JPH10197549A - Wind speed measuring method by phased array type doppler anemometer - Google Patents

Wind speed measuring method by phased array type doppler anemometer

Info

Publication number
JPH10197549A
JPH10197549A JP8358674A JP35867496A JPH10197549A JP H10197549 A JPH10197549 A JP H10197549A JP 8358674 A JP8358674 A JP 8358674A JP 35867496 A JP35867496 A JP 35867496A JP H10197549 A JPH10197549 A JP H10197549A
Authority
JP
Japan
Prior art keywords
wind speed
horizontal plane
wind
phased array
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8358674A
Other languages
Japanese (ja)
Inventor
Yoshiki Ito
芳樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP8358674A priority Critical patent/JPH10197549A/en
Publication of JPH10197549A publication Critical patent/JPH10197549A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform optimal measurement by considering a measurement error and an atmospheric phenomenon or the like by respectively calculating a horizontal component of bidirectional wind speed on which the wave sending-receiving directions are the exact opposite when the horizontal distribution of the wind speed is almost uniform and a horizontal component of wind speeds in the zenith direction and the inclined direction when the distribution is nonuniform. SOLUTION: In a first method to measure wind speed, for example, when east-west directional wind speed is detected, it is calculated from a measured value Vrq of east directional oblique upward wind speed and a measured value Vrz in the zenith directional wind speed. In a second method, it is calculated from a measured value Vre and a measured value Vvw of west directional oblique upward wind speed. The second method is excellent in reducing a measurement error by an inclination from a horizontal plane, and when wind speeds are different to a certain degree in a horizontal plane, the first method is excellent since a distance between two points of a measuring place can be reduced by half. Then, a measuring method is selected by a command or the like from a keyboard by considering the wind speed distribution in a horizontal plane caused by the geography or the like, an allowable measurement error or the like. Therefore, optimal measurement can be performed according to a purpose or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大気汚染の防止
や、航空機の航行の障害となる乱気流の検出などを目的
として、上空の風速や風向を測定するのに利用されるド
ップラー風速計による風速測定方法に関するものであ
り、特に、音波や電波の送受信方向を高速に変更できる
フエーズドアレイ型のドップラー風速計による風速の測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anemometer using a Doppler anemometer, which is used to measure the wind speed and direction in the sky, for the purpose of preventing air pollution and detecting turbulence which hinders navigation of aircraft. The present invention relates to a measuring method, and more particularly, to a method of measuring a wind speed by a phased array type Doppler anemometer capable of changing a transmitting / receiving direction of a sound wave or a radio wave at a high speed.

【0002】[0002]

【従来の技術】スモッグなどの大気汚染の発生を予測し
たり防止したりするには、まず、上空の風速・風向など
のデータが必要になる。このようなデータを収集するこ
となどを目的として、ドップラー風速計が開発されてい
る。このドップラー風速計は、音波や電波を上空に向け
て放射し、水蒸気や汚染物質の含有率の差に起因する大
気の組成の揺らぎや、温度差などに起因する大気の密度
の揺らぎなど大気の不均一な箇所で発生する微弱な反射
波を受信し、この受信した反射波に含まれる周波数のド
ップラーシフト量からこの反射波を生じさせた媒体の不
均一箇所の移動速度、すなわちその箇所の風速・風向を
検出するように構成されている。
2. Description of the Related Art In order to predict or prevent the occurrence of air pollution such as smog, data on the wind speed and direction of the sky is first required. Doppler anemometers have been developed for the purpose of collecting such data. This Doppler anemometer radiates sound waves and radio waves toward the sky, causing fluctuations in the composition of the atmosphere due to differences in the content of water vapor and contaminants, and fluctuations in the density of the atmosphere due to temperature differences and other factors. A weak reflected wave generated at a non-uniform location is received, and the moving speed of the non-uniform location of the medium that caused the reflected wave from the Doppler shift amount of the frequency included in the received reflected wave, that is, the wind speed at that location -It is configured to detect the wind direction.

