JPH1019737A - Jet engine test cell - Google Patents

Jet engine test cell

Info

Publication number
JPH1019737A
JPH1019737A JP8174967A JP17496796A JPH1019737A JP H1019737 A JPH1019737 A JP H1019737A JP 8174967 A JP8174967 A JP 8174967A JP 17496796 A JP17496796 A JP 17496796A JP H1019737 A JPH1019737 A JP H1019737A
Authority
JP
Japan
Prior art keywords
exhaust duct
exhaust
shielding plate
exhaust gas
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8174967A
Other languages
Japanese (ja)
Other versions
JP3356627B2 (en
Inventor
Takeshi Oda
剛 織田
Masahiko Mitsuda
正彦 満田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17496796A priority Critical patent/JP3356627B2/en
Publication of JPH1019737A publication Critical patent/JPH1019737A/en
Application granted granted Critical
Publication of JP3356627B2 publication Critical patent/JP3356627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a facility itself compact, by setting a shielding plate at the side of an engine chamber of an exhaust duct which shields a peripheral edge of the duct and rotates. SOLUTION: A shielding plate 7 is rotatably set at the side of an engine chamber 3 of an exhaust duct 4. A cross section of the exhaust duct 4 is shielded to a nearly semi-circular shape. A central part of the exhaust duct 4 is notched in the shape of an arc. The shielding plate 7 is rotated by a rotary ring 11 via a transmission shaft 9 by a turbine 8 in an exhaust chamber 6. Since the shielding plate 7 shuts only a peripheral edge of the exhaust duct 4, a high temperature exhaust gas at the central part is allowed to pass directly without being hindered by the shielding plate 7. A low temperature air in the periphery is shielded by the shielding plate 7 and enters only from an opening part to the exhaust duct 4. The high temperature exhaust gas is pressed by the low temperature air and flows to deflect to the back side of the shielding plate 7. Therefore, a position of the exhaust gas is always changed by the rotation of the shielding plate 7. Accordingly, a face in the exhaust duct 4 exposed partially to the high temperature gas for a long time is eliminated, the exhaust duct can be shortened, and the facility itself becomes compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ジェットエンジン
テストセルに係り、特に排気ダクトの長さを短縮し、設
置面積を小さくできるジェットエンジンテストセルに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jet engine test cell, and more particularly to a jet engine test cell capable of reducing the length of an exhaust duct and reducing the installation area.

【0002】[0002]

【従来の技術】一般に、ジェットエンジンテストセル
は、整備後あるいは新しいジェットエンジンを運転し
て、その性能や機能を計測評価するための試験設備であ
る。ジェットエンジンを運転する場合は、その騒音が問
題となるため、テストセルは、必ず防音設備を設けた建
屋となっている。より具体的には、テストセルは、特開
昭58−218633号に開示されるごとく、上流側に
吸気室、下流側に排気室を形成すべく、隔壁により区画
形成されたセル本体と、セル本体の吸気室側に吸気消音
室、吸気消音室の下流側に試験用ジェットエンジンを収
納するエンジン室、エンジン室下流側に排気ダクト、排
気室側に排気消音室、を各々設けた構造となっている。
2. Description of the Related Art In general, a jet engine test cell is a test facility for measuring and evaluating the performance and functions of a new jet engine after maintenance or by operating a new jet engine. When operating a jet engine, noise is a problem, so the test cell is always a building equipped with soundproofing equipment. More specifically, as disclosed in Japanese Patent Application Laid-Open No. 58-218633, a test cell includes a cell body partitioned by partition walls to form an intake chamber on the upstream side and an exhaust chamber on the downstream side, and a cell. An intake muffler is provided on the intake chamber side of the main unit, an engine room for accommodating the test jet engine is provided downstream of the intake muffler, an exhaust duct is provided downstream of the engine room, and an exhaust muffler is provided on the exhaust chamber side. ing.

【0003】このような構造のテストセルにおいて、前
記騒音対策の他に、セル自体の保護と公害防止の観点か
ら、高温のエンジン排気ガスの処理が問題となる。高温
のエンジン排気ガスが希釈(冷却)される前に、直接排
気室の壁面に当たると、壁面自体の損傷を生じる。この
傾向は、高出力エンジンほど大きく、例えば排気ガスの
温度が1800℃以上あるのに対し、通常のコンクリー
ト壁では200℃が限界で、これを越えると、コンクリ
ート中の水分が蒸発して脆くなってしまう。
[0003] In the test cell having such a structure, in addition to the noise countermeasures, treatment of high-temperature engine exhaust gas becomes a problem from the viewpoint of protection of the cell itself and pollution prevention. If the hot engine exhaust gas directly hits the exhaust chamber wall before it is diluted (cooled), the wall itself will be damaged. This tendency is greater for a high-power engine, for example, the temperature of exhaust gas is 1800 ° C. or higher, whereas the limit is 200 ° C. for a normal concrete wall, and when it exceeds this, moisture in the concrete evaporates and becomes brittle. Would.

