JPH1019809A - Fluorescent x-ray analyzer - Google Patents

Fluorescent x-ray analyzer

Info

Publication number
JPH1019809A
JPH1019809A JP17908896A JP17908896A JPH1019809A JP H1019809 A JPH1019809 A JP H1019809A JP 17908896 A JP17908896 A JP 17908896A JP 17908896 A JP17908896 A JP 17908896A JP H1019809 A JPH1019809 A JP H1019809A
Authority
JP
Japan
Prior art keywords
ray
rays
ray source
detecting means
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17908896A
Other languages
Japanese (ja)
Inventor
Kazuji Yokoyama
和司 横山
Akira Kobayashi
明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17908896A priority Critical patent/JPH1019809A/en
Publication of JPH1019809A publication Critical patent/JPH1019809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorescent X-ray analyzer capable of achieving fluorescent X-ray analysis of light elements at S/N ratio and of simultaneously measuring heavy elements. SOLUTION: An emitting opening for emitting X rays from an X-ray source 1 without damping is provided in the X-ray source 1, and also charged particle removing means is provided between the X-ray source 1 and a sample 7, and further an orbit of the X rays is kept in a vacuum. Thereby, even X rays of characteristics of low energy can be incident on the sample 7 without damping strength, and charged particles which are a cause of reduction in S/N ratio are not advanced in the device. Further, detecting means of fluorescent X rays is constructed by comprising high energy area detecting means and low energy area detecting means, whereby all energy areas can be concurrently detected and accordingly light elements and heavy elements can be concurrently measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,X線源で発生させ
たX線を試料に入射することによって発生する蛍光X線
を検出することによって試料表面の元素の分析を行う蛍
光X線分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray fluorescence analyzer for analyzing elements on the surface of a sample by detecting X-ray fluorescence generated when the X-ray generated by an X-ray source is incident on the sample. About.

【0002】[0002]

【従来の技術】半導体分野では,デバイスの高集積化に
伴い,表面上の微量の不純物がその性能に大きな影響を
及ぼす場合がある。そこで,上記微量の不純物を検出す
るために,極微量の元素分析・評価技術が重要視されて
いる。その分析・評価技術の一つとしてX線を利用した
手法があるが,その代表的なものとして蛍光X線分析手
法がある。これは,X線源で発生させたX線を試料に入
射することによって発生する蛍光X線を検出することに
よって,試料表面の微量元素の分析を行うものである。
従来の蛍光X線分析装置の構成例を図5に示す。X線源
31から発せられたX線37は,上記X線源31に設置
された図示しないベリリウム窓を透過した後,スリット
32で整形され,分光結晶33を介して試料34に入射
する。上記入射X線によって励起された試料34上の構
成元素は,各固有のエネルギー(波長)を有する蛍光X
線38を放出し,放出された蛍光X線38はX線検出器
35によって検出される。上記X線検出器35では,入
射した蛍光X線の強度をそのエネルギーに応じた電圧パ
ルスに変換して信号処理回路36に出力する。上記信号
処理回路36では,上記電圧パルスをその波高毎にカウ
ントすることによって上記蛍光X線のエネルギーごとの
強度測定が行われ,これによって試料34上の微量元素
の定量分析が行われる。ここで,上記元素の励起に用い
られるX線は連続X線と特性X線とからなっているが,
特に微量元素の励起には上記特性X線が用いられる。こ
れは,図6に示すように,連続X線に比べて特性X線の
方が強度が強く,励起効率が良いからである。この特性
X線は,X線を発生させるためにX線源に備えられてい
るターゲット材の物質ごとにそのエネルギー(波長)及
び強度が異なってくる。また,入射X線(この場合は特
性X線)のエネルギーが,対象とする元素の励起エネル
ギー(吸収端エネルギー)に近いほど蛍光効率が良いた
め,対象とする元素に応じてターゲット材の使い分けが
行われる。
2. Description of the Related Art In the field of semiconductors, a small amount of impurities on the surface may have a great effect on the performance as devices become more highly integrated. Therefore, in order to detect the above-mentioned trace impurities, a trace trace element analysis and evaluation technique is regarded as important. As one of the analysis / evaluation techniques, there is a technique using X-rays, and a typical one is a fluorescent X-ray analysis technique. This is to analyze trace elements on the surface of a sample by detecting fluorescent X-rays generated by irradiating the sample with X-rays generated by an X-ray source.
FIG. 5 shows a configuration example of a conventional X-ray fluorescence analyzer. The X-ray 37 emitted from the X-ray source 31 passes through a beryllium window (not shown) provided in the X-ray source 31, is shaped by a slit 32, and is incident on a sample 34 via a spectral crystal 33. The constituent elements on the sample 34 excited by the incident X-rays are fluorescent X-rays each having a specific energy (wavelength).
The emitted fluorescent X-rays 38 are detected by an X-ray detector 35. The X-ray detector 35 converts the intensity of the incident fluorescent X-ray into a voltage pulse corresponding to the energy and outputs the voltage pulse to the signal processing circuit 36. The signal processing circuit 36 measures the intensity of each fluorescent X-ray energy by counting the voltage pulse for each wave height, thereby performing a quantitative analysis of a trace element on the sample 34. Here, the X-rays used to excite the above elements consist of continuous X-rays and characteristic X-rays.
In particular, the characteristic X-rays described above are used to excite trace elements. This is because, as shown in FIG. 6, the characteristic X-ray has higher intensity and higher excitation efficiency than the continuous X-ray. The energy (wavelength) and intensity of the characteristic X-ray differ depending on the substance of the target material provided in the X-ray source for generating the X-ray. Further, as the energy of the incident X-ray (characteristic X-ray in this case) is closer to the excitation energy (absorption edge energy) of the target element, the fluorescence efficiency is higher, so that the target material can be properly used depending on the target element. Done.