【0003】音波を利用する最新式のドップラー測定装
置(ソーダー)として、フエーズドアレイ式のビーム走
査型の送受波器を使用してものが知られている。このフ
エーズドアレイ式の送受波器では多数の電気音響変換素
子(トランスデューサ)がそれぞれの法線を天頂方向に
向けて二次元的に配列され、これらの中から特定の方向
に配列されている一群のものが選択される。そして、選
択された一群の素子に対してその配列方向に一定量ずつ
位相のずれた信号が順次供給される。各素子から放射さ
れたビームは、それぞれの位相が揃う等位相面と直交す
る方向、すなわち、真上(天頂方向)から任意の角度だ
け傾いた方向に放射される。なお、全てのトランスデュ
ーサに同位相の信号を供給すれば、ビームが天頂方向に
放射される。
As a state-of-the-art Doppler measuring apparatus (soda) utilizing sound waves, it is known to use a phased array type beam scanning type transducer. In this phased array type transducer, a large number of electroacoustic transducers (transducers) are two-dimensionally arranged with their normals directed toward the zenith, and a group of these arranged in a specific direction from these Is selected. Then, signals having a phase shift by a predetermined amount in the arrangement direction are sequentially supplied to the selected group of elements. The beam emitted from each element is emitted in a direction perpendicular to the equiphase plane where the respective phases are aligned, that is, in a direction inclined by an arbitrary angle from directly above (zenith direction). If the same phase signal is supplied to all the transducers, the beam is emitted in the zenith direction.

【0004】上述のフエーズドアレイ式の送受波器を使
用するドップラーソーダーでは、通常、天頂方向と、こ
の天頂方向から傾いた水平面内の直交二方向(各正負方
向計四方向)にビームを放射する5ビーム法が採用され
る。すなわち、図3中の平面図に示すように、フエーズ
ドアレイ型の送受波器TRXの中心を原点Oとし、鉛直
線zと水平面xーyとから成る直交座標(x,y,z)
を想定し、x方向を東西方向、y方向を南北方向とす
る。同図において、Vrz, Vre, Vrw ,Vrn及びVrs
は、それぞれ天頂方向, 東方向斜め上方, 西方向斜め上
方, 北方向斜め上方及び南方向斜め上方についての風速
の測定値である。
In the above-mentioned Doppler soda using a phased array type transducer, a beam is usually emitted in two directions (a total of four directions, positive and negative directions) in a horizontal plane inclined from the zenith direction. The beam method is adopted. That is, as shown in the plan view of FIG. 3, the center of the phased array type transducer TRX is the origin O, and the orthogonal coordinates (x, y, z) composed of a vertical line z and a horizontal plane xy.
And the x direction is the east-west direction, and the y direction is the north-south direction. In the figure, Vrz, Vre, Vrw, Vrn and Vrs
Are the wind speed measurements for the zenith, diagonally above east, diagonally above west, diagonally above north, and diagonally above south.

【0005】[0005]

【発明が解決しようとする課題】風速の水平成分の測定
方法としてはいくつか考えられる。例えば、東西方向の
風速を検出するには、東又は西方向斜め上方の風速の測
定値Vre (又はVrw )と天頂方向の風速の測定値Vrzの
とから垂直成分を消去することによって算定する方法
と、東方向斜め上方の風速の測定値Vreと西方向斜め上
方の風速の測定値Vrwとから垂直成分を消去することに
よって算定する方法の2種類が可能である。想定される
測定誤差や気象や地形の状態を考慮してどのような測定
方法を採用すれば最適となるかは、従来不明であった。
従って、本発明の目的は、想定される測定誤差や気象や
地形などの状態を考慮した水平成分の最適の測定方法を
提供することにある。
There are several methods for measuring the horizontal component of the wind speed. For example, to detect the wind speed in the east-west direction, a method of calculating by removing the vertical component from the measured value Vre (or Vrw) of the wind speed obliquely upward in the east or west direction and the measured value Vrz of the zenith direction is used. And a method of calculating by eliminating the vertical component from the measured value Vre of the wind speed diagonally upward in the east direction and the measured value Vrw of the wind speed diagonally upward in the west direction. It has not been known in the past what measurement method would be optimal in consideration of the assumed measurement error and the weather and terrain conditions.
Therefore, an object of the present invention is to provide an optimal method for measuring a horizontal component in consideration of an assumed measurement error and a state such as weather and terrain.

