JPH1019757A - Particle size distribution measurement device - Google Patents
Particle size distribution measurement deviceInfo
- Publication number
- JPH1019757A JPH1019757A JP8192919A JP19291996A JPH1019757A JP H1019757 A JPH1019757 A JP H1019757A JP 8192919 A JP8192919 A JP 8192919A JP 19291996 A JP19291996 A JP 19291996A JP H1019757 A JPH1019757 A JP H1019757A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- particle size
- size distribution
- measurement
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 72
- 238000005259 measurement Methods 0.000 title abstract description 24
- 239000000725 suspension Substances 0.000 abstract description 16
- 238000005070 sampling Methods 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000013480 data collection Methods 0.000 abstract description 2
- 238000012935 Averaging Methods 0.000 abstract 1
- 238000007561 laser diffraction method Methods 0.000 description 7
- 238000000790 scattering method Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、各種粉粒体の粒
度分布測定装置、特に光学系の配置としては縦型であっ
て、バッチ式セルを移動可能として測定誤差が小さくな
るように構成した粒度分布測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the particle size distribution of various kinds of powders, particularly a vertical type optical system, in which a batch type cell can be moved to reduce measurement errors. The present invention relates to a particle size distribution measuring device.
【0002】[0002]
【従来の技術】粒度分布測定法のうち湿式測定法では、
測定容器に入れた試料懸濁液をよく攪拌してレ−ザ−光
を照射して粒子によって回折・散乱する光を検出し、そ
の粒度分布を測定する。このようなレ−ザ回折/散乱法
による粒度分布測定装置には、光学系の配置として大別
すると横型と縦型がある。また、粒度分布測定装置に
は、粉粒体試料を混合しよく攪拌した懸濁液をポンプに
よって還流させつつ測定する還流式と、所定容量の容器
を測定位置にセットして測定するバッチセル式とがあ
る。2. Description of the Related Art Among the particle size distribution measurement methods, the wet measurement method includes:
The sample suspension placed in the measurement container is well stirred and irradiated with laser light to detect light diffracted and scattered by the particles, and the particle size distribution is measured. Such a particle size distribution measuring apparatus using a laser diffraction / scattering method is roughly classified into a horizontal type and a vertical type as an optical system arrangement. In addition, the particle size distribution measuring device includes a reflux type in which a suspension of a powdery material sample mixed and well stirred is measured by refluxing with a pump, and a batch cell type in which a container having a predetermined capacity is set at a measurement position and measured. There is.
【0003】バッチセル方式による粒度分布測定装置の
場合、横型は、図5に示すように、縦方向に水深を深く
した試料容器20に懸濁液を入れ、攪拌装置21により
よく攪拌した後、横方向からレ−ザ光を照射してその回
折/散乱光を測定する。また、同じく縦型のバッチセル
方式の粒度分布測定装置では、図6に示すように、横方
向に長く且つ水深の浅い試料容器23に懸濁液を入れ、
縦方向からレ−ザ光を照射してその回折/散乱光を測定
する。従って、横型では粒子の沈降速度の影響が大きい
ため懸濁液の攪拌が不可欠であるのに対して、縦型では
粒子の沈降速度の影響を殆ど受けないため必ずしも攪拌
する必要はない。[0005] In the case of a particle size distribution measuring apparatus using a batch cell system, as shown in FIG. 5, as shown in FIG. Laser light is irradiated from the direction and the diffraction / scattered light is measured. In addition, in the vertical type batch cell type particle size distribution measuring device, as shown in FIG.
Laser light is irradiated from the vertical direction, and the diffraction / scattered light is measured. Therefore, the stirring of the suspension is indispensable in the horizontal type because the sedimentation speed of the particles is large, whereas the stirring is not necessarily required in the vertical type because the suspension is hardly affected by the sedimentation speed of the particles.