【0003】[0003]

【発明が解決しようとする課題】ところが,従来の蛍光
X線分析装置には以下のような問題点があった。軽元素
を対象とする場合,その吸収端エネルギーが低いために
励起に用いる特性X線のエネルギーも低く,したがって
上記X線源のベリリウム窓を通過する際の減衰によって
該特性X線の強度が低くなり,精度の高い十分な信号量
を得るには時間がかかることから,微量の軽元素の分析
は事実上不可能であった。そこで,上記ベリリウム窓を
薄くして透過率を上げる方法も考えられるが,ターゲッ
ト材からX線と同時に出射する散乱電子が,上記ベリリ
ウム窓を通過してバックグラウンドノイズ源となること
によって,検出信号のS/N比が低下するという問題点
があった。また,多くの場合,上記X線検出器35とし
て半導体検出器が用いられているが,該検出器に設置さ
れているベリリウム窓による低エネルギーX線の減衰が
大きいため,該半導体検出器では軽元素の信号の検出は
不可能である。また,上記半導体検出器ではなく分光素
子と薄いX線入射窓を有する比例計数管を用いる場合に
は,こんどは分光波長の範囲が限定されることによって
軽元素と同時に重元素(主にK線)を測定することが困
難な場合が発生する。本発明は上記事情に鑑みてなされ
たものであり,その目的とするところは,軽元素の蛍光
X線分析を高いS/N比で実現し,同時に重元素の測定
も行うことが可能な蛍光X線分析装置を提供することで
ある。
However, the conventional X-ray fluorescence analyzer has the following problems. In the case of a light element, the energy of the characteristic X-ray used for excitation is low due to its low absorption edge energy, and the intensity of the characteristic X-ray is low due to attenuation when passing through the beryllium window of the X-ray source. Therefore, it takes time to obtain a sufficient signal amount with high accuracy, and therefore, it has been practically impossible to analyze a trace amount of light elements. Therefore, it is conceivable to increase the transmittance by thinning the beryllium window. However, scattered electrons emitted simultaneously with the X-rays from the target material pass through the beryllium window and become a background noise source, so that the detection signal is reduced. However, there was a problem that the S / N ratio was lowered. In many cases, a semiconductor detector is used as the X-ray detector 35. However, since a low energy X-ray is greatly attenuated by a beryllium window installed in the detector, the semiconductor detector is light. Detection of elemental signals is not possible. When a proportional counter having a spectroscopic element and a thin X-ray incident window is used instead of the semiconductor detector, a light element and a heavy element (mainly a K-ray ) May be difficult to measure. The present invention has been made in view of the above circumstances, and it is an object of the present invention to realize a fluorescent X-ray analysis of a light element with a high S / N ratio and at the same time, a heavy element can be measured. An object of the present invention is to provide an X-ray analyzer.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は,X線源で発生させたX線を試料に入射する
ことによって発生する蛍光X線を検出手段で検出するこ
とによって上記試料表面の元素の分析を行う蛍光X線分
析装置において,X線源に,該X線源からX線を減衰な
しに発射させる発射開口を設けると共に,上記X線源と
試料との間に荷電粒子除去手段を設け,更に上記X線の
軌道上を真空に保つようにしたことを特徴とする蛍光X
線分析装置として構成されている。また,より効率よく
荷電粒子を除去するために,上記荷電粒子除去手段を上
記X線源の直後に設置してもよい。更に,上記荷電粒子
除去手段は,散乱電子の軌道を偏向すると共に吸着する
電極によって構成することができる。更に,上記荷電粒
子除去手段は,散乱電子の軌道を偏向する磁場発生手段
と,上記散乱電子を吸着する電極によって構成すること
もできる。また,上記検出手段を,高エネルギー領域検
出手段と低エネルギー領域検出手段とを具備して構成す
ることによって,あらゆるエネルギー領域の検出を同時
に行えるようにすることができる。更に,上記高エネル
ギー領域検出手段に半導体検出器を,上記低エネルギー
領域検出手段に分光素子と比例計数管を,それぞれ用い
ることができる。更に,上記比例計数管が,高分子でで
きた入射窓を具備することによって,低エネルギーの蛍
光X線を効率よく検出できるようにすることができる。
In order to achieve the above object, the present invention provides a method for detecting fluorescent X-rays, which is generated by irradiating a sample with X-rays generated by an X-ray source. In an X-ray fluorescence spectrometer for analyzing elements on a sample surface, an X-ray source is provided with an emission opening for emitting X-rays from the X-ray source without attenuation, and a charge is provided between the X-ray source and the sample. A fluorescent particle, wherein a particle removing means is provided, and the orbit of the X-ray is maintained in a vacuum.
It is configured as a line analyzer. In order to more efficiently remove charged particles, the charged particle removing means may be provided immediately after the X-ray source. Further, the charged particle removing means can be constituted by an electrode which deflects and adsorbs the trajectory of the scattered electrons. Further, the charged particle removing means may be constituted by a magnetic field generating means for deflecting the trajectory of the scattered electrons and an electrode for adsorbing the scattered electrons. Further, by configuring the detection means to include the high energy area detection means and the low energy area detection means, it is possible to simultaneously detect all energy areas. Furthermore, a semiconductor detector can be used as the high energy region detecting means, and a spectroscopic element and a proportional counter can be used as the low energy region detecting means. Further, by providing the proportional counter with an entrance window made of a polymer, it is possible to efficiently detect low-energy fluorescent X-rays.