【0006】[0006]

【課題を解決するための手段】本発明の測定方法によれ
ば、天頂方向となす角度が等しくかつ水平面に投影した
送受波方向がほぼ正反対の2方向について斜方向の風速
を検出し、これら斜め方向の風速から垂直成分を消去す
ることより、水平成分の検出が行われる。
According to the measuring method of the present invention, oblique wind velocities are detected in two directions having the same angle with the zenith direction, and the transmission and reception directions projected on the horizontal plane are almost opposite to each other. The horizontal component is detected by eliminating the vertical component from the wind speed in the direction.

【0007】[0007]

【発明の実施の形態】本発明の測定方法の実施の形態に
よれば、上記方法による風速の測定は、水平面内の風速
の分布がほぼ均一なことを条件として行われ、水平面内
の風速の分布が均一でない場合には、天頂方向の風速の
垂直成分の測定と、天頂角から傾いた方向の風速の水平
成分と垂直成分との測定値から水平成分の算定が行われ
る。
According to an embodiment of the measuring method of the present invention, the measurement of the wind speed by the above method is performed under the condition that the distribution of the wind speed in the horizontal plane is substantially uniform, and the measurement of the wind speed in the horizontal plane is performed. If the distribution is not uniform, the vertical component of the wind speed in the zenith direction is measured, and the horizontal component is calculated from the measured values of the horizontal and vertical components of the wind speed in a direction inclined from the zenith angle.

【0008】測定誤差に関する一つの問題点は、送受波
器の水平面からの傾きである。これは、設置工事の際に
発生した水平面からの傾き、設置後の経年変化で生じた
傾き、地震や車両の振動や衝撃に起因して生する傾きな
どが考えられる。いま、水平面からδθの傾きが発生し
たものとする。
One problem related to measurement errors is the inclination of the transducer from the horizontal plane. This may be caused by inclination from a horizontal plane generated during installation work, inclination caused by secular change after installation, inclination generated due to an earthquake, vibration or shock of a vehicle, and the like. Now, it is assumed that the inclination of δθ has occurred from the horizontal plane.

【0009】天頂方向と斜め方向の風速の測定値から垂
直成分を消去することによって水平成分を検出する方法
によれば、UとWをそれぞれ水平成分、垂直成分の真値
とすれば、 Vre=Ucos (θ+δθ)+W sin(θ+δθ) (1) Vrz=W (2) 風速のx成分Vxは、次式で与えられる。 Vx =(Vre−Vrz sinθ)/cos θ (3) Wがゼロの場合、(1)式と(2)式とから、 Vx =U( cosδθ−tan θ・ sinδθ) (4) となる。水平面からの傾きδθが1o の場合、Vx=0.
952 となり、風速の水平成分に4.8 %もの測定誤差が発
生する。
According to the method of detecting the horizontal component by eliminating the vertical component from the measured values of the wind speed in the zenith direction and the oblique direction, if U and W are the true values of the horizontal component and the vertical component, respectively, Vre = U cos (θ + δθ) + W sin (θ + δθ) (1) Vrz = W (2) The x component Vx of the wind speed is given by the following equation. Vx = (Vre−Vrz sin θ) / cos θ (3) When W is zero, from the equations (1) and (2), Vx = U (cosδθ−tan θ · sinδθ) (4) When the inclination δθ from the horizontal plane is 1 ° , Vx = 0.
952, and a measurement error of as much as 4.8% occurs in the horizontal component of the wind speed.

【0010】これに対して、天頂方向となす角度が等し
くかつ水平面に投影した送受波方向がほぼ正反対の2方
向について斜め方向の風速を検出し、これら斜め方向の
風速から垂直成分を消去することより、水平成分を検出
する方法によれば、(1)式と、 Vrw=U cos( θ+δθ)+W sin( θ+δθ) (5) とから、 Vx =(Vre−Vrw)/2cos θ =U( cos(θ+δθ)+cos(θ−δθ)/2cos θ +W( sin(θ+δθ)− sin (θ−δθ)) /2cos θ =U cosδθ+W sinδθ (6) 通常、W<Uであり、かつ sinδθ≪ cosδθであるか
ら、 Vx ≒U cosδθ (7) δθ=1o のとき、Vx =0.99985 となり、測定誤差は
0.015 %もの小さな値になる。
In contrast, detecting oblique wind speeds in two directions having the same angle with the zenith direction and transmitting and receiving directions projected on a horizontal plane are substantially opposite to each other, and eliminating a vertical component from these oblique wind speeds. According to the method of detecting the horizontal component, from the equation (1) and Vrw = U cos (θ + δθ) + W sin (θ + δθ) (5), Vx = (Vre−Vrw) / 2 cos θ = U (cos (θ + δθ) + cos (θ−δθ) / 2 cos θ + W (sin (θ + δθ) −sin (θ−δθ)) / 2 cos θ = U cosδθ + W sinδθ (6) Normally, W <U and sinδθ≪cosδθ. From the equation, when VxxU cos δθ (7) δθ = 1 o , Vx = 0.99985, and the measurement error is
The value is as small as 0.015%.