【0004】[0004]
【発明が解決しようとする課題】上記するバッチセル式
粒度分布測定装置のうち縦型は、通常、攪拌装置により
攪拌しないため粒子の偏り、即ち、粒子径分布が均等で
なく粒子径の大きいものが一部に多く存在した場合、こ
の粒子径分布の比較的大きい位置にレ−ザビ−ムを照射
するとサンプリング誤差が大きくなる。例えば、図7に
おいてレ−ザビ−ムを照射する位置が、たまたま粒子3
0a,30b,30c,・・・等の径の大きいものが集
まっていると測定誤差が大きくなることになる。バッチ
セル式には連続測定を自動的に行うものもあるが、この
ような場合、サンプリング誤差の大きいものが多数出る
可能性もある。特に、攪拌機能を持たない縦型のバッチ
セル式粒度分布測定装置では粒子径が大きい試料の場合
サンプリング誤差を無視できない。Among the above-mentioned batch cell type particle size distribution measuring devices, the vertical type is generally not agitated by a stirrer, so that the particle distribution, that is, the particle size distribution is not uniform and the particle size is large. If the laser beam is radiated to a position where the particle size distribution is relatively large, the sampling error becomes large when a large amount is present in a part. For example, the position where the laser beam is irradiated in FIG.
If large diameters such as 0a, 30b, 30c,... Are gathered, the measurement error will increase. Some batch cell systems automatically perform continuous measurement. In such a case, however, a large number of samples having large sampling errors may occur. In particular, in a vertical batch cell type particle size distribution measuring apparatus having no stirring function, a sampling error cannot be ignored for a sample having a large particle diameter.
【0005】この発明は上記する課題に着目してなされ
たものであり、少量の懸濁液を使用したバッチセル式粒
度分布測定装置であって分布する試料の粒子径にある程
度の偏りがあってもサンプリング誤差を軽減し、また多
数のバッチ式セルであっても精度のよい連続測定が可能
な粒度分布測定装置を提供することを目的とする。The present invention has been made in view of the above-mentioned problems, and is a batch cell type particle size distribution measuring apparatus using a small amount of a suspension. It is an object of the present invention to provide a particle size distribution measuring apparatus which can reduce sampling errors and perform highly accurate continuous measurement even with a large number of batch type cells.
【0006】[0006]
【課題を解決するための手段】即ち、この発明は上記す
る課題を解決するために、レ−ザ光源とコリメ−タレン
ズとセル取付台と集光レンズ及び検出器を備えた粒度分
布測定装置において、前記セル取付台にゼロ点設定用の
媒液を入れるセルと単数若しくは複数の試料用セルとを
並べて設置すると共に、該セル取付台を駆動機構により
移動可能としたことを特徴とする。In order to solve the above-mentioned problems, the present invention is directed to a particle size distribution measuring apparatus having a laser light source, a collimator lens, a cell mount, a condenser lens, and a detector. A cell for placing a medium for setting a zero point and a single or a plurality of sample cells are arranged side by side in the cell mounting table, and the cell mounting table is movable by a drive mechanism.
【0007】[0007]
【発明の実施の形態】先ず、レ−ザ回折/散乱法の原理
について説明する。図4は、レ−ザ回折/散乱法を用い
た粒度分布測定装置の基本的な構成を示す図である。こ
の図に示すように、レ−ザ光源1より測定対称となる粒
子群30にレ−ザ光を照射すると、空間的に回折/散乱
光の光強度分布パタ−ンが生ずる。このうち前方散乱光
の光強度分布パタ−ンは、回折レンズ4によって集光さ
れ、焦点距離の位置にある検出面にリング状の回折/散
乱像を結ぶ。これをリング状フォトダイオ−ドアレイ5
で検出する。また、側方散乱光や後方散乱光は、側方散
乱センサ31や後方散乱センサ32で検出する。DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the laser diffraction / scattering method will be described. FIG. 4 is a diagram showing a basic configuration of a particle size distribution measuring apparatus using a laser diffraction / scattering method. As shown in this figure, when a laser beam is applied to the particle group 30 which is symmetrically measured from the laser light source 1, a light intensity distribution pattern of diffracted / scattered light is generated spatially. Of these, the light intensity distribution pattern of the forward scattered light is condensed by the diffraction lens 4 and forms a ring-shaped diffraction / scattered image on the detection surface at the focal length position. This is used as a ring-shaped photodiode array 5.
To detect. The side scattered light and the back scattered light are detected by the side scatter sensor 31 and the back scatter sensor 32.
