JPH10197633A - Marine acoustic tomographic data analyzer - Google Patents

Marine acoustic tomographic data analyzer

Info

Publication number
JPH10197633A
JPH10197633A JP9001977A JP197797A JPH10197633A JP H10197633 A JPH10197633 A JP H10197633A JP 9001977 A JP9001977 A JP 9001977A JP 197797 A JP197797 A JP 197797A JP H10197633 A JPH10197633 A JP H10197633A
Authority
JP
Japan
Prior art keywords
time
data
acoustic wave
received signal
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9001977A
Other languages
Japanese (ja)
Inventor
Tomio Araya
富雄 新家
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9001977A priority Critical patent/JPH10197633A/en
Publication of JPH10197633A publication Critical patent/JPH10197633A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Abstract

PROBLEM TO BE SOLVED: To easily and accurately track the peak of acoustic wave receiving signal data by shifting acoustic wave reception starting time so that the difference between reference time and the propagating time of acoustic waves transmitted at another time may become zero. SOLUTION: Acoustic wave receiving signal data Ri outputted from a data inputting section 11 at every periodical observation are inputted to a memory 1. An arithmetic processing section 12 calculates the signal density of sequential data Si(t) of the acoustic wave receiving signals read out from the data Ri at certain acoustic wave receiving time and detects the maximum signal level value by using the generated signal density sequence. Then the section 12 finds the difference between this propagating time and the propagating time of the maximum level value of a reference acoustic wave receiving signal written in a memory 4 as a variation VTi . Then the section 12 finds the difference between the acoustic wave reception starting time in the data Ri and the variation VTi as acoustic wave reception starting time data NTSi for tracking and generates acoustic wave receiving signal sequence data NRi for tracking by shifting the data NTSi so that the variation VTi may becomes zero. Therefore, the correlation between the reference acoustic wave receiving signal data and single peaks of other acoustic wave receiving signal data become definite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海洋音響トモグラ
フィデータ解析装置におけるデータ解析に用いる受波信
号ピークトラッキング技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a received signal peak tracking technique used for data analysis in a marine acoustic tomography data analyzer.

【0002】[0002]

【従来の技術】最初に海洋音響トモグラフィシステムに
おける海中音波の送受信について説明する。図7は海洋
音響トモグラフィシステムにおける海中音波の送受信を
説明する図である。図7の海洋音響トモグラフィシステ
ムの例においては、単一の海水音源から所定周期毎(例
えば3時間毎)に所定の音波パルスを順次送信する。そ
して海洋を隔てて例えば1000km程度離れた海中に
設置された単一の音響受波器で前記周期的な送信波をそ
れぞれ受信する。
2. Description of the Related Art First, transmission and reception of underwater sound waves in a marine acoustic tomography system will be described. FIG. 7 is a diagram illustrating transmission and reception of underwater sound waves in the marine acoustic tomography system. In the example of the marine acoustic tomography system in FIG. 7, a predetermined sound pulse is sequentially transmitted from a single seawater sound source at predetermined intervals (for example, every three hours). Each of the periodic transmission waves is received by a single acoustic receiver installed in the sea, for example, about 1000 km away from the sea.

【0003】受信側では、海中音源から周期的に送信さ
れるある基準時刻(図7の例ではAM0.00)の送信
波の受波時間における受波信号データを基準受波信号デ
ータRa とし、その他の時刻(図7の例では、AM3.
00,AM6.00,…)の送信波の各受波時間におけ
る受波信号データをその他の受波信号のデータR1 ,R
2 ,…Ri とし、各受波信号データのトラッキングを行
う。なお、海洋中の音波は、図5で後述するように、そ
れぞれ異なる水深の複数の伝搬路を通って伝搬するが、
各伝搬路の水深による水温と水圧の相違によりその伝搬
速度が変化するから、それぞれ異なる伝搬路をそれぞれ
異なる伝搬時間により伝搬して海中受波器に到達するこ
とになる。図7の受信波はこの様子を示している。
[0003] On the receiving side, the received signal data in reception time of the transmission wave of (AM0.00 in the example of FIG. 7) is the reference time transmitted from the sea source periodically with the reference reception signal data R a , And other times (AM3.
00, AM 6.00,...) For each reception time of the transmission wave, the data R 1 , R
2, ... and R i, performs tracking of each received signal data. As described later with reference to FIG. 5, the sound waves in the ocean propagate through a plurality of propagation paths having different water depths.
Since the propagation speed changes due to the difference in water temperature and water pressure depending on the water depth of each propagation path, the propagation path propagates through different propagation paths at different propagation times to reach the underwater receiver. The received wave in FIG. 7 shows this state.

【0004】従来、海洋音響トモグラフィデータ解析装
置におけるデータ解析に用いる受信信号データのトラッ
キング(ある基準となる受波時間に観測された受波信号
データRa と、その他の受波時間に観測された受波信号
データ群(R1 ,R2 ,…Ri )との間において、各々
の同じ伝搬路を通ってきたであろう信号ピーク同士を識
別し、対応付けを行うための信号追尾処理)は、受波信
号データのうちで頻繁に出現している単一の受波信号ピ
ーク系列を用いて、基準となる受波信号データに対する
任意の受波信号データの“ゆらぎ”(数時間周期で観測
される受波信号系列が、主に潮汐による海洋現象の影響
を受け、周期的に到達時間が変動すること)の変動量を
算出し、その変動量を用いて受波信号データの受波開始
時刻をシフトさせた後に、受波信号ピークのトラッキン
グを実施するものであった。
Conventionally, the received signal data R a observed in reception time at which the received signal data of the tracking (some reference used for data analysis in ocean acoustic tomography data analyzer, is observed for other reception time Between the received signal data groups (R 1 , R 2 ,... R i ) and the signal peaks that would have passed through the same propagation path, and a signal tracking process for associating the signal peaks. ) Is the “fluctuation” (arrangement of several hours) of arbitrary received signal data with respect to reference received signal data using a single received signal peak sequence that frequently appears in received signal data. The received signal sequence observed in the above is mainly affected by ocean phenomena due to tides, and the arrival time fluctuates periodically). Shift the wave start time Later, it was to implement the tracking of the received signal peak.

【0005】図6は従来の単一ピークを用いた変動量算
出の概念図であり、図においては、前記基準受波時間の
受波信号データRa に表れる複数の各単一ピークに対し
て、図の破線で示すように、その他の受波時間における
受波信号データR1 ,R2 ,…Ri に表れる複数の各単
一ピークの対応付けをそれぞれ行うため、この単一ピー
クの到達時間の変動量を算出する概念が示されている。
FIG. 6 is a conceptual diagram of a conventional variation calculation using a single peak. In FIG. 6, a plurality of single peaks appearing in the received signal data Ra at the reference reception time are shown. , as shown by a broken line in FIG., received signal data R 1 in the other reception time, R 2, ... for performing mapping of a plurality of the single peak appears in the R i each arrival of the single peak The concept of calculating the time variation is shown.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の海
洋音響トモグラフィシステムにおけるデータ解析に用い
る受波信号データのトラッキング技術では、時間ととも
に変化する海洋状態(正確には、海洋の水温・塩分・圧
力による密度構造)において、恒常的に単一のピーク系
列のみで伝搬時間の変動量を算出し続けることは困難で
あった。また、単一ピークは、海洋変動により信号干渉
やピーク分裂が生じ、正確な受波信号ピークの伝搬時間
(音源から受波器に音響信号が到達するまでの所要時
間)が確定できないという問題もあった。海洋音響トモ
グラフィでは基準場で計算された受波信号データと観測
された受波信号データを正確に同定(前者と後者の信号
ピークの対応付け)することが求められる。そこで、何
らかの方法で、同定の前段階である観測された受波信号
データを正確にトラッキングする必要があった。
However, in the conventional tracking technique of received signal data used for data analysis in a marine acoustic tomography system, the marine state that changes with time (exactly, the water temperature, salinity, and pressure of the ocean) Density structure), it has been difficult to constantly calculate the amount of change in propagation time with only a single peak series. In addition, single peaks have the problem that signal interference and peak splitting occur due to ocean fluctuations, and the accurate propagation time of the received signal peak (the time required for the acoustic signal to reach the receiver from the sound source) cannot be determined. there were. In ocean acoustic tomography, it is required to accurately identify received signal data calculated in a reference field and observed received signal data (correspondence between the former and latter signal peaks). Therefore, it was necessary to accurately track the received signal data that was observed at the stage prior to the identification by some method.

【0007】[0007]

【課題を解決するための手段】本発明に係る海洋音響ト
モグラフィデータ解析装置は、単一の海中音源から所定
周期毎に送信される音波を音源から所定距離にある単一
の受波器で受波し、この受波信号データのピークトラッ
キングを行う機能を有する海洋音響トモグラフィデータ
解析装置において、前記海中音源から所定周期による基
準時刻及びその他の時刻に送信された音波を前記受波器
でそれぞれ受波し、各受波時間毎に得られる受波信号デ
ータの信号密度を逐次算出してその各受波開始時刻より
受波信号データの信号密度の最大値が得られるまでの伝
搬時間をそれぞれ求め、前記基準時刻の送信波の受波時
間における前記伝搬時間とその他の時刻の送信波の各受
波時間における前記伝搬時間との差をそれぞれの受波時
間における変動量として求め、この各受波時間における
変動量を零とするように前記その他の時刻の送信波の各
受波時間における受波信号データの受波開始時刻をシフ
トさせる手段を有するものである。その結果、前記基準
時刻の送信波の受波時間における受波信号データに表れ
るピークと、その他の時刻の送信波の各受波時間におけ
る受波信号データに表れるピークとの対応が明確とな
り、受波信号データのピークトラッキングが容易で且つ
正確となる。
A marine acoustic tomography data analyzing apparatus according to the present invention transmits a sound wave transmitted at a predetermined interval from a single underwater sound source to a single receiver at a predetermined distance from the sound source. In the marine acoustic tomography data analysis device having a function of performing peak tracking of the received signal data, the sound wave transmitted from the underwater sound source at a reference time at a predetermined cycle and at other times is received by the receiver. Each signal is received, and the signal density of the received signal data obtained at each reception time is sequentially calculated, and the propagation time from the start time of each reception until the maximum value of the signal density of the received signal data is obtained is calculated. The difference between the propagation time at the reception time of the transmission wave at the reference time and the propagation time at the reception time of the transmission wave at the other time is calculated by the amount of change in the reception time. And determined, and has a means for shifting the reception start time of the received signal data at each reception time of the transmission wave of the other time so as to zero the variation in the respective reception time. As a result, the correspondence between the peak appearing in the received signal data at the reception time of the transmitted wave at the reference time and the peak appearing in the received signal data at each reception time of the transmitted wave at other times becomes clear, Peak tracking of wave signal data is easy and accurate.

【0008】[0008]

【発明の実施の形態】図5は海中音源から放射された音
波の受波信号データには、音源と受波点の間の最短距離
で最も遅く到達する信号が常に存在することの説明図で
ある。図5の(a)は深度と音速との関係を示すもの
で、海洋では、海面から深度が増加すると水温の低下に
より音速は小さくなるが、約1000mの深度で音速は
最小となり、さらに深くなると水圧の増加により、音速
は逆に増加する様子が示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 5 is an explanatory diagram showing that the received signal data of a sound wave radiated from an underwater sound source always includes a signal that arrives latest at the shortest distance between the sound source and the receiving point. is there. FIG. 5A shows the relationship between depth and sound speed. In the ocean, when the depth increases from the sea surface, the sound speed decreases due to a decrease in water temperature, but at a depth of about 1000 m, the sound speed becomes minimum, and when the depth further increases, the sound speed decreases. As the water pressure increases, the sound speed increases.

【0009】また図5の(b)は単一の水中音源と単一
の受波点の間に、それぞれ異なる水深を通る複数の伝搬
路が存在する様子を示している。そして図5の(b)の
矢印の先端に示される伝搬深度の振幅(深度の最大値と
最小値との差)が小さい伝搬路を通る信号群が、最短距
離を最も遅く到達する信号であり、この信号群は信号レ
ベルが高い特性をもつ。なお図6の各受波信号データR
1 〜 Ri の右端近くに矢印で示された信号群が、この
最短距離を最も遅く伝搬する信号ピーク群である。
FIG. 5B shows a state in which a plurality of propagation paths passing through different water depths exist between a single underwater sound source and a single receiving point. Then, a signal group passing through a propagation path having a small propagation depth amplitude (difference between the maximum value and the minimum value of the depth) indicated by the tip of the arrow in FIG. 5B is the signal that reaches the shortest distance the latest. This signal group has a characteristic that the signal level is high. Each received signal data R in FIG.
Signal groups indicated by arrows near the right ends of 1 to R i are the signal peak groups that propagate the slowest in the shortest distance.

【0010】本発明は、この受波信号データに必ず存在
する最短距離で最も遅く伝搬する信号ピーク群の信号ピ
ーク密度を計算し、その信号密度が最大となる伝搬時間
を用いて基準受波時間の受波信号データと任意の受波時
間の受波信号データの間の変動量を生成し、その変動量
を零とするように任意の受波時間の受波開始時刻をシフ
トさせることにより、トラッキングを正確かつ簡便にし
ようとするものである。
The present invention calculates the signal peak density of a group of signal peaks which are always present in the received signal data and which propagates the shortest at the shortest distance, and uses the propagation time at which the signal density becomes the maximum to calculate the reference reception time. By generating a variation between the received signal data and the received signal data at an arbitrary reception time, and by shifting the reception start time at an arbitrary reception time so that the variation is zero, The aim is to make tracking accurate and simple.

【0011】図1は本発明に係る海洋音響トモグラフィ
データ解析装置の受波信号トラッキングシステムの構成
図である。図1において、1はデータの書き込み及び読
み出しを行うことのできる受波信号データメモリ、2は
信号密度計算用データメモリ、3は信号密度系列データ
メモリ、4は最大レベル信号時間データメモリ、5は変
動量データメモリ、6はトラッキング用受波信号系列デ
ータメモリ、11はこのシステムの外部とデータの入出
力をするためのデータ入出力部、12は演算処理部であ
り、上記1〜6の各メモリとデータ入出力部11及び演
算処理部12がバス13に接続されている。
FIG. 1 is a block diagram of a received signal tracking system of a marine acoustic tomography data analyzing apparatus according to the present invention. In FIG. 1, 1 is a received signal data memory capable of writing and reading data, 2 is a data memory for signal density calculation, 3 is a signal density sequence data memory, 4 is a maximum level signal time data memory, and 5 is a data memory. A fluctuation amount data memory, 6 is a tracking received signal sequence data memory, 11 is a data input / output unit for inputting / outputting data to / from the outside of the system, and 12 is an arithmetic processing unit. The memory, the data input / output unit 11 and the arithmetic processing unit 12 are connected to the bus 13.

【0012】図2は本発明に係る受波信号トラッキング
処理の処理順序を示す流れ図であり、図のSに続く数値
はステップ番号を示す。図3は本発明における受波信号
データの概念図であり、図の受波信号データRi は、受
波開始時刻データTsi 及び受波信号系列データS
i (t)(受波信号の個々のピークについて、その伝搬
時間(msec)と音圧レベルが数値データによって構
成されたもの)を含んでいる。図4は本発明により生成
された変動量でシフトした後の受波信号データのトラッ
キング概念図である。
FIG. 2 is a flowchart showing the processing sequence of the received signal tracking processing according to the present invention, and the numeral following S in FIG. 2 indicates a step number. FIG. 3 is a conceptual diagram of the received signal data in the present invention. In the figure, the received signal data R i is the received signal start time data Ts i and the received signal sequence data S.
i (t) (for each peak of the received signal, the propagation time (msec) and the sound pressure level are constituted by numerical data). FIG. 4 is a conceptual diagram of tracking of received signal data after being shifted by the fluctuation amount generated according to the present invention.

【0013】図2の流れ図に基づき、図3,4を参照
し、図1のシステムの動作を説明する。図2のS1で
は、受波信号データの格納処理を行う。図1のデータ入
出力部11から、定期的な観測時間間隔(例えば3時間
間隔)で海洋音響トモグラフィシステムにより計測され
た受波信号データRi が、観測毎に順々に受波信号デー
タメモリ1に入力される。この受波信号データRi は、
図3に示されるように、受波開始時刻データTsi 及び
受波信号系列データSi(t)からなるデータセットで
ある。
The operation of the system of FIG. 1 will be described with reference to FIGS. 3 and 4 based on the flowchart of FIG. In S1 of FIG. 2, the received signal data is stored. From the data output unit 11 of FIG. 1, regular observation time interval (e.g. 3 hour intervals) at ocean acoustic tomography received signal data measured by the system R i is, received signal data in sequence for each observation Input to the memory 1. The received signal data R i is
As shown in FIG. 3, this is a data set including reception start time data Ts i and reception signal sequence data S i (t).

【0014】この受波信号系列データSi (t)は、受
波信号の個々のピークについて、その伝搬時間と音圧レ
ベルが数値によって構成された時系列データであるが、
上記Si (t)の( )内のtは、音源と受波器の間の
伝搬時間の代りに、受波開始時刻Tsi からピークまで
の相対時間(msec)としている。なおここで、添字
iは観測毎に順々に受波信号データメモリ1に入力され
る際に、受波信号データRに付けられたシリアル番号
(1〜n)である。
The received signal series data S i (t) is time series data in which the propagation time and the sound pressure level of each peak of the received signal are constituted by numerical values.
T in the S i of (t) (), instead of the propagation time between the sound source and the receivers, and the relative time from reception start time Ts i to peak (msec). Here, the suffix i is a serial number (1 to n) given to the received signal data R when the received signal data is input to the received signal data memory 1 in order for each observation.

【0015】図2のS2では、信号密度の計算処理を行
う。ここでは、受波信号データRi の信号密度を計算す
る。図1の演算処理部12は、まず受波信号データメモ
リ1からある受波時間の受波信号データRi を読み出
し、信号密度計算用データメモリ2に書き込む。そし
て、信号密度計算用データメモリ2に書き込まれた受波
信号データRi の中から受波信号系列データSi(t)
を読み出す。次に、下記の(1)式に示すように、受波
信号系列データSi (t)の信号密度を計算し、信号密
度の系列Zi (t)を生成する。
In S2 of FIG. 2, a signal density calculation process is performed. Here, calculates the signal density of the received signal data R i. The arithmetic processing unit 12 of FIG. 1, first reads the received signal data R i of reception time from reception signal data memory 1, and writes the signal density calculation data memory 2. The received signal sequence data S i (t) is selected from the received signal data R i written in the signal density calculation data memory 2.
Is read. Next, as shown in the following equation (1), the signal density of the received signal sequence data S i (t) is calculated to generate a signal density sequence Z i (t).

【0016】[0016]

【数1】 (Equation 1)

【0017】なお(1)式で、Lは密度計算を行う時間
の長さを表す。そして(1)式で生成したZi (t)を
信号密度系列データメモリ3に書き込む。
In the equation (1), L represents the length of time during which the density calculation is performed. Then, Z i (t) generated by the equation (1) is written to the signal density sequence data memory 3.

【0018】図2のS3では、最大密度時間の判定処理
を行う。図1の演算処理部12は、信号密度系列データ
メモリ3に書き込まれた信号密度の系列Zi (t)を読
み出し、これらを用いてZi (t)の信号レベル最大値
の判定を行い、信号レベル最大値Zi (tm)を検出す
る。そして信号レベル最大値Zi (tm)の伝搬時間t
mをtmi とし、このtmi を最大レベル信号時間デー
タメモリ4に書き込む。
At S3 in FIG. 2, a process of determining the maximum density time is performed. The arithmetic processing unit 12 in FIG. 1 reads out the signal density sequence Z i (t) written in the signal density sequence data memory 3 and determines the maximum signal level value of Z i (t) using these. The signal level maximum value Z i (tm) is detected. Then, the propagation time t of the signal level maximum value Z i (tm)
Let m be tm i and write this tm i to the maximum level signal time data memory 4.

【0019】図2のS4では、ゆらぎ変動量の生成処理
を行う。図1の演算処理部12は、最大レベル信号時間
データメモリ4に書き込まれた基準となる信号(図4の
基準受波信号データRa を参照)のレベル最大値の伝搬
時間tma と、任意の信号(図4のRa を除く受波信号
データR1 〜Ri を参照)のレベル最大値の伝搬時間t
i を読み出す。ここで、添字aは、基準の受波信号デ
ータを示す。次に、下記の(2)式に示すようにtmi
とtma の差を求め、これを変動量VTi として、変動
量データメモリ5に書き込む。
In step S4 of FIG. 2, a process for generating a fluctuation fluctuation amount is performed. Arithmetic processing unit 12 of FIG. 1, the maximum level signal propagation time of the time level maximum value of the data memory 4 in the written serving as a reference signal (see reference reception signal data R a in FIG. 4) tm a, optionally the signal propagation time of the level maximum (see received signal data R 1 to R i, except for R a in FIG. 4) t
read a m i. Here, the subscript a indicates reference received signal data. Next, as shown in the following equation (2), tm i
And it obtains the difference tm a, this as variation VT i, writes the change amount data memory 5.

【0020】[0020]

【数2】 (Equation 2)

【0021】図2のS5では、受波開始時刻データのシ
フト処理を行う。演算処理部12は、受波信号データメ
モリ1に書き込まれた受波信号データRi と変動量デー
タメモリ5に書き込まれた変動量VTi を読み出す。次
に、読み出した受波信号データRi の中から受波開始時
刻データTsi と変動量VTi の差を求め、これをトラ
ッキング用受波開始時刻データNTsi とする。そし
て、受波開始時刻データTsi をトラッキング用受波開
始時刻データNTsi にシフトした(即ち前記変動量V
i を零とするように受波開始時刻データTsi をシフ
トした)トラッキング用受波信号系列データNRi を生
成し、トラッキング用受波信号系列データメモリ6に書
き込む。図4はこのようにシフトした後の受波信号デー
タを示すもので、図の破線で示すように、基準受波信号
データRa に表れる単一ピークと、その他の受波信号デ
ータR1 〜Ri に表れる単一ピークとの対応が明確にな
り、受波信号データのトラッキングが容易で且つ正確に
なる。
At S5 in FIG. 2, the reception start time data is shifted. The arithmetic processing unit 12 reads the received signal data R i written in the received signal data memory 1 and the variation VT i written in the variation data memory 5. Next, a difference between the reception start time data Ts i and the variation VT i is obtained from the read reception signal data R i , and this difference is set as tracking reception start time data NTs i . Then, by shifting the reception start time data Ts i to the tracking reception start time data NTs i (i.e. the variation amount V
T i was shifted reception start time data Ts i to zero) to generate a tracking received signal series data NR i, writes the tracking received signal series data memory 6. FIG. 4 shows the received signal data after such a shift. As shown by the broken line in FIG. 4, a single peak appearing in the reference received signal data Ra and the other received signal data R 1 to R 1 are shown . The correspondence with a single peak appearing in R i becomes clear, and tracking of received signal data becomes easy and accurate.

【0022】上記のように本実施形態によれば、海洋音
響トモグラフィデータ解析装置において、音線同定に用
いる受波信号データを識別する受波信号ピークトラッキ
ングについて、受波信号データの信号密度最大値の伝搬
時間を用いて、基準の受波信号データの伝搬時間と任意
の受波信号データの伝搬時間との間の変動量を生成し、
この変動量を零とするように受波信号データの受波開始
時刻データをシフトすることにより、従来よりも正確か
つ簡便にトラッキングが可能となり、データ解析の精度
の向上に貢献することができる。
As described above, according to the present embodiment, in the marine acoustic tomography data analyzer, the received signal peak tracking for identifying the received signal data used for sound ray identification has a maximum signal density of the received signal data. Using the propagation time of the value, generate a variation between the propagation time of the reference received signal data and the propagation time of any received signal data,
By shifting the reception start time data of the reception signal data so that the fluctuation amount becomes zero, tracking can be performed more accurately and simply than in the past, and it is possible to contribute to improvement in the accuracy of data analysis.

【0023】[0023]

【発明の効果】以上のように本発明によれば、単一の海
中音源から所定周期毎に送信される音波を音源から所定
距離にある単一の受波器で受波し、この受波信号データ
のピークトラッキングを行う機能を有する海洋音響トモ
グラフィデータ解析装置において、前記海中音源から所
定周期による基準時刻及びその他の時刻に送信された音
波を前記受波器でそれぞれ受波し、各受波時間毎に得ら
れる受波信号データの信号密度を逐次算出してその各受
波開始時刻より受波信号データの信号密度の最大値が得
られるまでの伝搬時間をそれぞれ求め、前記基準時刻の
送信波の受波時間における前記伝搬時間とその他の時刻
の送信波の各受波時間における前記伝搬時間との差をそ
れぞれの受波時間における変動量として求め、この各受
波時間における変動量を零とするように前記その他の時
刻の送信波の各受波時間における受波信号データの受波
開始時刻をシフトさせる手段を有するようにしたので、
前記基準時刻の送信波の受波時間における受波信号デー
タに表れるピークと、その他の時刻の送信波の各受波時
間における受波信号データに表れるピークとの対応が明
確となり、受波信号データのピークトラッキングが容易
で且つ正確となる。
As described above, according to the present invention, a sound wave transmitted from a single underwater sound source at predetermined intervals is received by a single receiver at a predetermined distance from the sound source. In a marine acoustic tomography data analyzer having a function of performing peak tracking of signal data, sound waves transmitted from the underwater sound source at a reference time and other times according to a predetermined cycle are received by the receivers, respectively. The signal density of the received signal data obtained for each wave time is sequentially calculated, and the propagation time until the maximum value of the signal density of the received signal data is obtained from each reception start time is obtained. The difference between the propagation time at the reception time of the transmission wave and the propagation time at each reception time of the transmission wave at the other time is obtained as a variation amount at each reception time, and the variation at each reception time is calculated. Since to have a means for shifting the reception start time of the received signal data at each reception time of the transmission wave of the other time to the amount to zero,
The correspondence between the peak appearing in the received signal data at the reception time of the transmission wave at the reference time and the peak appearing at the reception signal data at each reception time of the transmission wave at other times becomes clear, and the reception signal data Is easy and accurate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る海洋音響トモグラフィデータ解析
装置の受波信号トラッキングシステムの構成図である。
FIG. 1 is a configuration diagram of a received signal tracking system of a marine acoustic tomography data analysis device according to the present invention.

【図2】本発明に係る受波信号トラッキング処理の処理
順序を示す流れ図である。
FIG. 2 is a flowchart showing a processing order of a received signal tracking process according to the present invention.

【図3】本発明における受波信号データの概念図であ
る。
FIG. 3 is a conceptual diagram of received signal data in the present invention.

【図4】本発明による変動量でシフトした後の受波信号
データのトラッキング概念図である。
FIG. 4 is a conceptual diagram of tracking of received signal data after shifting by a variation amount according to the present invention.

【図5】受波信号データに常に存在する最短距離で最も
遅く伝搬する信号の説明図である。
FIG. 5 is an explanatory diagram of a signal that is always present in received signal data and that propagates at the shortest distance and the latest.

【図6】従来の単一ピークを用いた変動量算出の概念図
である。
FIG. 6 is a conceptual diagram of a conventional variation calculation using a single peak.

【図7】海洋音響トモグラフィシステムにおける海中音
波の送受信を説明する図である。
FIG. 7 is a diagram illustrating transmission and reception of underwater sound waves in the marine acoustic tomography system.

【符号の説明】[Explanation of symbols]

1 受波信号データメモリ 2 信号密度計算用データメモリ 3 信号密度系列データメモリ 4 最大レベル信号時間データメモリ 5 変動量データメモリ 6 トラッキング用受波信号系列データメモリ 11 データ入出力部 12 演算処理部 13 バス REFERENCE SIGNS LIST 1 received signal data memory 2 signal density calculation data memory 3 signal density sequence data memory 4 maximum level signal time data memory 5 fluctuation data memory 6 tracking received signal sequence data memory 11 data input / output unit 12 arithmetic processing unit 13 bus

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単一の海中音源から所定周期毎に送信さ
れる音波を音源から所定距離にある単一の受波器で受波
し、この受波信号データのピークトラッキングを行う機
能を有する海洋音響トモグラフィデータ解析装置におい
て、 前記海中音源から所定周期による基準時刻及びその他の
時刻に送信された音波を前記受波器でそれぞれ受波し、
各受波時間毎に得られる受波信号データの信号密度を逐
次算出してその各受波開始時刻より受波信号データの信
号密度の最大値が得られるまでの伝搬時間をそれぞれ求
め、前記基準時刻の送信波の受波時間における前記伝搬
時間とその他の時刻の送信波の各受波時間における前記
伝搬時間との差をそれぞれの受波時間における変動量と
して求め、この各受波時間における変動量を零とするよ
うに前記その他の時刻の送信波の各受波時間における受
波信号データの受波開始時刻をシフトさせる手段を有す
ることを特徴とする海洋音響トモグラフィデータ解析装
置。
1. A function of receiving a sound wave transmitted from a single underwater sound source at predetermined intervals by a single receiver at a predetermined distance from the sound source and performing peak tracking of the received signal data. In the marine acoustic tomography data analyzer, sound waves transmitted from the underwater sound source at a reference time according to a predetermined cycle and at other times are respectively received by the receiver,
The signal density of the received signal data obtained for each reception time is sequentially calculated, and the propagation time from the start time of each reception until the maximum value of the signal density of the received signal data is obtained is obtained. The difference between the propagation time at the reception time of the transmission wave at the time and the propagation time at the reception time of the transmission wave at the other time is obtained as a variation amount at the respective reception time, and the variation at each reception time is obtained. An ocean acoustic tomography data analysis device, comprising means for shifting a reception start time of reception signal data in each reception time of the transmission wave at the other time so that the amount becomes zero.
JP9001977A 1997-01-09 1997-01-09 Marine acoustic tomographic data analyzer Pending JPH10197633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9001977A JPH10197633A (en) 1997-01-09 1997-01-09 Marine acoustic tomographic data analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9001977A JPH10197633A (en) 1997-01-09 1997-01-09 Marine acoustic tomographic data analyzer

Publications (1)

Publication Number Publication Date
JPH10197633A true JPH10197633A (en) 1998-07-31

Family

ID=11516610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9001977A Pending JPH10197633A (en) 1997-01-09 1997-01-09 Marine acoustic tomographic data analyzer

Country Status (1)

Country Link
JP (1) JPH10197633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091307A (en) * 2003-09-19 2005-04-07 Hitachi Ltd Underwater detection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091307A (en) * 2003-09-19 2005-04-07 Hitachi Ltd Underwater detection system

Similar Documents

Publication Publication Date Title
CN101632002A (en) Ultrasonic surface monitoring
CN102472784B (en) Impulse response measuring method and impulse response measuring device
CN104605890A (en) Shear wave crest value waveform correction method, device and system and application thereof
CN103217706A (en) Method and device for managing the acoustic performances of a network of acoustic nodes arranged along towed acoustic linear antennas.
JPH10197633A (en) Marine acoustic tomographic data analyzer
JP3395072B2 (en) Ocean acoustic tomography data analyzer
CN111189912B (en) Emission reference ultrasonic detection method, device and storage medium
JP2006194627A (en) Sound source position estimation method and device, and sonar
JP3438162B2 (en) Ocean acoustic tomography data analyzer
SU932098A1 (en) Discrete apparatus for locating pressure pipeline damages
JPH1144572A (en) Data analyzer of oceanographic acoustic tomography
JPH1114443A (en) Method for measuring characteristic value of mode
RU2308054C2 (en) Hydroacoustic synchronous long-range navigation system
JP6637592B2 (en) Signal processing system, signal processing method, signal processing device, and program
Makiello et al. Using a ROS-based low-cost system for bathymetric surveys
Benus Measurement cell for sound speed in liquids: Pulse-echo buffer rod method
RU2692505C1 (en) Method of localizing and determining the nature and dimensions of damage to hull skin
SU834395A1 (en) Method of measuring liquid film thickness
JPH11211809A (en) Underwater position measuring method
JPH10221445A (en) Oceanographic acoustic tomographic data analyzer
JP3164761B2 (en) Sound ray identification method for ocean acoustic tomography system
JP2001330668A (en) Oceanic-sound tomographic-data analytical method
SU1037162A1 (en) Device for ultrasonic control of material quality
JPH0376852B2 (en)
CN112731519A (en) Method and device for determining a tremor time interval