【0011】このように、水平面からの傾きによる測定
誤差を小さくするには、二つの斜め方向の風速を測定
し、二つの測定値から垂直成分を消去して風速の水平成
分を検出する後者の方法が優れている。しかしながら、
この方法では、上空に行くほど二つの風速測定箇所が水
平方向に遠ざかってしまい、離れた2箇所の測定値を空
間的に平均化した値しか得られない。すなわち、この測
定方法は、水平面内の風速の分布を細かく測定する用途
には問題がある。例えば、この測定装置が海岸に設置さ
れている場合、一方の測定箇所は海面の上空で、他方の
測定箇所が陸地の上空となり、各箇所の風速がある程度
異なることが考えられる。
As described above, in order to reduce the measurement error due to the inclination from the horizontal plane, the wind speed in two oblique directions is measured, the vertical component is eliminated from the two measured values, and the horizontal component of the wind speed is detected. The method is excellent. However,
In this method, the two wind speed measurement points move farther in the horizontal direction toward the sky, and only a value obtained by spatially averaging the measured values of the two distant points can be obtained. In other words, this measurement method has a problem in applications where the distribution of wind speed in a horizontal plane is finely measured. For example, when this measuring device is installed on the seashore, one measurement point is above the sea surface and the other measurement point is above the land, and it is conceivable that the wind speed at each point is somewhat different.

【0012】このように、水平面内で風速がある程度異
なる場合には、二つの測定箇所がなるべく接近させる必
要がある。このような場合、水平面からの傾きによる測
定誤差を多少犠牲にしても、天頂方向と斜め方向のそれ
ぞれの風速を測定し二つの測定値から垂直成分を消去し
て風速の水平成分を検出する前者の方法を採用すれば、
測定箇所の2点の距離を半減できるという点で優れてい
る。
As described above, when the wind velocities are different to some extent in the horizontal plane, it is necessary to bring the two measurement points as close as possible. In such a case, even if the measurement error due to the inclination from the horizontal plane is slightly sacrificed, the former detects the wind speed in the zenith direction and the oblique direction, deletes the vertical component from the two measured values, and detects the horizontal component of the wind speed. If you adopt the method of
It is excellent in that the distance between two points at the measurement point can be halved.

【0013】[0013]

【実施例】図2は、本発明の一実施例の測定方法を適用
するフエーズドアレイ・ドップラーソーダーの構成を示
すブロック図であり、10はコントローラ、20は送受
信回路、30はフエーズドアレイ・アンテナである。
FIG. 2 is a block diagram showing the configuration of a phased array Doppler soda to which the measuring method according to one embodiment of the present invention is applied. Reference numeral 10 denotes a controller, reference numeral 20 denotes a transmitting / receiving circuit, and reference numeral 30 denotes a phased array antenna.

【0014】コントローラ10は、CPU11、ROM
/RAM12、デバイス入出力回路13、A/D変換回
路14、入力インタフェース回路15及び出力インタフ
ェース回路16を備えている。
The controller 10 comprises a CPU 11, a ROM
/ RAM 12, a device input / output circuit 13, an A / D conversion circuit 14, an input interface circuit 15, and an output interface circuit 16.

