JP2004279288A - Gas-detecting apparatus and gas concentration measurement method - Google Patents

Gas-detecting apparatus and gas concentration measurement method Download PDF

Info

Publication number
JP2004279288A
JP2004279288A JP2003073099A JP2003073099A JP2004279288A JP 2004279288 A JP2004279288 A JP 2004279288A JP 2003073099 A JP2003073099 A JP 2003073099A JP 2003073099 A JP2003073099 A JP 2003073099A JP 2004279288 A JP2004279288 A JP 2004279288A
Authority
JP
Japan
Prior art keywords
gas
voltage
switch
sensor element
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073099A
Other languages
Japanese (ja)
Other versions
JP3989390B2 (en
Inventor
Tsuneyoshi Matsugi
常義 眞継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2003073099A priority Critical patent/JP3989390B2/en
Publication of JP2004279288A publication Critical patent/JP2004279288A/en
Application granted granted Critical
Publication of JP3989390B2 publication Critical patent/JP3989390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas-detecting apparatus which is driven by a low voltage and reduces the power consumption. <P>SOLUTION: The gas-detecting apparatus is provided with: a gas sensor element 1 and a temperature compensating element 2 connected to a current supply terminal 300a of a power supply 300 via resistors R1, R2 in parallel; a switch 3 disposed in a current supply path 7 from the current supply terminal 300a to the gas sensor element 1 and the temperature compensating element 2 and switching to a conduction state and a non-conduction state; and a driving part 100 for intermittently driving the switch 3 so as to switch to the conduction state and a sensing part 200 for sensing gas, based on a detected voltage V1 of the gas sensor 1 and a compensated voltage V2 of the temperature compensating element, when the switch 3 is switched to the conduction state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガスセンサ素子と温度補償素子を備え、ガスセンサ素子の出力である検出電圧と温度補償素子の出力である補償電圧に基づいてガス検知を行うガス検知装置、及び、このガス検知装置を用いたガス濃度測定方法に関する。
【0002】
【従来の技術】
上記ガスセンサ素子は、例えば白金又は白金合金のコイルに可燃性ガスに対して感度を有する触媒をコーティングした接触燃焼式のセンサ素子であり、その素子表面でガスが燃焼反応を起こしてセンサ素子の温度が上昇し、その温度上昇でセンサ素子の抵抗が変化することを利用してガス濃度を測定することができる。具体的には、図9に示すように、検出対象ガスに対して感度がある上記ガスセンサ素子1と検出対象ガスに対して感度がない温度補償素子2を直列に接続してその両端に一定の電圧を印加し、ガスが反応して生じた熱によるセンサ素子1の抵抗値の変化を、センサ素子1の検出電圧の変化として検出してガス濃度を測定していた。なお、図9は、直列接続したガスセンサ素子1と温度補償素子2をブリッジ回路の一方の辺に配置し、他方の辺に直列接続した2つの抵抗Ra,Rbを配置した検知回路の例を示す。
【0003】
上記温度補償素子は、ガスセンサ素子と同じコイルに触媒をコーティングしていない構造のもので、周囲温度の変化の影響を相殺するために使用する。すなわち、センサ素子のガスとの反応による温度変化は数10℃程度と小さく、周囲温度が例えば0℃〜40℃の範囲で変化すると、ガスとの反応によるセンサ出力変化と周囲温度の変化によるセンサ出力変化が区別できないため、センサ素子と同程度の抵抗値を有し周囲温度に対して同じような抵抗変化をする温度補償素子をセンサ素子と直列に接続して、センサ素子の検出電圧に周囲温度の影響が現れないようにしている。
【0004】
ここで問題となるのは、上記のようにガスセンサ素子と温度補償素子を直列に接続するので、ガスセンサ素子に印加される電圧の約2倍の電源電圧が必要となることであり、具体的には1.6V〜2.5V程度の電源電圧が必要となる。そのため、従来では、携帯用のガス検出機器等で駆動電圧の低電圧化を進めて、例えば電池1セルや2セルの機器を作ろうとした場合、低電圧駆動のガス検知機器の設計が難しいという問題があった。
【0005】
一方、別の従来技術として、上記ガスセンサ素子と温度補償素子を夫々抵抗を介して電源端子に並列接続させ、そのセンサ素子と温度補償素子の各抵抗との接続点の両電圧信号に基づいてガス検知を行うようにしたガス検知装置が提案されている(特許文献1参照)。
【0006】
【特許文献1】
特開平8−82611号公報(第1−4頁、図1−図5)
【0007】
【発明が解決しようとする課題】
上記特許文献1には記載されていないが、ガスセンサ素子と温度補償素子に接続した各抵抗の値をガスセンサ素子や温度補償素子の抵抗値に比べて小さくすることで、電源電圧をガスセンサ素子の印加電圧の2倍の電圧よりも低くできる可能性がある。ただし、特許文献1に記載のガス検知装置では、電源部から検知回路に常時電流供給される構成であるので装置使用時の消費電力が大きくなり、例えば電池駆動する場合の電池の消耗が激しくなるおそれがある。
【0008】
本発明は、上記実情に鑑みてなされたものであり、その目的は、低電圧駆動と消費電力の低減が可能となるガス検知装置、及び、このガス検知装置に適したガス濃度測定方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を実現するための本発明に係るガス検知装置の第1の特徴構成は、請求項1に記載したように、ガスセンサ素子と温度補償素子が抵抗を介して電源部の電流供給端子に並列接続され、前記電流供給端子から前記ガスセンサ素子及び前記温度補償素子への電流供給路に配置され且つ非導通状態と導通状態とに切り替え可能なスイッチと、前記スイッチを間欠的に導通状態に切り替え駆動する駆動部と、前記スイッチを導通状態に切り替えたときの前記ガスセンサ素子の検出電圧及び前記温度補償素子の補償電圧に基づいてガス検知を行う検知部が備えられている点にある。
