WO2015016632A1 - Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor - Google Patents

Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor Download PDF

Info

Publication number
WO2015016632A1
WO2015016632A1 PCT/KR2014/007043 KR2014007043W WO2015016632A1 WO 2015016632 A1 WO2015016632 A1 WO 2015016632A1 KR 2014007043 W KR2014007043 W KR 2014007043W WO 2015016632 A1 WO2015016632 A1 WO 2015016632A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
faraday cup
incident
composition
cup assembly
Prior art date
Application number
PCT/KR2014/007043
Other languages
French (fr)
Korean (ko)
Inventor
이중환
유규상
박경수
안승엽
김완섭
민원자
정광환
Original Assignee
케이맥(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130091239A external-priority patent/KR101476141B1/en
Priority claimed from KR20130091262A external-priority patent/KR101493215B1/en
Application filed by 케이맥(주) filed Critical 케이맥(주)
Publication of WO2015016632A1 publication Critical patent/WO2015016632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20058Measuring diffraction of electrons, e.g. low energy electron diffraction [LEED] method or reflection high energy electron diffraction [RHEED] method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/418Imaging electron microscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/611Specific applications or type of materials patterned objects; electronic devices
    • G01N2223/6116Specific applications or type of materials patterned objects; electronic devices semiconductor wafer

Definitions

  • the present invention relates to a composition and quantitative analysis technology, and more particularly, to an apparatus and method capable of analyzing the composition and quantification contained in a wafer or a specimen using the time of flight during ion scattering.
  • the present invention relates to a Faraday Cup assembly for measuring the current of the ion and electron beam, has a penetrating portion in the center of the cup and usually passes the ion and electron beam through the penetrating portion, when measuring the current Faraday cup assembly that can measure the current of ion or electron beam without mechanical device in the vacuum chamber by measuring the current by directing the beam to the inlet of the cup separated by the penetrating part and the partition wall instead of the existing mechanical drive,
  • An electron microscope including the Faraday cup assembly, an ion implantation device, an electron beam monitoring system, an ion beam monitoring system, and a current measuring method using the Faraday cup assembly.
  • MEIS Medium Energy Ion Scattering Spectrometry
  • an ion beam is a mass of ion flows accelerated through an electric field after separating electrons from an electrically neutral atom, mainly a particle-induced Xray emission (PIXE), Rutherback Back Scattering (ERB), ERD- It is mainly used for TOF (Elastic Recoil Detection-Time Of Flight), processing of materials (etching or patterning in semiconductor process), doping (doping of semiconductor materials using ion implantation), and electron beam is a mass of electron flow It is mainly used for analytical devices, such as an electron microscope, semiconductor patterning (E-beam Lithography), etc.
  • PIXE particle-induced Xray emission
  • ERP Rutherback Back Scattering
  • TOF Elastic Recoil Detection-Time Of Flight
  • processing of materials etching or patterning in semiconductor process
  • doping doping of semiconductor materials using ion implantation
  • electron beam is a mass of electron flow It is mainly used for analytical devices, such as an electron microscope, semiconductor patterning (E
  • the most commonly used Faraday Cup is a conventional cup type with an opening on the top and closed sides and bottom.
  • the current amount of the beam is measured by measuring the amount of current stored therein.
  • FIG. 4 illustrates an ion beam current measuring apparatus using a conventional Faraday cup 401.
  • the beam irradiated from the beam generator 402 is usually irradiated where a beam such as a substrate or a sample is required.
  • a beam such as a substrate or a sample is required.
  • FIG. 4 an electron microscope system using an electron beam for sample observation is illustrated.
  • the Faraday cup 401 that is off the path of the beam is moved by using the cup driver 403 to guide the beam into the Faraday cup 401, and then the beam is measured by the current measuring means. The amount of current is measured.
  • the conventional Faraday cup has a problem in that the current Faraday cup repeats mechanical movements on and off the path of the beam and may cause failure due to frictional wear and particle generation.
  • both ion and electron beams are used in very high vacuum (range below mTorr) chambers, these mechanical failures require a very complex repair, and the current-measuring wiring to the Faraday cups can also be Due to fatigue, there is a problem that often disconnection occurs.
  • the particle generation or mechanical movement may also adversely affect the vacuum of the chamber in a very high vacuum state.
  • Korean Unexamined Patent Publication No. 10-2005-0106712 relates to a Faraday cup used in an ion implantation apparatus, and has a feature of driving a Faraday cup using a pneumatic cylinder, a solenoid valve, and a link mechanism.
  • it has the advantage of using the shock absorber (shock absorber) to mitigate the impact and improve the vibration or precision generated when driving the cup assembly through the servo motor and the servo control unit for precise movement.
  • the present invention does not completely exclude the mechanical movement of the Faraday cup has a problem that the possibility of failure still exists and may cause a problem that the vacuum breaks when the pneumatic device breaks or leaks.
  • Japanese Laid-Open Patent Publication No. 2001-216934 relates to a Faraday cup used in an ion analyzer, and has a feature of driving a Faraday cup using an external operation mechanism and a step motor. Since the Faraday cup is placed in a specific position through the stepper motor, it is easy to determine the position and has high reliability through the use of an external control mechanism. However, there is also a possibility of failure due to mechanical movement. Problems with deposition can occur.
  • Japanese Patent Laid-Open No. 6-243815 relates to a Faraday cup for use in an electron microscope (Scanning Electron Microscope) using an electron beam, and provides a shielding means at the inlet and bottom of the cup so that the mechanical movement of the Faraday cup is not required. It is characterized by having. When the current measurement is not necessary, open the shield at the inlet and bottom of the cup so that the electron beam is irradiated to the sample through the cup, and during the current measurement, close the shield at the bottom of the Faraday cup to block the beam and place it in the Faraday cup. It is characterized by measuring the electric current of the charge.
  • This invention has the advantage that the possibility of mechanical failure is small by preventing the movement of the cup itself, but since the shielding means is also moved by the mechanical driving means, there is a disadvantage that a failure may occur in the shielding means drive, and should be measured There is a disadvantage that the current amount of the beam can leak through the shielding means.
  • An object of the present invention is to provide a composition and quantitative analysis device capable of analyzing the components contained in the wafer or the specimen using the flight time, to solve the problems of the existing energy detection method.
  • Another object of the present invention is to provide a method for analyzing the composition and content of light elements such as boron (B) doped in silicon (Si) using the composition and quantitative analysis device using the above flight time.
  • light elements such as boron (B) doped in silicon (Si)
  • Still another object of the present invention is applicable to the composition and quantitative analysis apparatus described above, and has a penetrating portion through which a beam can pass in the center of the Faraday cup, and the penetrating portion is separated from the cup through a partition wall,
  • a Faraday cup with an open double cylindrical structure and a beam deflector on the top of the cup which normally passes the beam through the penetrating portion, and when the current is measured, guides the beam through the deflector to the inlet of the cup and mechanically drives it. It is to provide a Faraday cup assembly and a current measuring method using the same, which is durable and fast to measure current by preventing friction, abrasion and disconnection.
  • Composition and quantitative analysis apparatus for achieving the above object is an incident part is accelerated incident particles; A collision unit in which a target to be analyzed is fixed and the incident particles accelerated from the incident unit collide with the target; A scattering unit in which the incident particles scattered and collided with the target and the components bounced back from the target fly at a scattering angle and a return angle of more than 0 ° to less than 90 °; And a flight time measuring unit measuring a time when the incident particles collided with the target and the component bounced from the target fly in the scattering unit.
  • the incident particles may be one or more elements selected from carbon, oxygen, nitrogen, neon, helium and argon. Specifically, the incident particles are more preferably neon or argon which is not reactive as an inert element.
  • the target may contain an element having an atomic weight of 1 to 16.
  • the scattering angle of the incident portion and the scattering portion and the return angle of the component bounced back from the target may be arranged in a range of more than 0 ° to less than 90 °. More preferably, it is more preferable to arrange
  • the scattering portion is 10mm or more can be formed without a maximum length limitation, considering the device size is more preferably formed of 10mm ⁇ 10m length.
  • Composition and quantitative analysis method for achieving the above another object is a method for analyzing the composition and quantification included in the target by using the above-described composition and quantitative analysis device, colliding the target to be analyzed Fixing to the part;
  • the incident particles are accelerated at the incidence part to impinge the incident particles accelerated from the incidence part to the target so that the incident particles impinging on the target and the components separated from the target are scattered at an angle of more than 0 ° and less than 90 °, and Allowing the aircraft to fly back; And measuring, by the flight time measuring unit, the time when the incident particles collided with the target and the component separated from the target fly in the scattering unit.
  • the flight time measuring unit may further include a Faraday cup assembly for measuring ion and electron beam current.
  • Faraday cup assembly for achieving the another object has a through portion having an inner diameter capable of passing the beam in the center of the Faraday cup, the through portion separated from the inner space of the cup through the partition wall
  • the upper surface of the Faraday cup is characterized in that the upper surface having a double cylindrical structure having an inlet having an inlet in which the bent beam is incident, the upper part of the Faraday cup when the current is guided by the beam through the inlet into the cup And a beam deflector that guides the beam deflector.
  • the beam deflector may be formed of two or more electrode plates.
  • the current measuring method for achieving the above another object is a method for measuring ion and electron beam current using the Faraday cup assembly, using the beam deflector to guide the path of the beam to the inlet of the cup And measuring the current of the charge trapped in the cup, characterized in that no mechanical drive is required.
  • composition and quantitative analysis apparatus and method using the flight time in the scattering portion of the particles particles of high atomic weight to accelerate and impinge on the target, bounced by the incident particles and scattered by the target Perform the composition and quantitative analysis by measuring the flight time of.
  • the time to reach the flight time measuring unit is different even when the energy of the incident particles scattered from the target and the bounced target particles are the same due to the atomic weight difference, which is a unique characteristic of each component. Even if you do not apply the filter of light element such as boron has the advantage that can be analyzed. In addition, quantitative analysis can be performed through information based on incident amount, detector area, and incident scattering angle.
  • the Faraday cup assembly of the present invention simply measures the current by moving the beam, the Faraday cup assembly prevents wear and disconnection due to mechanical driving and increases durability compared to the conventional method.
  • noise can be generated during operation, stable current measurement, and measurement with minimal movement of the beam center axis.
  • a pulse voltage is applied to the beam deflector, real-time current monitoring of the beam is possible.
  • FIG. 1 schematically shows a composition and quantitative analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and an energy detection method is used.
  • FIG. 3 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and flight time measurement is used.
  • Figure 4 schematically shows an ion implantation apparatus using a conventional Faraday cup.
  • FIG. 5 schematically shows the structure of a Faraday cup for ion and electron beam current measurement according to the present invention.
  • Figure 6 shows the structure of the beam deflector and the refraction of the beam according to the present invention.
  • Figure 7 schematically shows a structure viewed from the top of the Faraday cup for measuring the ion and electron beam current of the present invention.
  • Figure 8 shows the ion and electron beam current measurement method using the Faraday cup for current measurement of the present invention.
  • cup drive 400 Faraday cup
  • deflector 610 electrode
  • FIG. 1 schematically shows a component analysis apparatus according to an embodiment of the present invention.
  • the illustrated composition and quantitative analysis apparatus includes an incident part 110, a collision part 120, a scattering part 130, and a flight time measuring part 140.
  • the incident particles 102 are accelerated.
  • Particle accelerators of about tens to hundreds of keV may be disposed in the incidence unit 110 to accelerate the incident particles 102. More preferably, particle accelerators of about 40 keV to 400 keV may be disposed, but are not limited thereto. Do not.
  • the incident particles 102 preferably use a large atomic weight such as carbon (C), oxygen (O), neon (Ne), argon (Ar), helium (He), nitrogen (N), and the like.
  • the light element may bounce off effectively when colliding with the target 101.
  • the target 101 to be analyzed is fixed to the collision part 120.
  • the incident particles 102 accelerated from the incident part 110 collide with the target 101.
  • the incident particles 102 collided with the target 101 and the components bounced back from the target 101 are scattered, that is, fly.
  • the flight time measuring unit 140 measures the time that the incident particles 102 collided with the target 101 and the components bounced back from the target 101 fly in the scattering unit 130.
  • the lighter components fly for a short time, and the heavier components fly for a longer time.
  • the target is boron-doped silicon and the incident particle is neon
  • the boron that has fallen off the target by the collision of neon will fly for a short time, and the neon scattered by the collision with the target for a long time Fly This is determined by the atomic weight inherent in the material, and the longer the length of the scattering unit 130 is, the larger the flight time difference becomes.
  • component analysis of elements He, Li, Be, B, C, N, O
  • atomic weight of 1 to 16 including hydrogen
  • a poor part of semiconductor processing and specimen analysis research is light element analysis.
  • quantitative analysis of the composition of B is important in the semiconductor B doped Si, but it is difficult because no analysis method is found.
  • the presence of a contaminant layer in the semiconductor is very important.
  • H, C, O, N analysis is very important because the elements mainly mixed in the contaminant layer are light elements such as H, C, O, and N. Therefore, when using the component analysis apparatus according to the present invention, the above light element analysis is possible, and there is an advantage that can be non-destructive analysis.
  • the length of the scattering unit 130 may act as an important factor in scattering incident particles or analyzing components bounced from a target. In other words, the longer the scattering portion, the higher the resolution of the equipment, and the easier the analysis.
  • the scattering unit 130 is preferably formed in 10mm ⁇ 10m length, but is not limited to the maximum length.
  • the scattering angle of the incident portion and the scattering portion and the bounce angle of the component bounced back from the target may be adjusted according to the type of the incident particle or the target component, may be arranged in the range of more than 0 ° to less than 90 °, More preferably, it is arranged in the range of more than 20 degrees and less than 70 degrees.
  • Method for analyzing the specific composition and quantification included in the target using the component analysis device according to the present invention is as follows.
  • the target to be analyzed is fixed to the collision part.
  • the incident particles are accelerated at the incidence part to impinge the incident particles accelerated from the incidence part to the target so that the incident particles impinging on the target and the components separated from the target are scattered.
  • the flying time measuring unit measures the time that the incident particles collided with the target and the component separated from the target fly in the scattering unit. The amount of the component is then analyzed as the yield of the component.
  • FIG. 2 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and an energy detection method is used.
  • the boron (B) peak is included in the silicon (Si) peak.
  • the boron peak is not separated and precise boron content analysis is impossible.
  • FIG. 3 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and flight time measurement is used.
  • Ne incident energy 100 keV
  • scattering part length 60 cm
  • Scattering angle The outer angle of the angle formed by the incident part and the scattering part
  • Equation 2 Energy of a component that bounces off a target in a collision
  • the flight time measuring unit 140 may further include a Faraday cup assembly for measuring ion and electron beam current, as shown in FIGS. 4 to 8.
  • FIG. 5 schematically illustrates the structure of a Faraday cup 400 for ion and electron beam current measurement of the present invention.
  • the Faraday cup 400 according to the present invention includes a through part 410 having an inner diameter capable of passing the beam B at the center thereof.
  • the inner diameter is different depending on the equipment used, and the inner diameter of the beam B may be sufficient to prevent the Faraday cup 400 from being moved even when the beam B is moved due to the alignment of the beam B.
  • the through part 410 is separated from the inner space of the Faraday cup 400 by the partition wall 420.
  • the inlet 430 of the cup is open on the upper surface of the Faraday cup 400, the side and the lower surface has a closed structure for beam capture when the beam (B) is incident.
  • the Faraday cup 400 of the present invention has a double cylindrical structure in its overall form.
  • the beam B is supplied from the beam generator 500, and the beam generator uses a conventional ion or electron beam generation technique.
  • the beam deflector 600 is provided on the Faraday cup 400.
  • the beam B passes through the penetrating portion 410 and is irradiated onto the substrate or the specimen, but the deflector 600 is used when measuring the current of the beam B.
  • the beam B is deflected to guide the beam B through the inlet 430 to the Faraday cup 400.
  • FIG 5 shows the structure of a beam deflector 600 that can be used in the present invention.
  • the structure of the beam deflector 600 is composed of two or more cylindrical electrode plates. By applying a voltage to each electrode, an electric field is formed between the electrode plates to control the movement of the electron beam (or ion beam).
  • the beam deflector used in the electron microscope presented in the embodiment of the present invention is composed of two electrodes, the potential distribution can be adjusted by adjusting the voltage of the two electrodes, thereby adjusting the refraction of the ion beam.
  • FIG. 6 schematically illustrates a structure of the Faraday cup 400 for the ion and electron beam current measurement according to the present invention.
  • the beam deflector 600 when a high frequency voltage is applied to the beam deflector 600, it is also possible to generate a pulse beam depending on the frequency.
  • the pulse beam When the pulse beam is used, the beam B is periodically guided to the penetrating portion 410 and the inlet 420 of the Faraday cup 400, so that the beam B is monitored in real time through the Faraday cup 400. It becomes possible to use.
  • FIG. 7 schematically illustrates a structure of the Faraday cup 400 for measuring ion and electron beam currents of the present invention.
  • the Faraday cup 400 has a double cylindrical structure as described in FIG. 4, a small circle forming a penetrating portion 410 when viewed from the top, a partition wall 420 surrounding it, and an opening opening from an edge of the partition wall ( 430 is provided in the form of concentric circles.
  • a large circular concentric shape forming an outer circumferential surface of the Faraday cup 400 can be seen, and a strip-shaped inlet 430 larger than the size of the through portion 410 when viewed from the top and smaller than the outer circumferential surface of the Faraday cup 400.
  • Through has a double cylindrical structure.
  • the Faraday cup assembly of the present invention can be used for electron microscope, which is a representative analysis equipment using an electron beam, and ion implantation device, which is a representative semiconductor processing equipment using ion beam. In addition to the above equipment, beam current measurement and Can be used for monitoring.
  • FIG. 8 illustrates a method for measuring ion and electron beam current using the Faraday cup 400 for current measurement according to the present invention.
  • the beam B is normally irradiated to the sample through the penetrating portion 410 of the Faraday cup 400.
  • a voltage is applied to the beam deflector 600 as shown in FIG. 8 (b) so that the path of the beam B passes through the inlet 430 of the Faraday cup 400 at the through part 410. ). It is preferable to apply the calculated voltage to the beam deflector 600 so that the degree of refraction of the beam B is minimized.
  • the current is measured through a current measuring device (not shown).
  • the current measuring device uses a microcurrent measuring device, and may use a current amplifier if necessary.
  • FIG. 5 (c) A case of applying a high frequency voltage to the beam deflector 600 is illustrated in FIG. 5 (c).
  • Applying a high frequency voltage to the beam deflector 600 generates a pulse beam that is frequency dependent, so that the beam B periodically passes through the penetrating portion 410 and the inlet 420 of the Faraday cup 400 so that the Real-time monitoring is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The present invention relates to a composition and quantitative analysis technique and, more particularly, to an apparatus and a method capable of analyzing the composition and quantity included in a wafer or a specimen using a time of flight during ion scattering. Furthermore, the present invention relates to a Faraday cup assembly for ion and electron beam current measurement which can be used for the above apparatus.