【0015】送受信回路20は、コントロールロジック
21、電力増幅器22、送受信切替えスイッチ23、前
置増幅器24、ミキサー25、バンドパス・フィルタ2
6、時間と共に利得が増加せしめられる可変利得増幅器
27及び検波器28を備えている。ドップラーシフト量
の検出は、シンプルホモダイン方式とFFT(高速フー
リエ変換)との組合せによって行われる。
The transmission / reception circuit 20 includes a control logic 21, a power amplifier 22, a transmission / reception changeover switch 23, a preamplifier 24, a mixer 25, and a band-pass filter 2.
6. It has a variable gain amplifier 27 and a detector 28 whose gain is increased with time. The detection of the Doppler shift amount is performed by a combination of the simple homodyne method and FFT (Fast Fourier Transform).

【0016】フエーズドアレイ・アンテナ30は、16
×16=256個のトランスデューサから構成され、周
波数 2,100HZ、パワー1000ワット程度、半値幅10o
度の鋭いビームを、コントローラ10内のCPU11か
らの指令に従って、天頂方向やこの天頂方向からほぼ20
o 傾いた斜め上方向に放射する。
The phased array antenna 30 has 16 antennas.
X16 = 256 transducers, a sharp beam having a frequency of 2,100 HZ, a power of about 1000 watts, and a half-value width of about 10 ° are directed to the zenith direction or approximately 20 degrees from the zenith direction according to a command from the CPU 11 in the controller 10.
oEmits light obliquely upward.

【0017】コントローラ10内のCPU11は、内蔵
のプログラムや、測定データや、図示しないキーボード
からの指令などに従って、風速の水平線分に関する上述
した二つの方法のうちの一つを選択し、コントローラ1
0と、送受信部20の動作を制御する。
The CPU 11 in the controller 10 selects one of the above-described two methods for the horizontal line segment of the wind speed according to a built-in program, measurement data, a command from a keyboard (not shown), and the like.
0 and controls the operation of the transceiver 20.

【0018】以上、フエーズドアレイ式の送受波器を使
用するドップラーソーダーの場合を例にとって本発明を
説明した。しかしながら、本発明の測定方法は、電波を
送受信するドップラーレーダにも適用できる。
The present invention has been described with reference to the case of a Doppler soda using a phased array type transducer. However, the measurement method of the present invention can also be applied to Doppler radars that transmit and receive radio waves.

【0019】以上詳細に説明したように、地形などに起
因する水平面内の風速の分布や、許容できる測定誤差な
どを考慮して、二つの測定方法のうちの一方を選択する
構成であるから、目的などに応じて最適の測定を行うこ
とができる。
As described in detail above, one of the two measurement methods is selected in consideration of the distribution of the wind speed in the horizontal plane due to the terrain and the like and an allowable measurement error. Optimal measurement can be performed according to the purpose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わるフエーズドアレイ型ドップラー
風速計による風速測定方法の方法を説明するための概念
図である。
FIG. 1 is a conceptual diagram for explaining a method of measuring a wind speed by a phased array type Doppler anemometer according to the present invention.

【図2】本発明の一実施例の測定方法を適用するフエー
ズドアンテナ型ドップラーソーダの構成を示すブロック
図である。
FIG. 2 is a block diagram showing a configuration of a phased antenna type Doppler soda to which the measuring method according to one embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

TRX フエーズドアレイ型の送受波器 Vrz 天頂方向の風速の測定値 Vre 東方向斜め上方の風速の測定値 Vrw 西方向斜め上方の風速の測定値 Vrn 北方向斜め上方の風速の測定値 Vrs 南方向斜め上方の風速の測定値 10 コントローラ 20 送受信部 30 フエーズドアレイ・アンテナ TRX Phased Array Transceiver Vrz Measured wind speed in the zenith direction Vre Measured wind speed diagonally upward eastward Vrw Measured wind speed diagonally upward westward Vrn Measured wind speed diagonally upward northward Vrs Diagonally upward in southern direction Wind speed measurement 10 Controller 20 Transmitter / receiver 30 Phased array antenna