【0010】
すなわち、ガスセンサ素子及び温度補償素子と電源部の電流供給端子との間に介在させた抵抗の値をガスセンサ素子や温度補償素子の抵抗値に比べて小さくして、電源部の駆動電圧を低くする。また、検知部がガス検知を行うときだけ、駆動部がスイッチを導通状態に切り替えてガスセンサ素子及び温度補償素子に電流を供給し、検知部がガス検知を行うとき以外は、駆動部がスイッチを非導通状態に切り替えてガスセンサ素子及び温度補償素子に電流を供給しない。
従って、低電圧駆動と消費電力の低減が可能となるガス検知装置を提供することができる。
【0011】
同第2の特徴構成は、請求項2に記載したように、第1の特徴構成において、前記スイッチが、前記ガスセンサ素子への電流供給を断続する第1スイッチと、前記温度補償素子への電流供給を断続する第2スイッチとからなり、前記駆動部が、前記第1スイッチ及び第2スイッチを一方が導通状態のときに他方が非導通状態となるように駆動し、前記検知部が、前記第1スイッチを導通状態に切り替えたときのガスセンサ素子の検出電圧及び前記第2スイッチを導通状態に切り替えたときの温度補償素子の補償電圧の両電圧信号を保持して、その両電圧信号に基づいてガス検知を行う点にある。
【0012】
すなわち、駆動部が第1スイッチを導通状態に切り替えてガスセンサ素子へ電流供給するとともに、第2スイッチを非導通状態に切り替えて温度補償素子への電流供給を遮断し、検知部がガスセンサ素子の検出電圧信号を入力して保持する。また、駆動部が第1スイッチを非導通状態に切り替えてガスセンサ素子への電流供給を遮断するとともに、第2スイッチを導通状態に切り替えて温度補償素子へ電流供給し、検知部が温度補償素子の補償電圧信号を入力して保持する。
従って、ガスセンサ素子と温度補償素子に同時に電流供給せず、片方だけに電流供給するので、電源部からの供給電流が少なくなり、一層の消費電力の低減が可能となる。そして、供給電流が少なくなると、電源部に電池を使用したときの電池出力端子での電圧降下も小さくなり、電池の消耗も少なくなって電池の使用可能期間も長くなるため、ガス検知装置の好適な実施形態が提供される。
【0013】
同第3の特徴構成は、請求項3に記載したように、第2の特徴構成において、前記ガスセンサ素子と前記温度補償素子が、共通の抵抗を介して前記電流供給端子に並列接続されている点にある。
【0014】
すなわち、検知部がガスセンサ素子の検出電圧信号を入力するときは、駆動部が第1スイッチを導通状態に第2スイッチを非導通状態に夫々切り替えて、共通の抵抗を介してガスセンサ素子だけに電流供給し、また、検知部が温度補償素子の補償電圧信号を入力するときは、駆動部が第1スイッチを非導通状態に第2スイッチを導通状態に夫々切り替えて、共通の抵抗を介して温度補償素子だけに電流供給する。
従って、ガスセンサ素子及び温度補償素子と電源部の電流供給端子との間に介在させる抵抗が1個の共通抵抗になるので、回路構成が簡素化され、同時に、両素子と電源部の電流供給端子との間に別々の抵抗を介在させた場合に、両抵抗の特性の違いが、ガスセンサ素子の検出電圧と温度補償素子の補償電圧に異なる影響を及ぼすおそれを有効に回避することが可能となり、ガス検知装置の好適な実施形態が提供される。
【0015】
同第4の特徴構成は、請求項4に記載したように、第1から第3の特徴構成のいずれかにおいて、前記電源部が、前記ガスセンサ素子及び前記温度補償素子に対して定電流状態で電流供給する点にある。 すなわち、定電流で電流供給する場合は、電源部をオンしてガスセンサ素子及び温度補償素子に電圧印加する電源投入時に一定電流しか流れないので、ガスセンサ素子等に過大電流が流れるのを抑制して、素子の特性劣化を起こり難くすることができる。また、電源投入時の検知回路側の突入電流が一定であるので、電源部に電池を使用した場合でも、電源投入時に電源電圧が一時的に大きく低下するような不都合も発生しない。
従って、電源部が定電流で電流供給することにより、ガスセンサ素子及び温度補償素子の特性劣化を防止するとともに、電池使用に適したガス検知装置の好適な実施形態が提供される。
【0016】
同第5の特徴構成は、請求項5に記載したように、第1から第3の特徴構成のいずれかにおいて、前記電源部が、前記ガスセンサ素子及び前記温度補償素子に対して定電圧状態で電流供給する点にある。 すなわち、定電圧で電流供給する場合は、電源部をオンしてガスセンサ素子及び温度補償素子に電圧印加する電源投入時に各素子が冷えていて大きな電流が流れるため、定電流で小さな電流を供給する場合に比べて、各素子の立ち上がり特性を早くすることが可能となる。
従って、電源部が定電流で電流供給することにより、立ち上がり特性が良好なガス検知装置の好適な実施形態が提供される。
【0017】
本発明に係るガス濃度測定方法の特徴構成は、請求項6に記載したように、上記第1から第5の特徴構成のいずれかのガス検知装置を用いたガス濃度測定方法であって、前記ガスセンサ素子及び前記温度補償素子に対して電流供給を開始した後、電圧値が安定化する前の前記ガスセンサ素子の検出電圧及び前記温度補償素子の補償電圧に基づいてガス濃度を測定する点にある。
【0018】
すなわち、電源部から抵抗を介してガスセンサ素子及び温度補償素子に電流が流れると、各素子の温度は上昇して素子の抵抗値が変化し、ガスセンサ素子の検出電圧及び温度補償素子の補償電圧の各電圧値は安定状態に達するまで変化する。しかし、抵抗と接続されたガスセンサ素子側と温度補償素子側の各検知回路が同一構成であって電源部に並列接続されているので、上記検出電圧と補償電圧は同じ傾向で変化し、ガス濃度に対応する両電圧の差は各素子への電流供給開始時点と安定状態に達した時点とでほぼ等しくなる。その結果、両電圧が安定状態に達する前の段階でガス濃度の測定を行うことができる。
従って、第1から第5の特徴構成のいずれかのガス検知装置を用いて、検知動作開始後の早い段階で迅速にガス濃度を測定することができるガス濃度測定方法が提供される。
【0019】
【発明の実施の形態】
本発明に係るガス検知装置及びガス濃度測定方法の実施の形態を、基本となる第1実施形態から順次、図面に基づいて説明する。
〔第1実施形態〕
図1に示すように、本発明のガス検知装置では、ガスセンサ素子1と温度補償素子2が抵抗R1,R2を介して電源部300の電流供給端子300aに並列接続され、前記電流供給端子300aからガスセンサ素子1及び温度補償素子2への電流供給路7に配置され且つ非導通状態と導通状態とに切り替え可能なスイッチ3と、前記スイッチ3を間欠的に導通状態に切り替え駆動する駆動部100と、前記スイッチ3を導通状態に切り替えたときの前記ガスセンサ素子1の検出電圧V1及び前記温度補償素子2の補償電圧V2に基づいてガス検知を行う検知部200が備えられている。
【0020】
前記電源部300には、電池6と電池出力をバッファーするオペアンプ5が設けられ、オペアンプ5の出力端子が電流供給端子300aに対応する。具体的には、電池6として1セル又は2セルが使用され、電源部300からは0.8V〜1.3V程度の電源電圧が検知回路側に供給される。
【0021】
なお、上記ガスセンサ素子1及び温度補償素子2は従来技術で説明した構造のものである。また、抵抗R1,R2の抵抗値は、同一の抵抗値で、ガスセンサ素子1及び温度補償素子2の抵抗値の数分の1から10分の1程度に設定する。
【0022】
上記スイッチ3はトランジスタで構成され、そのトランジスタを非導通状態と導通状態に切り替えるために制御回路4から矩形波状の駆動信号が出力されている。従って、制御回路4内に前記駆動部100が構成されている。
【0023】