【0004】このため、従来から高温の排気ガスの処理
の方法としては、水冷式と空冷式の二通りの方法があ
る。水冷式は、排気ダクトや排気室において、排気ガス
に水を噴射して冷却するものであるが、使用冷却水量が
多量になったり、使用冷却水の処理の必要がある等設備
や運転コストが高くつき、不経済になる問題がある。こ
の点、空冷式は、前記特開昭58−218633号に開
示される通り、ジェットエンジンの排気ガスの吸引効果
により、自動的に冷却空気を吸気室より吸入でき、この
吸引冷却空気を、排気ダクトにおいて排気ガスに混合す
れば、冷却効果が得られるため、経済的には水冷式より
一段優れた方法である。
For this reason, conventionally, there are two methods of treating high-temperature exhaust gas: a water-cooled method and an air-cooled method. The water-cooled type cools the exhaust gas by injecting water into the exhaust gas in the exhaust duct or exhaust chamber.However, the equipment and operating costs are increased due to the large amount of cooling water used and the need to process the used cooling water. It is expensive and uneconomical. In this regard, in the air-cooled type, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-218633, cooling air can be automatically sucked from the intake chamber by the effect of sucking the exhaust gas of the jet engine. If mixed with exhaust gas in a duct, a cooling effect can be obtained, so that this method is economically superior to a water-cooled type.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この空
冷式は、吸引冷却空気を排気ガスに混合し、排気ガスを
一様な温度とする冷却効果を得るためには、前記混合の
ために、排気ダクトの、十分な長さが必要である。空冷
式の場合、一般的に、排気ダクトは、ダクト直径Dとダ
クト長さLとの比が、L/Dで30程度を目安として十
分長くとられている。このため、場合によっては、前記
水冷式に比して、設置面積そのものが大きくなり、テス
トセル自体の建設費用が高くなる問題点がある。
However, in order to obtain a cooling effect of mixing the suction cooling air with the exhaust gas and keeping the exhaust gas at a uniform temperature, the air cooling system requires the exhaust The duct must be long enough. In the case of the air-cooling type, generally, the ratio of the duct diameter D to the duct length L of the exhaust duct is set to be sufficiently long with L / D being about 30 as a guide. For this reason, in some cases, there is a problem that the installation area itself becomes larger and the construction cost of the test cell itself becomes higher than that of the water-cooled type.

【0006】本発明者らが、本技術分野を調査したとこ
ろでは、前記した排気ダクトの長さを短くする目的で、
空冷式を改善した技術は知見されなかった。これは、従
来、テストセル自体の設置面積が制限されるような事例
が無かったものと推察される。しかしながら、近年ジェ
ットエンジンの大型化やアフターバーナーなどの取り付
けによる高出力化により、テストセル設備も大型化する
傾向にある。これは、前記した通り、エンジンの大型化
や高出力化に伴い、排気ガス温度も、1800℃を超え
る高温になるため、テストセルの隔壁の耐熱構造を、耐
熱レンガの積層構造として、この高温化に対応させる都
合上、排気ダクトを含む排気系の設備が大型化している
からである。したがって、テストセル設備の設置場所で
ある、空港や工場などの敷地面積との関係から、テスト
セル自体の設置面積が制限されることも出始めている。
[0006] The present inventors have investigated this technical field, and found that in order to shorten the length of the above-mentioned exhaust duct,
No technology that improved the air-cooling system was found. This is presumably because there was no case where the installation area of the test cell itself was limited. However, in recent years, test cells have tended to increase in size due to the increase in the size of jet engines and the increase in output due to the installation of afterburners and the like. This is because, as described above, the exhaust gas temperature becomes higher than 1800 ° C. with the increase in the size and the output of the engine. Therefore, the heat-resistant structure of the partition wall of the test cell is formed as a laminated structure of heat-resistant bricks. This is because the exhaust system equipment including the exhaust duct has been increased in size in order to cope with the change in the system. Therefore, the installation area of the test cell itself has been limited due to the relationship with the area of the site such as an airport or a factory where the test cell equipment is installed.

【0007】本発明は、かかる事情に鑑み、排気ガスの
処理を空冷により行っても、排気ダクトの長さを短くで
き、設備自体のコンパクト化が可能なジェットエンジン
テストセルを提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a jet engine test cell that can reduce the length of an exhaust duct and reduce the size of equipment itself even if exhaust gas processing is performed by air cooling. It is assumed that.

【0008】[0008]

【課題を解決するための手段】このための、本発明の手
段は、セル本体の上流側に吸気消音部を有する吸気室
を、下流側に排気消音部を有する排気室を各々設けると
ともに、セル本体内の吸気室側から、試験用ジェットエ
ンジンを収納するエンジン室と、排気ダクトとを順次設
けたジェットエンジンテストセルにおいて、排気ダクト
のエンジン室側に、排気ダクトの周縁を遮蔽かつ回転す
る遮蔽板を設けたことである。
In order to achieve this, the present invention provides an intake chamber having an intake silencer on the upstream side of a cell body and an exhaust chamber having an exhaust silencer on the downstream side. In a jet engine test cell in which an engine room accommodating a test jet engine and an exhaust duct are sequentially provided from the intake chamber side in the main body, a shield for rotating and rotating the periphery of the exhaust duct is provided on the engine room side of the exhaust duct. That is, a plate was provided.

【0009】本発明では、排気ダクトが円形の場合に、
より効率的に吸引冷却空気が排気ガスに混合されるよ
う、遮蔽板の形状を、排気ダクト断面を略半円形に遮蔽
するような形状とすることが好ましい。
In the present invention, when the exhaust duct is circular,
It is preferable that the shape of the shielding plate be such that the cross section of the exhaust duct is shielded in a substantially semicircular shape so that the suction cooling air is more efficiently mixed with the exhaust gas.

【0010】また、排気ダクトが楕円形の場合の遮蔽板
の構造として、排気ダクト周縁に沿って、遮蔽板を多数
配列した回転ベルトを設けたものとすることが好まし
い。
[0010] In addition, as the structure of the shielding plate when the exhaust duct is elliptical, it is preferable to provide a rotating belt having a large number of shielding plates arranged along the periphery of the exhaust duct.

