求項1から11のいずれかに記載の
照明装置と、該照明装置からの光を受ける透過型表示素
子とを有する表示装置。
13. A display device comprising: the lighting device according to claim 1; and a transmissive display element that receives light from the lighting device.
【請求項14】 前記透過型表示素子が液晶表示素子で
ある請求項13に記載の表示装置。
14. The display device according to claim 13, wherein the transmissive display element is a liquid crystal display element.
JP9000995A 1997-01-07 1997-01-07 Lighting system and display device having the system Pending JPH10199480A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9000995A JPH10199480A (en) 1997-01-07 1997-01-07 Lighting system and display device having the system
KR1019970079075A KR100355728B1 (en) 1997-01-07 1997-12-30 Illumination device, method for driving the illumination device and display device including the illumination device
EP97123047A EP0852391B1 (en) 1997-01-07 1997-12-31 Illumination device, method for driving the illumination device and display device including the illumination device
DE69738899T DE69738899D1 (en) 1997-01-07 1997-12-31 Lighting device, method for controlling the lighting device and display with such lighting device
US09/002,673 US6066920A (en) 1997-01-07 1998-01-05 Illumination device, method for driving the illumination device and display including the illumination device
KR1020020017877A KR100428920B1 (en) 1997-01-07 2002-04-01 Illumination device, method for driving the illumination device and display device including the illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000995A JPH10199480A (en) 1997-01-07 1997-01-07 Lighting system and display device having the system

Publications (1)

Publication Number Publication Date
JPH10199480A true JPH10199480A (en) 1998-07-31

Family

ID=11489187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000995A Pending JPH10199480A (en) 1997-01-07 1997-01-07 Lighting system and display device having the system

Country Status (1)

Country Link
JP (1) JPH10199480A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138974B2 (en) 2000-10-12 2006-11-21 Hitachi, Ltd. Liquid crystal display device having an improved lighting device
US8833987B2 (en) 2005-09-14 2014-09-16 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US8884788B2 (en) 1998-04-08 2014-11-11 Donnelly Corporation Automotive communication system
US8908039B2 (en) 2000-03-02 2014-12-09 Donnelly Corporation Vehicular video mirror system
US9014966B2 (en) 2000-03-02 2015-04-21 Magna Electronics Inc. Driver assist system for vehicle
US9019091B2 (en) 1999-11-24 2015-04-28 Donnelly Corporation Interior rearview mirror system
US9019090B2 (en) 2000-03-02 2015-04-28 Magna Electronics Inc. Vision system for vehicle
US9073491B2 (en) 2002-09-20 2015-07-07 Donnelly Corporation Exterior rearview mirror assembly
US9090211B2 (en) 2002-09-20 2015-07-28 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US9278654B2 (en) 1999-11-24 2016-03-08 Donnelly Corporation Interior rearview mirror system for vehicle
US9352623B2 (en) 2001-01-23 2016-05-31 Magna Electronics Inc. Trailer hitching aid system for vehicle
US10175477B2 (en) 2008-03-31 2019-01-08 Magna Mirrors Of America, Inc. Display system for vehicle

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221399B2 (en) 1998-04-08 2015-12-29 Magna Mirrors Of America, Inc. Automotive communication system
US9481306B2 (en) 1998-04-08 2016-11-01 Donnelly Corporation Automotive communication system
US8884788B2 (en) 1998-04-08 2014-11-11 Donnelly Corporation Automotive communication system
US10144355B2 (en) 1999-11-24 2018-12-04 Donnelly Corporation Interior rearview mirror system for vehicle
US9376061B2 (en) 1999-11-24 2016-06-28 Donnelly Corporation Accessory system of a vehicle
US9278654B2 (en) 1999-11-24 2016-03-08 Donnelly Corporation Interior rearview mirror system for vehicle
US9019091B2 (en) 1999-11-24 2015-04-28 Donnelly Corporation Interior rearview mirror system
US9809168B2 (en) 2000-03-02 2017-11-07 Magna Electronics Inc. Driver assist system for vehicle
US10131280B2 (en) 2000-03-02 2018-11-20 Donnelly Corporation Vehicular video mirror system
US10239457B2 (en) 2000-03-02 2019-03-26 Magna Electronics Inc. Vehicular vision system
US9783114B2 (en) 2000-03-02 2017-10-10 Donnelly Corporation Vehicular video mirror system
US9019090B2 (en) 2000-03-02 2015-04-28 Magna Electronics Inc. Vision system for vehicle
US9014966B2 (en) 2000-03-02 2015-04-21 Magna Electronics Inc. Driver assist system for vehicle
US9315151B2 (en) 2000-03-02 2016-04-19 Magna Electronics Inc. Driver assist system for vehicle
US10179545B2 (en) 2000-03-02 2019-01-15 Magna Electronics Inc. Park-aid system for vehicle
US10053013B2 (en) 2000-03-02 2018-08-21 Magna Electronics Inc. Vision system for vehicle
US8908039B2 (en) 2000-03-02 2014-12-09 Donnelly Corporation Vehicular video mirror system
US9809171B2 (en) 2000-03-02 2017-11-07 Magna Electronics Inc. Vision system for vehicle
US7138974B2 (en) 2000-10-12 2006-11-21 Hitachi, Ltd. Liquid crystal display device having an improved lighting device
US7683899B2 (en) 2000-10-12 2010-03-23 Hitachi, Ltd. Liquid crystal display device having an improved lighting device
US9352623B2 (en) 2001-01-23 2016-05-31 Magna Electronics Inc. Trailer hitching aid system for vehicle
US9694749B2 (en) 2001-01-23 2017-07-04 Magna Electronics Inc. Trailer hitching aid system for vehicle
US10272839B2 (en) 2001-01-23 2019-04-30 Magna Electronics Inc. Rear seat occupant monitoring system for vehicle
US9341914B2 (en) 2002-09-20 2016-05-17 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US10363875B2 (en) 2002-09-20 2019-07-30 Donnelly Corportion Vehicular exterior electrically variable reflectance mirror reflective element assembly
US9878670B2 (en) 2002-09-20 2018-01-30 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US10029616B2 (en) 2002-09-20 2018-07-24 Donnelly Corporation Rearview mirror assembly for vehicle
US9545883B2 (en) 2002-09-20 2017-01-17 Donnelly Corporation Exterior rearview mirror assembly
US10661716B2 (en) 2002-09-20 2020-05-26 Donnelly Corporation Vehicular exterior electrically variable reflectance mirror reflective element assembly
US10538202B2 (en) 2002-09-20 2020-01-21 Donnelly Corporation Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly
US9090211B2 (en) 2002-09-20 2015-07-28 Donnelly Corporation Variable reflectance mirror reflective element for exterior mirror assembly
US9073491B2 (en) 2002-09-20 2015-07-07 Donnelly Corporation Exterior rearview mirror assembly
US9694753B2 (en) 2005-09-14 2017-07-04 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US10150417B2 (en) 2005-09-14 2018-12-11 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US10308186B2 (en) 2005-09-14 2019-06-04 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US9758102B1 (en) 2005-09-14 2017-09-12 Magna Mirrors Of America, Inc. Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US9045091B2 (en) 2005-09-14 2015-06-02 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US8833987B2 (en) 2005-09-14 2014-09-16 Donnelly Corporation Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle
US10829053B2 (en) 2005-09-14 2020-11-10 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator
US11072288B2 (en) 2005-09-14 2021-07-27 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US11285879B2 (en) 2005-09-14 2022-03-29 Magna Mirrors Of America, Inc. Vehicular exterior rearview mirror assembly with blind spot indicator element
US11124121B2 (en) 2005-11-01 2021-09-21 Magna Electronics Inc. Vehicular vision system
US10175477B2 (en) 2008-03-31 2019-01-08 Magna Mirrors Of America, Inc. Display system for vehicle

Similar Documents

Publication Publication Date Title
EP0852391B1 (en) Illumination device, method for driving the illumination device and display device including the illumination device
KR100360324B1 (en) A lighting apparatus and an indicator
JPH10199480A (en) Lighting system and display device having the system
US6960886B2 (en) High-pressure metal-vapor discharge lamp lighting apparatus and headlight device for automobile
JPH07175035A (en) Back light device
JPH1167485A (en) Lighting system and display device provided with lighting system thereof
KR20040067810A (en) Excimer lamp radiation apparatus
JP2002141182A (en) Controller for self temperature rise type cold cathode discharge tube
JPH09265950A (en) Fluorescent lamp, fluorescent lamp device and lighting system using it
JP2000315596A (en) Lighting system and display device
JPH0992210A (en) Double tube type low pressure mercury vapor electric discharge lamp and lamp device and lighting system
JP2007272042A (en) Backlight device for liquid crystal display, and liquid crystal display device using same
JP2000058285A (en) Lighting system and display device
JP2001266797A (en) High-pressure mercury lamp emission device and its lighting method
JP2715644B2 (en) Vehicle headlights
JP4696363B2 (en) Backlight device for liquid crystal panel
JPH10333125A (en) Liquid crystal display device
JPH07296619A (en) Lighting system
JP4062980B2 (en) High pressure discharge lamp device
JPH11162690A (en) Dimmer device for rare-gas discharge lamp
JPH06203804A (en) Low pressure electric discharge lamp and liquid crystal display device using same
JP3630349B2 (en) Discharge lamp, discharge lamp device and device using the same
KR100426684B1 (en) Cold cathode discharge tube
JPH06260146A (en) Discharge lamp
JP2006049301A (en) Lamp system and back light unit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030203