Description

비행시간을 이용한 조성 및 정량 분석 장치 및 방법, 이에 이용되는 패러데이 컵 어셈블리Composition and Quantitative Analysis Apparatus and Method Using Flight Time, Faraday Cup Assembly
본 발명은 조성 및 정량 분석 기술에 관한 것으로서, 보다 상세하게는 이온 산란시 비행시간을 이용하여 웨이퍼나 시편에 포함된 조성 및 정량을 분석할 수 있는 장치 및 방법에 관한 것이다.The present invention relates to a composition and quantitative analysis technology, and more particularly, to an apparatus and method capable of analyzing the composition and quantification contained in a wafer or a specimen using the time of flight during ion scattering.
또한, 본 발명은 이온 및 전자 빔의 전류를 측정하기 위한 패러데이 컵(Faraday Cup) 어셈블리에 관한 것으로, 컵 중앙에 관통부를 구비해 평상시에는 관통부를 통해 이온 및 전자 빔을 통과시키고, 전류 측정시에는 기존의 기계적 구동부 대신에 디플렉터를 이용해 빔을 관통부와 격벽으로 분리된 컵의 입구로 유도해 전류를 측정함으로써, 진공 챔버 내의 기계적 장치 없이 이온 또는 전자 빔의 전류를 측정할 수 있는 패러데이 컵 어셈블리, 상기 페러데이 컵 어셈블리를 포함한 전자 현미경, 이온 주입 장치, 전자빔 모니터링 시스템, 이온빔 모니터링 시스템, 그리고 상기 페러데이 컵 어셈블리를 이용한 전류 측정 방법에 관한 것이다.In addition, the present invention relates to a Faraday Cup assembly for measuring the current of the ion and electron beam, has a penetrating portion in the center of the cup and usually passes the ion and electron beam through the penetrating portion, when measuring the current Faraday cup assembly that can measure the current of ion or electron beam without mechanical device in the vacuum chamber by measuring the current by directing the beam to the inlet of the cup separated by the penetrating part and the partition wall instead of the existing mechanical drive, An electron microscope including the Faraday cup assembly, an ion implantation device, an electron beam monitoring system, an ion beam monitoring system, and a current measuring method using the Faraday cup assembly.
조성 및 정량 분석 장치로 중 에너지 이온 산란 분광기 (Medium Energy Ion Scattering Spectrometry, MEIS)가 이용되고 있다. Medium Energy Ion Scattering Spectrometry (MEIS) is used as a composition and quantitative analysis device.
MEIS의 경우, 주로 정전형 또는 magnetic sector analyser와 같은 직접적인 에너지 검출(Energy Detecting) 방식이 이용된다. 이러한 에너지 검출 방식이 이용되는 MEIS 에서는 주로 헬륨(He), 네온(Ne), 질소(N), 아르곤(Ar)의 산란 및 되튕김 입자를 필터링하는 방식으로 수소 원소(H)의 함량 분석이 가능한 것으로 알려져 있다. 그러나, 상기 방법의 경우, 수소보다 무거운 원소, 즉 헬륨, 보론 등의 경 원소 분석에는 해상도 및 검출 수율 저하로 사용에 제한이 있다. 해상도가 저하 되는 이유는 경 원소 되 튕김 분석에 필터를 사용하기 때문인데 필터 통과시 원자 번호가 큰 원소일수록 해상도가 더 크게 저하 된다.In the case of MEIS, direct energy detection methods such as electrostatic or magnetic sector analyzers are used. In MEIS using this energy detection method, it is possible to analyze the content of elemental hydrogen (H) by filtering scattering and bounce particles of helium (He), neon (Ne), nitrogen (N), argon (Ar). It is known. However, in the case of the above method, there is a limit to the use of lighter elements such as helium, boron, etc., which are heavier than hydrogen, due to a decrease in resolution and detection yield. The lower resolution is due to the use of a filter for light element bounce analysis. The higher the atomic number, the lower the resolution.
따라서, MEIS에서 에너지 검출 방법을 이용하는 경우에는 수소(H) 이외의 헬륨(He), 리튬(Li), 베릴륨(Be), 보론(B), 탄소(C), 질소(N) 등 경 원소 분석에 사용할 수 없는 문제점이 있다.Therefore, when the energy detection method is used in MEIS, light element analysis such as helium (He), lithium (Li), beryllium (Be), boron (B), carbon (C), and nitrogen (N) other than hydrogen (H) There is a problem that cannot be used.
본 발명에 관련된 선행문헌으로는 대한민국 공개특허공보 제10-2010-0035601호가 있으며, 상기 문헌에는 유기박막 내 작용기의 정량방법이 개시되어 있다. Prior art related to the present invention is Korean Patent Publication No. 10-2010-0035601, which discloses a method for quantifying functional groups in an organic thin film.
한편, 이온 빔은 전기적으로 중성인 원자에서 전자를 분리한 후 전기장을 통해 가속시킨 이온 흐름의 덩어리로, 주로 정밀 분석장치(Particle-induced Xray emission, PIXE), RBS(Rutherford Back Scattering), ERD-TOF(Elastic Recoil Detection - Time Of Flight)나 재료의 가공(반도체 공정에서의 식각이나 패터닝), 도핑(이온 주입(Ion implantation)을 이용한 반도체 재료의 도핑) 등에 주로 사용되고, 전자 빔은 전자 흐름의 덩어리로, 전자 현미경과 같은 분석장치나, 반도체 패터닝(E-beam Lithography) 등에 주로 사용된다.On the other hand, an ion beam is a mass of ion flows accelerated through an electric field after separating electrons from an electrically neutral atom, mainly a particle-induced Xray emission (PIXE), Rutherback Back Scattering (ERB), ERD- It is mainly used for TOF (Elastic Recoil Detection-Time Of Flight), processing of materials (etching or patterning in semiconductor process), doping (doping of semiconductor materials using ion implantation), and electron beam is a mass of electron flow It is mainly used for analytical devices, such as an electron microscope, semiconductor patterning (E-beam Lithography), etc.
이런 이온 혹은 전자 빔은 도즈 컨트롤 등을 위해 전류를 측정할 필요가 있는데, 이때 가장 일반적으로 사용되는 것이 패러데이 컵(Faraday Cup)으로, 상면에 개구가 있고 측면과 하단은 폐쇄된 통상적인 컵 형태를 가지며, 이온 혹은 전자가 상기 패러데이 컵에 주입되면 그로 인해 축전된 전류량을 측정해 빔의 전류량을 측정하는 장치이다.This ion or electron beam needs to measure current for dose control, etc. The most commonly used Faraday Cup is a conventional cup type with an opening on the top and closed sides and bottom. When ions or electrons are injected into the Faraday cup, the current amount of the beam is measured by measuring the amount of current stored therein.
도 4는 기존의 패러데이 컵(401)을 이용한 이온 빔 전류측정 장치를 나타내고 있다. 빔 생성부(402)에서 조사되는 빔은 평소에는 기판이나 시료 등 빔을 필요로 하는 곳에 조사되는데, 도 4의 경우에는 전자빔을 시료 관찰에 사용하는 전자 현미경 시스템을 도시하고 있다. 이때 전류 측정이 필요한 경우에는 컵 구동부(403)를 이용해 빔의 경로상에 벗어나 있던 패러데이 컵(401)을 이동시켜 빔을 상기 패러데이 컵(401) 내부로 유도한 후, 전류 측정 수단을 통해 빔의 전류량을 측정하게 된다.4 illustrates an ion beam current measuring apparatus using a conventional Faraday cup 401. The beam irradiated from the beam generator 402 is usually irradiated where a beam such as a substrate or a sample is required. In FIG. 4, an electron microscope system using an electron beam for sample observation is illustrated. In this case, when the current measurement is required, the Faraday cup 401 that is off the path of the beam is moved by using the cup driver 403 to guide the beam into the Faraday cup 401, and then the beam is measured by the current measuring means. The amount of current is measured.
하지만, 전류 측정을 위해 기존의 패러데이 컵은 빔의 경로상과 그 밖으로 기계적 움직임을 반복하게 되고 이에 따른 마찰에 의한 마모, 파티클 발생 등으로 인해 고장이 발생될 수 있다는 문제점이 있다. 또한, 이온 및 전자 빔은 모두 매우 고진공(mTorr 이하 범위) 챔버 내에서 이용되기 때문에, 이런 기계적인 고장이 발생할 경우 매우 복잡한 보수를 거쳐야 하며, 패러데이 컵에 연결되는 전류 측정용 배선 역시 이런 반복적 움직임으로 인해 피로가 발생, 단선이 자주 발생된다는 문제점이 있다. 상기 파티클 발생이나, 기계적 움직임 역시 매우 고진공 상태의 챔버의 진공도에도 악영향을 줄 수도 있다.However, the conventional Faraday cup has a problem in that the current Faraday cup repeats mechanical movements on and off the path of the beam and may cause failure due to frictional wear and particle generation. In addition, since both ion and electron beams are used in very high vacuum (range below mTorr) chambers, these mechanical failures require a very complex repair, and the current-measuring wiring to the Faraday cups can also be Due to fatigue, there is a problem that often disconnection occurs. The particle generation or mechanical movement may also adversely affect the vacuum of the chamber in a very high vacuum state.
대한민국 공개특허공보 제10-2005-0106712호는 이온 주입 장치에 사용되는 패러데이 컵에 관한 발명으로, 공압 실린더와 솔레노이드 밸브, 링크 기구를 이용하여 패러데이 컵을 구동하는 특징을 가진다. 특히, 충격을 완화하기 위한 충격 흡수기(shock absorber)를 이용하고 정밀한 움직임을 위해 서보모터와 서보 제어부를 통해 컵 조립체의 구동 시 발생하는 진동이나 정밀도를 개선하는 장점을 갖는다.Korean Unexamined Patent Publication No. 10-2005-0106712 relates to a Faraday cup used in an ion implantation apparatus, and has a feature of driving a Faraday cup using a pneumatic cylinder, a solenoid valve, and a link mechanism. In particular, it has the advantage of using the shock absorber (shock absorber) to mitigate the impact and improve the vibration or precision generated when driving the cup assembly through the servo motor and the servo control unit for precise movement.
하지만, 위 발명은 패러데이 컵의 기계적인 움직임을 완벽하게 배제하진 않았기 때문에 고장의 가능성이 여전히 존재한다는 문제점을 가지며 공압 장치의 파손이나 누설(Leak) 발생시 진공이 깨지는 문제점이 발생할 수도 있다.However, the present invention does not completely exclude the mechanical movement of the Faraday cup has a problem that the possibility of failure still exists and may cause a problem that the vacuum breaks when the pneumatic device breaks or leaks.