【0011】更に、遮蔽板の駆動手段としては、排気室
内にタービンを設け、排気ガスによりタービンを駆動さ
せ、該タービンの駆動により、前記遮蔽板を回転させる
ことが効率的である。
Further, as a means for driving the shielding plate, it is efficient to provide a turbine in the exhaust chamber, drive the turbine with the exhaust gas, and rotate the shielding plate by driving the turbine.

【0012】本発明においては、排気ダクトのエンジン
室側に、排気ダクト空間の一部を遮蔽し、かつダクト内
周を回転可能な遮蔽板を設けることにより、吸引冷却空
気を排気ガスに、効率良く混合し、排気ガスを一様な温
度とする冷却効果を得ることができる。
In the present invention, by providing a shielding plate on the engine room side of the exhaust duct, which shields a part of the exhaust duct space and is rotatable around the inner periphery of the duct, the efficiency of the suction cooling air to the exhaust gas is improved. It is possible to obtain a cooling effect of mixing well and keeping the exhaust gas at a uniform temperature.

【0013】[0013]

【発明の実施の形態】以下に、本発明の具体的な実施の
形態を図1(a)〜(c)に基づいて説明する。図1
(a)は、本発明のジェットエンジンテストセルの全体
正断面図および図1(b)は図1(a)のA−A矢視、
図1(c)は図1(a)のB−B矢視である。本実施例
のテストセルの基本構造自体は、従来技術の場合と同じ
である。即ち、上流側に吸気室1、下流側に排気室6を
形成すべく、隔壁Mにより区画形成されたセル本体Q
と、セル本体の吸気室1側に吸気消音部2、吸気消音室
2の下流側に試験用ジェットエンジン10を収納するエ
ンジン室3、エンジン室3下流側に排気ダクト4、排気
室6側に排気消音部5、を各々設けた構造となってい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment of the present invention will be described below with reference to FIGS. 1 (a) to 1 (c). FIG.
FIG. 1A is an overall front sectional view of a jet engine test cell of the present invention, and FIG. 1B is a view taken along a line AA in FIG.
FIG. 1C is a view taken in the direction of arrows BB in FIG. The basic structure of the test cell of the present embodiment is the same as that of the prior art. That is, the cell body Q divided and formed by the partition wall M so as to form the intake chamber 1 on the upstream side and the exhaust chamber 6 on the downstream side.
And an intake muffler 2 on the intake chamber 1 side of the cell body, an engine chamber 3 for accommodating the test jet engine 10 downstream of the intake muffle chamber 2, an exhaust duct 4 downstream of the engine chamber 3, and an exhaust chamber 6 on the exhaust chamber 6 side. The exhaust silencer 5 is provided.

【0014】本発明の遮蔽板7は、排気ダクト4のエン
ジン室側に設けられ、排気ダクト周縁の一部を遮蔽する
形で、ダクトの周縁方向に回転可能に軸支されている。
図1(b)に示す通り、遮蔽板7は、排気ダクト空間断
面を略半円形に遮蔽するとともに、排気ダクト中心部に
相当する部分を円弧状に切り欠いた形状とされている。
The shield plate 7 of the present invention is provided on the engine room side of the exhaust duct 4 and is rotatably supported in the peripheral direction of the duct so as to shield a part of the peripheral edge of the exhaust duct.
As shown in FIG. 1B, the shielding plate 7 has a shape in which a cross section of the exhaust duct space is substantially semicircular and a portion corresponding to the center of the exhaust duct is cut out in an arc shape.

【0015】遮蔽板7は、排気室6内に設けられたター
ビン8の駆動により、伝達軸9を介して、回転リング1
1により回転させられる。このタービン8は、排気室6
内を通過する排気ガスのエネルギーにより駆動回転され
る。通常のエンジンテストの場合、排気室6内を通過す
る排気ガス流は、タービン8を回転させるのに十分なエ
ネルギーを有しており、遮蔽板7を回転させるための特
別の動力は不要である。遮蔽板7の回転を、モーター等
の動力源により行っても良いが、本実施例の方法は、特
別の動力が不要という点で優れており、排気ガス流の大
きなエネルギーを単に放出するのではなく、動力回収す
る点でも優れている。
The shield plate 7 is driven by a turbine 8 provided in the exhaust chamber 6 to rotate the rotary ring 1 via a transmission shaft 9.
Rotated by one. The turbine 8 has an exhaust chamber 6
It is driven and rotated by the energy of the exhaust gas passing through it. In the case of a normal engine test, the exhaust gas flow passing through the exhaust chamber 6 has sufficient energy to rotate the turbine 8, and no special power is required to rotate the shielding plate 7. . The rotation of the shielding plate 7 may be performed by a power source such as a motor, but the method of the present embodiment is excellent in that no special power is required, and it is not necessary to simply discharge a large energy of the exhaust gas flow. It is also excellent in power recovery.

【0016】本発明における遮蔽板は、後述する如く、
排気ダクト周縁側を通過する吸引空気流の流路を遮蔽
し、かつ、吸引空気流をエンジン排気ガス流に向けて偏
向させるために、排気ダクト周縁側を、断続的に遮蔽す
ることが必要である。このため、遮蔽板は排気ダクト周
縁に固定するのではなく、排気ダクト周縁を回転させる
ことが必要となる。また、排気ダクトの中心部を通過す
るエンジン排気ガス流の流路を確保するため、遮蔽板が
排気ダクトの中心部までは延在しないことが必要であ
る。これを実現するための遮蔽板の形状は、前記した通
り、排気ダクト周縁を略半円形に遮蔽するとともに、排
気ダクトの中心部に相当する部分を切り欠いた形状とす
るのが好ましい。
The shielding plate in the present invention is, as described later,
It is necessary to intermittently shield the periphery of the exhaust duct in order to shield the flow path of the suction air flow passing through the periphery of the exhaust duct and deflect the intake air flow toward the engine exhaust gas flow. is there. For this reason, it is necessary to rotate the periphery of the exhaust duct instead of fixing the shielding plate to the periphery of the exhaust duct. Further, in order to secure a flow path of the engine exhaust gas flow passing through the center of the exhaust duct, it is necessary that the shielding plate does not extend to the center of the exhaust duct. As described above, the shape of the shielding plate for achieving this is preferably a shape in which the periphery of the exhaust duct is shielded in a substantially semicircular shape, and a portion corresponding to the center of the exhaust duct is cut out.