また、上記制御回路4内に前記検知部200が構成され、検知部200は、ガスセンサ素子1の検出電圧V1と温度補償素子2の補償電圧2の補償電圧V2の差から検知対象ガスの濃度を測定する。ここで、一定濃度のガスがある状態での検出電圧V1及び補償電圧V2は、図2に示すように、ガス検知装置の電源スイッチ(図示せず)をオンして測定動作を開始した後、または間欠駆動でセンサ駆動動作を開始した後、安定するまで時間がかかるが、抵抗と接続された同一構成のガスセンサ素子1側と温度補償素子2側の各回路を電源部300に並列接続している(図1参照)ので、両電圧V1,V2は同じ傾向で変化し、そのガス濃度に対応する差電圧ΔVはセンサの電源オン時点またはセンサ駆動動作の開始時点と安定状態に達した時点とでほぼ等しくなる。その結果、両電圧V1,V2が安定状態に達する前の早い段階でガス濃度の測定を行うことができる。
【0024】
〔第2実施形態〕
第2実施形態では、図3に示すように、前記スイッチ3が、前記ガスセンサ素子1への電流供給を断続する第1スイッチ3aと、前記温度補償素子2への電流供給を断続する第2スイッチ3bとからなり、前記駆動部100が、前記第1スイッチ3a及び第2スイッチ3bを一方が導通状態のときに他方が非導通状態となるように駆動し、前記検知部200が、前記第1スイッチ3aを導通状態に切り替えたときの前記ガスセンサ素子1の検出電圧V1及び前記第2スイッチ3bを導通状態に切り替えたときの前記温度補償素子2の補償電圧V2の両電圧信号V1,V2を保持して、その両電圧信号V1,V2に基づいてガス検知を行う。なお、図中、7aはガスセンサ素子1への電流供給路であり、7bは温度補償素子2への電流供給路である。
【0025】
上記検知部200における検出電圧信号V1と補償電圧信号V2の保持は、前記制御回路4に所謂サンプルホールド回路を備えて、アナログ信号として保持することが実現できる。また、前記制御回路4がマイクロコンピュータを備える場合は、マイクロコンピュータ内のメモリー部に、AD変換された検出電圧信号V1と補償電圧信号V2のデジタルデータを記憶させることで実現できる。
【0026】
〔第3実施形態〕
第3実施形態は、第2実施形態(図3)の変形構成であり、図4に示すように、前記ガスセンサ素子1と前記温度補償素子2が、共通の抵抗R3を介して前記電流供給端子300aに並列接続されている点が異なる。即ち、ガスセンサ素子1及び温度補償素子2と電源部300の電流供給端子300aとの間に介在させる抵抗が個別の抵抗R1,R2ではなく、1個の共通抵抗R3に置き換えられている。
【0027】
そして、図4においては、前記第1スイッチ3aを導通状態に切り替え、前記第2スイッチ3bを非導通状態に切り替えたときの入力電圧V3を前記ガスセンサ素子1の検出電圧信号V3aとして保持し、前記第1スイッチ3aを非導通状態に切り替え、前記第2スイッチ3bを導通状態に切り替えたときの入力電圧V3を前記温度補償素子2の補償電圧信号V3bとして保持し、その両電圧信号V3a,V3bに基づいてガス検知を行う。
【0028】
〔第4実施形態〕
第4実施形態は、ガスセンサ素子1及び温度補償素子2自身に一定電圧が印加される定電圧駆動の電源部300の回路例である。
具体的には、図5に示す回路において、オペアンプ5の反転入力端子と非反転入力端子が同電位になるように動作するので、ガスセンサ素子1及び温度補償素子2に加わる電圧は電池6の出力電圧VBと同じになる。検知回路側には、オペアンプ5の出力端子から抵抗R5を通して電流供給され、この抵抗R5に生じる電圧降下V4をガスセンサ素子1の検出電圧信号V4a及び温度補償素子2の補償電圧信号V4bとして制御回路4に入力する。なお、ガスセンサ素子1及び温度補償素子2に過大な電流が流れないように、抵抗R5の抵抗値を設定する必要がある。
【0029】
また、図5の回路の変形例として、図示はしないが、オペアンプ5の出力端子側に抵抗R5を設けずに出力端子と非反転端子間を短絡させ、代わりにオペアンプ5の電源端子側に抵抗R5に相当する抵抗R5aを配置し、センサ素子1の抵抗変化による電流変化を上記抵抗R5aでの電圧降下として取り出し、ガスセンサ素子1の検出電圧及び温度補償素子2の補償電圧を入力する構成でもよい。
【0030】
〔第5実施形態〕
上記第1〜第4の実施形態では、電源部300が検知回路側に定電圧状態で電流供給していたが、第5実施形態では、電源部300Aが、前記ガスセンサ素子1及び前記温度補償素子2に対して定電流状態で電流供給する。
具体的には、図6に示すように、電池6の出力がオペアンプ5Aの非反転入力端子に接続され、オペアンプ5Aの出力端子と反転入力端子との間に、ガスセンサ素子1と第1スイッチ3c及び温度補償素子2と第2スイッチ3dを並列接続させて配置し、オペアンプ5Aの非反転入力端子を抵抗R4によって接地する。この回路において、オペアンプ5Aの非反転入力端子は電池6の出力電圧VBと等しくなるように動作するので、抵抗R4には電池6の出力電圧VBが印加され、抵抗R4を流れる電流、即ち、上記ガスセンサ素子1及び温度補償素子2を流れる電流は一定値(VB/R4)となる。ここで、各素子1,2を流れる電流が一定であるので、電池6の出力電圧VBを低くして、抵抗R4の抵抗値を小さくすることができる。なお、この図6では、第1及び第2スイッチ3a,3bはリレー等で構成する。
【0031】
〔第6実施形態〕
第6実施形態は、定電流状態で電流供給する電源部300Aの別の回路例であり、電流制限抵抗を電源側に配置して、前記ガスセンサ素子1及び前記温度補償素子2をグランド(接地)側に配置するようにしている。
具体的には、図7に示すように、電源電圧端子から抵抗R6及びトランジスタ8を通して検知回路側に電流供給されるが、出力端子がトランジスタ8のベースに接続されたオペアンプ9の非反転入力端子と電源電圧端子の間に比較電圧源10が配置され、オペアンプ9の反転入力端子とトランジスタ8のエミッタの間が短絡されている。この回路においても、オペアンプ9の反転入力端子と非反転入力端子は同電位になるように動作するので、抵抗R6による電圧降下が比較電圧源10の電圧Vrefと等しくなり、上記ガスセンサ素子1及び温度補償素子2には、Vref/R6で定まる値の一定電流が供給される。
そして、図7の回路では、ガスセンサ素子1及び温度補償素子2がグランド側に配置されているので、第1スイッチ3a及び第2スイッチ3bとして、トランジスタやFET等のスイッチ素子が使用できる。
【0032】
〔第7実施形態〕
第7実施形態は、第6実施形態と基本的には同じであるが、比較電圧源10を電源端子側を基準とするのではなく、グランドを基準とする点が相異する。そして、一般的な電子回路の場合、グランドを基準とすることで、比較電圧源10として汎用の電源基準IC等を使用して簡単に構成することができ、より実用的な回路が得られる。
具体的には、図8に示すように、電源電圧端子から抵抗R7及びトランジスタ8を通して検知回路側に電流供給されるが、出力端子がトランジスタ8のベースに接続されたオペアンプ9の非反転入力端子は、電源電圧を抵抗値が等しい2つの抵抗R10と抵抗R11で分圧した電圧が入力され、電源電圧の1/2に固定される。オペアンプ9の反転入力端子は、抵抗R8を介してトランジスタ8のエミッタに接続されるとともに、抵抗R8と同じ抵抗値の抵抗R9及び比較電圧源10を介して接地されている。
【0033】
図8の回路においても、オペアンプ9の反転入力端子の電位が非反転入力端子の電位(電源電圧の1/2)と同電位になるように動作するので、抵抗R8,R9の抵抗値が抵抗R7の抵抗値に対して十分大きい条件、又は、比較電圧源10の内部抵抗が抵抗R7と同じである条件が成立する場合には、抵抗R7を流れる電流で生じる電圧降下が比較電圧源10の電圧Vrefと等しくなり、上記ガスセンサ素子1及び温度補償素子2には、Vref/R7定まる値の一定電流が供給される。
なお、図8の回路では、オペアンプ9の反転入力端子と非反転入力端子が電源電圧の1/2の電位になるように動作するので、電源電圧の値とは無関係にセンサ素子等に定電流が供給できる。
【0034】