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】フエーズドアレイ型の送受波器から空中に
音波又は電波を送信し、その反射波を受信し、この受信
信号の周波数のドップラーシフト量からこの反射波を生
じさせた物質又は媒体の速度を検出するドップラー風速
計であって、 天頂方向となす角度が等しくかつ水平面上に投影した送
受波方向がほぼ正反対の二つの斜め方向についてそれぞ
れの風速を検出し、これら検出した斜め方向の風速から
垂直成分を消去することより、風速の水平成分の検出を
行うことを特徴とするフエーズドアレイ型のドップラー
風速計による風速測定方法。
1. A speed of a substance or a medium which transmits a sound wave or a radio wave from the phased array type transducer to the air, receives a reflected wave thereof, and generates the reflected wave from a Doppler shift amount of the frequency of the received signal. Doppler anemometer that detects the wind speed, and detects the respective wind speeds in two oblique directions where the angle made with the zenith direction is equal and the transmitting and receiving directions projected on the horizontal plane are almost exactly opposite, and from these detected oblique wind speeds A wind speed measurement method using a phased array type Doppler anemometer, wherein a horizontal component of wind speed is detected by eliminating a vertical component.
【請求項2】 請求項1において、 前記方法による風速の水平成分の検出は、水平面内の風
速の分布の均一度が良好なことを条件として行われるこ
とを特徴とするフエーズドアレイ型ドップラー風速計に
よる風速測定方法。
2. The phased array Doppler anemometer according to claim 1, wherein the detection of the horizontal component of the wind speed by the method is performed on condition that the uniformity of the wind speed distribution in the horizontal plane is good. Wind speed measurement method.
【請求項3】 請求項2において、 前記水平面内の風速の分布の均一度が良好でない場合に
は、天頂方向とこの天頂方向から傾いた斜め方向につい
てそれぞれの風速を検出し、これらの検出値から垂直成
分を消去することにより、風速の水平成分の検出を行う
ことを特徴とするフエーズドアレイ型のドップラー風速
計による風速測定方法。
3. The method according to claim 2, wherein when the uniformity of the distribution of the wind speed in the horizontal plane is not good, the wind speeds are detected in a zenith direction and an oblique direction inclined from the zenith direction. And detecting a horizontal component of the wind speed by eliminating a vertical component from a wind speed.
JP8358674A 1996-12-27 1996-12-27 Wind speed measuring method by phased array type doppler anemometer Pending JPH10197549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8358674A JPH10197549A (en) 1996-12-27 1996-12-27 Wind speed measuring method by phased array type doppler anemometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8358674A JPH10197549A (en) 1996-12-27 1996-12-27 Wind speed measuring method by phased array type doppler anemometer

Publications (1)

Publication Number Publication Date
JPH10197549A true JPH10197549A (en) 1998-07-31

Family

ID=18460540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8358674A Pending JPH10197549A (en) 1996-12-27 1996-12-27 Wind speed measuring method by phased array type doppler anemometer

Country Status (1)

Country Link
JP (1) JPH10197549A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500553A (en) * 2001-08-23 2005-01-06 テレ−アイピー リミテッド Measurement of air characteristics at low atmospheric pressure
US7007555B2 (en) 2004-03-15 2006-03-07 Teledyne Rd Instruments, Inc. System and method of horizontal wave measurement
US7317660B2 (en) 1998-08-04 2008-01-08 Teledyne Rd Instruments, Inc. System and method for measuring wave directional spectrum and wave height
JP2008544228A (en) * 2005-06-20 2008-12-04 ウインドビッドコ ピーティーワイ エルティーデー Observation of lower atmosphere soda
US7539082B2 (en) 2006-09-28 2009-05-26 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including using a wide bandwidth pulse transmission to resolve ambiguity in a narrow bandwidth velocity estimate
US7542374B2 (en) 2006-09-28 2009-06-02 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including applying correction factors to velocities orthogonal to the transducer face
JP2010236887A (en) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp Radar system
US7847925B2 (en) 2007-06-18 2010-12-07 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
US8254208B2 (en) 2008-12-08 2012-08-28 Teledyne Rd Instruments, Inc. Multi-state beamforming array
US8654607B2 (en) 2009-05-27 2014-02-18 Teledyne Rd Instruments, Inc. System and method for determining wave characteristics from a moving platform
KR101394670B1 (en) * 2013-01-31 2014-05-12 한국항공우주연구원 Probe of measuring velocity of fluid

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7545705B2 (en) 1998-08-04 2009-06-09 Teledyne Rd Instruments, Inc. System and method for measuring wave directional spectrum and wave height
US7317660B2 (en) 1998-08-04 2008-01-08 Teledyne Rd Instruments, Inc. System and method for measuring wave directional spectrum and wave height
JP2005500553A (en) * 2001-08-23 2005-01-06 テレ−アイピー リミテッド Measurement of air characteristics at low atmospheric pressure
US7007555B2 (en) 2004-03-15 2006-03-07 Teledyne Rd Instruments, Inc. System and method of horizontal wave measurement
US7379387B2 (en) 2004-03-15 2008-05-27 Teledyne Rd Instruments, Inc. System and method of horizontal wave measurement
US7768874B2 (en) 2004-03-15 2010-08-03 Teledyne Rd Instruments, Inc. System and method of horizontal wave measurement
JP2008544228A (en) * 2005-06-20 2008-12-04 ウインドビッドコ ピーティーワイ エルティーデー Observation of lower atmosphere soda
US7542374B2 (en) 2006-09-28 2009-06-02 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including applying correction factors to velocities orthogonal to the transducer face
US7539082B2 (en) 2006-09-28 2009-05-26 Teledyne Rd Instruments, Inc. System and method for acoustic Doppler velocity processing with a phased array transducer including using a wide bandwidth pulse transmission to resolve ambiguity in a narrow bandwidth velocity estimate
US7847925B2 (en) 2007-06-18 2010-12-07 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
USRE45823E1 (en) 2007-06-18 2015-12-22 Teledyne Rd Instruments, Inc. System and method of acoustic doppler beamforming
US8254208B2 (en) 2008-12-08 2012-08-28 Teledyne Rd Instruments, Inc. Multi-state beamforming array
US8514659B2 (en) 2008-12-08 2013-08-20 Teledyne Rd Instruments, Inc. Multi-state beamforming array
JP2010236887A (en) * 2009-03-30 2010-10-21 Mitsubishi Electric Corp Radar system
US8654607B2 (en) 2009-05-27 2014-02-18 Teledyne Rd Instruments, Inc. System and method for determining wave characteristics from a moving platform
US9739882B2 (en) 2009-05-27 2017-08-22 Teledyne Instruments, Inc. System and method for determining wave characteristics from a moving platform
KR101394670B1 (en) * 2013-01-31 2014-05-12 한국항공우주연구원 Probe of measuring velocity of fluid

Similar Documents

Publication Publication Date Title
EP0011912B1 (en) Acoustic detection of wind speed and direction at various altitudes
CN108169511B (en) Three-dimensional space carrys out the wind velocity measurement system and method for wind
JPH063453B2 (en) Measuring method and device for altitude distribution of wind direction, wind speed, and temperature
JPH10197549A (en) Wind speed measuring method by phased array type doppler anemometer
FI85427B (en) FOERFARANDE OCH ANORDNING FOER ETT OBJEKTS AZIMUT- OCH ELEVATIONSMAETNING.
CN111766599B (en) Laser radar device and method for measuring sea wave height in real time
CN110568413A (en) test system and method integrating radar calibration, active transceiving and measurement parameters
US5509304A (en) Phased array acoustic antenna system
CN112147593B (en) Four-dimensional parameter estimation method for high-speed dense explosive fragment target
CN114910944A (en) Phased array antenna tracking precision measuring method
Ito et al. Development of wind profiling sodar
Saito et al. Arrival angle and travel time measurements of HF transequatorial propagation for plasma bubble monitoring
JP2001174554A (en) Wind observation system
JP3732890B2 (en) Phased array type Doppler anemometer
JPH08220127A (en) Ultrasonic wind vane anemometer
JPS5836752B2 (en) Sonic exploration method
JP3282777B2 (en) Phased Array Doppler Soda
KR102590715B1 (en) Multipoint radar flow velocity meter
JPH0990034A (en) Doppler measuring instrument for measuring wind speed
CN113687343B (en) Incoming wave direction finding and positioning method based on three-channel receiver and omni-directional antenna
JP3508631B2 (en) Doppler observation equipment
US20240061103A1 (en) Vehicle radar system and method for detecting target object
JP3040615B2 (en) Ultrasonic tidal current distribution measuring device
Viikari et al. A frequency shift technique for pattern correction in hologram-based CATRs
JPH0843421A (en) Ultrasonic type anemometer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518