【0017】以上の構成において、排気ダクト内の空気
の流れを示す図2を用いて、遮蔽板の機能を説明する。
まず、吸気室1側に吸気消音室2を通って、エンジン室
3内に流入した空気aは、その一部がジェットエンジン
10の燃焼用空気として使用された後、排気ガスbとな
って、排気ダクト4に向かって噴出される。一方、それ
以外の空気cは、ジェットエンジン10の周囲を通っ
て、前記エンジン排気ガスbとともに排気ダクト4内に
流入する。この時点では、高温のエンジン排気ガスbと
エンジンの周囲を通った低温の空気cとの混合は十分に
なされておらず、排気ダクト中心部の排気ガスbはかな
りの高温のままである。
In the above configuration, the function of the shielding plate will be described with reference to FIG. 2 showing the flow of air in the exhaust duct.
First, air a that has flowed into the engine room 3 through the intake muffler chamber 2 on the side of the intake chamber 1 becomes exhaust gas b after a part of the air a has been used as combustion air for the jet engine 10. It is ejected toward the exhaust duct 4. On the other hand, the other air c passes around the jet engine 10 and flows into the exhaust duct 4 together with the engine exhaust gas b. At this point, the mixture of the high-temperature engine exhaust gas b and the low-temperature air c passing around the engine is not sufficiently mixed, and the exhaust gas b at the center of the exhaust duct remains at a considerably high temperature.

【0018】遮蔽板7は、前記の通り、排気ダクト周縁
のみを遮蔽する形状であるので、中心部の高温のエンジ
ン排気ガスbは、遮蔽板7による干渉や妨害を受けず、
排気ダクトの遮蔽板7設置の箇所(開口部X)をそのま
ま通過するが、この排気ガスbの周囲に在って、遮蔽板
7により行く手を遮られる低温の空気cは、そのまま排
気ダクト4内に流入できずに、遮蔽板7の開口部Xのみ
から排気ダクト内に流入する。この時、中心部を流れる
高温の排気ガスbは、この遮蔽板7の開口部Xのみから
流入する空気c(図2の下側の空気)に押されて、流入
ガスの無い遮蔽板7の裏側Yへと偏って流れるようにな
る。
As described above, since the shielding plate 7 has a shape that shields only the periphery of the exhaust duct, the high-temperature engine exhaust gas b at the center is not interfered or hindered by the shielding plate 7.
The low-temperature air c that passes through the place where the shielding plate 7 of the exhaust duct 7 is installed (opening X) as it is and is blocked by the shielding plate 7 around the exhaust gas b is directly discharged into the exhaust duct 4. And flows into the exhaust duct only from the opening X of the shielding plate 7. At this time, the high-temperature exhaust gas b flowing through the center portion is pushed by the air c (the lower air in FIG. 2) flowing only from the opening X of the shielding plate 7, and the exhaust gas b of the shielding plate 7 without the inflowing gas is pushed. The flow is biased toward the back side Y.

【0019】本発明において、遮蔽板7は常時回転して
いるため、遮蔽板7の回転とともに遮蔽板7の開口部X
は常に位置を変え、これに伴い、前記高温の排気ガスb
の偏り(排気ダクト4内での高温の排気ガスの流れる部
分)も、常にその位置を変えることになる。したがっ
て、高温の排気ガスの流れる部分が、常にその位置を変
えることによって、高温と低温のガスの混合が促進され
るとともに、排気ダクト4内で局所的に長時間高温のガ
スに晒される壁面が無くなる。
In the present invention, since the shielding plate 7 is constantly rotating, the opening X of the shielding plate 7 is rotated with the rotation of the shielding plate 7.
Constantly changes its position, and the hot exhaust gas b
(The portion where the high-temperature exhaust gas flows in the exhaust duct 4) always changes its position. Therefore, by constantly changing the position of the flowing portion of the high-temperature exhaust gas, mixing of the high-temperature gas and the low-temperature gas is promoted, and the wall surface which is locally exposed to the high-temperature gas for a long time in the exhaust duct 4 is formed. Disappears.

【0020】仮に、遮蔽板7が回転しない場合、偏って
流れる高温の排気ガスの流れは、固定され、高温と低温
のガスの混合は促進されず、したがって、排気ダクト4
内で局所的に長時間高温のガスに晒される壁面部分が同
じとなるから、該壁面の損傷を早め、却って逆効果であ
る。本発明によれば、従来の排気ダクト内における、排
気ガスの単なる乱流拡散に比べ、遮蔽板が回転すること
により、乱流拡散係数が上がり、排気ガス温度の平均化
=冷却速度ははるかに早い。
If the shielding plate 7 does not rotate, the flow of the high-temperature exhaust gas flowing unevenly is fixed, and the mixing of the high-temperature and low-temperature gases is not promoted.
Since the same wall portion is locally exposed to the high-temperature gas for a long period of time, damage to the wall surface is hastened, which has an adverse effect. According to the present invention, the turbulence diffusion coefficient increases due to the rotation of the shield plate, compared with the mere turbulence diffusion of the exhaust gas in the conventional exhaust duct, and the averaging of the exhaust gas temperature = the cooling rate is much higher. early.

【0021】有限体積法(finite volume method)によ
り、排気ダクト内の温度分布をシュミレーションし、本
発明遮蔽板の効果の確認を行った結果を以下に示す。図
3は、有限体積法による排気ダクトの計算格子を示し、
排気ダクト内空間を多数のセル(グリッド)に分割した
様子を示している。前提条件を、排気ダクト4の直径D
=5500〔mm〕、長さL=40000〔mm〕、L
/D=7.27、エンジン10の排気ガス温度=170
0℃とし、1/2モデルで計算を行った。なお、図3に
おいて、左側のくびれた部分がエンジン、このエンジン
前方の黒塗り部分が遮蔽板7であり、排気ダクト4の上
半分に、前記図1(b)と同じ略半円形状の遮蔽板を入
れている。
The results of simulating the temperature distribution in the exhaust duct by the finite volume method and confirming the effect of the shielding plate of the present invention are shown below. FIG. 3 shows a calculation grid of the exhaust duct by the finite volume method,
This figure shows how the space inside the exhaust duct is divided into a number of cells (grids). The assumption is that the diameter D of the exhaust duct 4 is
= 5500 [mm], length L = 40000 [mm], L
/D=7.27, exhaust gas temperature of engine 10 = 170
The temperature was set to 0 ° C., and the calculation was performed using a モ デ ル model. In FIG. 3, the constricted part on the left side is the engine, the black painted part in front of the engine is the shielding plate 7, and the upper half of the exhaust duct 4 has the same substantially semi-circular shielding as in FIG. I put a board.

【0022】まず、図4に、遮蔽板を回転させずに静止
した状態での、排気ダクト4内(長手方向)での排気ガ
スの温度分布を示すが、同図において、左側のくびれた
部分がエンジン10、このエンジン前方の縦線部分が遮
蔽板7であり、、エンジンから噴出した高温の排気ガス
が冷却空気と混合することにより、排気ダクト内におい
ては、エンジン噴出直後の最大温度1703K(ケルビ
ン)から、最低温度291.9Kの温度領域まで、ダク
トの下流側ほど温度が下がってきている。同図のA〜F
は、ダクト内の排気ガスの境界温度領域を示し、各々の
温度(K)は、A:1502、B:1300、C:10
98、D:896.8、E:695.2、F:493.
5である。遮蔽板7の遮蔽効果により、低温の排気ガス
(排気ダクト4の下半分の最低温度のガス)に比して、
比較的高温の排気ガス部G(斜線部、494〜695
K)が、排気ダクト4の上半分に偏っており、この偏り
も排気ダクトの下流側になるほど顕著になる傾向があ
る。
First, FIG. 4 shows a temperature distribution of the exhaust gas in the exhaust duct 4 (longitudinal direction) in a state where the shielding plate is not rotated and is stationary. In FIG. Is the engine 10, and a vertical line portion in front of the engine is the shielding plate 7. The high temperature exhaust gas ejected from the engine is mixed with the cooling air, so that the maximum temperature 1703K (immediately after the engine is ejected) in the exhaust duct. (Kelvin) to the temperature range of the minimum temperature of 291.9 K, the temperature decreases toward the downstream side of the duct. A to F in FIG.
Indicates a boundary temperature region of the exhaust gas in the duct, and respective temperatures (K) are A: 1502, B: 1300, and C: 10
98, D: 896.8, E: 695.2, F: 493.
5 Due to the shielding effect of the shielding plate 7, compared with low-temperature exhaust gas (the lowest-temperature gas in the lower half of the exhaust duct 4),
A relatively high temperature exhaust gas portion G (shaded portion, 494-695)
K) is biased toward the upper half of the exhaust duct 4, and this bias also tends to be more pronounced downstream of the exhaust duct.

【0023】次に、図5に、遮蔽板を回転させずに静止
した状態での、遮蔽板の直ぐ後の排気ダクト内(径方向
断面)の排気ガス温度分布を示す。同図において、排気
ダクトの中心部(エンジン噴出部)の最大温度1703
Kから、排気ダクトの周縁部の最低温度293.2Kの
温度領域まで、エンジン排気口のある中心部ほど、同心
円状に高温となっており、排気ガスは、殆ど冷却されて
いない。同図の、ダクト内の排気ガス境界温度領域を示
すA〜Fの各々の温度(K)は、A:1502、B:1
300、C:1099、D:897.5、E:696.
1、F:494.6である。
Next, FIG. 5 shows the exhaust gas temperature distribution in the exhaust duct (radial cross section) immediately after the shield plate when the shield plate is stationary without rotating. In the figure, the maximum temperature 1703 at the center of the exhaust duct (engine ejection section)
From K to a temperature range of 293.2K, which is the minimum temperature of the peripheral portion of the exhaust duct, the temperature is concentrically higher toward the center of the engine exhaust port, and the exhaust gas is hardly cooled. In the figure, the respective temperatures (K) of A to F indicating the exhaust gas boundary temperature region in the duct are A: 1502, B: 1
300, C: 1099, D: 897.5, E: 696.
1, F: 494.6.

【0024】一方、図6に、遮蔽板を回転させずに静止
した状態での、遮蔽板よりかなり離れた排気ダクト出口
部の温度分布を示す。ここでは、排気ダクトを通過する
中で高温の排気ガスが偏りつつ、低温空気と混合するこ
とにより、排気ガスの最高温度が約564K(291
℃)、最低温度が約300Kと、エンジン10の排気ガ
ス温度1700Kに比して、かなり下がってはいるが、
それでも排気ガスと低温空気との混合はまだ十分とは言
えない。同図の、ダクト内の排気ガス境界温度領域を示
すA〜Mの各々の温度(K)は、A:544.9、B:
526.1、C:507.4、D:488.6、E:4
69.8、F:451.0、G:432.2、H:41
3.4、I:394.6、J:375.9、K:35
7.1、L:338.3、M:319.5である。
On the other hand, FIG. 6 shows the temperature distribution at the outlet of the exhaust duct, which is far away from the shield plate, when the shield plate is stationary without rotating. Here, the high-temperature exhaust gas is biased while passing through the exhaust duct and mixed with the low-temperature air, so that the maximum temperature of the exhaust gas is about 564K (291%).
° C), the minimum temperature is about 300K, which is considerably lower than the exhaust gas temperature of the engine 10 of 1700K,
Still, the mixing of exhaust gas with cold air is not yet sufficient. The respective temperatures (K) of A to M indicating the exhaust gas boundary temperature region in the duct in the same drawing are A: 544.9, B:
526.1, C: 507.4, D: 488.6, E: 4
69.8, F: 451.0, G: 432.2, H: 41
3.4, I: 394.6, J: 375.9, K: 35
7.1, L: 338.3, M: 319.5.

【0025】そこで、遮蔽板を回転させた場合の、排気
ダクト出口部での排気ガスの温度分布を計算する。遮蔽
板の回転にしたがい、排気ガスの温度分布も回転するこ
とになるので、排気ダクト空間内の排気ガスの平均温度
は、排気ダクト中の各ポイント(排気ダクト中心からの
距離=半径が異なるポイント)の温度の経時変化=各ポ
イントの排気ダクト円周方向の温度分布をとることによ
り求められる。排気ダクト中心から外縁部までの距離
と、排気ガスの平均温度との関係を図7に示すが、同図
より、最高温度が約453K(180℃)まで下がって
いることが分かる。この結果より、遮蔽板を設けない従
来技術および遮蔽板を回転させない図6の場合に比し
て、格段に排気ダクト出口での排気ガス温度を下げられ
る。
Therefore, the temperature distribution of the exhaust gas at the outlet of the exhaust duct when the shield plate is rotated is calculated. Since the temperature distribution of the exhaust gas also rotates according to the rotation of the shielding plate, the average temperature of the exhaust gas in the exhaust duct space is calculated at each point in the exhaust duct (points at different distances from the center of the exhaust duct = radii) ) Temporal change of temperature = determined by taking the temperature distribution in the circumferential direction of the exhaust duct at each point. FIG. 7 shows the relationship between the distance from the center of the exhaust duct to the outer edge and the average temperature of the exhaust gas. From this figure, it can be seen that the maximum temperature has dropped to about 453 K (180 ° C.). As a result, the exhaust gas temperature at the outlet of the exhaust duct can be remarkably reduced as compared with the related art in which the shield plate is not provided and the case of FIG. 6 in which the shield plate is not rotated.

【0026】なお、本発明では、この遮蔽板の機能を状
況に応じ、例えばエンジンの出力規模に応じて調節でき
るよう、遮蔽板の面積を可変とすることが好ましい。冷
却空気を吸入しすぎる場合には、遮蔽板の面積を広げ、
排気ダクトの開口部を減らして、吸入量を減らす必要が
ある。エンジン室内の大気圧からの負圧は、エンジンの
性能試験のため厳しく制限されており、このため、過大
な空気の吸入量を防ぐ必要があるからである。具体的な
機構としては、図8に示すように、中心角θの遮蔽板1
0を2枚重ねて、固定枠11にスライド可能に設ける構
造とする。この構造により、遮蔽部分(2θ)の割合
を、遮蔽板同士を完全に重ね合わせたθから、遮蔽板同
士を最大に広げた2θの範囲で変更することができる。
In the present invention, it is preferable that the area of the shielding plate is variable so that the function of the shielding plate can be adjusted according to the situation, for example, according to the output scale of the engine. If you inhale too much cooling air, increase the area of the shielding plate,
It is necessary to reduce the amount of suction by reducing the opening of the exhaust duct. This is because the negative pressure from the atmospheric pressure in the engine room is severely restricted for the performance test of the engine, and it is necessary to prevent an excessive intake amount of air. As a specific mechanism, as shown in FIG.
0 is stacked on the fixed frame 11 so as to be slidable. With this structure, the ratio of the shielding portion (2θ) can be changed from θ in which the shielding plates are completely overlapped to 2θ in which the shielding plates are maximized.

【0027】また、ジェットエンジンセルの排気ダクト
は、真円形のみではなく、断面形状が横幅の広いだ円形
状の場合がある。ジェットエンジンセルが航空機全体を
格納し、エンジンを航空機に搭載したまま試験を行う際
には、双発機等の例のごとく、エンジンは横に並べて設
置してあるので、前記横幅の広いだ円形状の排気ダクト
が必要である。このような場合には、前記した遮蔽板の
円運動構造ではなく、遮蔽板を排気ダクトの断面形状に
合わせた、だ円形状に回転させる必要がある。図9に、
この場合の具体例を示すが、同図(a)、(b)におい
て、12は、排気ダクトの周縁に沿って設けた回転ベル
トであり、内側に向かって、多数のスライド式の遮蔽板
13を設けている。遮蔽部分の割合は、設ける遮蔽板の
枚数で調節可能である。なお、この例では、遮蔽板13
は、排気ダクト周縁を複数枚で遮蔽する形状とされ、回
転ベルトの駆動は図1の場合と同じく、排気室6内に設
けられたタービン8の駆動により、伝達軸9を介して、
回転させられる。
Further, the exhaust duct of the jet engine cell may be not only a perfect circle but also an elliptical shape having a wide cross section. When the jet engine cell stores the entire aircraft and performs tests with the engine mounted on the aircraft, the engines are installed side by side, as in the case of twin-engines, etc., so the wide elliptical shape Exhaust duct is required. In such a case, it is necessary to rotate the shielding plate in an elliptical shape that matches the cross-sectional shape of the exhaust duct, instead of the circular movement structure of the shielding plate described above. In FIG.
In this case, a specific example is shown. In FIGS. 12A and 12B, reference numeral 12 denotes a rotating belt provided along the periphery of the exhaust duct, and a number of sliding shield plates 13 are provided inward. Is provided. The ratio of the shielding portion can be adjusted by the number of shielding plates provided. In this example, the shielding plate 13
Has a shape in which the periphery of the exhaust duct is shielded by a plurality of sheets, and the driving of the rotating belt is performed via the transmission shaft 9 by the driving of the turbine 8 provided in the exhaust chamber 6 as in the case of FIG.
Rotated.

【0028】[0028]

【発明の効果】以上説明した通り、本発明によれば、排
気ガス温度を従来より格段に下げることが可能で、排気
ガスの処理を空冷により行っても、排気ダクトの長さを
短くでき、設備自体のコンパクト化が可能なジェットエ
ンジンテストセルを提供できる等、この分野での工業的
価値は大きい。
As described above, according to the present invention, the exhaust gas temperature can be remarkably reduced as compared with the prior art, and the length of the exhaust duct can be shortened even if the exhaust gas is processed by air cooling. The industrial value in this field is great, for example, it is possible to provide a jet engine test cell capable of making the equipment itself compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す模式図であり、aはジェ
ットエンジンテストセルの全体正断面を示し、bはaの
A−A矢視図、cはaのB−B矢視図である。
FIG. 1 is a schematic view showing an embodiment of the present invention, in which “a” shows an entire normal cross section of a jet engine test cell, “b” is a view of an AA arrow, and “c” is a a BB arrow view. It is.

【図2】本発明の遮蔽板を設けた排気ダクトの空気の流
れを示す、説明図である。
FIG. 2 is an explanatory diagram showing a flow of air in an exhaust duct provided with a shielding plate of the present invention.

【図3】有限体積法による排気ダクト温度分布シュミレ
ーションのための計算格子を示す、説明図である。
FIG. 3 is an explanatory diagram showing a calculation grid for exhaust duct temperature distribution simulation by the finite volume method.

【図4】排気ダクト長手方向の排気ガスの温度分布を示
す、説明図である。
FIG. 4 is an explanatory diagram showing a temperature distribution of exhaust gas in a longitudinal direction of an exhaust duct.

【図5】排気ダクト径方向で、遮蔽板を設けた部分の排
気ガスの温度分布を示す、説明図である。
FIG. 5 is an explanatory diagram showing a temperature distribution of exhaust gas in a portion where a shielding plate is provided in a radial direction of the exhaust duct.

【図6】排気ダクト径方向で、出口部分の排気ガスの温
度分布を示す、説明図である。
FIG. 6 is an explanatory diagram showing a temperature distribution of exhaust gas at an outlet portion in a radial direction of an exhaust duct.

【図7】遮蔽板を回転させた場合の、排気ダクト径方向
で、出口部分の平均温度を示す、説明図である。
FIG. 7 is an explanatory diagram showing an average temperature at an outlet portion in a radial direction of an exhaust duct when a shielding plate is rotated.

【図8】本発明の遮蔽板の他の実施態様を示す、説明図
である。
FIG. 8 is an explanatory view showing another embodiment of the shielding plate of the present invention.

【図9】本発明の遮蔽板の他の実施態様を示し、aは遮
蔽板の説明図、bは図aのX部分の拡大図である。
9 shows another embodiment of the shielding plate of the present invention, wherein a is an explanatory view of the shielding plate, and b is an enlarged view of a portion X in FIG.

【符号の説明】[Explanation of symbols]

1 :吸気室、 2 :吸気消音室、 3 :エンジン室、 4 :排気ダクト、 5 :排気消音室、 6 :排気室、 7、13 :遮蔽板、 8 :タービン、 9 :伝達軸、 10:エンジン、 11:回転リング、 12:回転ベルト、 Q :ジェットエンジンセル本体、 M :隔壁 1: Intake chamber, 2: Intake muffler, 3: Engine room, 4: Exhaust duct, 5: Exhaust muffler, 6: Exhaust room, 7, 13: Shielding plate, 8: Turbine, 9: Transmission shaft, 10: Engine, 11: rotating ring, 12: rotating belt, Q: jet engine cell body, M: partition

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セル本体の上流側に吸気消音部を有する
吸気室を、下流側に排気消音部を有する排気室を各々設
けるとともに、セル本体内の吸気室側から、試験用ジェ
ットエンジンを収納するエンジン室と、排気ダクトとを
順次設けたジェットエンジンテストセルにおいて、排気
ダクトのエンジン室側に、排気ダクトの周縁を遮蔽かつ
回転する遮蔽板を設けたことを特徴とするジェットエン
ジンテストセル。
An intake chamber having an intake silencer is provided on the upstream side of the cell body, and an exhaust chamber having an exhaust silencer is provided on the downstream side, and a test jet engine is housed from the intake chamber side in the cell body. A jet engine test cell provided with an engine room and an exhaust duct sequentially, wherein a shield plate that shields and rotates the periphery of the exhaust duct is provided on the engine room side of the exhaust duct.
【請求項2】 遮蔽板が、排気ダクト断面を略半円形に
遮蔽する形状である請求項1に記載のジェットエンジン
テストセル。
2. The jet engine test cell according to claim 1, wherein the shielding plate has a shape that shields a cross section of the exhaust duct in a substantially semicircular shape.
【請求項3】 遮蔽板を、排気ダクト周縁に沿って設け
られた回転ベルトに多数配列した請求項1に記載のジェ
ットエンジンテストセル。
3. The jet engine test cell according to claim 1, wherein a large number of shielding plates are arranged on a rotating belt provided along the periphery of the exhaust duct.
【請求項4】 排気室内にタービンを設け、該タービン
の駆動により、前記遮蔽板を回転させる請求項1乃至3
のいずれか1項に記載のジェットエンジンテストセル。
4. A turbine is provided in an exhaust chamber, and the shield plate is rotated by driving the turbine.
The jet engine test cell according to any one of the above.
JP17496796A 1996-07-04 1996-07-04 Jet engine test cell Expired - Lifetime JP3356627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17496796A JP3356627B2 (en) 1996-07-04 1996-07-04 Jet engine test cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17496796A JP3356627B2 (en) 1996-07-04 1996-07-04 Jet engine test cell

Publications (2)

Publication Number Publication Date
JPH1019737A true JPH1019737A (en) 1998-01-23
JP3356627B2 JP3356627B2 (en) 2002-12-16

Family

ID=15987874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17496796A Expired - Lifetime JP3356627B2 (en) 1996-07-04 1996-07-04 Jet engine test cell

Country Status (1)

Country Link
JP (1) JP3356627B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474394B1 (en) * 2001-04-09 2005-03-08 가와사키 쥬코교 가부시키가이샤 Aircraft engine run-up hangar
EP2336507A1 (en) * 2009-12-16 2011-06-22 MDS Aero support corporation Turbine detuner for recovering kinetic energy from gas turbine engine exhaust gases
WO2012171105A1 (en) * 2011-06-15 2012-12-20 C.E.L. Energy Recuperation Inc. Aircraft engine test cell comprising an energy recuperation system and method of recuperating energy from the aircraft engine
JP2016056796A (en) * 2014-09-12 2016-04-21 株式会社Ihi Injection testing device
BE1022512B1 (en) * 2014-11-17 2016-05-18 Techspace Aero S.A. TEST BENCH FOR AXIAL TURBOMACHINE WITH VERTICAL WIND TURBINE
CN113865876A (en) * 2021-08-24 2021-12-31 东南大学 Turbine detection system in high-temperature environment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474394B1 (en) * 2001-04-09 2005-03-08 가와사키 쥬코교 가부시키가이샤 Aircraft engine run-up hangar
EP2336507A1 (en) * 2009-12-16 2011-06-22 MDS Aero support corporation Turbine detuner for recovering kinetic energy from gas turbine engine exhaust gases
US9133733B2 (en) 2009-12-16 2015-09-15 MDS Aero Support Corporation Turbine detuner for recovering kinetic energy from gas turbine engine exhaust gases
WO2012171105A1 (en) * 2011-06-15 2012-12-20 C.E.L. Energy Recuperation Inc. Aircraft engine test cell comprising an energy recuperation system and method of recuperating energy from the aircraft engine
JP2016056796A (en) * 2014-09-12 2016-04-21 株式会社Ihi Injection testing device
BE1022512B1 (en) * 2014-11-17 2016-05-18 Techspace Aero S.A. TEST BENCH FOR AXIAL TURBOMACHINE WITH VERTICAL WIND TURBINE
EP3021102A1 (en) * 2014-11-17 2016-05-18 Techspace Aero S.A. Test bench for an axial turbine engine with a vertical-axis wind turbine
US10107717B2 (en) 2014-11-17 2018-10-23 Safran Aero Boosters Sa Test bench for an axial turbine engine with a vertical wind power engine
CN113865876A (en) * 2021-08-24 2021-12-31 东南大学 Turbine detection system in high-temperature environment
CN113865876B (en) * 2021-08-24 2023-11-24 东南大学 Detection system of turbine in high temperature environment

Also Published As

Publication number Publication date
JP3356627B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US6253540B1 (en) Removable baffle infrared suppressor
JP5825791B2 (en) Supercharger and diesel engine equipped with the same
US7303372B2 (en) Methods and apparatus for cooling combustion turbine engine components
RU2303149C2 (en) Gas-turbine engine (versions) and method of cooling of parts arranged inside
GB1150147A (en) Improvements in Combinations of Gas Turbine Engines and Electric Generators
CN1829879A (en) Heat shield arrangement for a hot gas-guiding component, particularly for a combustion chamber of a gas turbine
JP2005507044A (en) Passive cooling system for auxiliary power plant equipment
JP3356627B2 (en) Jet engine test cell
JP2006118502A (en) Method and device for cooling gas turbine engine
WO2010104415A1 (en) Gas turbine engine
JP2000097040A (en) Engine-driven power generating set
GB2251031A (en) Cooling air pick up for gas turbine engine
US6742339B2 (en) Methods and apparatus for exhausting gases from gas turbine engines
US6412284B1 (en) Methods and apparatus for supplying air to gas turbine engines
US20030150669A1 (en) Combined silencer and spark arrester
JPS6149134A (en) Gas turbine generating device
US2487532A (en) Turbosupercharger
CN210106022U (en) Model turbojet engine with protective mesh enclosure
CN217632670U (en) Emergency generator for coal mine
JP2000018033A (en) Exhaust structure of engine
CN217078942U (en) Excavator left and right platform with cooling function
CN212318398U (en) Generator tail gas air current induction apparatus
JP6041943B2 (en) Marine diesel engine supercharger and marine diesel engine equipped with the same
JPS572939A (en) Air conditioning apparatus
JPH09250361A (en) Gas turbine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10