〔別実施の形態〕
上記実施形態では、ガスセンサ素子1を温度で抵抗値が変化する接触燃焼式のガスセンサ素子で構成したが、接触燃焼式以外の各種ガスセンサ素子を用いることができる。
【0035】
上記実施形態では、電源部300,300Aの電圧源として電池6を用いたが、電池ではなく、商用電源を整流した直流回路の出力を用いてもよい。
【0036】
上記実施形態では、スイッチ3,3a〜3dとして、トランジスタやFETやリレーを用いたが、これ以外の各種導通・非導通の切り替え可能なスイッチを用いることができる。
【図面の簡単な説明】
【図1】第1実施形態のガス検知装置の全体構成を示す電気回路図
【図2】ガスセンサの出力電圧特性を示すグラフ
【図3】第2実施形態のガス検知装置の全体構成を示す電気回路図
【図4】第3実施形態のガス検知装置の全体構成を示す電気回路図
【図5】第4実施形態のガス検知装置の全体構成を示す電気回路図
【図6】第5実施形態のガス検知装置の全体構成を示す電気回路図
【図7】第6実施形態のガス検知装置の全体構成を示す電気回路図
【図8】第7実施形態のガス検知装置の全体構成を示す電気回路図
【図9】従来のガス検知装置の構成を示す電気回路図
【符号の説明】
1 ガスセンサ素子
2 温度補償素子
3 スイッチ
3a 第1スイッチ
3b 第2スイッチ
3c 第1スイッチ
3d 第2スイッチ
7 電流供給路
100 駆動部
200 検知部
300 電源部
300A 電源部
300a 電流供給端子
R1 抵抗
R2 抵抗
R3 抵抗
R4 抵抗
R5 抵抗
R6 抵抗
R7 抵抗
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a gas detection device that includes a gas sensor element and a temperature compensation element, performs gas detection based on a detection voltage output from the gas sensor element and a compensation voltage output from the temperature compensation element, and uses the gas detection apparatus. Gas concentration measurement method.
[0002]
[Prior art]
The gas sensor element is, for example, a contact combustion type sensor element in which a platinum or platinum alloy coil is coated with a catalyst having sensitivity to combustible gas, and the gas causes a combustion reaction on the element surface and the temperature of the sensor element increases. The gas concentration can be measured by utilizing the fact that the resistance of the sensor element changes due to the temperature rise. Specifically, as shown in FIG. 9, the above-mentioned gas sensor element 1 having sensitivity to the gas to be detected and the temperature compensating element 2 having no sensitivity to the gas to be detected are connected in series, and fixed at both ends thereof. When a voltage is applied, a change in the resistance value of the sensor element 1 due to heat generated by the reaction of the gas is detected as a change in the detection voltage of the sensor element 1, and the gas concentration is measured. FIG. 9 shows an example of a detection circuit in which the gas sensor element 1 and the temperature compensating element 2 connected in series are arranged on one side of a bridge circuit, and two resistors Ra and Rb connected in series are arranged on the other side. .
[0003]
The temperature compensating element has a structure in which the same coil as the gas sensor element is not coated with a catalyst, and is used to cancel the influence of a change in ambient temperature. That is, the temperature change due to the reaction of the sensor element with the gas is as small as about several tens of degrees Celsius. Since a change in output cannot be distinguished, a temperature compensating element that has the same resistance value as the sensor element and has the same resistance change with respect to the ambient temperature The effect of temperature is not shown.
[0004]
The problem here is that since the gas sensor element and the temperature compensation element are connected in series as described above, a power supply voltage that is about twice the voltage applied to the gas sensor element is required. Requires a power supply voltage of about 1.6 V to 2.5 V. Therefore, conventionally, it is difficult to design a low-voltage-driven gas detection device when a portable gas detection device or the like is used to reduce the driving voltage and, for example, to make a one-cell or two-cell battery device. There was a problem.
[0005]
On the other hand, as another conventional technique, the gas sensor element and the temperature compensation element are connected in parallel to a power supply terminal via respective resistors, and the gas sensor element and the temperature compensation element are connected based on both voltage signals at a connection point between the sensor element and each resistor of the temperature compensation element. A gas detection device that performs detection has been proposed (see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-8-82611 (pages 1-4, FIGS. 1-5)
[0007]
[Problems to be solved by the invention]
Although not described in Patent Document 1, the value of each resistor connected to the gas sensor element and the temperature compensation element is made smaller than the resistance values of the gas sensor element and the temperature compensation element, so that the power supply voltage is applied to the gas sensor element. There is a possibility that the voltage can be made lower than twice the voltage. However, the gas detection device described in Patent Literature 1 has a configuration in which current is constantly supplied from the power supply unit to the detection circuit, so that power consumption during use of the device becomes large, and, for example, battery consumption when driving with a battery becomes severe. There is a risk.
[0008]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas detection device capable of driving at a low voltage and reducing power consumption, and a gas concentration measurement method suitable for the gas detection device. Is to do.
[0009]
[Means for Solving the Problems]
According to a first characteristic configuration of a gas detection device according to the present invention for achieving the above object, as described in claim 1, a gas sensor element and a temperature compensation element are connected in parallel to a current supply terminal of a power supply unit via a resistor. A switch connected to a current supply path from the current supply terminal to the gas sensor element and the temperature compensation element, the switch being switchable between a non-conductive state and a conductive state; and a switch for intermittently switching the switch to a conductive state. And a detection unit that performs gas detection based on the detection voltage of the gas sensor element and the compensation voltage of the temperature compensation element when the switch is switched to the conductive state.
[0010]
That is, the value of the resistance interposed between the gas sensor element and the temperature compensating element and the current supply terminal of the power supply unit is made smaller than the resistance value of the gas sensor element and the temperature compensating element, thereby lowering the driving voltage of the power supply unit. . Also, only when the detection unit performs gas detection, the drive unit switches the switch to the conductive state to supply current to the gas sensor element and the temperature compensation element, and except when the detection unit performs gas detection, the drive unit turns on the switch. The current is not supplied to the gas sensor element and the temperature compensation element by switching to the non-conductive state.
Therefore, it is possible to provide a gas detection device capable of driving at a low voltage and reducing power consumption.
[0011]
A second feature configuration according to the first feature configuration, wherein the switch is a first switch that interrupts current supply to the gas sensor element, and a current that flows to the temperature compensation element. A second switch for interrupting the supply, wherein the drive unit drives the first switch and the second switch such that when one of the switches is in a conductive state, the other is in a non-conductive state; It holds a voltage signal of both the detection voltage of the gas sensor element when the first switch is switched to the conductive state and the compensation voltage of the temperature compensation element when the second switch is switched to the conductive state, and based on the two voltage signals. Gas detection.
[0012]
That is, the drive unit switches the first switch to the conductive state to supply current to the gas sensor element, and switches the second switch to the non-conductive state to cut off the current supply to the temperature compensation element. Input and hold a voltage signal. Further, the driving unit switches the first switch to a non-conducting state to cut off current supply to the gas sensor element, and switches the second switch to a conducting state to supply current to the temperature compensating element. Input and hold the compensation voltage signal.
Therefore, current is not supplied to the gas sensor element and the temperature compensating element at the same time, but is supplied to only one of the gas sensor element and the temperature compensating element. Therefore, the supply current from the power supply unit is reduced, and the power consumption can be further reduced. When the supply current is reduced, the voltage drop at the battery output terminal when the battery is used for the power supply unit is reduced, and the consumption time of the battery is reduced, and the usable period of the battery is extended. Embodiments are provided.
[0013]
According to a third characteristic configuration, as described in claim 3, in the second characteristic configuration, the gas sensor element and the temperature compensation element are connected in parallel to the current supply terminal via a common resistor. On the point.
[0014]
That is, when the detection unit inputs the detection voltage signal of the gas sensor element, the driving unit switches the first switch to the conducting state and the second switch to the non-conducting state, and the current is applied only to the gas sensor element via the common resistor. When the detection unit inputs the compensation voltage signal of the temperature compensation element, the driving unit switches the first switch to the non-conducting state and the second switch to the conducting state, respectively, and outputs the temperature through the common resistor. A current is supplied only to the compensation element.
Therefore, the resistance interposed between the gas sensor element and the temperature compensating element and the current supply terminal of the power supply unit becomes a single common resistance, so that the circuit configuration is simplified, and at the same time, the current supply terminals of both elements and the power supply unit are provided. When a separate resistor is interposed between the two, it is possible to effectively avoid the possibility that the difference between the characteristics of the two resistors affects the detection voltage of the gas sensor element and the compensation voltage of the temperature compensation element differently. A preferred embodiment of the gas detection device is provided.
[0015]
According to a fourth feature configuration, as set forth in claim 4, in any one of the first to third feature configurations, the power supply unit is in a constant current state with respect to the gas sensor element and the temperature compensation element. The point is to supply current. In other words, when supplying a constant current, only a constant current flows when the power is turned on to turn on the power supply unit and apply a voltage to the gas sensor element and the temperature compensation element, so that an excessive current is suppressed from flowing to the gas sensor element and the like. In addition, it is possible to make the characteristics of the element hardly deteriorate. In addition, since the inrush current on the detection circuit side when the power is turned on is constant, even when a battery is used in the power supply unit, there is no inconvenience that the power supply voltage temporarily drops significantly when the power is turned on.
Therefore, the power supply unit supplies a constant current to prevent deterioration of the characteristics of the gas sensor element and the temperature compensation element, and to provide a preferred embodiment of a gas detection device suitable for use with a battery.
[0016]
According to a fifth feature configuration, as set forth in claim 5, in any one of the first to third feature configurations, the power supply unit is in a constant voltage state with respect to the gas sensor element and the temperature compensation element. The point is to supply current. That is, when supplying a current at a constant voltage, the power supply unit is turned on to apply a voltage to the gas sensor element and the temperature compensating element. As compared with the case, the rising characteristics of each element can be made faster.
Therefore, a preferred embodiment of the gas detection device having a good start-up characteristic is provided by supplying a constant current from the power supply unit.
[0017]
The characteristic configuration of the gas concentration measuring method according to the present invention is, as described in claim 6, a gas concentration measuring method using the gas detection device according to any one of the first to fifth characteristic configurations, After starting current supply to the gas sensor element and the temperature compensation element, the gas concentration is measured based on the detection voltage of the gas sensor element and the compensation voltage of the temperature compensation element before the voltage value is stabilized. .
[0018]
That is, when a current flows from the power supply unit to the gas sensor element and the temperature compensation element via the resistor, the temperature of each element rises, the resistance value of the element changes, and the detection voltage of the gas sensor element and the compensation voltage of the temperature compensation element are changed. Each voltage value changes until it reaches a stable state. However, since the detection circuits on the gas sensor element side connected to the resistor and the temperature compensation element side have the same configuration and are connected in parallel to the power supply, the detection voltage and the compensation voltage change in the same tendency, and the gas concentration Is substantially equal between the time when the current supply to each element is started and the time when a stable state is reached. As a result, the gas concentration can be measured before both voltages reach a stable state.
Therefore, there is provided a gas concentration measuring method capable of quickly measuring the gas concentration at an early stage after the start of the detecting operation by using the gas detecting device having any one of the first to fifth characteristic configurations.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of a gas detection device and a gas concentration measurement method according to the present invention will be described sequentially from the first embodiment, based on the drawings.
[First Embodiment]
As shown in FIG. 1, in the gas detection device of the present invention, the gas sensor element 1 and the temperature compensation element 2 are connected in parallel to the current supply terminal 300a of the power supply unit 300 via the resistors R1 and R2. A switch 3 arranged in a current supply path 7 to the gas sensor element 1 and the temperature compensation element 2 and capable of switching between a non-conductive state and a conductive state, and a driving unit 100 for switching the switch 3 to a conductive state intermittently. And a detection unit 200 that performs gas detection based on the detection voltage V1 of the gas sensor element 1 and the compensation voltage V2 of the temperature compensation element 2 when the switch 3 is switched to the conductive state.
[0020]
The power supply unit 300 is provided with a battery 6 and an operational amplifier 5 for buffering the battery output, and the output terminal of the operational amplifier 5 corresponds to the current supply terminal 300a. Specifically, one or two cells are used as the battery 6, and a power supply voltage of about 0.8 V to 1.3 V is supplied from the power supply unit 300 to the detection circuit side.
[0021]
The gas sensor element 1 and the temperature compensating element 2 have the structures described in the related art. Further, the resistance values of the resistors R1 and R2 are set to be approximately the same as the resistance values of the gas sensor element 1 and the temperature compensating element 2 in the order of several tenths to tenths.
[0022]
The switch 3 is composed of a transistor, and a control signal is output from the control circuit 4 to switch the transistor between a non-conductive state and a conductive state. Therefore, the driving unit 100 is configured in the control circuit 4.
[0023]
Further, the detection unit 200 is configured in the control circuit 4, and the detection unit 200 determines the concentration of the gas to be detected from the difference between the detection voltage V1 of the gas sensor element 1 and the compensation voltage V2 of the compensation voltage 2 of the temperature compensation element 2. Measure. Here, as shown in FIG. 2, the detection voltage V1 and the compensation voltage V2 in the presence of a gas having a constant concentration are measured by turning on a power switch (not shown) of the gas detection device and starting the measurement operation. Alternatively, after the sensor driving operation is started by the intermittent driving, it takes time to stabilize, but each circuit of the same configuration of the gas sensor element 1 and the temperature compensation element 2 connected to the resistor is connected in parallel to the power supply unit 300. (See FIG. 1), the two voltages V1 and V2 change in the same tendency, and the difference voltage ΔV corresponding to the gas concentration is determined when the power of the sensor is turned on or when the sensor driving operation is started and when the sensor reaches a stable state. Is almost equal. As a result, the gas concentration can be measured at an early stage before both voltages V1 and V2 reach a stable state.
[0024]
[Second embodiment]
In the second embodiment, as shown in FIG. 3, the switch 3 includes a first switch 3a for interrupting the current supply to the gas sensor element 1 and a second switch for interrupting the current supply to the temperature compensation element 2. 3b, the drive unit 100 drives the first switch 3a and the second switch 3b such that when one of the switches is in a conductive state, the other is in a non-conductive state. Holds both voltage signals V1 and V2 of the detection voltage V1 of the gas sensor element 1 when the switch 3a is switched to the conducting state and the compensation voltage V2 of the temperature compensation element 2 when the second switch 3b is switched to the conducting state. Then, gas detection is performed based on the two voltage signals V1 and V2. In the figure, 7a is a current supply path to the gas sensor element 1, and 7b is a current supply path to the temperature compensation element 2.
[0025]
The holding of the detection voltage signal V1 and the compensation voltage signal V2 in the detection unit 200 can be realized by providing a so-called sample-and-hold circuit in the control circuit 4 and holding them as analog signals. When the control circuit 4 includes a microcomputer, the control circuit 4 can be realized by storing digital data of the detection voltage signal V1 and the compensation voltage signal V2, which have been AD-converted, in a memory unit in the microcomputer.
[0026]
[Third embodiment]
The third embodiment is a modified configuration of the second embodiment (FIG. 3). As shown in FIG. 4, the gas sensor element 1 and the temperature compensation element 2 are connected to the current supply terminal via a common resistor R3. The difference is that they are connected in parallel to 300a. That is, the resistance interposed between the gas sensor element 1 and the temperature compensation element 2 and the current supply terminal 300a of the power supply unit 300 is replaced with one common resistor R3 instead of the individual resistors R1 and R2.
[0027]
In FIG. 4, the input voltage V3 when the first switch 3a is switched to the conducting state and the second switch 3b is switched to the non-conducting state is held as the detection voltage signal V3a of the gas sensor element 1, The input voltage V3 when the first switch 3a is switched to the non-conductive state and the second switch 3b is switched to the conductive state is held as the compensation voltage signal V3b of the temperature compensating element 2, and the two voltage signals V3a and V3b Gas detection is performed based on the detected gas.
[0028]
[Fourth embodiment]
The fourth embodiment is a circuit example of a constant-voltage-driven power supply unit 300 in which a constant voltage is applied to the gas sensor element 1 and the temperature compensation element 2 themselves.
Specifically, in the circuit shown in FIG. 5, since the inverting input terminal and the non-inverting input terminal of the operational amplifier 5 operate so as to have the same potential, the voltage applied to the gas sensor element 1 and the temperature compensation element 2 It becomes the same as the voltage VB. A current is supplied to the detection circuit side from an output terminal of the operational amplifier 5 through a resistor R5, and a voltage drop V4 generated in the resistor R5 is used as a detection voltage signal V4a of the gas sensor element 1 and a compensation voltage signal V4b of the temperature compensation element 2 for the control circuit 4. To enter. It is necessary to set the resistance value of the resistor R5 so that an excessive current does not flow through the gas sensor element 1 and the temperature compensation element 2.
[0029]
As a modified example of the circuit of FIG. 5, although not shown, a resistor R5 is not provided on the output terminal side of the operational amplifier 5 and the output terminal and the non-inverting terminal are short-circuited. A configuration may be adopted in which a resistor R5a corresponding to R5 is arranged, a current change due to a resistance change of the sensor element 1 is taken out as a voltage drop at the resistor R5a, and a detection voltage of the gas sensor element 1 and a compensation voltage of the temperature compensation element 2 are input. .
[0030]
[Fifth Embodiment]
In the first to fourth embodiments, the power supply unit 300 supplies a current to the detection circuit side in a constant voltage state. However, in the fifth embodiment, the power supply unit 300A includes the gas sensor element 1 and the temperature compensation element. 2 is supplied in a constant current state.
Specifically, as shown in FIG. 6, the output of the battery 6 is connected to the non-inverting input terminal of the operational amplifier 5A, and the gas sensor element 1 and the first switch 3c are connected between the output terminal and the inverting input terminal of the operational amplifier 5A. The temperature compensating element 2 and the second switch 3d are arranged in parallel, and the non-inverting input terminal of the operational amplifier 5A is grounded by the resistor R4. In this circuit, since the non-inverting input terminal of the operational amplifier 5A operates so as to be equal to the output voltage VB of the battery 6, the output voltage VB of the battery 6 is applied to the resistor R4, and the current flowing through the resistor R4, that is, The current flowing through the gas sensor element 1 and the temperature compensation element 2 has a constant value (VB / R4). Here, since the current flowing through each of the elements 1 and 2 is constant, the output voltage VB of the battery 6 can be lowered, and the resistance value of the resistor R4 can be reduced. In FIG. 6, the first and second switches 3a and 3b are configured by relays or the like.
[0031]
[Sixth embodiment]
The sixth embodiment is another circuit example of a power supply unit 300A that supplies a current in a constant current state, in which a current limiting resistor is disposed on the power supply side, and the gas sensor element 1 and the temperature compensation element 2 are grounded (grounded). It is arranged on the side.
Specifically, as shown in FIG. 7, a current is supplied from the power supply voltage terminal to the detection circuit side through the resistor R6 and the transistor 8, but the output terminal is a non-inverting input terminal of the operational amplifier 9 connected to the base of the transistor 8. A comparison voltage source 10 is arranged between the power supply voltage terminal and the inverting input terminal of the operational amplifier 9 and the emitter of the transistor 8 is short-circuited. Also in this circuit, since the inverting input terminal and the non-inverting input terminal of the operational amplifier 9 operate so as to have the same potential, the voltage drop due to the resistor R6 becomes equal to the voltage Vref of the comparison voltage source 10, and the gas sensor element 1 and the temperature A constant current having a value determined by Vref / R6 is supplied to the compensation element 2.
In the circuit of FIG. 7, since the gas sensor element 1 and the temperature compensation element 2 are arranged on the ground side, switch elements such as transistors and FETs can be used as the first switch 3a and the second switch 3b.
[0032]
[Seventh embodiment]
The seventh embodiment is basically the same as the sixth embodiment, except that the comparative voltage source 10 is not based on the power supply terminal side but on the ground. In the case of a general electronic circuit, by using the ground as a reference, it is possible to easily configure a general-purpose power supply reference IC or the like as the comparison voltage source 10, and to obtain a more practical circuit.
Specifically, as shown in FIG. 8, current is supplied from the power supply voltage terminal to the detection circuit side through the resistor R7 and the transistor 8, but the output terminal is connected to the non-inverting input terminal of the operational amplifier 9 connected to the base of the transistor 8. Is supplied with a voltage obtained by dividing the power supply voltage by two resistors R10 and R11 having the same resistance value, and is fixed to 電源 of the power supply voltage. The inverting input terminal of the operational amplifier 9 is connected to the emitter of the transistor 8 via a resistor R8, and is grounded via a resistor R9 having the same resistance value as the resistor R8 and a comparison voltage source 10.
[0033]
The circuit of FIG. 8 also operates such that the potential of the inverting input terminal of the operational amplifier 9 becomes the same as the potential of the non-inverting input terminal (電 圧 of the power supply voltage). When a condition that is sufficiently large with respect to the resistance value of R7 or a condition that the internal resistance of the comparison voltage source 10 is the same as that of the resistor R7 is satisfied, a voltage drop caused by a current flowing through the resistor R7 causes a voltage drop of the comparison voltage source 10. The voltage becomes equal to the voltage Vref, and a constant current having a value determined by Vref / R7 is supplied to the gas sensor element 1 and the temperature compensation element 2.
In the circuit shown in FIG. 8, since the inverting input terminal and the non-inverting input terminal of the operational amplifier 9 operate so as to have a potential of 1/2 of the power supply voltage, a constant current is supplied to the sensor element or the like regardless of the value of the power supply voltage. Can be supplied.
[0034]
[Another embodiment]
In the above embodiment, the gas sensor element 1 is a contact combustion type gas sensor element whose resistance value changes with temperature, but various gas sensor elements other than the contact combustion type can be used.
[0035]
In the above embodiment, the battery 6 is used as the voltage source of the power supply units 300 and 300A. However, instead of the battery, an output of a DC circuit obtained by rectifying a commercial power supply may be used.
[0036]
In the above embodiment, transistors, FETs, and relays are used as the switches 3, 3a to 3d. However, other switches that can be switched between conducting and non-conducting can be used.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing an overall configuration of a gas detection device according to a first embodiment. FIG. 2 is a graph showing output voltage characteristics of a gas sensor. FIG. 3 is an electric diagram showing an overall configuration of a gas detection device according to a second embodiment. FIG. 4 is an electric circuit diagram showing the entire configuration of the gas detection device according to the third embodiment. FIG. 5 is an electric circuit diagram showing the entire configuration of the gas detection device according to the fourth embodiment. FIG. 6 is a fifth embodiment. FIG. 7 is an electric circuit diagram showing the entire configuration of the gas detection device of FIG. 7. FIG. 8 is an electric circuit diagram showing the entire configuration of the gas detection device of the sixth embodiment. FIG. 8 is an electric diagram showing the entire configuration of the gas detection device of the seventh embodiment. Circuit diagram [Figure 9] Electric circuit diagram showing configuration of conventional gas detection device [Explanation of reference numerals]
DESCRIPTION OF SYMBOLS 1 Gas sensor element 2 Temperature compensation element 3 Switch 3a 1st switch 3b 2nd switch 3c 1st switch 3d 2nd switch 7 Current supply path 100 Drive section 200 Detecting section 300 Power supply section 300A Power supply section 300a Current supply terminal R1 Resistance R2 Resistance R3 Resistance R4 Resistance R5 Resistance R6 Resistance R7 Resistance

Claims (6)

ガスセンサ素子と温度補償素子が抵抗を介して電源部の電流供給端子に並列接続され、
前記電流供給端子から前記ガスセンサ素子及び前記温度補償素子への電流供給路に配置され且つ非導通状態と導通状態とに切り替え可能なスイッチと、前記スイッチを間欠的に導通状態に切り替え駆動する駆動部と、前記スイッチを導通状態に切り替えたときの前記ガスセンサ素子の検出電圧及び前記温度補償素子の補償電圧に基づいてガス検知を行う検知部が備えられているガス検知装置。
The gas sensor element and the temperature compensation element are connected in parallel to the current supply terminal of the power supply via a resistor,
A switch disposed in a current supply path from the current supply terminal to the gas sensor element and the temperature compensation element and capable of switching between a non-conducting state and a conducting state, and a drive unit for intermittently switching and driving the switch to a conducting state And a detection unit that performs gas detection based on a detection voltage of the gas sensor element when the switch is switched to a conductive state and a compensation voltage of the temperature compensation element.
前記スイッチが、前記ガスセンサ素子への電流供給を断続する第1スイッチと、前記温度補償素子への電流供給を断続する第2スイッチとからなり、
前記駆動部が、前記第1スイッチ及び第2スイッチを一方が導通状態のときに他方が非導通状態となるように駆動し、
前記検知部が、前記第1スイッチを導通状態に切り替えたときの前記ガスセンサ素子の検出電圧及び前記第2スイッチを導通状態に切り替えたときの前記温度補償素子の補償電圧の両電圧信号を保持して、その両電圧信号に基づいてガス検知を行う請求項1記載のガス検知装置。
The switch comprises a first switch for interrupting the current supply to the gas sensor element, and a second switch for interrupting the current supply to the temperature compensation element;
The drive unit drives the first switch and the second switch such that when one of the switches is in a conductive state, the other is in a non-conductive state;
The detection unit holds both a voltage signal of a detection voltage of the gas sensor element when the first switch is turned on and a compensation voltage of the temperature compensation element when the second switch is turned on. 2. The gas detection device according to claim 1, wherein gas detection is performed based on the two voltage signals.
前記ガスセンサ素子と前記温度補償素子が、共通の抵抗を介して前記電流供給端子に並列接続されている請求項2記載のガス検知装置。The gas detection device according to claim 2, wherein the gas sensor element and the temperature compensation element are connected in parallel to the current supply terminal via a common resistor. 前記電源部が、前記ガスセンサ素子及び前記温度補償素子に対して定電流状態で電流供給する請求項1〜3のいずれかに記載のガス検知装置。The gas detection device according to claim 1, wherein the power supply unit supplies a current to the gas sensor element and the temperature compensation element in a constant current state. 前記電源部が、前記ガスセンサ素子及び前記温度補償素子に対して定電圧状態で電流供給する請求項1〜3のいずれかに記載のガス検知装置。The gas detection device according to any one of claims 1 to 3, wherein the power supply unit supplies a current to the gas sensor element and the temperature compensation element in a constant voltage state. 請求項1〜5のいずれかに記載のガス検知装置を用いたガス濃度測定方法であって、前記ガスセンサ素子及び前記温度補償素子に対して電流供給を開始した後、電圧値が安定化する前の前記ガスセンサ素子の検出電圧及び前記温度補償素子の補償電圧に基づいてガス濃度を測定するガス濃度測定方法。A gas concentration measurement method using the gas detection device according to any one of claims 1 to 5, wherein current supply to the gas sensor element and the temperature compensation element is started, and before a voltage value is stabilized. A gas concentration measuring method for measuring a gas concentration based on a detection voltage of the gas sensor element and a compensation voltage of the temperature compensation element.
JP2003073099A 2003-03-18 2003-03-18 Gas detector and gas concentration measuring method Expired - Fee Related JP3989390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073099A JP3989390B2 (en) 2003-03-18 2003-03-18 Gas detector and gas concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073099A JP3989390B2 (en) 2003-03-18 2003-03-18 Gas detector and gas concentration measuring method

Publications (2)

Publication Number Publication Date
JP2004279288A true JP2004279288A (en) 2004-10-07
JP3989390B2 JP3989390B2 (en) 2007-10-10

Family

ID=33289075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073099A Expired - Fee Related JP3989390B2 (en) 2003-03-18 2003-03-18 Gas detector and gas concentration measuring method

Country Status (1)

Country Link
JP (1) JP3989390B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184264A (en) * 2014-03-26 2015-10-22 新コスモス電機株式会社 Contact combustion type gas sensor and driving method of the same
JP2016151467A (en) * 2015-02-17 2016-08-22 新コスモス電機株式会社 Gas sensor
JP2016151468A (en) * 2015-02-17 2016-08-22 新コスモス電機株式会社 Gas sensor
JP2016194480A (en) * 2015-04-01 2016-11-17 日本特殊陶業株式会社 Fluid state detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184264A (en) * 2014-03-26 2015-10-22 新コスモス電機株式会社 Contact combustion type gas sensor and driving method of the same
JP2016151467A (en) * 2015-02-17 2016-08-22 新コスモス電機株式会社 Gas sensor
JP2016151468A (en) * 2015-02-17 2016-08-22 新コスモス電機株式会社 Gas sensor
JP2016194480A (en) * 2015-04-01 2016-11-17 日本特殊陶業株式会社 Fluid state detection device

Also Published As

Publication number Publication date
JP3989390B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP3694709B2 (en) AC excitation / resistance pressure sensor
US7573275B2 (en) Temperature sensor control apparatus
US20060097731A1 (en) Accurate and efficient sensing method for bi-directional signals
JP2001022323A (en) Drive circuit for light emitting display unit
FR2861179B1 (en) DEVICE FOR NON-DISSIPATING CURRENT MEASUREMENT IN INDUCTANCE
JP2008008724A (en) Current detection circuit
TW200923378A (en) Systems and methods for an open circuit current limiter
JP2004150951A (en) Battery management circuit and electronic apparatus
JP2810541B2 (en) Lambda sensor internal resistance measurement circuit
JP3989390B2 (en) Gas detector and gas concentration measuring method
JP2006098171A (en) Semiconductor integrated circuit for magnetic detection and electronic component which mounts it
JP4787056B2 (en) Gas detection device and gas detection method
JPH08507376A (en) Current replication circuit and oxygen monitoring in exhaust
JP3966186B2 (en) Electric quantity detection sensor
US20130093429A1 (en) Battery gauge estimation device
JP2005172796A (en) Current-voltage converting circuit
JP6494318B2 (en) Gas sensor
JP2001091385A (en) Bridge sensor with function of detecting breaking of wire
JP6453663B2 (en) Gas sensor
JP4914671B2 (en) Gas detector
JP3237822B2 (en) Infrared imaging device
JP5861834B2 (en) Energization control device for gas detection element
JP4705724B2 (en) Auto zero correction circuit
JP2008304272A (en) Gas concentration detector
US20060130574A1 (en) Instrument cluster integrated bias circuit for fuel level sensor on flex-fuel vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140727

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees