JP2008232756A - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP2008232756A
JP2008232756A JP2007071251A JP2007071251A JP2008232756A JP 2008232756 A JP2008232756 A JP 2008232756A JP 2007071251 A JP2007071251 A JP 2007071251A JP 2007071251 A JP2007071251 A JP 2007071251A JP 2008232756 A JP2008232756 A JP 2008232756A
Authority
JP
Japan
Prior art keywords
liquid
laser light
particle size
laser beam
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007071251A
Other languages
Japanese (ja)
Inventor
Haruo Shimaoka
治夫 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007071251A priority Critical patent/JP2008232756A/en
Publication of JP2008232756A publication Critical patent/JP2008232756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle size distribution measuring device which easily adjusts optical path length to an appropriate length according to the density of concentration of particle groups in a liquid. <P>SOLUTION: This device comprises: a housing 10 of a liquid equipped with a detection light transmitting window on the wall; a laser beam emitting window 12; a laser beam guide pipe 13 of which a portion including the laser beam emitting window is immersed in a liquid sample; an incident optical system 15 for emitting laser beam from the laser beam emitting window to the liquid sample; a measuring mechanism 14 measuring the intensity distribution of the diffracted scattered light which is diffracted scattered by the particle groups in the liquid sample and transmitted by the detection light transmitting window 11; and an adjusting mechanism 21 for moving the laser beam guide pipe along the laser beam emitting direction against the detecting light transmitting window. The distance between the detecting light transmitting window and the laser beam emitting window is adjustable. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体中に含まれる粒子の粒度分布を測定するレーザ回折・散乱式の粒度分布測定装置に関する。   The present invention relates to a laser diffraction / scattering particle size distribution measuring apparatus for measuring the particle size distribution of particles contained in a liquid.

レーザ回折・散乱式粒度分布測定装置においては、一般に、分散状態の被測定粒子群にレーザ光を照射して得られる回折・散乱光の空間強度分布を測定し、その測定結果からミーの散乱理論ないしはフラウンホーファ回折理論に基づく演算によって被測定粒子群の粒度分布を算出する。   Laser diffraction / scattering particle size distribution analyzers generally measure the spatial intensity distribution of diffracted / scattered light obtained by irradiating a group of particles in a dispersed state with laser light, and then use the measurement results to determine Mie's scattering theory. Or the particle size distribution of the particle group to be measured is calculated by calculation based on the Fraunhofer diffraction theory.

図3は、粒度分布測定装置の測定部の基本原理を説明する模式図である。測定対象となる粒子群3に、レーザ光源1からのレーザ光を、コリメートレンズ等により平行光束にする入射光学系2を介して照射する。レーザ光は、粒子群Pによって回折・散乱し、空間的に回折・散乱光の光強度分布パターンが生ずる。この回折・散乱光のうち、前方への回折・散乱光はレンズ4によって集光され、レンズ4の焦点位置にある検出面にリング状の回折・散乱像を結ぶ。この前方への回折・散乱光強度分布パターンは、互いに半径の異なるリング状(あるいは半リング状)の受光面を有する複数の光センサ素子を同心状に配置してなるリングディテクタ(前方散乱光センサ)5によって検出される。また、側方および後方への散乱光は、側方散乱光センサ6および後方散乱光センサ7によってそれぞれ検出される。   FIG. 3 is a schematic diagram for explaining the basic principle of the measuring unit of the particle size distribution measuring apparatus. The particle group 3 to be measured is irradiated with the laser light from the laser light source 1 via the incident optical system 2 that is converted into a parallel light beam by a collimator lens or the like. The laser light is diffracted and scattered by the particle group P, and a light intensity distribution pattern of the diffracted and scattered light is generated spatially. Of the diffracted / scattered light, forward diffracted / scattered light is collected by the lens 4 and forms a ring-shaped diffracted / scattered image on the detection surface at the focal position of the lens 4. This forward diffracted / scattered light intensity distribution pattern is a ring detector (forward scattered light sensor) in which a plurality of photosensor elements having ring-shaped (or semi-ring-shaped) light receiving surfaces with different radii are arranged concentrically. ) 5. Side scattered light and backward scattered light are detected by the side scattered light sensor 6 and the back scattered light sensor 7, respectively.

このようにして、測定部における複数の光センサにより測定された回折・散乱光の空間強度分布パターンは、A−D変換器によってデジタル化されて回折・散乱光強度分布データとなってコンピュータに取り込まれる。   In this way, the spatial intensity distribution pattern of the diffracted / scattered light measured by the plurality of optical sensors in the measurement unit is digitized by the A / D converter to be taken into the computer as diffracted / scattered light intensity distribution data. It is.

この回折・散乱光の強度分布データは、粒子の大きさによって変化する。実際の被測定粒子群には、大きさの異なる粒子が混在しているため、粒子群から生ずる回折・散乱光の強度分布データは、それぞれの粒子からの回折・散乱光の重ね合わせとなる。これをマトリクス(行列)で表現すると、次式(1)となる。


The intensity distribution data of the diffracted / scattered light varies depending on the size of the particle. Since the particles to be measured are mixed in the actual particle group to be measured, the intensity distribution data of the diffracted / scattered light generated from the particle group is an overlay of the diffracted / scattered light from each particle. When this is expressed by a matrix, the following equation (1) is obtained.


ただし、


である。
However,


It is.

s(ベクトル)は回折・散乱光の強度分布データ(ベクトル)である。その要素si (i=1,2,・・・・,m)は、リングディテクタの各素子および側方、後方散乱光センサによって検出される入射光量である。 s (vector) is intensity distribution data (vector) of diffracted / scattered light. The element s i (i = 1, 2,..., M) is the amount of incident light detected by each element and side of the ring detector, and the backscattered light sensor.

q(ベクトル)は頻度分布%として表現される粒度分布データ(ベクトル)である。測定対象となる粒子径範囲(最大粒子径;x1 ,最小粒子径xn+1 )をn分割し、それぞれの粒子径区間は〔xj ,xj+1 〕(j=1,2,・・・・n)とする。q(ベクトル)の要素qj (j=1,2,・・・・n)は、粒子径区間〔xj ,xj+1 〕に対応する粒子量である。通常は、

(q+q+・・・+q+・・・+q)=1(100%) ・・・(4)

となるように、正規化(ノルマライズ)を行っている。
q (vector) is particle size distribution data (vector) expressed as a frequency distribution%. A particle size range to be measured (maximum particle size; x 1 , minimum particle size x n + 1 ) is divided into n, and each particle size interval is [x j , x j + 1 ] (j = 1, 2,・ ・ ・ ・ N). An element q j (j = 1, 2,... n) of q (vector) is a particle amount corresponding to a particle diameter section [x j , x j + 1 ]. Normally,

(Q 1 + q 2 +... + Q j +... + Q n ) = 1 (100%) (4)

Normalization is performed so that

A(マトリクス)は、粒度分布データ(ベクトル)qを光強度分布データ(ベクトル)sに変換する係数行列である。A(マトリクス)の要素ai,j (i=1,2,・・・・m,j=1,2,・・・・n)の物理的意味は、粒子径区間〔xj ,xj+1〕に属する単位粒子量の粒子群によって回折・散乱した光のi番目の素子に対する入射光量である。 A (matrix) is a coefficient matrix for converting the particle size distribution data (vector) q into light intensity distribution data (vector) s. The physical meaning of the element a i, j (i = 1, 2,... M, j = 1, 2,... N) of A (matrix) is the particle size interval [x j , x j +1 ] is the amount of light incident on the i-th element of light diffracted and scattered by the particle group of the unit particle amount belonging to +1 ].

i,j (要素)の数値は、あらかじめ理論的に計算することができる。この理論計算において、粒子径が光源となるレーザ光の波長に比べて十分に大きな場合には、フラウンホーファ回折理論を用いる。しかし、粒子径がレーザ光の波長と同程度か、それより小さいサブミクロンの領域では、ミー散乱理論を用いる必要がある。フラウンホーファ回折理論は、前方微小角散乱において、粒子径が波長に比べて十分に大きな場合に有効なミー散乱理論の優れた近似であると考えることができる。 The numerical value of a i, j (element) can be theoretically calculated in advance. In this theoretical calculation, when the particle diameter is sufficiently larger than the wavelength of the laser beam serving as the light source, Fraunhofer diffraction theory is used. However, it is necessary to use the Mie scattering theory in a submicron region where the particle diameter is the same as or smaller than the wavelength of the laser beam. The Fraunhofer diffraction theory can be considered to be an excellent approximation of the Mie scattering theory that is effective when the particle diameter is sufficiently larger than the wavelength in forward small angle scattering.

ミー散乱理論を用いて係数行列Aの要素を計算するためには、粒子およびそれを分散させている媒体(媒液)の絶対屈折率(複素数)を設定する必要がある。個々の屈折率を設定する代わりに、粒子と媒体との相対屈折率(複素数)で設定する場合もある。   In order to calculate the elements of the coefficient matrix A using the Mie scattering theory, it is necessary to set the absolute refractive index (complex number) of the particles and the medium (liquid medium) in which the particles are dispersed. Instead of setting individual refractive indexes, there are cases where the relative refractive index (complex number) between the particle and the medium is set.

さて、(1)式に基づいて粒度分布データ(ベクトル)qの最小自乗解を求める式を導出すると、次式(5)が得られる。

Now, when an equation for obtaining a least square solution of the particle size distribution data (vector) q is derived based on the equation (1), the following equation (5) is obtained.

(5)式の右辺において、光強度分布データ(ベクトル)sの各要素は、既述のように、リングディテクタおよび側方散乱光センサ,後方散乱光センサで検出される数値である。また、係数行列(マトリクス)Aは、フラウンホーファ回折理論あるいはミー散乱理論を用いてあらかじめ計算しておくことができる。従って、それら既知のデータを用いて(5)式の計算を実行すれば、粒度分布データ(ベクトル)qを求めることができる。   On the right side of the equation (5), each element of the light intensity distribution data (vector) s is a numerical value detected by the ring detector, the side scattered light sensor, and the back scattered light sensor as described above. The coefficient matrix (matrix) A can be calculated in advance using Fraunhofer diffraction theory or Mie scattering theory. Therefore, the particle size distribution data (vector) q can be obtained by calculating the equation (5) using these known data.

以上がレーザ回折・散乱法に基づく基本的な測定原理である。なお、ここで示したのは粒度分布の計算法の一例であり、この他にも様々なバリエーションが存在し、また、センサ、ディテクタの種類および配置にも様々なバリエーションがある。   The above is the basic measurement principle based on the laser diffraction / scattering method. In addition, what was shown here is an example of the calculation method of a particle size distribution, and there are various other variations, and there are also various variations in the types and arrangement of sensors and detectors.

ところで、フラウンホーファ回折理論、あるいはミー散乱理論に基づく演算式は、液体中のサンプル粒子の濃度が適性範囲であれば、散乱光の強度分布パターンから前述の演算式によって精度良くサンプル粒子の粒度分布を計算することができる。しかし、サンプル粒子の濃度が大きすぎると、測定光がある粒子によって散乱され、この散乱光が更に別の粒子によって散乱される多重散乱が発生し、前述の演算式によって得られる粒度分布と実際のサンプル粒子の粒度分布との誤差が大きくなってしまう。   By the way, the calculation formula based on the Fraunhofer diffraction theory or the Mie scattering theory, if the concentration of the sample particles in the liquid is in an appropriate range, accurately calculates the particle size distribution of the sample particles from the scattered light intensity distribution pattern according to the above calculation formula. Can be calculated. However, if the concentration of the sample particles is too large, the measurement light is scattered by a certain particle, and multiple scattering occurs in which the scattered light is scattered by another particle. The error from the particle size distribution of the sample particles becomes large.

一方、液体中のサンプル粒子の濃度が小さすぎる場合は、多重散乱は生じないが、散乱光の強度が小さすぎて、散乱光の正確な強度分布パターンを得ることが困難となる。結局、液体中のサンプル粒子の濃度には、粒度分布に適した適性濃度が存在する。   On the other hand, when the concentration of the sample particles in the liquid is too small, multiple scattering does not occur, but the intensity of the scattered light is too small to obtain an accurate intensity distribution pattern of the scattered light. After all, the concentration of the sample particles in the liquid has an appropriate concentration suitable for the particle size distribution.

上述した原理を利用して、例えば特許文献1に記載されているように、試料セルにサンプル粒子を分散させた液体を収納して、この試料セルに対し、レーザ光を透過させて粒度分布の測定を行っていた。
特開平11―287747号公報
Utilizing the above-described principle, for example, as described in Patent Document 1, a liquid in which sample particles are dispersed is stored in a sample cell, and laser light is transmitted through the sample cell so that the particle size distribution is reduced. We were measuring.
JP-A-11-287747

しかし、試料セル内に粒子を分散させる装置では、セルサイズによって光路長さが固定されているため、一つの試料セルによる測定可能な濃度範囲は限定されていた。そのため、光路長さの異なる数種類の試料セルを常備しておく必要があり、試料セルの選択や交換が必要となり、手間と時間がかかった。   However, in an apparatus that disperses particles in a sample cell, the optical path length is fixed depending on the cell size, so that the concentration range that can be measured by one sample cell is limited. For this reason, several types of sample cells having different optical path lengths need to be prepared, and it is necessary to select and replace the sample cells, which takes time and effort.

また、測定対象が化学反応中のサンプル粒子等の場合では、粒度分布測定装置に標準装備された小さな試料セル内で計測したときの測定結果と、大きな反応容器内で計測したときの測定結果とが異なることがある。そのため、小さな試料セル内ではなく、できるだけ大きな容器内で測定したい場合があった。   In addition, when the measurement target is a sample particle undergoing a chemical reaction, the measurement result when measured in a small sample cell equipped as standard in the particle size distribution measuring device and the measurement result when measured in a large reaction vessel May be different. For this reason, there is a case where it is desired to measure in a container as large as possible instead of in a small sample cell.

そこで本発明は、粒度分布測定装置に標準装備される試料セルを用いることなく、液体容器内に収納された液体中のサンプル粒子群の粒度分布を測定することができ、しかも液体中のサンプル粒子群の濃度の濃淡に応じて適正な光路長さに簡単に調整することのできる粒度分布測定装置を提供することを目的とする。   Therefore, the present invention can measure the particle size distribution of a group of sample particles in a liquid stored in a liquid container without using a sample cell provided as a standard in the particle size distribution measuring apparatus, and further, sample particles in the liquid. It is an object of the present invention to provide a particle size distribution measuring apparatus that can be easily adjusted to an appropriate optical path length according to the density of a group.

上記課題を解決するためになされた本発明の粒度分布測定装置は、粒子群が分散する液体試料にレーザ光を照射して回折・散乱光の強度分布を測定し、その強度分布の測定結果から粒子群の粒度分布を算出する粒度分布測定装置であって、壁面の少なくとも一部に検出光透過窓を備え、かつ、前記液体試料を収納する液体収納容器と、レーザ光出射窓を備え、かつ、少なくとも前記レーザ光出射窓を含む部分が液体収納容器の液体試料内に浸漬されるレーザ光導入筒と、レーザ光源から出射するレーザ光を前記レーザ光出射窓から液体試料に向けて照射するための入射光学系と、液体試料中の粒子群によって回折・散乱され、前記検出光透過窓を透過した回折・散乱光の強度分布を測定する測定機構と、前記液体収納容器の検出光透過窓に対して前記レーザ光導入筒をレーザ光照射方向に沿って移動させる調整機構とからなり、液体収納容器の検出光透過窓とレーザ光導入筒のレーザ光出射窓との距離を調整できるようにしている。   The particle size distribution measuring apparatus of the present invention, which has been made to solve the above problems, measures the intensity distribution of diffracted / scattered light by irradiating a liquid sample in which particles are dispersed to measure the intensity distribution of the diffracted / scattered light. A particle size distribution measuring apparatus for calculating a particle size distribution of a particle group, comprising a detection light transmission window on at least a part of a wall surface, a liquid storage container for storing the liquid sample, a laser light emission window, and A laser light introducing cylinder in which at least a portion including the laser light emission window is immersed in the liquid sample of the liquid storage container, and a laser beam emitted from the laser light source to irradiate the liquid sample from the laser light emission window An incident optical system, a measurement mechanism that measures the intensity distribution of diffracted / scattered light that is diffracted / scattered by a group of particles in the liquid sample and transmitted through the detection light transmission window, and a detection light transmission window of the liquid storage container. versus And an adjustment mechanism for moving the laser light introducing cylinder along the laser light irradiation direction, and the distance between the detection light transmitting window of the liquid storage container and the laser light emitting window of the laser light introducing cylinder can be adjusted. .

ここで、検出光透過窓は、液体収納容器の一部に設けてもよいが、液体収納容器全体をガラス等の光透過性材料で形成してもよい。   Here, the detection light transmission window may be provided in a part of the liquid storage container, but the entire liquid storage container may be formed of a light transmission material such as glass.

また、液体容器に設けられる検出光透過窓は、液体容器の側壁に設ける場合と、液体容器の底壁に設ける場合がある。何れの場合も、レーザ光がこれら検出光透過窓に向かって照射されるように、レーザ光導入筒のレーザ光出射窓を検出光透過窓に相対して設けられる。   Further, the detection light transmission window provided in the liquid container may be provided on the side wall of the liquid container or on the bottom wall of the liquid container. In any case, the laser light emission window of the laser light introducing cylinder is provided relative to the detection light transmission window so that the laser light is emitted toward the detection light transmission window.

また、レーザ光導入筒を移動させる調整機構は、検出光透過窓とレーザ光出射窓との距離を調整できるものであればどのよう機構であってもよい。例えば、レーザ光導入筒を液体容器に固定したホルダーに対して、所望の方向に移動できるように安定保持させ、調整ビス等により移動調整できるようにすればよい。   The adjusting mechanism for moving the laser light introducing cylinder may be any mechanism as long as the distance between the detection light transmitting window and the laser light emitting window can be adjusted. For example, the laser beam introducing cylinder may be stably held with respect to the holder fixed to the liquid container so that it can be moved in a desired direction, and the movement can be adjusted with an adjusting screw or the like.

本発明の粒度分布測定装置によれば、液体収納容器の検出光透過窓とレーザ光導入筒のレーザ光出射窓との距離が調整可能に形成されているので、測定に際して液体中の粒子の濃度が高い場合は、レーザ光導入筒を移動させてこれのレーザ光出射窓が検出光透過窓に近づく方向に移動させ、あるいは、液体中のサンプル粒子の濃度が低い場合は、レーザ光出射窓が検出光透過窓から離れる方向に移動させることにより、簡単に測定対象の濃度に合わせた光路長さに調整することができる。これにより幅広い濃度範囲で、正確な測定を行うことが可能となる。また、標準装備の小さな試料セルを用いるのではなく、多量の液体を収納することが可能な大きな液体容器を用いることができるので、測定対象が化学反応中のサンプル粒子等の場合では、実際の化学反応に近い条件での測定が可能になる。また、大きな液体容器を用いることができるので、この液体容器中の液体に作用する他の機構、例えば洗浄機構等の外部機器を組込むことができ、外部機器の影響によって生じる液体の凝縮、分散、溶解等についても粒度分布の変化として観察することができる。   According to the particle size distribution measuring apparatus of the present invention, since the distance between the detection light transmission window of the liquid storage container and the laser light emission window of the laser light introducing cylinder is adjustable, the concentration of particles in the liquid during measurement If the concentration of sample particles in the liquid is low, the laser light emission window is moved to the direction where the laser light emission window is moved closer to the detection light transmission window. By moving in a direction away from the detection light transmission window, the optical path length can be easily adjusted to the density of the measurement target. This makes it possible to perform accurate measurement over a wide concentration range. Also, instead of using the standard small sample cell, it is possible to use a large liquid container that can hold a large amount of liquid. Measurements under conditions close to chemical reactions are possible. Further, since a large liquid container can be used, other mechanisms that act on the liquid in the liquid container, for example, an external device such as a cleaning mechanism can be incorporated, and condensation and dispersion of liquid caused by the influence of the external device, Dissolution and the like can also be observed as a change in particle size distribution.

(その他の課題を解決するための手段及び効果)
上記発明において、前記レーザ光源および散乱光の測定機構が、液体容器の外部に配置されるようにしてもよい。
これにより、密閉シール等の配慮をすることなく液体容器に容易に組み付けることができ、装置全体を簡単に構成することができる。
(Means and effects for solving other problems)
In the above invention, the laser light source and the scattered light measurement mechanism may be arranged outside the liquid container.
Thereby, it can assemble | attach to a liquid container easily, without considering a sealing seal etc., and the whole apparatus can be comprised easily.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and includes various modes without departing from the spirit of the present invention.

(実施形態1)
図1は、本発明にかかるレーザ光回折・散乱式粒度分布測定装置の第1の実施形態の構成を示す図である。本実施形態では、粒子群を分散させた液体を収納し、かつ、垂直に立設する側壁に検出光透過窓11を備えた液体収納容器10と、検出光透過窓11に相対した状態でレーザ光出射窓12を備え、かつ、レーザ光出射窓12を含む下方部分が液体収納容器10の液体内に浸漬されたレーザ光導入筒13と、検出光透過窓11を透過した回折・散乱光の強度分布を測定する測定機構14とから構成されている。
(Embodiment 1)
FIG. 1 is a diagram showing a configuration of a first embodiment of a laser diffraction / scattering particle size distribution measuring apparatus according to the present invention. In the present embodiment, the liquid containing the liquid in which the particle group is dispersed is stored, and the liquid storage container 10 provided with the detection light transmission window 11 on the side wall standing vertically, and the laser in a state facing the detection light transmission window 11. A laser light introducing cylinder 13 having a light exit window 12 and a lower portion including the laser light exit window 12 immersed in the liquid of the liquid storage container 10, and diffraction / scattered light transmitted through the detection light transmission window 11. And a measurement mechanism 14 for measuring the intensity distribution.

レーザ光導入筒13に導入されるレーザ光は、光源15aから集光レンズ15b、アパーチャ15c、コリメートレンズ15dからなる入射光学系15によって平行光束とされたのちレーザ光導入筒13に導かれる。さらに、レーザ光は、導入筒下部に設けられた反射鏡16により直角に屈曲されてレーザ光透過窓12から検出光透過窓11に向かって照射され、レーザ光出射窓12と検出光透過窓11との間にある液体試料を通過する。このとき液体試料中の粒子群によってレーザ光が回折・散乱される。この場合、レーザ光透過窓12と検出光透過窓11との間隔Lが実質的な光路長さとなる。粒子群による回折・散乱光の強度分布は、液体容器10の外部に設置された測定機構14によって測定される。測定機構14は、集光レンズ14aと、その焦点面上に置かれたリングディテクタ14b(および図示しない側方散乱検出素子、後方散乱検出素子)によって構成されており、リングディテクタ14bの受光面に回折・散乱像が結ばれるようになっている。   The laser light introduced into the laser light introducing cylinder 13 is converted into a parallel light beam by the incident optical system 15 including the condenser lens 15b, the aperture 15c, and the collimating lens 15d from the light source 15a, and then guided to the laser light introducing cylinder 13. Further, the laser light is bent at a right angle by a reflecting mirror 16 provided at the lower part of the introduction tube and irradiated from the laser light transmission window 12 toward the detection light transmission window 11, and the laser light emission window 12 and the detection light transmission window 11. Pass the liquid sample in between. At this time, the laser light is diffracted and scattered by the particle group in the liquid sample. In this case, the distance L between the laser light transmission window 12 and the detection light transmission window 11 is a substantial optical path length. The intensity distribution of the diffracted / scattered light by the particle group is measured by the measurement mechanism 14 installed outside the liquid container 10. The measurement mechanism 14 includes a condenser lens 14a and a ring detector 14b (and a side scatter detection element and a back scatter detection element (not shown)) placed on the focal plane thereof, and the light detection surface of the ring detector 14b. A diffraction / scattering image is formed.

リングディテクタ14bは、互いに異なる半径を持つリング状ないしは半リング状の受光面を持つ複数(例えば64個)の光センサを同心円状に配置してあり、各光センサには、それぞれの位置に応じた回折・散乱角度を持つ光が入射するようにしてある。したがって、各センサ出力は、各回折・散乱角度ごとの光強度を表すことになる。   In the ring detector 14b, a plurality of (for example, 64) photosensors having ring-shaped or semi-ring-shaped light receiving surfaces having different radii are arranged concentrically, and each photosensor is in accordance with its position. In this case, light having a diffraction / scattering angle is incident. Therefore, each sensor output represents the light intensity for each diffraction / scattering angle.

リングディテクタ14bの各センサの出力信号は、アンプ、マルチプレクサ、およびA−D変換器からなるデータサンプリング回路17によって順次デジタル化され、通信制御回路18を介して汎用のコンピュータ19に取り込まれる。
コンピュータ19では、リングディテクタ14bの各センサからの光強度データ、つまり回折・散乱光の空間強度分布データを、フラウンホーファ回折理論ないしはミーの散乱理論を用いたアルゴリズムによって被測定粒子の粒度分布に換算する演算を行い、粒度分布データとして算出する。
The output signal of each sensor of the ring detector 14b is sequentially digitized by a data sampling circuit 17 including an amplifier, a multiplexer, and an A / D converter, and taken into a general-purpose computer 19 via a communication control circuit 18.
In the computer 19, the light intensity data from each sensor of the ring detector 14b, that is, the spatial intensity distribution data of the diffracted / scattered light is converted into the particle size distribution of the particles to be measured by an algorithm using Fraunhofer diffraction theory or Mie's scattering theory. The calculation is performed and the particle size distribution data is calculated.

さらに、前記レーザ光導入筒13は、検出光透過窓11とレーザ光透過窓12との距離が変更できるように、移動調整可能に形成されている。本実施例では、液体容器10に対してネジ等で固定したホルダー20にレーザ光導入筒13が、レーザ光出射窓12と検出光透過窓11とを結ぶ水平な直線に沿って移動できるように安定保持されており、調整ビス21を回動することによって移動調整できるように形成されている。従って、測定に際して液体中のサンプル粒子の濃度が高い場合は、調整ビス21によりレーザ光導入筒13を移動させてこれのレーザ光出射窓12が検出光透過窓11に近づく方向に移動させ、あるいは、液体中のサンプル粒子の濃度が低い場合は、レーザ光出射窓12が検出光透過窓11から離れる方向に移動させることにより、簡単に測定対象の濃度に合わせた光路長さに調整することができ、これにより幅広い濃度範囲で正確な測定を行うことができる。   Further, the laser beam introducing cylinder 13 is formed so as to be movable and adjustable so that the distance between the detection light transmitting window 11 and the laser light transmitting window 12 can be changed. In the present embodiment, the laser light introducing cylinder 13 is moved along a horizontal straight line connecting the laser light emitting window 12 and the detection light transmitting window 11 to the holder 20 fixed to the liquid container 10 with a screw or the like. It is held stably and formed so that it can be moved and adjusted by rotating the adjusting screw 21. Therefore, when the concentration of the sample particles in the liquid is high at the time of measurement, the laser beam introducing cylinder 13 is moved by the adjusting screw 21 so that the laser beam emission window 12 is moved in a direction approaching the detection light transmission window 11, or When the concentration of the sample particles in the liquid is low, the laser beam exit window 12 is moved in a direction away from the detection light transmission window 11 to easily adjust the optical path length to match the concentration of the measurement target. This enables accurate measurement in a wide concentration range.

(実施形態2)
図2は第2の実施形態を示す。この実施形態では、レーザ光出射窓12はレーザ光導入筒13の下端面に設けられており、検出光透過窓11はレーザ光透過窓12と相対した位置で液体容器10の底壁10bに設けられている。また、検出光透過窓11を透過した散乱光の強度分布を測定する測定機構14は液体容器10の下方に配置されている。レーザ光導入筒13は液体容器10にネジ等で固定したホルダー20に、レーザ光出射窓12と検出光透過窓11とを結ぶ垂直な直線に沿って上下に移動できるように安定保持されており、調整ビス21を回動することによって上下方向に移動調整できるように形成されている。従ってこの場合も、先の実施形態と同様に、測定に際して液体中の粒子の濃度が高い場合は、調整ビス21によりレーザ光導入筒13を移動させてこれのレーザ光出射窓12が検出光透過窓11に近づく方向に移動させ、また、液体中のサンプル粒子の濃度が低い場合は、レーザ光出射窓12が検出光透過窓11から離れる方向に移動させることにより、簡単に測定対象の濃度に合わせた光路長さに調整することができる。特に、本実施形態では、液体容器10に分散された粒子が沈殿する場合の濃度変化等の測定に好都合である。
(Embodiment 2)
FIG. 2 shows a second embodiment. In this embodiment, the laser light emission window 12 is provided on the lower end surface of the laser light introduction tube 13, and the detection light transmission window 11 is provided on the bottom wall 10 b of the liquid container 10 at a position facing the laser light transmission window 12. It has been. A measurement mechanism 14 that measures the intensity distribution of scattered light that has passed through the detection light transmission window 11 is disposed below the liquid container 10. The laser beam introducing cylinder 13 is stably held by a holder 20 fixed to the liquid container 10 with screws so that the laser beam introducing cylinder 13 can move up and down along a vertical straight line connecting the laser beam emission window 12 and the detection light transmission window 11. By adjusting the adjustment screw 21, it is formed so that it can be moved and adjusted in the vertical direction. Therefore, also in this case, as in the previous embodiment, when the concentration of particles in the liquid is high at the time of measurement, the laser light introducing cylinder 13 is moved by the adjusting screw 21 so that the laser light emission window 12 transmits the detection light. When the concentration of the sample particles in the liquid is low, the laser light emission window 12 is moved away from the detection light transmission window 11 to easily adjust the concentration of the measurement object. It can be adjusted to the combined optical path length. In particular, the present embodiment is convenient for measuring a concentration change or the like when particles dispersed in the liquid container 10 are precipitated.

本発明は、上記実施例の形態に限定されるものでなく、本発明の構成要件を備え、且つ上記した効果を発揮する範囲内で適宜変更して実施することが可能である。例えば、レーザ光導入筒を移動させる手段は、検出光透過窓とレーザ光出射窓との距離を変更調整できるものであれば、上記実施例に代えてどのような機構であってもよい。   The present invention is not limited to the embodiment described above, and can be implemented with appropriate modifications within the scope of the structural requirements of the present invention and exhibiting the effects described above. For example, the means for moving the laser light introducing tube may be any mechanism in place of the above embodiment as long as the distance between the detection light transmitting window and the laser light emitting window can be changed and adjusted.

本発明は、液体容器にサンプル粒子群を分散させた液体を収納して粒度分布測定を行う場合に好適に利用できる。   The present invention can be suitably used when a liquid in which sample particle groups are dispersed is stored in a liquid container and particle size distribution measurement is performed.

本発明の一実施形態である粒度分布測定装置の構成を示す図。The figure which shows the structure of the particle size distribution measuring apparatus which is one Embodiment of this invention. 本発明の他の一実施形態である粒度分布測定装置の構成を示す図。The figure which shows the structure of the particle size distribution measuring apparatus which is other one Embodiment of this invention. 粒度分測定装置による測定の基本原理を説明する模式図。The schematic diagram explaining the basic principle of the measurement by a particle size fraction measuring device.

符号の説明Explanation of symbols

10 液体容器
11 検出光透過窓
12 レーザ光出射窓
13 レーザ光導入筒
14 測定機構
15 入射光学系
15a 光源
A 液体試料
DESCRIPTION OF SYMBOLS 10 Liquid container 11 Detection light transmission window 12 Laser light emission window 13 Laser light introduction cylinder 14 Measuring mechanism 15 Incident optical system 15a Light source A Liquid sample

Claims (2)

粒子群が分散する液体試料にレーザ光を照射して回折・散乱光の強度分布を測定し、その強度分布の測定結果から粒子群の粒度分布を算出する粒度分布測定装置であって、
壁面の少なくとも一部に検出光透過窓を備え、かつ、前記液体試料を収納する液体収納容器と、
レーザ光出射窓を備え、かつ、少なくとも前記レーザ光出射窓を含む部分が液体収納容器の液体試料内に浸漬されるレーザ光導入筒と、
レーザ光源から出射するレーザ光を前記レーザ光出射窓から液体試料に向けて照射するための入射光学系と、
液体試料中の粒子群によって回折・散乱され、前記検出光透過窓を透過した回折・散乱光の強度分布を測定する測定機構と、
前記液体収納容器の検出光透過窓に対して前記レーザ光導入筒をレーザ光照射方向に沿って移動させる調整機構とからなり、
液体収納容器の検出光透過窓とレーザ光導入筒のレーザ光出射窓との距離を調整可能としたことを特徴とする粒度分布測定装置。
A particle size distribution measuring device that irradiates a liquid sample in which particle groups are dispersed to measure the intensity distribution of diffraction / scattered light and calculates the particle size distribution of the particle groups from the measurement result of the intensity distribution,
A liquid storage container that includes a detection light transmission window on at least a part of the wall surface, and stores the liquid sample;
A laser beam introduction cylinder provided with a laser beam emission window, and at least a portion including the laser beam emission window is immersed in the liquid sample of the liquid container;
An incident optical system for irradiating a liquid sample with laser light emitted from a laser light source from the laser light emission window;
A measurement mechanism that measures the intensity distribution of the diffracted / scattered light that is diffracted and scattered by the particles in the liquid sample and transmitted through the detection light transmission window;
An adjustment mechanism that moves the laser light introduction cylinder along the laser light irradiation direction with respect to the detection light transmission window of the liquid storage container;
A particle size distribution measuring apparatus characterized in that the distance between the detection light transmission window of the liquid container and the laser light emission window of the laser light introducing cylinder can be adjusted.
前記レーザ光源および散乱光の測定機構が、液体容器の外部に配置されていることを特徴とする請求項1に記載の粒度分布測定装置。 2. The particle size distribution measuring apparatus according to claim 1, wherein the laser light source and the scattered light measuring mechanism are arranged outside a liquid container.
JP2007071251A 2007-03-19 2007-03-19 Particle size distribution measuring device Pending JP2008232756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071251A JP2008232756A (en) 2007-03-19 2007-03-19 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071251A JP2008232756A (en) 2007-03-19 2007-03-19 Particle size distribution measuring device

Publications (1)

Publication Number Publication Date
JP2008232756A true JP2008232756A (en) 2008-10-02

Family

ID=39905739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071251A Pending JP2008232756A (en) 2007-03-19 2007-03-19 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP2008232756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004506A (en) * 2016-07-05 2018-01-11 オルガノ株式会社 Device and method for observing particles
CN111989559A (en) * 2018-04-11 2020-11-24 赛博光学公司 Inline particle sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004506A (en) * 2016-07-05 2018-01-11 オルガノ株式会社 Device and method for observing particles
CN111989559A (en) * 2018-04-11 2020-11-24 赛博光学公司 Inline particle sensor

Similar Documents

Publication Publication Date Title
US7813470B2 (en) Three-dimensional contents determination method using transmitted x-ray
CN104483104B (en) A kind of photo detector spectral response analysis system
KR101857950B1 (en) High accuracy real-time particle counter
JP5728470B2 (en) Method and apparatus for measuring optical force acting on particles
CN104949964B (en) ICP emission spectrophotometer
CN108287126B (en) Nanoparticle size measurement system
CN104316443A (en) PM2.5 concentration monitoring method based on CCD back scattering
JP2000105185A (en) Device and method for measuring distribution of particle size
CN106526228A (en) Self-calibrating method and system for laser-induced-fluorescence-based speed measurement
US9329143B2 (en) Method and apparatus for investigating the X-ray radiographic properties of samples
JP5662742B2 (en) Particle size measuring apparatus and particle size measuring method
JP2021517963A (en) Particle sizing improved by light diffraction
WO2017067971A1 (en) Measurement cell for saxs measurements and for dls measurements
JP4522882B2 (en) Absorption measuring device
CN105572076A (en) Terahertz spectrum measuring device based on scattering effect and measuring method thereof
JP2007333409A (en) Suspended particle measurement device
JP2008232756A (en) Particle size distribution measuring device
CN105547970B (en) A kind of flow cytometer excitation light source system and bearing calibration
Schwarz et al. Investigations on the capability of the statistical extinction method for the determination of mean particle sizes in concentrated particle systems
JP2011503591A (en) Method and apparatus for determining the flow rate of a flowing liquid
US20040075838A1 (en) Nephelometric detection unit with optical in-process control
RU2419088C1 (en) X-ray spectrometer
KR20160004731A (en) Apparatus and data correction method for measuring particles using absorvance signal and flurescence signal
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
WO2020144754A1 (en) Size distribution measurement device, size distribution measurement method, and sample container