JPH1019816A - Temperature regulator for sensor - Google Patents

Temperature regulator for sensor

Info

Publication number
JPH1019816A
JPH1019816A JP17910496A JP17910496A JPH1019816A JP H1019816 A JPH1019816 A JP H1019816A JP 17910496 A JP17910496 A JP 17910496A JP 17910496 A JP17910496 A JP 17910496A JP H1019816 A JPH1019816 A JP H1019816A
Authority
JP
Japan
Prior art keywords
sensor
impedance
voltage
control device
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17910496A
Other languages
Japanese (ja)
Inventor
Masumi Tanaka
真澄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP17910496A priority Critical patent/JPH1019816A/en
Publication of JPH1019816A publication Critical patent/JPH1019816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To sustain the sensor temperature at a constant level by providing a plurality of impedance means, a sensor, a voltage generating means, a voltage comparing means, a heater drive means, etc. SOLUTION: Point A between a first impedance means, i.e., a first resistor 8, and a CO sensor 1 and point B between a second impedance means, i.e., a second resistor 9, and a third impedance means, i.e., a third resistor 10 are connected to respective input terminals of a voltage comparing means 5 through AC-DC conversion means 11, 12, respectively, in order to drive a heater 7. When the temperature of the CO sensor 1 is constant and the output voltage from an AC voltage generating means 3 is varied, voltage at the point A is varied but since voltage at the point B is also varied, the variations are canceled. Consequently, the effect of fluctuation in the output voltage from the AC voltage generating means 3 is substantially eliminated and the sensor temperature can be kept at a constant level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はヒータ等により加熱
制御されるセンサの温度調節装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature control device for a sensor whose heating is controlled by a heater or the like.

【0002】[0002]

【従来の技術】ヒータにより加熱制御するセンサとして
は、安定化ジルコニアを用いたセンサがあり、劣化が少
ないなどの特徴を持つため、COセンサとして広く用い
られている。参考文献としては特開昭57−22101
9号公報がある。ところで、このような安定化ジルコニ
アを用いたCOセンサは安定したガス感度を得るため、
400℃程度の温度に保つ必要がある。図4は安定化ジ
ルコニア素子の温度に対するインピーダンスの変化を示
すグラフ及び図5は従来のセンサの温度調節装置の概略
図であり、COセンサの温度を400℃に保つため従来
は、図4に示すように安定化ジルコニア素子のインピー
ダンスが温度が高くなるとともに小さくなることを利用
し、図5に示すように、COセンサ1と抵抗2を直列に
接続した回路に電圧発生手段3から電圧を印加し、CO
センサ1と抵抗2とによる分圧電圧を電圧比較手段5を
用いて基準電圧源4からの基準電圧と比較し、両者の差
に応じた出力電圧がヒータ駆動手段6に供給され、ヒー
タ7を駆動することにより、センサ温度を一定に保つセ
ンサの温度調節装置があった。
2. Description of the Related Art As a sensor controlled by a heater, there is a sensor using stabilized zirconia, which is widely used as a CO sensor because of its characteristics such as little deterioration. References include Japanese Patent Application Laid-Open No. 57-22101.
No. 9 publication. By the way, such a CO sensor using stabilized zirconia obtains stable gas sensitivity.
It is necessary to keep the temperature at about 400 ° C. FIG. 4 is a graph showing a change in impedance with respect to the temperature of the stabilized zirconia element, and FIG. 5 is a schematic diagram of a conventional temperature control device for a sensor. In order to keep the temperature of a CO sensor at 400 ° C., FIG. By utilizing the fact that the impedance of the stabilized zirconia element decreases as the temperature increases, as shown in FIG. 5, a voltage is applied from a voltage generating means 3 to a circuit in which a CO sensor 1 and a resistor 2 are connected in series. , CO
The divided voltage generated by the sensor 1 and the resistor 2 is compared with a reference voltage from a reference voltage source 4 using a voltage comparison unit 5, and an output voltage corresponding to a difference between the two is supplied to a heater driving unit 6. There has been a sensor temperature control device that keeps the sensor temperature constant by driving.

【0003】図4に示すインピーダンスの変化は、イン
ピーダンスアナライザー(日本ヒューレット・パッカー
ド(株)製)にCOセンサの出力・温度交流信号入出力線
を接続し、COセンサのヒータによりCOセンサの温度
を変化させながら330〜470℃まで各々10℃毎の
値をそれぞれ求めた。なおCOセンサの温度は、COセ
ンサの触媒中に埋め込んだK型熱電対で計測した。
The change in the impedance shown in FIG. 4 is obtained by connecting the output / temperature AC signal input / output line of the CO sensor to an impedance analyzer (manufactured by Hewlett-Packard Japan Co., Ltd.) and controlling the temperature of the CO sensor by the heater of the CO sensor. While changing the values, values at 10 ° C. were obtained from 330 to 470 ° C., respectively. The temperature of the CO sensor was measured with a K-type thermocouple embedded in the catalyst of the CO sensor.

【0004】しかしながら、図5に示す従来技術では気
温の変化等何らかの理由により、電圧発生手段3の出力
電圧が変化した場合、センサ温度が一定であるにもかか
わらず、前記した分圧電圧も変化してしまい、誤ったセ
ンサ温度を検出してしまうという問題があった。
However, in the prior art shown in FIG. 5, when the output voltage of the voltage generating means 3 changes for some reason such as a change in air temperature, the above-mentioned divided voltage also changes even though the sensor temperature is constant. As a result, there is a problem that an incorrect sensor temperature is detected.

【0005】[0005]

【発明が解決しようとする課題】請求項1、2及び3記
載の発明は、センサ温度を一定に保つセンサの温度調節
装置を提供するものである。請求項4記載の発明は、請
求項2又は3記載の発明に加えて、部品数が少なく安価
なセンサの温度調節装置を提供するものである。請求項
5記載の発明は、請求項2又は3記載の発明に加えて、
特に精度よくセンサの温度を一定に保つセンサの温度調
節装置を提供するものである。請求項6記載の発明は、
請求項1、2、3、4又は5記載の発明に加えて、寿命
の長いセンサの温度調節装置を提供するものである。
The first, second and third aspects of the present invention provide a temperature control device for a sensor for maintaining a constant sensor temperature. The invention described in claim 4 provides, in addition to the invention described in claim 2 or 3, a low-cost, low-temperature sensor temperature controller. The invention described in claim 5 is the same as the invention described in claim 2 or 3,
In particular, it is an object of the present invention to provide a temperature adjusting device for a sensor which maintains the temperature of the sensor constant with high accuracy. The invention according to claim 6 is
In addition to the invention described in the first, second, third, fourth, or fifth aspect, the present invention provides a temperature adjusting device for a sensor having a long life.

【0006】[0006]

【課題を解決するための手段】本発明は、ヒータにより
加熱制御するセンサの温度調節装置において、第一のイ
ンピーダンス手段、第二のインピーダンス手段、第三の
インピーダンス手段、センサ、電圧発生手段、電圧比較
手段及びヒータ駆動手段とから構成されるセンサの温度
調節装置に関する。また、本発明は、上記のセンサの温
度調節装置において、第一のインピーダンス手段とセン
サが直列に接続され、また第二のインピーダンス手段と
第三のインピーダンス手段が直列に接続され、これらの
両端が各々交流電圧発生手段の出力端子間に接続され、
さらに第一のインピーダンス手段とセンサ間及び第二の
インピーダンス手段と第三のインピーダンス手段間から
電圧比較手段の各入力端子に各々交流−直流変換手段を
介して接続された、センサの温度調節装置に関する。
According to the present invention, there is provided a temperature control apparatus for a sensor which is controlled to be heated by a heater, comprising: a first impedance means, a second impedance means, a third impedance means, a sensor, a voltage generation means, and a voltage control means. The present invention relates to a temperature adjusting device for a sensor including a comparing unit and a heater driving unit. Further, the present invention provides the above-mentioned temperature control device for a sensor, wherein the first impedance means and the sensor are connected in series, the second impedance means and the third impedance means are connected in series, and both ends of these are connected. Each is connected between the output terminals of the AC voltage generating means,
Further, the present invention relates to a temperature control device for a sensor, which is connected between the first impedance means and the sensor and between the second impedance means and the third impedance means to each input terminal of the voltage comparison means via the AC-DC conversion means. .

【0007】また、本発明は、上記のセンサの温度調節
装置において、第一のインピーダンス手段とセンサが直
列に接続され、また第一の交流−直流変換手段と第二の
インピーダンス手段と第三のインピーダンス手段が直列
に接続され、これらの両端が各々交流電圧発生手段の出
力端子間に接続され、第一のインピーダンス手段とセン
サ間から第二の交流−直流変換手段を通した部分及び第
二のインピーダンス手段と第三のインピーダンス手段間
から電圧比較手段の各入力端子に接続されたセンサの温
度調節装置に関する。
Further, the present invention provides the above-mentioned temperature control device for a sensor, wherein the first impedance means and the sensor are connected in series, and the first AC-DC conversion means, the second impedance means and the third impedance means are connected to each other. Impedance means are connected in series, both ends thereof are respectively connected between output terminals of the AC voltage generation means, and a portion passing between the first impedance means and the sensor through the second AC-DC conversion means and a second part. The present invention relates to a temperature control device for a sensor connected between the impedance means and the third impedance means and to each input terminal of the voltage comparison means.

【0008】また、本発明は、上記のセンサの温度調節
装置において、交流−直流変換手段が半波整流を行うダ
イオードと波高値保持を行うキャパシタを用いて変換し
てなるセンサの温度調節装置に関する。また、本発明
は、上記のセンサの温度調節装置において、交流−直流
変換手段が半波整流を行うトランジスタと波高値保持を
行うキャパシタを用いて変換してなるセンサの温度調節
装置に関する。さらに、本発明は、上記のセンサの温度
調節装置において、センサが安定化ジルコニアを用いた
COセンサであるセンサの温度調節装置に関する。
The present invention also relates to a temperature control apparatus for a sensor, wherein the AC-DC conversion means performs conversion using a diode for performing half-wave rectification and a capacitor for maintaining a peak value. . In addition, the present invention relates to a temperature control device for a sensor in which the AC-DC conversion means performs conversion using a transistor that performs half-wave rectification and a capacitor that maintains a peak value in the above-described temperature control device for a sensor. Further, the present invention relates to the temperature adjusting device for a sensor, wherein the sensor is a CO sensor using stabilized zirconia.

【0009】[0009]

【発明の実施の形態】本発明において、第一、第二及び
第三のインピーダンス手段としては、例えば、抵抗、キ
ャパシタ等が挙げられる。電圧発生手段としては、例え
ば、直流電源、正弦波発信器等が挙げられる。電圧比較
手段としては、例えば、入力端子間に印加された電圧の
差に比例した直流電圧を出力する装置がある。また、ヒ
ータ駆動手段としては、例えば、電圧比較手段の出力電
圧に応じた駆動電流をヒータに供給する装置がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the first, second and third impedance means include, for example, a resistor and a capacitor. Examples of the voltage generating means include a DC power supply and a sine wave transmitter. As the voltage comparison means, for example, there is a device that outputs a DC voltage proportional to a difference between voltages applied between input terminals. Further, as the heater driving unit, for example, there is a device that supplies a driving current according to the output voltage of the voltage comparing unit to the heater.

【0010】本発明の温度調節装置に交流−直流変換手
段を複数有する場合は、全て同じ方式で変換することが
好ましい。例えば、半波整流を行うダイオードと波高値
保持を行うキャパシタを用いる場合は全てこの方式で変
換するか又は半波整流を行うトランジスタと波高値保持
を行うキャパシタを用いる場合は全てこの方式で変換す
れば、上記の異なる方式を組み合わせて変換するよりも
センサの温度のばらつきの差が少ないので好ましい。
When the temperature controller of the present invention has a plurality of AC-DC converters, it is preferable that all of them are converted by the same method. For example, if a diode that performs half-wave rectification and a capacitor that holds the peak value are used, conversion is performed using this method.If a transistor that performs half-wave rectification and a capacitor that performs peak value holding are used, conversion is performed using this method. This is preferable because the difference in temperature variation of the sensor is smaller than when the conversion is performed by combining the different methods.

【0011】次に図1及び図2によりセンサの温度調節
装置の動作方法について説明する。図1は、本発明のセ
ンサの温度調節装置の回路ブロック図であり、第一のイ
ンピーダンス手段〔抵抗(R1)〕と安定化ジルコニア
を用いたCOセンサ1が直列に接続され、また第二のイ
ンピーダンス手段〔抵抗(R2)〕と第三のインピーダ
ンス手段〔抵抗(R3)〕が直列に接続され、これらの
両端が各々交流電圧発生手段3の出力端子間に接続さ
れ、さらに第一のインピーダンス手段(R1)とCOセ
ンサ1との間のA点及び第二のインピーダンス手段(R
2)と第三のインピーダンス手段(R3)との間のB点
はそれぞれ電圧比較手段5としての差動増幅器の各入力
端子に、各々交流−直流変換手段のダイオード(D2)
とキャパシタ(C2)及びダイオード(D1)とキャパ
シタ(C1)を介して接続されている。さらにヒータ駆
動手段として、電圧比較手段5からの出力電圧に応じた
駆動電流及び直流電源(E)からの電流をトランジスタ
(Q1)で調整してヒータ7に供給している。
Next, an operation method of the temperature control device for the sensor will be described with reference to FIGS. FIG. 1 is a circuit block diagram of a temperature control device for a sensor according to the present invention, in which a first impedance means [resistance (R1)] and a CO sensor 1 using stabilized zirconia are connected in series, and The impedance means [resistance (R2)] and the third impedance means [resistance (R3)] are connected in series, both ends of which are connected between the output terminals of the AC voltage generation means 3, respectively. (R1) and the point A between the CO sensor 1 and the second impedance means (R
A point B between 2) and the third impedance means (R3) is respectively connected to each input terminal of the differential amplifier as the voltage comparison means 5 and a diode (D2) of the AC-DC conversion means.
And the capacitor (C2) and the diode (D1) via the capacitor (C1). Further, as a heater driving means, a driving current corresponding to an output voltage from the voltage comparing means 5 and a current from the DC power supply (E) are adjusted by the transistor (Q1) and supplied to the heater 7.

【0012】本発明のセンサの温度調節装置は上記のよ
うに構成され、図1のA点及びB点の電圧を上記に示す
交流−直流変換手段を使用して交流電圧を直流電圧に変
換することにより、電圧比較手段5として一般的な差動
増幅器を使用することが可能となる。この際、前記にお
いても説明したが、用いる各交流−直流変換手段に同じ
方式を採用して電圧比較手段5である差動増幅器のそれ
ぞれの入力端子に接続することにより、交流−直流変換
手段で生じた出力電圧変化の差は相殺され、ヒータ7に
与える影響をごく小さくすることが可能となり、センサ
温度を一定に保つことができる。
The temperature control device for a sensor according to the present invention is configured as described above, and converts the voltages at points A and B in FIG. 1 from an AC voltage to a DC voltage using the above-described AC-DC converter. As a result, a general differential amplifier can be used as the voltage comparison means 5. At this time, as described above, the same method is used for each of the AC-DC converters used, and the AC-DC converter is connected to each input terminal of the differential amplifier, which is the voltage comparator 5, by the AC-DC converter. The difference between the generated output voltage changes is canceled out, and the influence on the heater 7 can be made very small, so that the sensor temperature can be kept constant.

【0013】図2は、本発明の他のセンサの温度調節装
置の回路ブロック図であり、第一のインピーダンス手段
〔抵抗(R1)〕と安定化ジルコニアを用いたCOセン
サ1が直列に接続され、また第一の交流−直流変換手段
のトランジスタ(Q1)と抵抗(R4)及びキャパシタ
(C1)を介した部分と第二のインピーダンス手段〔抵
抗(R2)〕と第三のインピーダンス手段〔抵抗(R
3)〕が直列に接続され、これらの両端が各々交流電圧
発生手段3の出力端子間に接続され、さらに第一のイン
ピーダンス手段(R1)とCOセンサ1との間のA点の
延長部から第二の交流−直流変換手段として、トランジ
スタ(Q2)と抵抗(R5)及びキャパシタ(C2)を
介した部分並びに第二のインピーダンス手段(R2)と
第三のインピーダンス手段(R3)との間のB点はそれ
ぞれ電圧比較手段5としての差動増幅器の各入力端子に
接続されている。以下上記と同様にヒータ駆動手段とし
て、電圧比較手段5からの出力電圧に応じた駆動電流及
び直流電源(E)からの電流をトランジスタ(Q3)で
調整してヒータ7に供給している。
FIG. 2 is a circuit block diagram of another temperature control device for a sensor according to the present invention, in which a first impedance means [resistance (R1)] and a CO sensor 1 using stabilized zirconia are connected in series. Also, a portion of the first AC-DC converter through the transistor (Q1) and the resistor (R4) and the capacitor (C1), the second impedance means [the resistor (R2)] and the third impedance means [the resistor ( R
3)] are connected in series, both ends of which are connected between the output terminals of the AC voltage generating means 3, respectively, and further from the extension of the point A between the first impedance means (R 1) and the CO sensor 1. As the second AC-DC conversion means, a portion via the transistor (Q2) and the resistor (R5) and the capacitor (C2) and a portion between the second impedance means (R2) and the third impedance means (R3) are provided. Point B is connected to each input terminal of a differential amplifier as voltage comparison means 5. In the same manner as above, as a heater driving means, a driving current corresponding to the output voltage from the voltage comparing means 5 and a current from the DC power supply (E) are adjusted by the transistor (Q3) and supplied to the heater 7.

【0014】本発明の他のセンサの温度調節装置は上記
のように構成され、以下実施例1と同様の動作により、
センサ温度を一定に保つことができる。
Another sensor temperature control device of the present invention is configured as described above, and operates in the same manner as in the first embodiment.
The sensor temperature can be kept constant.

【0015】図3は本発明のセンサの温度調節装置の概
略図の一例を示すものであり、本発明は、第一のインピ
ーダンス手段である第一の抵抗8とCOセンサ1が直列
に接続され、また第二のインピーダンス手段である第二
の抵抗9と第三のインピーダンス手段である第三の抵抗
10が直列に接続され、これらの両端が各々交流電圧発
生手段3の出力端子間に接続され、さらに第一の抵抗8
とCOセンサ1との間のA点及び第二の抵抗9と第三の
抵抗10との間の点Bがそれぞれ電圧比較手段5の各入
力端子に各々交流−直流変換手段11及び12を介して
接続され、該電圧比較手段5の出力がヒータ駆動手段6
の入力に接続され、ヒータ7を駆動するようにしたもの
である。このような構成にすることにより、COセンサ
1の温度が一定で交流電圧発生手段3の出力電圧が変化
した場合、A点の電圧が変化するが、同様にB点の電圧
も変化するため、両者は相殺され、電圧比較手段5の出
力に際しては交流電圧発生手段3からの出力電圧の変化
に対する影響が殆どないため、センサ温度を一定に保つ
ことができる。
FIG. 3 shows an example of a schematic diagram of a temperature control device for a sensor according to the present invention. In the present invention, a first resistor 8 as first impedance means and a CO sensor 1 are connected in series. A second resistor 9 as a second impedance means and a third resistor 10 as a third impedance means are connected in series, and both ends thereof are connected between output terminals of the AC voltage generating means 3 respectively. And the first resistor 8
The point A between the first and second resistors 9 and 10 and the point B between the second resistor 9 and the third resistor 10 are connected to the respective input terminals of the voltage comparator 5 via the AC-DC converters 11 and 12, respectively. The output of the voltage comparison means 5 is connected to the heater driving means 6
, And drives the heater 7. With such a configuration, when the temperature of the CO sensor 1 is constant and the output voltage of the AC voltage generating means 3 changes, the voltage at the point A changes. Similarly, the voltage at the point B also changes. The two are canceled and the output of the voltage comparison means 5 has almost no effect on the change of the output voltage from the AC voltage generation means 3, so that the sensor temperature can be kept constant.

【0016】[0016]

【実施例】以下に、本発明の実施例を説明するが、本発
明はこれに制限されるものではない。実施例で用いたC
Oセンサは、セラミック円筒内の長手方向をジルコニア
92モル%に対し、安定化剤としてイットリア8モル%
を含有するジルコニア素子で仕切り、該セラミック円筒
内を2部屋に分け、一方の部屋には白金・アルミナ触媒
を、他方の部屋には酸化スズ触媒を充填し、セラミック
円筒の両端を多孔質のセラミック板で封着し、またジル
コニア素子の両側に設けた一対の電極からCOセンサの
出力・温度交流信号入出力線を多孔質のセラミック板の
孔から外部に引き出し、次いでセラミック円筒の外周に
ヒータとしてニクロム線を巻き付けたものを用いた。
Examples of the present invention will be described below, but the present invention is not limited to these examples. C used in Examples
The O sensor is composed of 8 mol% of yttria as a stabilizer with respect to 92 mol% of zirconia in the longitudinal direction in the ceramic cylinder.
The interior of the ceramic cylinder is divided into two chambers, one of which is filled with a platinum-alumina catalyst, the other is filled with a tin oxide catalyst, and both ends of the ceramic cylinder are made of porous ceramic. It is sealed with a plate, and the output / temperature AC signal input / output line of the CO sensor is pulled out from the hole of the porous ceramic plate to the outside from a pair of electrodes provided on both sides of the zirconia element. What wound a nichrome wire was used.

【0017】本発明の実施例においては、上記のCOセ
ンサを図1及び図2のブロック図に示す回路に組み込
み、センサの温度調節装置として使用した。また、本発
明の実施例においては、直流−交流変換手段として図1
では、半波整流を行うダイオードと波高値保持を行うキ
ャパシタを用いて交換を行い、一方図2では、半波整流
を行うトランジスタと波高値保持を行うキャパシタを用
いて交換を行った。
In the embodiment of the present invention, the above-mentioned CO sensor is incorporated in the circuits shown in the block diagrams of FIGS. 1 and 2 and used as a temperature control device for the sensor. Further, in the embodiment of the present invention, the DC-AC
In FIG. 2, replacement was performed using a diode that performs half-wave rectification and a capacitor that performs peak value holding, while in FIG. 2, replacement was performed using a transistor that performs half-wave rectification and a capacitor that performs peak value holding.

【0018】実施例において、COセンサは円筒型のC
Oセンサを用いた例で示したが、本発明においては、平
板型のCOセンサも用いることができる。
In the embodiment, the CO sensor is a cylindrical C
Although an example using an O sensor has been described, a flat plate type CO sensor can also be used in the present invention.

【0019】[0019]

【発明の効果】請求項1、2及び3記載のセンサの温度
調節装置は、センサ温度を一定に保つことができる。請
求項4記載のセンサの温度調節装置は、請求項2又は3
記載のセンサの温度調節装置の効果を奏し、さらに部品
数が少なく安価に製作することができる。請求項5記載
のセンサの温度調節装置は、請求項2又は3記載のセン
サの温度調節装置の効果を奏し、特に精度よくセンサ温
度を一定に保つことができる。請求項6記載のセンサの
温度調節装置は、請求項1、2、3、4又は5記載のセ
ンサの温度調節装置の効果を奏し、さらに寿命の長いセ
ンサの温度調節装置である。
According to the temperature adjusting device for a sensor according to the first, second and third aspects, the sensor temperature can be kept constant. The temperature control device for a sensor according to the fourth aspect is the second or third aspect.
The effect of the temperature control device for the sensor described above is exhibited, and the number of components can be reduced and the sensor can be manufactured at low cost. The temperature adjusting device for a sensor according to the fifth aspect has the effect of the temperature adjusting device for the sensor according to the second or third aspect, and can keep the sensor temperature constant with high accuracy. The temperature adjusting device for a sensor according to the sixth aspect has the effect of the temperature adjusting device for the sensor according to the first, second, third, fourth or fifth aspect, and is a temperature adjusting device for a sensor having a longer life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例になるセンサの温度調節装置の
回路ブロック図である。
FIG. 1 is a circuit block diagram of a temperature control device for a sensor according to an embodiment of the present invention.

【図2】本発明の他の一実施例になるセンサの温度調節
装置の回路ブロック図である。
FIG. 2 is a circuit block diagram of a temperature control device for a sensor according to another embodiment of the present invention.

【図3】本発明のセンサの温度調節装置の概略図の一例
である。
FIG. 3 is an example of a schematic view of a temperature control device for a sensor according to the present invention.

【図4】安定化ジルコニア素子の温度に対するインピー
ダンスの変化を示すグラフである。
FIG. 4 is a graph showing a change in impedance with respect to temperature of a stabilized zirconia element.

【図5】従来のセンサの温度調節装置の概略図である。FIG. 5 is a schematic view of a conventional temperature control device for a sensor.

【符号の説明】[Explanation of symbols]

1 COセンサ 2 抵抗 3 電圧発生手段 4 基準電圧源 5 電圧比較手段 6 ヒータ駆動手段 7 ヒータ 8 第一の抵抗 9 第二の抵抗 10 第三の抵抗 DESCRIPTION OF SYMBOLS 1 CO sensor 2 Resistance 3 Voltage generation means 4 Reference voltage source 5 Voltage comparison means 6 Heater driving means 7 Heater 8 First resistance 9 Second resistance 10 Third resistance

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ヒータにより加熱制御するセンサの温度
調節装置において、第一のインピーダンス手段、第二の
インピーダンス手段、第三のインピーダンス手段、セン
サ、電圧発生手段、電圧比較手段及びヒータ駆動手段と
から構成されるセンサの温度調節装置。
1. A temperature control device for a sensor which controls heating by a heater, comprising: a first impedance unit, a second impedance unit, a third impedance unit, a sensor, a voltage generation unit, a voltage comparison unit, and a heater driving unit. A temperature control device for the configured sensor.
【請求項2】 第一のインピーダンス手段とセンサが直
列に接続され、また第二のインピーダンス手段と第三の
インピーダンス手段が直列に接続され、これらの両端が
各々交流電圧発生手段の出力端子間に接続され、さらに
第一のインピーダンス手段とセンサ間及び第二のインピ
ーダンス手段と第三のインピーダンス手段間から電圧比
較手段の各入力端子に各々交流−直流変換手段を介して
接続された請求項1記載のセンサの温度調節装置。
2. A first impedance means and a sensor are connected in series, a second impedance means and a third impedance means are connected in series, and both ends thereof are respectively connected between output terminals of the AC voltage generation means. 2. The input terminal of the voltage comparison means connected between the first impedance means and the sensor and between the second impedance means and the third impedance means via the AC-DC conversion means. Sensor temperature control device.
【請求項3】 第一のインピーダンス手段とセンサが直
列に接続され、また第一の交流−直流変換手段と第二の
インピーダンス手段と第三のインピーダンスが直列に接
続され、これらの両端が各々交流電圧発生手段の出力端
子間に接続され、第一のインピーダンス手段とセンサ間
から第二の交流−直流変換手段を通した部分及び第二の
インピーダンス手段と第三のインピーダンス手段間から
電圧比較手段の各入力端子に接続された、請求項1記載
のセンサの温度調節装置。
3. A first impedance means and a sensor are connected in series, a first AC-DC conversion means, a second impedance means and a third impedance are connected in series, and both ends of the first and second impedance means are connected to each other. A portion connected between the output terminals of the voltage generating means, a portion through the second AC-DC converting means from between the first impedance means and the sensor, and a voltage comparing means from between the second impedance means and the third impedance means. The temperature control device for a sensor according to claim 1, wherein the temperature control device is connected to each input terminal.
【請求項4】 交流−直流変換手段が半波整流を行うダ
イオードと波高値保持を行うキャパシタを用いて変換し
てなる請求項2又は3記載のセンサの温度調節装置。
4. The temperature control device for a sensor according to claim 2, wherein the AC-DC conversion means performs conversion using a diode performing half-wave rectification and a capacitor performing peak value holding.
【請求項5】 交流−直流変換手段が半波整流を行うト
ランジスタと波高値保持を行うキャパシタを用いて変換
してなる請求項2又は3記載のセンサの温度調節装置。
5. The temperature control device for a sensor according to claim 2, wherein the AC / DC converter converts the voltage using a transistor that performs half-wave rectification and a capacitor that maintains a peak value.
【請求項6】 センサが安定化ジルコニアを用いたCO
センサである請求項1、2、3、4又は5記載のセンサ
の温度調節装置。
6. A CO sensor using stabilized zirconia as a sensor.
The sensor temperature control device according to claim 1, 2, 3, 4, or 5, which is a sensor.
JP17910496A 1996-07-09 1996-07-09 Temperature regulator for sensor Pending JPH1019816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17910496A JPH1019816A (en) 1996-07-09 1996-07-09 Temperature regulator for sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17910496A JPH1019816A (en) 1996-07-09 1996-07-09 Temperature regulator for sensor

Publications (1)

Publication Number Publication Date
JPH1019816A true JPH1019816A (en) 1998-01-23

Family

ID=16060105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17910496A Pending JPH1019816A (en) 1996-07-09 1996-07-09 Temperature regulator for sensor

Country Status (1)

Country Link
JP (1) JPH1019816A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349513A (en) * 2005-06-16 2006-12-28 Honda Motor Co Ltd Gas sensor
US8043567B2 (en) 2005-04-04 2011-10-25 Honda Motor Co., Ltd. Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043567B2 (en) 2005-04-04 2011-10-25 Honda Motor Co., Ltd. Gas sensor
JP2006349513A (en) * 2005-06-16 2006-12-28 Honda Motor Co Ltd Gas sensor

Similar Documents

Publication Publication Date Title
US5969512A (en) Output voltage variable power circuit
US6467954B2 (en) Resistance component detecting apparatus for an oxygen concentration sensor and oxygen-concentration detecting apparatus
US5150611A (en) Flow sensor
JPH11271265A (en) Element resistance detecting method for gas concentration sensor, and gas concentration detecting device
JPH1019816A (en) Temperature regulator for sensor
JP2000102249A (en) High-voltage power supply
US20140049234A1 (en) Regulator for controlling output voltage
JP2005091206A (en) Instrument and method for measuring pulse width
JP2010025668A (en) Constant resistance control circuit
JPH11230932A (en) Device for detecting element temperature of gas concentration sensor
JPH09184759A (en) Infrared spectrophotometer
JPH0750134B2 (en) AC / DC difference comparison device for thermoelectric AC / DC converter
JP2000100563A (en) Device and method for driving organic el element
US6548786B2 (en) Circuit for driving a heater at a constant power
JPH065635Y2 (en) Flow velocity sensor
JP2004279288A (en) Gas-detecting apparatus and gas concentration measurement method
JP3622619B2 (en) Element resistance detector for oxygen concentration sensor
JP3580491B2 (en) Switching power supply
JP2010096634A (en) Voltage detecting device
JPH1096703A (en) Heat conduction parameter sensing method with resistor, and sensor circuit
JP3751822B2 (en) Power supply
CN113465767A (en) Temperature detection circuit, gas detection device and temperature detection method
JPH10160568A (en) Infrared spectrophotometer
JPS5852185B2 (en) Reference voltage source
JP2001204188A (en) Load device