【0008】この光強度分布パタ−ンは、粒子の大きさ
によって変化する。実際のサンプルには、大きさの異な
る粒子が混在しているため、粒子群から生ずる光強度分
布パタ−ンはそれぞれの粒子からの回折/散乱光の重ね
合わせとなる。これをマトリクス(行列)で表現する
と、The light intensity distribution pattern changes depending on the size of the particles. Since particles of different sizes are mixed in an actual sample, the light intensity distribution pattern generated from the particle group is a superposition of diffraction / scattered light from each particle. Expressing this as a matrix,
【数1】 となる。ただし、(Equation 1) Becomes However,
【数2】 (Equation 2)
【数3】 sは光強度分布ベクトルである。その要素si (i=
1,2,・・・m)は、リングディテクタの各素子及び
側方散乱光センサによって検出される入射光量である。
qは粒度分布(頻度分布%)ベクトルである。粒度分布
範囲を有限とし、この範囲内をn分割して、最大値をd
1 、最小値をdn+1 とする。それぞれの分割区間
〔dj ,dj+1 〕を一つの粒子径xj (j=1,2,・
・n)で代表させる。qの要素qj (j=1,2,・・
n)は、粒子径xj に対応する粒子量である。通常は、(Equation 3) s is a light intensity distribution vector. The element s i (i =
1, 2,... M) are incident light amounts detected by the respective elements of the ring detector and the side scattered light sensor.
q is a particle size distribution (frequency distribution%) vector. The particle size distribution range is finite, and the range is divided into n, and the maximum value is d.
1 and the minimum value is dn + 1 . Each divided section [d j , d j + 1 ] is defined as one particle diameter x j (j = 1, 2,.
・ Represent by n). The element q j of q (j = 1, 2,...
n) is the amount of particles corresponding to the particle diameter x j. Normally,
【数4】 となるように正規化(ノルマライズ)を行っている。A
は、粒度分布(ベクトル)qを、光強度分布(ベクト
ル)sに、返還する係数行列である。Aの要素a
i,j (i=1,2,・・・m,j=1,2,・・・n)
の物理的意味は、粒子径xj の単位粒子量の粒子群によ
って回折/散乱した光のi番目の素子に対する入射光量
である。ai,j の数値は、理論的に計算することができ
る。これには、粒子径が光源となるレ−ザ光の波長に比
べて十分に大きい場合には、Fraunhofer回折理論を用い
る。しかし、粒子径がレ−ザ光の波長と同程度か、それ
より小さいサブミクロン野領域ではMie 散乱理論を用い
る必要がある。Fraunhofer回折理論は、前方微小角散乱
において、粒子径が波長に比べて充分大きな場合に有効
なMie 散乱理論の優れた近似であると考えることができ
る。(Equation 4) Is normalized (normalized) so that A
Is a coefficient matrix that returns the particle size distribution (vector) q to the light intensity distribution (vector) s. Element a of A
i, j (i = 1,2, ... m, j = 1,2, ... n)
The physical meaning of is the incident light amount for the i-th element of the light diffracted / scattered by particles in the unit particles of particle size x j. The value of a i, j can be calculated theoretically. For this, the Fraunhofer diffraction theory is used when the particle diameter is sufficiently larger than the wavelength of the laser light serving as a light source. However, it is necessary to use the Mie scattering theory in the submicron region where the particle diameter is about the same as or smaller than the wavelength of laser light. The Fraunhofer diffraction theory can be considered to be an excellent approximation of the Mie scattering theory that is effective in forward small angle scattering when the particle size is sufficiently large compared to the wavelength.
【0009】Mie 散乱理論を用いて、係数行列Aの要素
を計算するためには、粒子及びそれを分散させる媒液の
屈折率を設定する必要がある。さて、数1の式に基づい
て粒度分布(ベクトル)qの最小自乗解を求める式を導
出すると、In order to calculate the elements of the coefficient matrix A using the Mie scattering theory, it is necessary to set the refractive index of the particles and the medium in which the particles are dispersed. Now, when an equation for obtaining the least square solution of the particle size distribution (vector) q based on the equation 1 is derived,
【数5】 が得られる。ただし、AT はAの転置行列であり、
( )- は逆行列を表す。数4の右辺において、光強度
分布(ベクトル)sの各要素は、リングディテクタおよ
び側方散乱光センサで検出される数値である。また、係
数行列Aは、Fraunhofer回折理論或いはMie 散乱理論を
用いて予め計算しておくことができる。従って、それら
の既知のデ−タを用いて数5の計算を実行すれば、粒度
分布(ベクトル)qが求まることは明らかである。(Equation 5) Is obtained. Where A T is the transposed matrix of A,
() - denotes the inverse matrix. In the right side of Equation 4, each element of the light intensity distribution (vector) s is a numerical value detected by the ring detector and the side scattered light sensor. Further, the coefficient matrix A can be calculated in advance using the Fraunhofer diffraction theory or the Mie scattering theory. Therefore, it is clear that the particle size distribution (vector) q can be obtained by performing the calculation of Equation 5 using these known data.