일본 공개특허공보 특개2001-216934호는 이온 분석 장치에 사용되는 패러데이 컵에 관한 발명으로, 외부 조작 기구와 스텝 모터를 이용하여 패러데이 컵을 구동하는 특징을 가진다. 스텝 모터를 통해 패러데이 컵이 특정 위치에만 있도록 하기 때문에 위치 결정이 쉬우며 외부 조작 기구의 이용으로 신뢰성이 높다는 장점을 갖지만, 역시 기계적인 움직임으로 인해 고장 가능성이 있으며, 분석할 이온이 상기 기계적 구동부에 증착되는 문제가 발생할 수 있다.Japanese Laid-Open Patent Publication No. 2001-216934 relates to a Faraday cup used in an ion analyzer, and has a feature of driving a Faraday cup using an external operation mechanism and a step motor. Since the Faraday cup is placed in a specific position through the stepper motor, it is easy to determine the position and has high reliability through the use of an external control mechanism. However, there is also a possibility of failure due to mechanical movement. Problems with deposition can occur.
일본 공개특허공보 특개평6-243815호는 전자빔을 이용하는 전자현미경(Scanning Electron Microscope)에 사용되는 패러데이 컵에 관한 발명으로, 패러데이 컵의 기계적인 움직임이 필요 없도록 컵의 입구 및 바닥부에 차폐수단을 갖는 것을 특징으로 한다. 이를 통해 전류측정이 필요 없을 때에는 컵의 입구 및 바닥부 차폐수단을 열어 전자빔이 컵을 통과해 시료에 조사되도록 하고, 전류측정 시에는 패러데이 컵 바닥의 차폐수단을 닫아 빔을 차단하고 패러데이 컵에 담긴 전하의 전류를 측정하는 것을 특징으로 한다. 이 발명은 컵 자체의 움직임을 막음으로써, 기계적 고장의 가능성이 작다는 장점이 있으나, 상기 차폐수단 역시 기계적 구동수단에 의해 움직이기 때문에, 차폐수단 구동부에서 고장이 발생할 수 있다는 단점이 있으며, 측정되어야 할 빔의 전류량이 상기 차폐수단을 통해 누설될 수 있다는 단점이 있다.Japanese Patent Laid-Open No. 6-243815 relates to a Faraday cup for use in an electron microscope (Scanning Electron Microscope) using an electron beam, and provides a shielding means at the inlet and bottom of the cup so that the mechanical movement of the Faraday cup is not required. It is characterized by having. When the current measurement is not necessary, open the shield at the inlet and bottom of the cup so that the electron beam is irradiated to the sample through the cup, and during the current measurement, close the shield at the bottom of the Faraday cup to block the beam and place it in the Faraday cup. It is characterized by measuring the electric current of the charge. This invention has the advantage that the possibility of mechanical failure is small by preventing the movement of the cup itself, but since the shielding means is also moved by the mechanical driving means, there is a disadvantage that a failure may occur in the shielding means drive, and should be measured There is a disadvantage that the current amount of the beam can leak through the shielding means.
본 발명의 목적은 기존의 에너지 검출 방법의 문제점을 해결하고자, 비행 시간을 이용하여 웨이퍼나 시편에 포함된 성분의 분석이 가능한 조성 및 정량 분석 장치를 제공하는 것이다.An object of the present invention is to provide a composition and quantitative analysis device capable of analyzing the components contained in the wafer or the specimen using the flight time, to solve the problems of the existing energy detection method.
본 발명의 다른 목적은 상기의 비행시간을 이용한 조성 및 정량 분석 장치를 이용하여, 실리콘(Si)에 도핑되어 있는 보론(B) 등의 경원소의 조성 및 함량을 분석하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for analyzing the composition and content of light elements such as boron (B) doped in silicon (Si) using the composition and quantitative analysis device using the above flight time.
본 발명의 또 다른 목적은 상기의 조성 및 정량 분석 장치에 적용 가능하며, 패러데이 컵의 중앙에 빔을 통과시킬 수 있는 관통부를 구비하고, 상기 관통부는 격벽을 통해 컵과 분리되며, 컵의 상부는 개방된 이중 원통형 구조의 패러데이 컵과 상기 컵의 상부에 빔 디플렉터를 구비해, 평상시에는 상기 관통부를 통해 빔을 통과시키고, 전류 측정 시에는 상기 디플렉터로 빔을 컵 상부의 입구로 유도해, 기계적 구동에 의한 마찰, 마모 및 단선을 방지하여 내구성이 높고, 빠르게 전류를 측정할 수 있는 패러데이 컵 어셈블리 및 그를 이용한 전류 측정 방법을 제공하는 것이다. Still another object of the present invention is applicable to the composition and quantitative analysis apparatus described above, and has a penetrating portion through which a beam can pass in the center of the Faraday cup, and the penetrating portion is separated from the cup through a partition wall, A Faraday cup with an open double cylindrical structure and a beam deflector on the top of the cup, which normally passes the beam through the penetrating portion, and when the current is measured, guides the beam through the deflector to the inlet of the cup and mechanically drives it. It is to provide a Faraday cup assembly and a current measuring method using the same, which is durable and fast to measure current by preventing friction, abrasion and disconnection.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 조성 및 정량 분석 장치는 입사 입자가 가속되는 입사부; 분석 대상이 되는 타겟이 고정되어 있으며, 상기 입사부로부터 가속된 입사 입자가 상기 타겟에 충돌하는 충돌부; 상기 타겟에 충돌하여 산란된 입사 입자 및 상기 타겟으로부터 되튕김된 성분이 0°초과 내지 90°미만의 산란각 및 되튐각으로 비행되는 산란부; 및 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 되튕김된 성분이 상기 산란부에서 비행한 시간을 측정하는 비행시간 측정부;를 포함하는 것을 특징으로 한다. Composition and quantitative analysis apparatus according to an embodiment of the present invention for achieving the above object is an incident part is accelerated incident particles; A collision unit in which a target to be analyzed is fixed and the incident particles accelerated from the incident unit collide with the target; A scattering unit in which the incident particles scattered and collided with the target and the components bounced back from the target fly at a scattering angle and a return angle of more than 0 ° to less than 90 °; And a flight time measuring unit measuring a time when the incident particles collided with the target and the component bounced from the target fly in the scattering unit.
이때, 상기 입사 입자는 탄소, 산소, 질소, 네온, 헬륨 및 아르곤 중에서 선택되는 하나 또는 하나 이상의 원소일 수 있다. 구체적으로, 상기 입사 입자는 불활성 원소로 반응성이 없는 네온 또는 아르곤인 것이 보다 바람직하다. In this case, the incident particles may be one or more elements selected from carbon, oxygen, nitrogen, neon, helium and argon. Specifically, the incident particles are more preferably neon or argon which is not reactive as an inert element.
또한, 상기 타겟에는 원자량이 1~16까지인 원소가 포함되어 있을 수 있다.In addition, the target may contain an element having an atomic weight of 1 to 16.
또한, 상기 입사부와 산란부의 산란각 및 상기 타겟으로부터 되튕김된 성분의 되튐각은 0°초과 내지 90°미만의 범위에서 배열될 수 있다. 더 바람직하게는 20°초과 내지 70°미만의 범위에서 배열되는 것이 보다 바람직하다.In addition, the scattering angle of the incident portion and the scattering portion and the return angle of the component bounced back from the target may be arranged in a range of more than 0 ° to less than 90 °. More preferably, it is more preferable to arrange | position in the range exceeding 20 degrees and less than 70 degrees.
또한, 상기 산란부는 10mm 이상이라면 최대길이 제한없이 형성될 수 있고, 장치 사이즈를 고려할 때 10mm~10m 길이로 형성되는 것이 보다 바람직하다. In addition, if the scattering portion is 10mm or more can be formed without a maximum length limitation, considering the device size is more preferably formed of 10mm ~ 10m length.
상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 조성 및 정량 분석 방법은 전술한 조성 및 정량 분석 장치를 이용하여 타겟에 포함된 조성 및 정량 을 분석하는 방법으로서, 분석 대상이 되는 타겟을 충돌부에 고정하는 단계; 입사부에서 입사 입자를 가속시켜, 상기 입사부로부터 가속된 입사 입자를 상기 타겟에 충돌시켜, 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 떨어져 나온 성분이 0°초과 내지 90°미만의 산란각 및 되튐각으로 비행하도록 하는 단계; 및 비행시간 측정부에서 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 떨어져 나온 성분이 상기 산란부에서 비행한 시간을 측정하는 단계;를 포함하는 것을 특징으로 한다.Composition and quantitative analysis method according to an embodiment of the present invention for achieving the above another object is a method for analyzing the composition and quantification included in the target by using the above-described composition and quantitative analysis device, colliding the target to be analyzed Fixing to the part; The incident particles are accelerated at the incidence part to impinge the incident particles accelerated from the incidence part to the target so that the incident particles impinging on the target and the components separated from the target are scattered at an angle of more than 0 ° and less than 90 °, and Allowing the aircraft to fly back; And measuring, by the flight time measuring unit, the time when the incident particles collided with the target and the component separated from the target fly in the scattering unit.
상기 비행시간 측정부는 이온 및 전자 빔 전류 측정을 위한 페러데이 컵 어셈블리를 더 포함할 수 있다. The flight time measuring unit may further include a Faraday cup assembly for measuring ion and electron beam current.
상기 또 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 패러데이 컵 어셈블리는 패러데이 컵의 중앙에 빔을 통과시킬 수 있는 내경을 갖는 관통부를 구비하고, 상기 관통부는 격벽을 통해 컵의 내부공간과 분리되며, 상기 패러데이 컵의 상면에는 휘어진 빔이 입사되는 입구를 구비하는 상면이 개방된 이중 원통형 구조를 갖는 것을 특징으로 하고, 상기 패러데이 컵의 상부에는 전류 측정 시 빔이 상기 입구를 통해 컵 내부로 유도될 수 있도록 유도하는 빔 디플렉터를 구비하는 것을 특징으로 한다. Faraday cup assembly according to an embodiment of the present invention for achieving the another object has a through portion having an inner diameter capable of passing the beam in the center of the Faraday cup, the through portion separated from the inner space of the cup through the partition wall The upper surface of the Faraday cup is characterized in that the upper surface having a double cylindrical structure having an inlet having an inlet in which the bent beam is incident, the upper part of the Faraday cup when the current is guided by the beam through the inlet into the cup And a beam deflector that guides the beam deflector.
이때, 상기 빔 디플렉터는 2개 이상의 전극판으로 이루어질 수 있다. In this case, the beam deflector may be formed of two or more electrode plates.
또한, 상기 빔 디플렉터에 고주파 전압을 인가해 빔의 경로를 상기 관통부와 상기 입구에 교번적으로 유도함으로써 실시간으로 빔의 전류를 측정할 수 있다. In addition, by applying a high frequency voltage to the beam deflector to guide the path of the beam alternately to the through and the inlet can be measured in real time the current of the beam.
상기 또 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 전류 측정 방법은 전술한 패러데이 컵 어셈블리를 이용한 이온 및 전자 빔 전류 측정 방법으로서, 상기 빔 디플렉터를 이용해 빔의 경로를 상기 컵의 입구로 유도하는 단계, 컵에 포획된 전하의 전류를 측정하는 단계를 포함하는 것을 특징으로 하며, 기계적 구동부가 필요없는 것을 특징으로 한다. The current measuring method according to an embodiment of the present invention for achieving the above another object is a method for measuring ion and electron beam current using the Faraday cup assembly, using the beam deflector to guide the path of the beam to the inlet of the cup And measuring the current of the charge trapped in the cup, characterized in that no mechanical drive is required.
이때, 상기 빔 디플렉터에 고주파 전압을 인가해 빔의 경로를 관통부와 입구에 교번적으로 유도함으로써 실시간으로 빔의 전류를 측정할 수 있다.At this time, by applying a high frequency voltage to the beam deflector to guide the path of the beam alternately to the through and the inlet can be measured the current of the beam in real time.
본 발명에 따른 비행시간을 이용한 조성 및 정량 분석 장치 및 방법에 의하면, 원자량이 큰 입사 입자를 가속하여 타겟에 충돌시키고, 입사 입자에 의해 튕겨 나오는 입자 및 타겟에 의하여 산란된 입사 입자의 산란부에서의 비행 시간을 측정하여 조성 및 정량 분석을 수행한다. According to the composition and quantitative analysis apparatus and method using the flight time according to the present invention, in the scattering portion of the particles particles of high atomic weight to accelerate and impinge on the target, bounced by the incident particles and scattered by the target Perform the composition and quantitative analysis by measuring the flight time of.
상기 방법에 의하면 성분마다의 고유한 특성인 원자량 차이에 의하여, 타겟으로부터 산란된 입사 입자와 되튕김된 타겟 입자의 에너지가 동일한 경우에도 비행시간 측정부까지 도달하는 시간이 상이하게 되며, 이에 따라 별도의 필터를 적용하지 않더라도 보론 등의 경원소 분석이 가능한 장점이 있다. 또한 입사량과 검출기 면적, 입사 산란각에 의한 정보를 통하여 정량 분석을 할 수 있다.According to the method, the time to reach the flight time measuring unit is different even when the energy of the incident particles scattered from the target and the bounced target particles are the same due to the atomic weight difference, which is a unique characteristic of each component. Even if you do not apply the filter of light element such as boron has the advantage that can be analyzed. In addition, quantitative analysis can be performed through information based on incident amount, detector area, and incident scattering angle.
또한, 본 발명의 패러데이 컵 어셈블리는 단순히 빔을 이동시켜 전류를 측정하기 때문에 기존의 방식에 비해 기계적 구동에 의한 마모 및 단선을 방지하고 내구성을 높인다. 또한, 구동시 발생하는 소음 방지 및 안정적인 전류 측정과 빔 중심축의 최소한 이동으로 측정이 가능하다. 또한, 빔 디플렉터에 펄스 전압을 인가하는 경우에는 빔의 실시간 전류 모니터링이 가능하다.In addition, since the Faraday cup assembly of the present invention simply measures the current by moving the beam, the Faraday cup assembly prevents wear and disconnection due to mechanical driving and increases durability compared to the conventional method. In addition, noise can be generated during operation, stable current measurement, and measurement with minimal movement of the beam center axis. In addition, when a pulse voltage is applied to the beam deflector, real-time current monitoring of the beam is possible.
도 1은 본 발명의 실시 예에 따른 조성 및 정량 분석 장치를 개략적으로 나타낸 것이다.1 schematically shows a composition and quantitative analysis apparatus according to an embodiment of the present invention.
도 2는 입사 입자로 네온(Ne) 이온을 이용하고, 에너지 검출 방식을 이용할 경우의 B doped Si 측정 결과를 나타낸 것이다.FIG. 2 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and an energy detection method is used.
도 3은 입사 입자로 네온(Ne) 이온을 이용하고, 비행시간 측정을 이용한 경우의 B doped Si 측정 결과를 나타낸 것이다.FIG. 3 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and flight time measurement is used.
도 4는 종래의 패러데이 컵을 이용한 이온 주입 장치를 개략적으로 나타낸 것이다.Figure 4 schematically shows an ion implantation apparatus using a conventional Faraday cup.
도 5는 본 발명에 따른 이온 및 전자 빔 전류 측정을 위한 패러데이 컵의 구조를 개략적으로 나타낸 것이다.5 schematically shows the structure of a Faraday cup for ion and electron beam current measurement according to the present invention.
도 6은 본 발명에 따른 빔 디플렉터의 구조 및 빔의 굴절을 나타낸 것이다. Figure 6 shows the structure of the beam deflector and the refraction of the beam according to the present invention.
도 7은 본 발명의 이온 및 전자 빔 전류 측정을 위한 패러데이 컵을 상부에서 바라본 구조를 개략적으로 나타낸 것이다.Figure 7 schematically shows a structure viewed from the top of the Faraday cup for measuring the ion and electron beam current of the present invention.
도 8은 본 발명의 전류 측정용 패러데이 컵을 이용한 이온 및 전자빔 전류 측정 방법을 나타낸 것이다. Figure 8 shows the ion and electron beam current measurement method using the Faraday cup for current measurement of the present invention.
<부호의 설명><Description of the code>
101 : 타겟 102 : 입사 입자101: target 102: incident particles
110 : 입사부 120 : 충돌부110: incident part 120: collision part
130 : 산란부 140 : 비행시간 측정부130: scattering unit 140: flight time measuring unit
150 : 산란각 (되튐각) B : 빔150: scattering angle (back angle) B: beam
401 : 패러데이 컵 402 : 빔 생성부 401: Faraday Cup 402: beam generator
403 : 컵 구동부 400 : 패러데이 컵403: cup drive 400: Faraday cup
410 : 관통부 420 : 격벽 410: penetration portion 420: partition wall
430 : 입구 500 : 빔 생성부430: entrance 500: beam generation unit
600 : 디플렉터 610 : 전극600: deflector 610: electrode
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 비행시간을 이용한 조성 및 정량 분석 장치 및 방법, 이에 이용되는 패러데이 컵 어셈블리에 관하여 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, a composition and quantitative analysis apparatus and method using a flight time according to an embodiment of the present invention, Faraday cup assembly to be used will be described.
도 1은 본 발명의 실시 예에 따른 성분 분석 장치를 개략적으로 나타낸 것이다.1 schematically shows a component analysis apparatus according to an embodiment of the present invention.
도 1을 참조하면, 도시된 조성 및 정량 분석 장치는 입사부(110), 충돌부(120), 산란부(130) 및 비행시간 측정부(140)를 포함한다. Referring to FIG. 1, the illustrated composition and quantitative analysis apparatus includes an incident part 110, a collision part 120, a scattering part 130, and a flight time measuring part 140.
입사부(110)에서는 입사 입자(102)가 가속된다. 입사 입자(102) 가속을 위하여 수십에서 수백 keV 정도의 입자 가속 장치가 입사부(110)에 배치될 수 있으며, 더 바람직하게는 40keV 내지 400keV 정도의 입자 가속 장치가 배치될 수 있으나 이에 한정되지는 않는다. In the incident part 110, the incident particles 102 are accelerated. Particle accelerators of about tens to hundreds of keV may be disposed in the incidence unit 110 to accelerate the incident particles 102. More preferably, particle accelerators of about 40 keV to 400 keV may be disposed, but are not limited thereto. Do not.
본 발명에서 입사 입자(102)는 탄소(C), 산소(O), 네온(Ne), 아르곤(Ar), 헬륨(He), 질소(N) 등과 같이 원자량이 큰 것을 이용하는 것이 바람직하다. 이 경우, 타겟(101)과의 충돌 시 효과적으로 경원소가 튕겨 나올 수 있다. 보다 바람직하게는 불활성 입자로서 반응성이 없는 네온, 아르곤을 입사 입자로 이용하는 것을 제시할 수 있다. In the present invention, the incident particles 102 preferably use a large atomic weight such as carbon (C), oxygen (O), neon (Ne), argon (Ar), helium (He), nitrogen (N), and the like. In this case, the light element may bounce off effectively when colliding with the target 101. More preferably, it can be proposed to use neon, argon, which is not reactive as inert particles, as incident particles.
다음으로, 충돌부(120)에는 분석 대상이 되는 타겟(101)이 고정되어 있다. 충돌부(120)에서는 입사부(110)로부터 가속된 입사 입자(102)가 타겟(101)에 충돌한다.Next, the target 101 to be analyzed is fixed to the collision part 120. In the collision part 120, the incident particles 102 accelerated from the incident part 110 collide with the target 101.
다음으로, 산란부(130)에서는 타겟(101)에 충돌한 입사 입자(102) 및 타겟(101)으로부터 되튕김된 성분이 산란, 즉 비행한다. Next, in the scattering unit 130, the incident particles 102 collided with the target 101 and the components bounced back from the target 101 are scattered, that is, fly.
다음으로, 비행시간 측정부(140)에서는 타겟(101)에 충돌하여 산란된 입사 입자(102) 및 타겟(101)으로부터 되튕김된 성분이 산란부(130)에서 비행한 시간을 측정한다. Next, the flight time measuring unit 140 measures the time that the incident particles 102 collided with the target 101 and the components bounced back from the target 101 fly in the scattering unit 130.
산란부(130)에서는 상대적으로 가벼운 성분일수록 짧은 시간 동안 비행하고, 상대적으로 무거운 성분일수록 긴 시간 동안 비행한다. 예를 들어, 타겟이 보론이 도핑된 실리콘이고, 입사 입자가 네온일 경우, 네온의 충돌에 의해 타겟으로부터 떨어져 나온 보론은 짧은 시간 동안 비행하고, 타겟과의 충돌에 의해 산란된 네온은 긴 시간 동안 비행한다. 이는 물질 고유의 원자량에 의해 결정되고, 산란부(130)의 길이가 길수록 비행시간 차이가 보다 커진다. In the scattering unit 130, the lighter components fly for a short time, and the heavier components fly for a longer time. For example, if the target is boron-doped silicon and the incident particle is neon, the boron that has fallen off the target by the collision of neon will fly for a short time, and the neon scattered by the collision with the target for a long time Fly This is determined by the atomic weight inherent in the material, and the longer the length of the scattering unit 130 is, the larger the flight time difference becomes.
종래 에너지 검출 방식의 경우, 동일한 에너지를 가질 경우에는 분석이 되지 않는 문제점이 있었으나, 본 발명의 경우, 비행시간을 측정하는 방식으로, 동일한 에너지를 가진 경우라도 원자량이 차이가 나는 성분들은 비행시간이 상이하므로, 보다 정확한 조성 및 정량 분석이 가능하다. 따라서, 이러한 비행시간 차이를 이용하여 분석 대상이 되는 타겟 내에 포함된 특정 성분의 조성, 함량, 오염도 등을 평가할 수 있다. In the case of the conventional energy detection method, there is a problem that can not be analyzed when they have the same energy, but in the present invention, by measuring the flight time, even if they have the same energy, components with different atomic weights have different flight times. Since different, more accurate composition and quantitative analysis are possible. Therefore, the composition of the specific components included in the target to be analyzed, the content, the degree of contamination, etc. can be evaluated using the difference in time of flight.
이러한 특징을 이용하여, 본 발명에서는 수소를 포함하는, 원자량이 1~16까지의 원소(He, Li, Be, B, C, N, O)의 성분 분석이 가능하다. 또한 들어온 입자의 수율로 정량분석이 가능하다. By using such a feature, in the present invention, component analysis of elements (He, Li, Be, B, C, N, O) having an atomic weight of 1 to 16, including hydrogen, is possible. It is also possible to quantitatively analyze the yield of particles coming in.
반도체 공정 및 시편 분석 연구분야에서 잘 이루어지지 않는 부분은 경 원소 분석이다. 예를 들어, 반도체 B doped Si에서는 B의 조성 정량 분석이 중요한데, 분석 방법을 찾지 못하고 있어서 어려움을 겪고 있다. 또한, 반도체에서 오염층 존재 여부는 매우 중요한데, 오염층에 주로 섞여 있는 원소는 H, C, O, N 등 경 원소 이기 때문에, H, C, O, N 분석이 아주 중요하다. 따라서, 본 발명에 따른 성분 분석 장치를 이용할 경우, 상기의 경 원소 분석이 가능하며, 또한 비파괴적인 분석이 가능한 장점이 있다. A poor part of semiconductor processing and specimen analysis research is light element analysis. For example, quantitative analysis of the composition of B is important in the semiconductor B doped Si, but it is difficult because no analysis method is found. In addition, the presence of a contaminant layer in the semiconductor is very important. H, C, O, N analysis is very important because the elements mainly mixed in the contaminant layer are light elements such as H, C, O, and N. Therefore, when using the component analysis apparatus according to the present invention, the above light element analysis is possible, and there is an advantage that can be non-destructive analysis.
비행시간 측정을 고려할 때, 입사 입자의 산란 또는 타겟으로부터 되튕김된 성분의 분석에 있어 산란부(130)의 길이는 중요한 요소로 작용할 수 있다. 즉, 산란부의 길이가 길어질수록 장비 분해능이 높아져서 분석이 보다 용이하게 된다. 상기 산란부(130)는 10mm~10m 길이로 형성되는 것이 바람직하나, 최대 길이에 제한이 있는 것은 아니다. In consideration of flight time measurement, the length of the scattering unit 130 may act as an important factor in scattering incident particles or analyzing components bounced from a target. In other words, the longer the scattering portion, the higher the resolution of the equipment, and the easier the analysis. The scattering unit 130 is preferably formed in 10mm ~ 10m length, but is not limited to the maximum length.
한편, 상기 입사부와 산란부의 산란각 및 타겟으로부터 되튕김된 성분의 되튐각은 입사 입자의 종류나 타겟 성분에 따라 조절될 수 있으며, 0°초과 내지 90°미만의 범위에서 배열될 수 있으며, 20°초과 내지 70°미만의 범위에서 배열되는 것이 보다 바람직하다.On the other hand, the scattering angle of the incident portion and the scattering portion and the bounce angle of the component bounced back from the target may be adjusted according to the type of the incident particle or the target component, may be arranged in the range of more than 0 ° to less than 90 °, More preferably, it is arranged in the range of more than 20 degrees and less than 70 degrees.
본 발명에 따른 성분 분석 장치를 이용하여 타겟에 포함된 특정 조성 및 정량 을 분석하는 방법은 다음과 같다. Method for analyzing the specific composition and quantification included in the target using the component analysis device according to the present invention is as follows.
우선, 분석 대상이 되는 타겟을 충돌부에 고정한다. First, the target to be analyzed is fixed to the collision part.
이후, 입사부에서 입사 입자를 가속시켜, 상기 입사부로부터 가속된 입사 입자를 상기 타겟에 충돌시켜, 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 떨어져 나온 성분이 산란되도록 한다. Thereafter, the incident particles are accelerated at the incidence part to impinge the incident particles accelerated from the incidence part to the target so that the incident particles impinging on the target and the components separated from the target are scattered.
이후, 비행시간 측정부에서 상기 타겟에 충돌한 입사 입자 및 타겟으로부터 떨어져 나온 성분이 상기 산란부에서 비행한 시간을 측정한다. 이후, 성분의 수율로서 성분의 양을 분석한다. Thereafter, the flying time measuring unit measures the time that the incident particles collided with the target and the component separated from the target fly in the scattering unit. The amount of the component is then analyzed as the yield of the component.
도 2는 입사 입자로 네온(Ne) 이온을 이용하고, 에너지 검출 방식을 이용할 경우의 B doped Si 측정 결과를 나타낸 것이다.FIG. 2 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and an energy detection method is used.
도 2를 참조하면, 실리콘(Si) 피크 내에 보론(B) 피크가 포함되어 있는 것을 볼 수 있다. 이 경우, 보론 피크가 분리가 되지 않아 정밀한 보론 함량 분석이 불가능하다. Referring to FIG. 2, it can be seen that the boron (B) peak is included in the silicon (Si) peak. In this case, the boron peak is not separated and precise boron content analysis is impossible.
도 3은 입사 입자로 네온(Ne) 이온을 이용하고, 비행시간 측정을 이용한 경우의 B doped Si 측정 결과를 나타낸 것이다.FIG. 3 shows B doped Si measurement results when neon (Ne) ions are used as incident particles and flight time measurement is used.
도 3을 참조하면, 보론 피크와 실리콘 피크가 분리되어 있는 것을 볼 수 있다. 이는 비행시간의 차이에 기인하는 것으로, 도 2에서와는 달리, 정밀한 보론 함량 분석이 가능하다. Referring to FIG. 3, it can be seen that the boron peak and the silicon peak are separated. This is due to the difference in flight time, and unlike in FIG. 2, accurate boron content analysis is possible.
[표 1] TABLE 1
Figure PCTKR2014007043-appb-I000001
Figure PCTKR2014007043-appb-I000001
Ne 입사에너지 : 100keV, 산란부 길이 : 60 cmNe incident energy: 100 keV, scattering part length: 60 cm
산란각 : 입사부와 산란부가 이루는 각의 외각Scattering angle: The outer angle of the angle formed by the incident part and the scattering part
표 1을 참조하면, 되튕김된(recoiled) 보론(B)와 실리콘(Si) 산란된(scattered) 네온(Ne)의 비행시간 차이가 대략 131 ns 정도인 것을 볼 수 있고, 보론(B)이 보다 빠르게 비행시간 측정부에 도달하는 것을 볼 수 있다. Referring to Table 1, it can be seen that the flight time difference between the recoiled boron (B) and the silicon (Si) scattered neon (Ne) is approximately 131 ns, and the boron (B) is You will see that you get to the flight time measurement faster.
상기의 비행시간으로부터 아래 수식들을 이용하여 산란에너지, 충돌 시 타겟으로부터 튕겨나오는 성분의 에너지, 비행입자 에너지를 계산할 수 있다. From the above flight time, the following equations can be used to calculate scattering energy, energy of the component bounced from the target in the event of collision, and flying particle energy.
[식 1] 산란 에너지Equation 1 scattering energy
Figure PCTKR2014007043-appb-I000002
Figure PCTKR2014007043-appb-I000002
[식 2] 충돌 시 타겟으로부터 튕겨나오는 성분의 에너지Equation 2 Energy of a component that bounces off a target in a collision
Figure PCTKR2014007043-appb-I000003
Figure PCTKR2014007043-appb-I000003
[식 3] 비행입자 에너지Flying Particle Energy
Figure PCTKR2014007043-appb-I000004
Figure PCTKR2014007043-appb-I000004
한편, 비행시간 측정부(140)는 도 4 내지 도 8에 도시된 예와 같은, 이온 및 전자 빔 전류 측정을 위한 페러데이 컵 어셈블리를 더 포함할 수 있다. Meanwhile, the flight time measuring unit 140 may further include a Faraday cup assembly for measuring ion and electron beam current, as shown in FIGS. 4 to 8.
도 5는 본 발명의 이온 및 전자 빔 전류 측정을 위한 패러데이 컵(400)의 구조를 개략적으로 도시한다.5 schematically illustrates the structure of a Faraday cup 400 for ion and electron beam current measurement of the present invention.
본 발명에 의한 패러데이 컵(400)은 중앙에 빔(B)을 통과시킬 수 있는 내경을 갖는 관통부(410)를 구비한다. 상기 내경은 사용하는 장비에 따라 틀리며, 보통 빔(B)의 어라인먼트 등의 이유로 빔(B)이 이동하였을 경우에도 패러데이 컵(400)에 차단되는 일이 없을 정도의 내경이면 충분하다.The Faraday cup 400 according to the present invention includes a through part 410 having an inner diameter capable of passing the beam B at the center thereof. The inner diameter is different depending on the equipment used, and the inner diameter of the beam B may be sufficient to prevent the Faraday cup 400 from being moved even when the beam B is moved due to the alignment of the beam B.
상기 관통부(410)는 격벽(420)에 의해 패러데이 컵(400)의 내부공간과 분리된다. 패러데이 컵(400)의 상면에는 컵의 입구(430)가 개방되어 있으며, 측면 및 하면은 빔(B)이 입사했을 경우 빔 포획을 위해 폐쇄된 구조를 갖는다. 따라서, 본 발명의 패러데이 컵(400)은 전체적인 형태에서 이중 원통 구조를 갖는다.The through part 410 is separated from the inner space of the Faraday cup 400 by the partition wall 420. The inlet 430 of the cup is open on the upper surface of the Faraday cup 400, the side and the lower surface has a closed structure for beam capture when the beam (B) is incident. Thus, the Faraday cup 400 of the present invention has a double cylindrical structure in its overall form.
상기 빔(B)은 빔 생성부(500)에서 공급되며, 상기 빔 생성부는 통상적인 이온 혹인 전자빔 생성 기술을 이용한다. The beam B is supplied from the beam generator 500, and the beam generator uses a conventional ion or electron beam generation technique.
상기 패러데이 컵(400)의 상부에는 빔 디플렉터(600)을 구비한다. 이온 및 전자 빔의 장비의 이용 목적에 따라 사용될 때는 상기 빔(B)은 관통부(410)를 통해 통과되어 기판 혹은 시편에 조사되지만, 빔(B)의 전류를 측정할 때에는 상기 디플렉터(600)을 통해 빔을 굴절시켜 입구(430)를 통해 패러데이 컵(400)으로 빔(B)을 유도한다. The beam deflector 600 is provided on the Faraday cup 400. When used according to the purpose of use of the equipment of the ion and electron beams, the beam B passes through the penetrating portion 410 and is irradiated onto the substrate or the specimen, but the deflector 600 is used when measuring the current of the beam B. The beam B is deflected to guide the beam B through the inlet 430 to the Faraday cup 400.
도 5는 본 발명에 사용할 수 있는 빔 디플렉터(600)의 구조를 보여주고 있다.5 shows the structure of a beam deflector 600 that can be used in the present invention.
일반적으로 빔 디플렉터(600)의 구조는 두 개 이상의 실린더형 전극판으로 구성되어 있다. 각 전극에 전압을 인가함으로써 전극판 사이에 전기장을 형성하여 전자빔(혹은 이온빔)의 운동을 제어한다. 이때, 본 발명의 실시예에서 제시되는 전자 현미경에서 사용되는 빔 디플렉터는 두 개의 전극으로 구성되고, 두 개의 전극의 전압을 조절하여 전위분포를 할 수 있으며, 이를 통하여 이온빔의 굴절을 조절할 수 있다. In general, the structure of the beam deflector 600 is composed of two or more cylindrical electrode plates. By applying a voltage to each electrode, an electric field is formed between the electrode plates to control the movement of the electron beam (or ion beam). At this time, the beam deflector used in the electron microscope presented in the embodiment of the present invention is composed of two electrodes, the potential distribution can be adjusted by adjusting the voltage of the two electrodes, thereby adjusting the refraction of the ion beam.
도 6은 본 발명의 이온 및 전자 빔 전류 측정을 위한 패러데이 컵(400)을 상부에서 바라본 구조를 개략적으로 도시한다.6 schematically illustrates a structure of the Faraday cup 400 for the ion and electron beam current measurement according to the present invention.
또한, 빔 디플렉터(600)에 고주파 전압을 인가하면 주파수에 의존하는 펄스빔을 생성하는 것도 가능하다. 상기 펄스빔을 이용할 경우 빔(B)이 주기적으로 관통부(410)와 패러데이 컵(400)의 입구(420)로 유도되기 때문에 패러데이 컵(400)을 통해 전류를 실시간으로 모니터링하면서 빔(B)을 이용하는 것이 가능해진다.In addition, when a high frequency voltage is applied to the beam deflector 600, it is also possible to generate a pulse beam depending on the frequency. When the pulse beam is used, the beam B is periodically guided to the penetrating portion 410 and the inlet 420 of the Faraday cup 400, so that the beam B is monitored in real time through the Faraday cup 400. It becomes possible to use.
도 7은 본 발명의 이온 및 전자 빔 전류 측정을 위한 패러데이 컵(400)을 상부에서 바라본 구조를 개략적으로 도시한다.7 schematically illustrates a structure of the Faraday cup 400 for measuring ion and electron beam currents of the present invention.
패러데이 컵(400)은 상기 도 4에서 설명했듯이 이중 원통 구조를 가지며, 상부에서 봤을 때 관통부(410)를 형성하는 작은 원형과 그 주위를 둘러싼 격벽(420), 격벽의 가장자리부터 개구된 입구(430)가 동심원 형태로 구비되어 있다. 패러데이 컵(400)의 외주면을 형성하는 큰 원형의 동심원 형태를 볼 수 있으며, 관통부(410)를 상부에서 봤을 때의 크기보다 크고 패러데이 컵(400)의 외주면 보다 작은 띠 모양의 입구(430)를 통해 이중 원통형 구조를 갖는다.The Faraday cup 400 has a double cylindrical structure as described in FIG. 4, a small circle forming a penetrating portion 410 when viewed from the top, a partition wall 420 surrounding it, and an opening opening from an edge of the partition wall ( 430 is provided in the form of concentric circles. A large circular concentric shape forming an outer circumferential surface of the Faraday cup 400 can be seen, and a strip-shaped inlet 430 larger than the size of the through portion 410 when viewed from the top and smaller than the outer circumferential surface of the Faraday cup 400. Through has a double cylindrical structure.
본 발명의 패러데이 컵 어셈블리는 전자빔을 이용하는 대표적인 분석 장비인 전자 현미경, 이온빔을 응용한 대표적인 반도체 공정 장비인 이온 주입 장치 등에 사용할 수 있으며, 상기 장비 외에도, 이온빔 및 전자빔을 이용하는 모든 장비에 빔 전류 측정 및 모니터링에 사용될 수 있다.The Faraday cup assembly of the present invention can be used for electron microscope, which is a representative analysis equipment using an electron beam, and ion implantation device, which is a representative semiconductor processing equipment using ion beam. In addition to the above equipment, beam current measurement and Can be used for monitoring.
도 8은 본 발명의 전류 측정용 패러데이 컵(400)을 이용한 이온 및 전자빔 전류 측정 방법을 도시하고 있다.8 illustrates a method for measuring ion and electron beam current using the Faraday cup 400 for current measurement according to the present invention.
도 8 (a)와 같이 평상시의 빔(B)은 패러데이 컵(400)의 관통부(410)를 통과해 시료에 조사된다. 빔(B)의 전류 측정이 필요한 경우에는 도 8 (b)와 같이 빔 디플렉터(600)에 전압을 인가해 빔(B)의 경로는 관통부(410)에서 패러데이 컵(400)의 입구(430)로 유도하게 된다. 빔(B)의 굴절 정도가 최소가 되도록 계산된 전압을 빔 디플렉터(600)에 인가하는 것이 바람직하다. 이와 같이 빔(B)이 패러데이 컵(400)으로 유도되면 전류 측정장치(미도시)를 통해 전류를 측정하게 된다. 상기 전류 측정장치는 미세전류 측정 장치를 이용하며, 필요한 경우에는 전류 증폭기를 이용할 수 있다. 빔 디플렉터(600)에 고주파 전압을 인가하는 경우가 도 5 (c)에 도시되어 있다.As shown in FIG. 8 (a), the beam B is normally irradiated to the sample through the penetrating portion 410 of the Faraday cup 400. When the current measurement of the beam B is necessary, a voltage is applied to the beam deflector 600 as shown in FIG. 8 (b) so that the path of the beam B passes through the inlet 430 of the Faraday cup 400 at the through part 410. ). It is preferable to apply the calculated voltage to the beam deflector 600 so that the degree of refraction of the beam B is minimized. As such, when the beam B is guided to the Faraday cup 400, the current is measured through a current measuring device (not shown). The current measuring device uses a microcurrent measuring device, and may use a current amplifier if necessary. A case of applying a high frequency voltage to the beam deflector 600 is illustrated in FIG. 5 (c).
빔 디플렉터(600)에 고주파 전압을 인가하면 주파수에 의존하는 펄스빔을 생성되어, 빔(B)이 주기적으로 관통부(410)와 패러데이 컵(400)의 입구(420)로 통과하기 때문에 전류의 실시간 모니터링이 가능해진다.Applying a high frequency voltage to the beam deflector 600 generates a pulse beam that is frequency dependent, so that the beam B periodically passes through the penetrating portion 410 and the inlet 420 of the Faraday cup 400 so that the Real-time monitoring is possible.
이상에서는 본 발명의 실시예들을 중심으로 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 기술자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형은 본 발명이 제공하는 기술 사상의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above has been described with reference to the embodiments of the present invention, various changes or modifications may be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the technical idea provided by the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (17)

  1. 입사 입자가 가속되는 입사부; An incident part at which incident particles are accelerated;
    분석 대상이 되는 타겟이 고정되어 있으며, 상기 입사부로부터 가속된 입사 입자가 상기 타겟에 충돌하는 충돌부;A collision unit in which a target to be analyzed is fixed and the incident particles accelerated from the incident unit collide with the target;
    상기 타겟에 충돌하여 산란된 입사 입자 및 상기 타겟으로부터 되튕김된 성분이 0°초과 내지 90°미만의 산란각 및 되튐각으로 비행되는 산란부; 및A scattering unit in which the incident particles scattered and collided with the target and the components bounced back from the target fly at a scattering angle and a return angle of more than 0 ° to less than 90 °; And
    상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 되튕김된 성분이 상기 산란부에서 비행한 시간을 측정하는 비행시간 측정부;를 포함하는 것을 특징으로 하는 조성 및 정량 분석 장치. And a flight time measuring unit configured to measure a time when the incident particles collided with the target and the component bounced from the target fly in the scattering unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 입사 입자는 탄소, 산소, 네온, 헬륨, 질소 및 아르곤 중에서 선택되는 것을 특징으로 하는 조성 및 정량 분석 장치.The incident particle is a composition and quantitative analysis device, characterized in that selected from carbon, oxygen, neon, helium, nitrogen and argon.
  3. 제2항에 있어서,The method of claim 2,
    상기 입사 입자는 불활성 원소인 것을 특징으로 하는 조성 및 정량 분석 장치.Composition and quantitative analysis device, characterized in that the incident particle is an inert element.
  4. 제1항에 있어서, The method of claim 1,
    상기 타겟에는 원자량이 1~16까지인 원소가 포함되어 있는 것을 특징으로 하는 조성 및 정량 분석 장치. The target composition and quantitative analysis device, characterized in that the target contains an element with an atomic weight of 1 to 16.
  5. 제1항에 있어서,The method of claim 1,
    상기 입사부와 산란부의 산란각 및 타겟으로부터 되튕김된 성분의 되튐각은 20°초과 내지 70°미만으로 배치되는 것을 특징으로 하는 조성 및 정량 분석 장치. The scattering angle of the incident portion and the scattering portion, and the bounce angle of the component bounced back from the target is disposed more than 20 ° to less than 70 ° characterized in that the composition and quantitative analysis device.
  6. 제1항에 있어서,The method of claim 1,
    상기 산란부는 10mm ~ 10m 길이로 형성되는 것을 특징으로 하는 조성 및 정량 분석 장치. The scattering unit is a composition and quantitative analysis device, characterized in that formed in 10mm ~ 10m long.
  7. 제1항에 기재된 조성 및 정량 분석 장치를 이용하여 타겟에 포함된 조성 및 정량을 분석하는 방법에 있어서,In the method for analyzing the composition and quantification contained in the target using the composition and quantitative analysis apparatus according to claim 1,
    분석 대상이 되는 타겟을 충돌부에 고정하는 단계;Fixing a target to be analyzed to a collision unit;
    입사부에서 입사 입자를 가속시켜, 상기 입사부로부터 가속된 입사 입자를 상기 타겟에 충돌시켜, 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 떨어져 나온 성분이 0°초과 내지 90°미만의 산란각 및 되튐각으로 비행하도록 하는 단계; 및The incident particles are accelerated at the incidence part to impinge the incident particles accelerated from the incidence part to the target so that the incident particles impinging on the target and the components separated from the target are scattered at an angle greater than 0 ° and less than 90 °, Allowing the aircraft to fly back; And
    비행시간 측정부에서 상기 타겟에 충돌한 입사 입자 및 상기 타겟으로부터 떨어져 나온 성분이 상기 산란부에서 비행한 시간을 측정하는 단계;를 포함하는 것을 특징으로 하는 조성 및 정량 분석 방법.And measuring the time at which the incident particles impinging on the target and the component separated from the target fly in the scattering unit in a flight time measuring unit.
  8. 제1항에 있어서, The method of claim 1,
    상기 비행시간 측정부는 이온 및 전자 빔 전류 측정을 위한 페러데이 컵 어셈블리를 더 포함하는 것을 특징으로 하는 정량 분석 장치.The flight time measuring unit further comprises a Faraday cup assembly for measuring ion and electron beam current.
  9. 이온 및 전자 빔 전류 측정을 위한 패러데이 컵에 관한 것으로,To a Faraday cup for ion and electron beam current measurement,
    상기 패러데이 컵은 중앙에 빔을 통과시킬 수 있는 관통부를 구비하고,The Faraday cup has a through part through which a beam can pass through the center,
    상기 패러데이 컵의 상면에는 휘어진 빔이 입사되는 입구를 구비하는 상면이 개방된 이중 원통형 구조를 갖는 것을 특징으로 하고,The upper surface of the Faraday cup is characterized in that it has a double cylindrical structure with an open upper surface having an inlet for the bent beam is incident,
    상기 패러데이 컵의 상부에는 전류 측정 시 빔이 상기 입구를 통해 컵 내부로 유도될 수 있도록 유도하는 빔 디플렉터를 구비하는 것을 특징으로 하는 패러데이 컵 어셈블리.Faraday cup assembly on the top of the Faraday cup having a beam deflector for inducing a beam to be guided into the cup through the inlet during the current measurement.
  10. 제9항에 있어서,The method of claim 9,
    상기 빔 디플렉터는 2개 이상의 전극판으로 이루어지는 것을 특징으로 하는 패러데이 컵 어셈블리.The beam deflector is Faraday cup assembly, characterized in that consisting of two or more electrode plates.
  11. 제9항에 있어서,The method of claim 9,
    상기 빔 디플렉터에 고주파 전압을 인가해 빔의 경로를 상기 관통부와 상기 입구에 교번적으로 유도함으로써 실시간으로 빔의 전류를 측정하는 것을 특징으로 하는 패러데이 컵 어셈블리.Faraday cup assembly, characterized in that by applying a high frequency voltage to the beam deflector to guide the path of the beam alternately to the through and the inlet to measure the current of the beam in real time.
  12. 제9항의 패러데이 컵 어셈블리를 포함한 전자 현미경.An electron microscope comprising the Faraday cup assembly of claim 9.
  13. 제9항의 패러데이 컵 어셈블리를 포함한 이온 주입 장치.An ion implantation device comprising the Faraday cup assembly of claim 9.
  14. 제9항의 패러데이 컵 어셈블리를 포함한 전자빔 모니터링 시스템.An electron beam monitoring system comprising the Faraday cup assembly of claim 9.
  15. 제9항의 패러데이 컵 어셈블리를 포함한 이온빔 모니터링 시스템.An ion beam monitoring system comprising the Faraday cup assembly of claim 9.
  16. 제9항의 패러데이 컵 어셈블리를 이용한 이온 및 전자 빔 전류 측정 방법으로서,An ion and electron beam current measurement method using the Faraday cup assembly of claim 9,
    상기 빔 디플렉터를 이용해 빔의 경로를 상기 컵의 입구로 유도하는 단계;Directing the path of the beam to the inlet of the cup using the beam deflector;
    컵에 포획된 전하의 전류를 측정하는 단계;를 포함하는 것을 특징으로 하는 이온 및 전자 빔 전류 측정 방법.Measuring current of the charge trapped in the cup; ion and electron beam current measurement method comprising a.
  17. 제16항에 있어서,The method of claim 16,
    상기 빔 디플렉터에 고주파 전압을 인가해 빔의 경로를 관통부와 입구에 교번적으로 유도함으로써 실시간으로 빔의 전류를 측정하는 것을 특징으로 하는 이온 및 전자 빔 전류 측정 방법.And applying a high frequency voltage to the beam deflector to induce the path of the beam alternately to the through and the inlet to measure the current of the beam in real time.
PCT/KR2014/007043 2013-07-31 2014-07-31 Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor WO2015016632A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130091239A KR101476141B1 (en) 2013-07-31 2013-07-31 Apparatus and method for analysing composition and quantity using time of flight
KR10-2013-0091239 2013-07-31
KR10-2013-0091262 2013-07-31
KR20130091262A KR101493215B1 (en) 2013-07-31 2013-07-31 Faraday cup for measuring ion or electron beam current

Publications (1)

Publication Number Publication Date
WO2015016632A1 true WO2015016632A1 (en) 2015-02-05

Family

ID=52432086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007043 WO2015016632A1 (en) 2013-07-31 2014-07-31 Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor

Country Status (1)

Country Link
WO (1) WO2015016632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175806A (en) * 2020-01-08 2020-05-19 中国科学院近代物理研究所 Beam scattering target device and beam energy dissipation analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075129A (en) * 1993-06-18 1995-01-10 Hitachi Ltd Method and equipment for surface analysis lising ion scattering
JP2002520799A (en) * 1998-07-17 2002-07-09 マスラブ・リミテッド Time-of-flight mass spectrometer
JP2006322776A (en) * 2005-05-18 2006-11-30 National Institute Of Advanced Industrial & Technology Time-of-flight mass spectrometer
US20110192972A1 (en) * 2008-09-16 2011-08-11 Shimadzu Corporation Time-Of-Flight Mass Spectrometer
KR20130033877A (en) * 2011-09-27 2013-04-04 에스엔유 프리시젼 주식회사 Scanning electron microscope and current measurement method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075129A (en) * 1993-06-18 1995-01-10 Hitachi Ltd Method and equipment for surface analysis lising ion scattering
JP2002520799A (en) * 1998-07-17 2002-07-09 マスラブ・リミテッド Time-of-flight mass spectrometer
JP2006322776A (en) * 2005-05-18 2006-11-30 National Institute Of Advanced Industrial & Technology Time-of-flight mass spectrometer
US20110192972A1 (en) * 2008-09-16 2011-08-11 Shimadzu Corporation Time-Of-Flight Mass Spectrometer
KR20130033877A (en) * 2011-09-27 2013-04-04 에스엔유 프리시젼 주식회사 Scanning electron microscope and current measurement method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175806A (en) * 2020-01-08 2020-05-19 中国科学院近代物理研究所 Beam scattering target device and beam energy dissipation analyzer

Similar Documents

Publication Publication Date Title
US5319212A (en) Method of monitoring ion beam current in ion implantation apparatus for use in manufacturing semiconductors
US4933552A (en) Inspection system utilizing retarding field back scattered electron collection
EP1101123B1 (en) Particle beam current monitoring technique
JP3294228B2 (en) Particle measuring device, particle collecting device and particle analyzing device
JP3898826B2 (en) Particle beam imaging apparatus, spectrometer provided in particle beam imaging apparatus, particle beam imaging method, and method of using particle beam imaging apparatus
WO2015016632A1 (en) Apparatus and method for composition and quantitative analysis using time of flight, and faraday cup assembly used therefor
JPS63231858A (en) Electron beam device
JP2007042299A (en) Device for measuring time-of-flight of sample ion, time-of-flight mass spectrometer, and time-of-flight mass spectrometry method
US7030375B1 (en) Time of flight electron detector
US11133166B2 (en) Momentum-resolving photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy
WO2016068507A1 (en) Particle beam mass spectrometer and particle measurement method by means of same
Inoue et al. Compact nuclear microprobe system for RBS/PIXE
Tchórz et al. Capabilities of Thomson parabola spectrometer in various laser-plasma-and laser-fusion-related experiments
JP2001116847A (en) X-ray detector, element analyzer, and device for manufacturing semiconductor
JP7425269B2 (en) Ion beam analyzer
SE452676B (en) PROCEDURE AND DEVICE FOR ANALYSIS OF A SURFACE INCLUDING SUBJECTS
Kondrashev et al. Upgrade of the FRIB Prototype Injector for Liquid Lithium Film Testing
KR101476141B1 (en) Apparatus and method for analysing composition and quantity using time of flight
Dubbeldam Electron spectrometers and voltage measurements
JPH08220030A (en) Method and apparatus for analyzing surface
JPH06281601A (en) Ion beam surface analysis
Hudson Installation, commissioning, and acceptance measurements of EMMA
JPH08136477A (en) Sample analyzing apparatus
JPS63102149A (en) Determinating potential measuring spectrometer detector
JP5924882B2 (en) Analytical apparatus and method using secondary ion using atomic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831882

Country of ref document: EP

Kind code of ref document: A1