【0005】[0005]

【作用】本発明に係る蛍光X線分析装置は,X線源に,
該X線源からX線を減衰なしに発射させる発射開口を設
けているため,低エネルギーの特性X線でも,強度を減
衰させることなく出射することができる。更に,上記X
線源と試料との間に荷電粒子除去手段を設けているた
め,上記発射開口からX線と同時に出射されS/N比低
減の原因となる荷電粒子を装置内に進入させることがな
い。更に,上記X線の軌道上を真空に保っているため,
空気によるX線の減衰もない。また,散乱電子の軌道を
偏向すると共に吸着する電極によって,あるいは散乱電
子の軌道を偏向する磁場発生手段と上記散乱電子を吸着
する電極によって構成する上記荷電粒子除去手段を,上
記X線源の直後に設置することにより,効率よく荷電粒
子を除去することが可能である。また,上記検出手段
を,高エネルギー領域検出手段と低エネルギー領域検出
手段とを具備して構成することによって,あらゆるエネ
ルギー領域の検出を同時に行うことができ,したがって
軽元素,重元素を同時に測定することが可能となる。
The X-ray fluorescence spectrometer according to the present invention comprises:
Since the emission opening for emitting X-rays without attenuation from the X-ray source is provided, even low-energy characteristic X-rays can be emitted without attenuating the intensity. Further, the above X
Since the charged particle removing means is provided between the radiation source and the sample, charged particles which are emitted simultaneously with the X-rays from the emission aperture and cause a reduction in the S / N ratio do not enter the apparatus. Furthermore, since the X-ray orbit is kept in a vacuum,
There is no attenuation of X-rays by air. In addition, the charged particle removing means constituted by an electrode which deflects and adsorbs the trajectory of the scattered electrons or a magnetic field generating means which deflects the trajectory of the scattered electrons and the electrode which adsorbs the scattered electrons is provided immediately after the X-ray source. By installing the device at a location, charged particles can be efficiently removed. In addition, since the detecting means is provided with the high-energy area detecting means and the low-energy area detecting means, it is possible to simultaneously detect all energy areas, and thus to measure light and heavy elements simultaneously. It becomes possible.

【0006】[0006]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は本発明を具
体化した一例であって,本発明の技術的範囲を限定する
性格のものではない。ここに,図1は本発明の実施の形
態に係る蛍光X線分析装置の概略構成を示す図,図2は
低エネルギー領域検出手段の概略構成及び検出方法を示
す図,図3は荷電粒子除去手段の概略構成を示す図,図
4は本発明の実施の形態に係る蛍光X線分析装置による
測定結果を示すスペクトル図である。本実施の形態に係
る蛍光X線分析装置は,図1に示す如く構成されてい
る。回転対陰極型のX線源1は,ベリリウム窓等の透過
膜を持っていない。したがって上記X線源1から強度の
減衰なく出射されたX線は,X線の進行方向に直交する
ように電場を発生させる一対の電極板2の間を通過す
る。ここで上記X線源1から上記X線と共に出射された
散乱電子の軌跡が偏向され,上記電極板2にぶつかるこ
とによって消滅する(詳細は後述する)。一方,上記X
線は,上記電場に影響されることなく進行し,縦型スリ
ット3及び横型スリット4によって整形され,設置ステ
ージ6上に設置されたミラー5によって集光され,試料
7に入射する。上記試料7は,自由に角度を調節可能な
ゴニオステージ8上に固定されている。X線が試料7に
入射することによって発生した蛍光X線は,多数の薄い
金属板を一定間隔で平行に重ねたソーラースリット9を
通過することによって平行X線束となる。その内,低エ
ネルギー領域の蛍光X線は,タングステンとシリコンか
らなる人工多層膜の平板素子10によって分光され,位
置敏感型の比例計数管検出器11によって検出される。
また上記比例計数管検出器11は,低エネルギーの蛍光
X線を効率よく検出するために,透過率の大きい薄い高
分子膜による窓11aが設置されている(図2参照)。
また,高エネルギー領域の蛍光X線は,半導体検出器1
2で検出される。上記比例計数管検出器11及び半導体
検出器12で検出された信号は,信号処理器13によっ
てパルス整形,パルス波高分析することによって試料7
上の元素の定量分析が行われる。また,上記X線源1に
は真空排気装置15が接続され,内部が真空に保たれて
いる。更に,上記X線源1から出射後のX線の軌道上に
設置されている上記電極板2,スリット3,…,比例計
数管検出器11,半導体検出器12等はすべて図のよう
に真空排気装置16に接続された真空チャンバ17内に
収められている。更に,上記X線源1と真空チャンバ1
7は図3のように真空ダクト18によって接続され,測
定時以外はゲートバルブ14によって遮断される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to facilitate understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. FIG. 1 is a diagram showing a schematic configuration of an X-ray fluorescence spectrometer according to an embodiment of the present invention, FIG. 2 is a diagram showing a schematic configuration of a low energy region detecting means and a detection method, and FIG. FIG. 4 is a diagram showing a schematic configuration of the means, and FIG. 4 is a spectrum diagram showing a measurement result obtained by a fluorescent X-ray analyzer according to the embodiment of the present invention. The X-ray fluorescence analyzer according to the present embodiment is configured as shown in FIG. The rotating anti-cathode type X-ray source 1 does not have a transmission film such as a beryllium window. Therefore, the X-ray emitted from the X-ray source 1 without attenuation of intensity passes between the pair of electrode plates 2 for generating an electric field so as to be orthogonal to the traveling direction of the X-ray. Here, the trajectory of the scattered electrons emitted together with the X-rays from the X-ray source 1 is deflected and disappears by hitting the electrode plate 2 (details will be described later). On the other hand, the above X
The line travels without being affected by the electric field, is shaped by the vertical slit 3 and the horizontal slit 4, is collected by the mirror 5 installed on the installation stage 6, and enters the sample 7. The sample 7 is fixed on a gonio stage 8 whose angle can be freely adjusted. The fluorescent X-rays generated by the X-rays incident on the sample 7 are converted into a parallel X-ray flux by passing through a solar slit 9 in which a large number of thin metal plates are stacked in parallel at regular intervals. Among them, the fluorescent X-rays in the low energy region are separated by the artificial multilayered flat plate element 10 made of tungsten and silicon, and detected by the position-sensitive proportional counter detector 11.
In addition, the proportional counter detector 11 is provided with a window 11a made of a thin polymer film having a high transmittance in order to efficiently detect low-energy fluorescent X-rays (see FIG. 2).
In addition, the fluorescent X-rays in the high energy region are transmitted to the semiconductor detector 1
2 is detected. The signal detected by the proportional counter detector 11 and the semiconductor detector 12 is subjected to pulse shaping and pulse height analysis by a signal processor 13 so that a sample 7 is obtained.
Quantitative analysis of the above elements is performed. Further, a vacuum exhaust device 15 is connected to the X-ray source 1, and the inside thereof is kept at a vacuum. Further, the electrode plate 2, the slits 3,..., The proportional counter detector 11, the semiconductor detector 12, and the like, which are provided on the orbit of the X-rays emitted from the X-ray source 1, are all vacuum as shown in FIG. It is housed in a vacuum chamber 17 connected to an exhaust device 16. Further, the X-ray source 1 and the vacuum chamber 1
7 is connected by a vacuum duct 18 as shown in FIG. 3 and is shut off by the gate valve 14 except during measurement.

【0007】次に,上記電極板2による散乱電子の処理
方法について説明する。上述のように,上記X線源1は
ベリリウム窓等の散乱電子を遮断する手段を有しないた
め,そのままではX線と共に散乱電子も自由に装置内に
飛び込んでくる。この散乱電子は数10keVの高エネ
ルギーを有しており,装置内の壁面に衝突してバックグ
ラウンドノイズを発生し,S/N比を低下させる等の弊
害を生じさせる。そこで,本実施の形態に係る装置で
は,図3に示すように,上記X線源の直後即ち真空チャ
ンバ17の入り口部分に一対の電極板2を設置し,電場
を発生させることによって上記散乱電子の軌道を偏向
し,上記電極板2に衝突させて消滅させる。図3のよう
に,上記電極板2は真空ダクト18の内径と同じ間隔で
設置されており,この電極板2に適当な印加電圧を加え
ることによって散乱電子の軌道は正電極側に大きく曲げ
られる。この時,X線の軌道には全く影響はない。更に
上記電極板2の散乱電子進行方向の長さを十分にとるこ
とによって,上記軌道を曲げられた散乱電子は全て正電
極表面に衝突し,電流となって消滅する。したがって装
置内に散乱電子が飛び込んで弊害を生じさせることはな
く,またX線の軌道や強度に影響を与えることもない。
Next, a method for treating scattered electrons by the electrode plate 2 will be described. As described above, since the X-ray source 1 does not have a means for blocking scattered electrons such as a beryllium window, scattered electrons as well as X-rays can freely enter the apparatus as it is. The scattered electrons have a high energy of several tens keV, and collide with the wall surface inside the device to generate background noise, thereby causing problems such as lowering the S / N ratio. Therefore, in the apparatus according to the present embodiment, as shown in FIG. 3, a pair of electrode plates 2 is installed immediately after the X-ray source, that is, at the entrance of the vacuum chamber 17, and an electric field is generated to generate the scattered electrons. Is deflected to collide with the electrode plate 2 and disappear. As shown in FIG. 3, the electrode plates 2 are arranged at the same interval as the inner diameter of the vacuum duct 18. By applying an appropriate voltage to the electrode plate 2, the trajectory of the scattered electrons is largely bent toward the positive electrode. . At this time, there is no effect on the X-ray orbit. Furthermore, by making the length of the electrode plate 2 sufficiently long in the direction in which the scattered electrons travel, all the scattered electrons whose trajectory has been bent collide with the surface of the positive electrode and disappear as current. Therefore, the scattered electrons do not enter the apparatus and cause no harm, and the trajectory and intensity of the X-rays are not affected.

【0008】以上の装置構成により測定されたスペクト
ルの例を図4に示す。比例計数管検出器11と半導体検
出器12によって測定された信号は,上記信号処理器1
3によって上記2つの検出器の間の検出感度のキャリブ
レーションによる補正処理とバックグラウンド処理が行
われ,異なる検出器で得られた信号が同一のスペクトル
表示画面上に表示される。以上説明したように,本実施
の形態に係る蛍光X線分析装置は,X線源1にベリリウ
ム窓等のX線を減衰させる原因となるものは設置されて
おらず,またX線軌道上は全て真空に保たれているた
め,空気によるX線の減衰もない。したがってX線が試
料7に入射するまでの間に該X線を物理的に減衰させる
ものはスリット3,4及びミラー5のみである。また試
料7から発生した蛍光X線が比例計数管検出器11及び
半導体検出器12に入射するまでの間に該蛍光X線を物
理的に減衰させるものはソーラースリット9と平板素子
10,及び各検出器に取り付けられた入射窓のみであ
る。更に,低エネルギー領域の蛍光X線を検出する上記
比例計数管検出器11の上記入射窓には,極薄い高分子
膜が用いられている。したがって上記X線源1から出射
されるX線,及び試料7から出射される蛍光X線を大き
く減衰させることなく測定を行うことができるので,微
量の軽元素を対象とする分析を行うことが可能である。
また,上記X線源1からX線と同時に出射され,S/N
比低下の原因となる拡散電子は,上記X線源1の直後で
全て消滅させてしまうため,装置内に飛び込んでくるこ
とはなく,S/N比を低下させることなく高精度の測定
を行うことができる。更に,低エネルギー領域検出手段
である平板素子10と比例計数管検出器11,及び高エ
ネルギー領域検出手段である半導体検出器12を併用す
ることによって,軽元素と重元素を同時に分析対象とす
る事が可能である。
FIG. 4 shows an example of a spectrum measured by the above apparatus configuration. The signals measured by the proportional counter detector 11 and the semiconductor detector 12 are transmitted to the signal processor 1.
The correction process and the background process by the calibration of the detection sensitivity between the two detectors are performed by 3 and the signals obtained by the different detectors are displayed on the same spectrum display screen. As described above, in the X-ray fluorescence spectrometer according to the present embodiment, the X-ray source 1 is not provided with a beryllium window or the like that causes attenuation of X-rays. Since all are kept in a vacuum, there is no X-ray attenuation by air. Therefore, only the slits 3 and 4 and the mirror 5 physically attenuate the X-rays before the X-rays enter the sample 7. A device that physically attenuates the fluorescent X-rays before the fluorescent X-rays generated from the sample 7 enter the proportional counter detector 11 and the semiconductor detector 12 includes a solar slit 9, a flat plate element 10, Only the entrance window attached to the detector. Further, an extremely thin polymer film is used for the entrance window of the proportional counter detector 11 for detecting fluorescent X-rays in a low energy region. Therefore, the measurement can be performed without greatly attenuating the X-rays emitted from the X-ray source 1 and the fluorescent X-rays emitted from the sample 7, so that analysis for a trace amount of light elements can be performed. It is possible.
Further, the X-ray is emitted from the X-ray source 1 at the same time as the
Since the diffused electrons that cause the reduction in the ratio are all eliminated immediately after the X-ray source 1, they do not jump into the apparatus and perform high-precision measurement without lowering the S / N ratio. be able to. Furthermore, by using the flat plate element 10 as the low energy region detecting means and the proportional counter detector 11 and the semiconductor detector 12 as the high energy region detecting means together, the light element and the heavy element can be simultaneously analyzed. Is possible.

【0009】[0009]

【実施例】上記実施の形態では,散乱電子の除去手段と
して一対の電極板2を用い,電場を発生させることによ
って上記散乱電子の軌道を偏向し,上記電極板2に衝突
させて消滅させているが,上記散乱電子の軌道偏向手段
としては電場のかわりに磁場を用いてもよい。つまり,
上記電極板2の代わりに電磁石等の電場発生装置を設置
して上記散乱電子の軌道を偏向し,別に設置した電極板
に衝突させることによって該散乱電子を消滅させるよう
にしてもよい。
In the above embodiment, a pair of electrode plates 2 is used as a means for removing scattered electrons, and the trajectory of the scattered electrons is deflected by generating an electric field, and the scattered electrons collide with the electrode plate 2 and disappear. However, a magnetic field may be used in place of an electric field as a means for deflecting the orbit of the scattered electrons. That is,
An electric field generator such as an electromagnet may be provided in place of the electrode plate 2 to deflect the trajectory of the scattered electrons and cause the scattered electrons to disappear by colliding with a separately provided electrode plate.

【0010】[0010]

【発明の効果】以上説明したように,本発明によって,
軽元素の蛍光X線分析を高いS/N比で実現し,同時に
重元素の測定も行うことが可能な蛍光X線分析装置を提
供することができる。
As described above, according to the present invention,
An X-ray fluorescence spectrometer capable of realizing X-ray fluorescence analysis of light elements at a high S / N ratio and simultaneously measuring heavy elements can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係る蛍光X線分析装置
の概略構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of an X-ray fluorescence analyzer according to an embodiment of the present invention.

【図2】 低エネルギー領域検出手段の概略構成及び検
出方法を示す図。
FIG. 2 is a diagram showing a schematic configuration of a low-energy region detecting means and a detecting method.

【図3】 荷電粒子除去手段の概略構成を示す図。FIG. 3 is a diagram showing a schematic configuration of a charged particle removing unit.

【図4】 本発明の実施の形態に係る蛍光X線分析装置
による測定結果を示すスペクトル図。
FIG. 4 is a spectrum diagram showing measurement results obtained by a fluorescent X-ray analyzer according to the embodiment of the present invention.

【図5】 従来の蛍光X線分析装置の概略構成を示す
図。
FIG. 5 is a diagram showing a schematic configuration of a conventional fluorescent X-ray analyzer.

【図6】 X線の波長分布図。FIG. 6 is a wavelength distribution diagram of X-rays.

【符号の説明】[Explanation of symbols]

1…X線源 2…電極板 3…縦型スリット 4…横型スリット 5…ミラー 6…設置ステージ 7…試料 8…ゴニオステージ 9…ソーラースリット 10…平板素子 11…比例計数管検出器 11a…高分子膜 12…半導体検出器 13…信号処理器 14…ゲートバルブ 15…真空排気装置 16…真空排気装置 17…真空チャンバ 18…真空ダクト DESCRIPTION OF SYMBOLS 1 ... X-ray source 2 ... Electrode plate 3 ... Vertical slit 4 ... Horizontal slit 5 ... Mirror 6 ... Installation stage 7 ... Sample 8 ... Gonio stage 9 ... Solar slit 10 ... Plate element 11 ... Proportional counter detector 11a ... High Molecular film 12 Semiconductor detector 13 Signal processor 14 Gate valve 15 Vacuum exhaust device 16 Vacuum exhaust device 17 Vacuum chamber 18 Vacuum duct

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 X線源で発生させたX線を試料に入射す
ることによって発生する蛍光X線を検出手段で検出する
ことによって上記試料表面の元素の分析を行う蛍光X線
分析装置において,X線源に,該X線源からX線を減衰
なしに発射させる発射開口を設けると共に,上記X線源
と試料との間に荷電粒子除去手段を設け,更に上記X線
の軌道上を真空に保つようにしたことを特徴とする蛍光
X線分析装置。
1. An X-ray fluorescence analyzer for analyzing elements on the surface of a sample by detecting X-rays of fluorescence generated by irradiating the sample with X-rays generated by an X-ray source. An X-ray source is provided with an emission opening for emitting X-rays from the X-ray source without attenuation, charged particle removing means is provided between the X-ray source and the sample, and a vacuum is applied on the X-ray orbit. X-ray fluorescence spectrometer, characterized in that it is kept at a minimum.
【請求項2】 上記荷電粒子除去手段を,上記X線源の
直後に設置してなる請求項1記載の蛍光X線分析装置。
2. The X-ray fluorescence analyzer according to claim 1, wherein said charged particle removing means is provided immediately after said X-ray source.
【請求項3】 上記荷電粒子除去手段が,散乱電子の軌
道を偏向すると共に吸着する電極よりなる請求項1又は
2記載の蛍光X線分析装置。
3. The X-ray fluorescence analyzer according to claim 1, wherein said charged particle removing means comprises an electrode which deflects and adsorbs the trajectory of the scattered electrons.
【請求項4】 上記荷電粒子除去手段が,散乱電子の軌
道を偏向する磁場発生手段と,上記散乱電子を吸着する
電極よりなる請求項1又は2記載の蛍光X線分析装置。
4. The X-ray fluorescence analyzer according to claim 1, wherein said charged particle removing means comprises a magnetic field generating means for deflecting the trajectory of the scattered electrons, and an electrode for adsorbing said scattered electrons.
【請求項5】 上記検出手段が,高エネルギー領域検出
手段と低エネルギー領域検出手段とを具備して構成され
てなる請求項1〜4のいずれかに記載の蛍光X線分析装
置。
5. The X-ray fluorescence analyzer according to claim 1, wherein said detecting means comprises high-energy area detecting means and low-energy area detecting means.
【請求項6】 上記高エネルギー領域検出手段が半導体
検出器であり,上記低エネルギー領域検出手段が,分光
素子と比例計数管である請求項5記載の蛍光X線分析装
置。
6. An X-ray fluorescence analyzer according to claim 5, wherein said high energy region detecting means is a semiconductor detector, and said low energy region detecting means is a spectroscopic element and a proportional counter.
【請求項7】 上記比例計数管が,高分子でできた入射
窓を具備してなる請求項6記載の蛍光X線分析装置。
7. The X-ray fluorescence spectrometer according to claim 6, wherein the proportional counter has an entrance window made of a polymer.
JP17908896A 1996-07-09 1996-07-09 Fluorescent x-ray analyzer Pending JPH1019809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17908896A JPH1019809A (en) 1996-07-09 1996-07-09 Fluorescent x-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17908896A JPH1019809A (en) 1996-07-09 1996-07-09 Fluorescent x-ray analyzer

Publications (1)

Publication Number Publication Date
JPH1019809A true JPH1019809A (en) 1998-01-23

Family

ID=16059871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17908896A Pending JPH1019809A (en) 1996-07-09 1996-07-09 Fluorescent x-ray analyzer

Country Status (1)

Country Link
JP (1) JPH1019809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133676B4 (en) * 2000-07-18 2008-05-29 Sii Nanotechnology Inc. X-ray fluorescence thickness tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133676B4 (en) * 2000-07-18 2008-05-29 Sii Nanotechnology Inc. X-ray fluorescence thickness tester

Similar Documents

Publication Publication Date Title
US3919548A (en) X-Ray energy spectrometer system
US20130126727A1 (en) Time-of-Flight Electron Energy Analyzer
US6442236B1 (en) X-ray analysis
Streli et al. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes
US2908821A (en) Apparatus for spectrochemical analysis and structural analysis of solids, fluids andgases by means of x-rays
JP3898826B2 (en) Particle beam imaging apparatus, spectrometer provided in particle beam imaging apparatus, particle beam imaging method, and method of using particle beam imaging apparatus
JP4606270B2 (en) Time-of-flight measurement device for sample ions, time-of-flight mass spectrometer, time-of-flight mass spectrometry method
CN108593688A (en) Part electron yield detection device for Synchrotron Radiation Soft X ray absorption spectroscopy
US3370167A (en) Proton-excited soft x-ray analyzer having a rotatable target for selectively directing the x-rays to different detectors
JP2637871B2 (en) X-ray counter
JPH1019809A (en) Fluorescent x-ray analyzer
US3376415A (en) X-ray spectrometer with means to vary the spacing of the atomic planes in the analyzing piezoelectric crystal
US3435207A (en) Apparatus for measuring velocity of low energy electrons
JP2000111503A (en) X-ray analyzer
US5336886A (en) Apparatus for measuring a diffraction pattern of electron beams having only elastic scattering electrons
JP2640935B2 (en) Surface inspection method and device
US3175083A (en) Method and apparatus for detecting x-rays
JP3239427B2 (en) Ion scattering spectrometer
JPWO2018225563A1 (en) Radiation detector and radiation detection device
JP3683156B2 (en) Method for surface analysis of solid materials
Bernasconi et al. Total Reflection X‐Ray Fluorescence Analysis Under Various Experimental Conditions
JP2010071873A (en) Spectroscopic method and apparatus for ion energy
JPH0361841A (en) Attachment for measuring x-ray absorption spectrum
WO2015016632A1 (en) Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor
JPH08136477A (en) Sample analyzing apparatus