【0010】以上が、レ−ザ回折/散乱法の基本的な測
定原理であるが、ここで示したのは、粒度分布の計算方
法の一例であり、この他にも様々なバリエ−ションが存
在する。また、センサ、ディテクタの種類、配置にかか
わらずサブミクロン粒子の粒度分布を測定するために
は、測定対称となる粒子及びそれを分散させる媒液の屈
折率を設定する必要がある。The basic measurement principle of the laser diffraction / scattering method has been described above. This is an example of a method for calculating a particle size distribution, and various other variations are also available. Exists. Further, in order to measure the particle size distribution of submicron particles regardless of the type and arrangement of sensors and detectors, it is necessary to set the refractive index of the particles to be measured and the liquid medium in which the particles are dispersed.
【0011】以上のレ−ザ回折/散乱法の原理に基づく
この発明の具体的実施の形態について図面を参照しなが
ら説明する。図1はこの発明の粒度分布測定装置の要部
の斜視図である。この粒度分布測定装置では、下方向か
ら上方向にかけて、レ−ザ光源1,コリメ−タレンズ
2,セル取付台3,回折レンズ(集光レンズ)4,検出
器となる前方回折/散乱光センサのリング状フォトダイ
オ−ドアレイ5(下側は検出面),等がこの順に配置さ
れている。A specific embodiment of the present invention based on the principle of the laser diffraction / scattering method will be described with reference to the drawings. FIG. 1 is a perspective view of a main part of the particle size distribution measuring device of the present invention. In this particle size distribution measuring apparatus, a laser light source 1, a collimator lens 2, a cell mount 3, a diffractive lens (condensing lens) 4, a forward diffraction / scattered light sensor serving as a detector are provided from the bottom to the top. The ring-shaped photodiode array 5 (the lower side is a detection surface) and the like are arranged in this order.
【0012】前記セル取付台3には、ゼロ点設定用の媒
液を入れたセル6と、試料懸濁液を入れたセル7とを並
べて設置することができるようにしてある。該セル取付
台3に配置するゼロ点設定用の媒液を入れたセル6及び
試料懸濁液を入れたセル7の下側は透明カバ−或いはレ
−ザ光透過穴が設けられている。更に、該セル取付台3
は端部には側面にラック8を形成したバ−9が接続して
ある。そして該ラック8にはモ−タ10で駆動するピニ
オン11が噛合させてある。また、該ラック8を設けた
バ−9の下側にはシャッタ12,13,14が取り付け
てあり、これらのシャッタがフォオトセンサ15の位置
に来て光を遮蔽するとこのセル取付台3を停止させるよ
うになっている。On the cell mounting base 3, a cell 6 containing a medium for setting a zero point and a cell 7 containing a sample suspension can be arranged side by side. A transparent cover or a laser light transmitting hole is provided on the lower side of the cell 6 containing the medium for setting the zero point and the cell 7 containing the sample suspension. Further, the cell mount 3
A bar 9 having a rack 8 formed on the side face is connected to the end. A pinion 11 driven by a motor 10 is meshed with the rack 8. Shutters 12, 13, and 14 are mounted below the bar 9 on which the rack 8 is provided. When these shutters come to the position of the photo sensor 15 and block light, the cell mounting base 3 is stopped. It has become.
【0013】上記構成とした粒度分布測定装置は、レ−
ザ光源1から照射されたレ−ザ光をコリメ−トレンズ2
で平行光線としてセル取付台3に設置されたゼロ点設定
用の媒液を入れたセル6及び試料懸濁液を入れたセル7
を透過させ、回折レンズ(集光レンズ)4を透過させて
リング状フォトダイオ−ドアレイ5にリング状の回折/
散乱像を結ぶ。この回折/散乱像を検出器(図示省略)
で検出し、上記したレ−ザ回折/散乱法の原理により粒
度分布を測定する。[0013] The particle size distribution measuring apparatus having the above-described structure is a laser.
Laser light emitted from a laser light source 1 is collimated by a collimating lens 2
And a cell 6 containing a medium for setting a zero point and a cell 7 containing a sample suspension, which are set on the cell mount 3 as parallel rays.
Is transmitted through the diffractive lens (condenser lens) 4 so that a ring-shaped diffraction /
Create a scattered image. This diffraction / scattered image is detected by a detector (not shown).
And the particle size distribution is measured according to the principle of the laser diffraction / scattering method described above.
【0014】次に、この粒度分布測定装置による具体的
測定方法について説明する。上記するように、前記セル
取付台3は同じ形のバッチセルとしたゼロ点設定用の媒
液を入れたセル6及び試料懸濁液を入れたセル7を2個
セットできるようにしてラック8とピニオン11により
光軸と垂直な面で往復運動できるように構成されてい
る。このバッチ式セルの停止位置は、ゼロ点設定用のセ
ル6が光軸にセットされる点(図ののシャッタ12が
フォトセンサ15を遮蔽する位置)、実測用の懸濁液を
入れたセル7がスキャンされる開始点(図1ののシャ
ッタ13がフォトセンサ15を遮蔽する位置)、同スキ
ャン終了点(図1ののシャッタ14がフォトセンサ1
5を遮蔽する位置)、である。Next, a specific measuring method using the particle size distribution measuring device will be described. As described above, the cell mounting table 3 is provided with a rack 8 so that two cells 6 containing a medium for setting a zero point and two cells 7 containing a sample suspension can be set as batch cells of the same shape. The pinion 11 is configured to be able to reciprocate in a plane perpendicular to the optical axis. The stop position of this batch type cell is the point where the cell 6 for setting the zero point is set on the optical axis (the position where the shutter 12 in the figure shields the photo sensor 15) and the cell where the suspension for the actual measurement is put. 7, the scanning start point (the position where the shutter 13 in FIG. 1 blocks the photo sensor 15), and the scanning end point (the shutter 14 in FIG.
5).
【0015】実測時には、ゼロ点設定用セル6に媒液の
み満たし、実測用セル7には測定試料懸濁液を満たす。
この状態で、先ず、停止位置の図1のでゼロ点測定を
行う。続いて、実測に移ると、ラック8とピニオン11
が測定試料懸濁液を入れたセル7を図1のの位置まで
移動させ、回折/散乱光のデ−タ収集を開始する。次
に、ラック8とピニオン11が図1のからまでセル
7を移動させる。図2及び図3はこのときのセル7の測
定箇所の移動状態を示す図である。このように、セル7
を移動させつつ数カ所の粒度分布を測定する。そしてこ
の間の回折/散乱光デ−タは積算され平均化される。At the time of actual measurement, the cell 6 for setting the zero point is filled only with the medium, and the cell 7 for actual measurement is filled with the suspension of the sample to be measured.
In this state, first, a zero point is measured at the stop position in FIG. Subsequently, when the actual measurement is started, the rack 8 and the pinion 11 are moved.
Moves the cell 7 containing the measurement sample suspension to the position shown in FIG. 1 and starts the data collection of the diffracted / scattered light. Next, the rack 8 and the pinion 11 move the cell 7 from FIG. FIG. 2 and FIG. 3 are views showing the movement of the measurement location of the cell 7 at this time. Thus, cell 7
Is measured while measuring the particle size distribution at several locations. The diffracted / scattered light data during this period is integrated and averaged.
【0016】この発明の粒度分布測定装置の構成は以上
のようであるが、上記実施例において、セル取付台3の
移動機構はラック8とピニオン11の代わりに他の移動
機構、例えばエアシリンダ或いはベルトやチェ−ン駆動
機構等によってもよい。また、停止位置の制御はシャッ
タとフォトインタラプタによる制御としたが、パルスモ
−タによる制御でもよい。なお、セル取付台3は直線運
動する場合で説明したが、回転運動による場合でも同様
に実施することができる。更に、前記セル取付台3に
は、実施の形態ではゼロ点設定用の媒液を入れたセル6
と試料懸濁液を入れたセル7とを並べて設置する実施例
で説明したが、該セル取付台3には多数の測定用セルを
設置するように改造することも可能であり、従ってこの
場合マルチサンプラ測定も実施することができる。Although the configuration of the particle size distribution measuring apparatus of the present invention is as described above, in the above embodiment, the moving mechanism of the cell mount 3 is replaced with another moving mechanism instead of the rack 8 and the pinion 11, for example, an air cylinder or an air cylinder. A belt or a chain drive mechanism may be used. Further, the control of the stop position is controlled by the shutter and the photo interrupter, but may be controlled by a pulse motor. In addition, although the case where the cell mounting base 3 moves linearly has been described, the same can be applied to the case where the cell mounting base 3 rotates. Further, in the embodiment, a cell 6 containing a medium for setting a zero point is provided in the cell mount 3.
And the cell 7 containing the sample suspension are arranged side by side. However, the cell mounting table 3 can be modified so that a large number of measuring cells are installed. Multisampler measurements can also be performed.
【0017】[0017]
【発明の効果】以上詳述したように、この発明の粒度分
布測定装置によれば、縦型で生じやすいサンプリング誤
差を軽減することができるため測定精度を向上させるこ
とができる。また、同時に媒液によるゼロ点も測定する
ためその設定が簡単となる。更に、バッチセルタイプの
マルチサンプラ(多数サンプル連続自動測定)へ拡張す
ることも容易である。As described above in detail, according to the particle size distribution measuring apparatus of the present invention, a sampling error which is likely to occur in a vertical type can be reduced, so that the measuring accuracy can be improved. In addition, since the zero point due to the liquid medium is measured at the same time, the setting can be simplified. Furthermore, it is easy to expand to a batch cell type multisampler (continuous automatic measurement of many samples).
【図1】この発明の粒度分布測定装置の要部の斜視図で
ある。FIG. 1 is a perspective view of a main part of a particle size distribution measuring device according to the present invention.
【図2】この発明の粒度分布測定装置のセル取付台に載
せたゼロ点設定用の媒液を入れたバッチセルと試料懸濁
液を入れたバッチセルの一部正面図である。FIG. 2 is a partial front view of a batch cell containing a medium for setting a zero point and a batch cell containing a sample suspension placed on a cell mount of the particle size distribution measuring apparatus of the present invention.
【図3】この発明の粒度分布測定装置のセル取付台を移
動させつつ粒度分布を測定するときの試料懸濁液を入れ
たバッチセルの底面図である。FIG. 3 is a bottom view of a batch cell containing a sample suspension when measuring a particle size distribution while moving a cell mount of the particle size distribution measuring device of the present invention.
【図4】レ−ザ回折/散乱法による粒度分布測定装置の
基本的な構成を示す斜視図である。FIG. 4 is a perspective view showing a basic configuration of a particle size distribution measuring apparatus by a laser diffraction / scattering method.
【図5】従来の粒度分布測定装置で使用される横型のバ
ッチセルで粒度分布を測定する状態を示す図である。FIG. 5 is a view showing a state where a particle size distribution is measured by a horizontal batch cell used in a conventional particle size distribution measuring device.
【図6】従来の粒度分布測定装置で使用される縦型のバ
ッチセルで粒度分布を測定する状態を示す図である。FIG. 6 is a diagram showing a state where a particle size distribution is measured by a vertical batch cell used in a conventional particle size distribution measuring device.
【図7】従来の粒度分布測定装置で使用される縦型のバ
ッチセルで粒度分布を測定する状態を示すバッチセルの
底面図である。FIG. 7 is a bottom view of a batch cell showing a state of measuring a particle size distribution with a vertical batch cell used in a conventional particle size distribution measuring device.
1 レ−ザ光源 2 コリメ−タレンズ 3 セル取付台 4 回折レンズ 5 フォトダイオ−ドアレイ 6 ゼロ点設定用セル 7 試料用セル 8 ラック 9 バ− 10 モ−タ 11 ピニオン 12,13,14 シャッタ 15 フォトセンサ REFERENCE SIGNS LIST 1 laser light source 2 collimator lens 3 cell mount 4 diffraction lens 5 photo diode array 6 zero point setting cell 7 sample cell 8 rack 9 bar 10 motor 11 pinion 12, 13, 14 shutter 15 photo Sensor
Claims (1)
付台と集光レンズ及び検出器を備えた粒度分布測定装置
において、 前記セル取付台にゼロ点設定用の媒液を入れるセルと単
数若しくは複数の試料用セルとを並べて設置すると共
に、該セル取付台を駆動機構により移動可能としたこと
を特徴とする粒度分布測定装置。1. A particle size distribution measuring apparatus provided with a laser light source, a collimator lens, a cell mount, a condenser lens, and a detector. Alternatively, a particle size distribution measuring device is provided in which a plurality of sample cells are arranged side by side, and the cell mount is movable by a drive mechanism.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19291996A JP3697564B2 (en) | 1996-07-03 | 1996-07-03 | Particle size distribution measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19291996A JP3697564B2 (en) | 1996-07-03 | 1996-07-03 | Particle size distribution measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1019757A true JPH1019757A (en) | 1998-01-23 |
JP3697564B2 JP3697564B2 (en) | 2005-09-21 |
Family
ID=16299168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19291996A Expired - Fee Related JP3697564B2 (en) | 1996-07-03 | 1996-07-03 | Particle size distribution measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3697564B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024783A (en) * | 2005-07-20 | 2007-02-01 | Shimadzu Corp | Instrument for measuring particle size distribution |
JP2008096191A (en) * | 2006-10-10 | 2008-04-24 | Shimadzu Corp | Dielectrophoretic characteristic evaluation method |
JP2008249736A (en) * | 2008-07-17 | 2008-10-16 | Horiba Ltd | Particle size distribution measuring device |
CN111044418A (en) * | 2019-12-16 | 2020-04-21 | 深圳市龙岗大工业区混凝土有限公司 | Fineness detection device of concrete powder |
-
1996
- 1996-07-03 JP JP19291996A patent/JP3697564B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024783A (en) * | 2005-07-20 | 2007-02-01 | Shimadzu Corp | Instrument for measuring particle size distribution |
JP2008096191A (en) * | 2006-10-10 | 2008-04-24 | Shimadzu Corp | Dielectrophoretic characteristic evaluation method |
JP2008249736A (en) * | 2008-07-17 | 2008-10-16 | Horiba Ltd | Particle size distribution measuring device |
CN111044418A (en) * | 2019-12-16 | 2020-04-21 | 深圳市龙岗大工业区混凝土有限公司 | Fineness detection device of concrete powder |
Also Published As
Publication number | Publication date |
---|---|
JP3697564B2 (en) | 2005-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4521121B2 (en) | Optical autofocus for use with microtiter plates | |
US4075462A (en) | Particle analyzer apparatus employing light-sensitive electronic detector array | |
US3781110A (en) | Optical range finding system | |
JP3248910B2 (en) | Analysis of particle properties | |
US7298468B2 (en) | Method and measuring device for contactless measurement of angles or angle changes on objects | |
CA1052885A (en) | Process and apparatus for detecting occlusions | |
US5994691A (en) | Near-field scanning optical microscope | |
EP0503874A2 (en) | Optical measurement device with enhanced sensitivity | |
CN105092453A (en) | Systems and methods for performing measurements of one or more materials | |
EP0661520A1 (en) | Laser surveying system | |
CN109477783A (en) | For being determined the method and its equipment of the mean particle size for the particle being suspended in liquid and flow media by means of dynamic light scattering | |
EP0071143A1 (en) | Refractometer | |
RU2599410C1 (en) | Method for measuring height of transparent liquid level and device for its implementation | |
US6476910B1 (en) | Light scattering apparatus and method for determining radiation exposure to plastic detectors | |
JPH1019757A (en) | Particle size distribution measurement device | |
US4255966A (en) | Hardness testing apparatus | |
Hutley et al. | The use of a zone-plate monochromator as a displacement transducer | |
US20030122054A1 (en) | Vertical cavity surface emitting laser array for velocity measurement | |
JP3531557B2 (en) | Laser diffraction / scattering particle size distribution analyzer | |
KR0150816B1 (en) | Digital level using optical sensor | |
JPH08193810A (en) | Device for measuring displacement | |
JPH08304049A (en) | Laser surface measuring instrument | |
JP2008232756A (en) | Particle size distribution measuring device | |
JPS5819502A (en) | Relative displacement light increase section detector | |
JP2550958B2 (en) | Laser diffraction particle size analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20021029 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050310 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050620 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080715 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090715 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100715 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110715 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120715 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130715 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |