JPH10197121A - Automatic ice making machine - Google Patents

Automatic ice making machine

Info

Publication number
JPH10197121A
JPH10197121A JP35093196A JP35093196A JPH10197121A JP H10197121 A JPH10197121 A JP H10197121A JP 35093196 A JP35093196 A JP 35093196A JP 35093196 A JP35093196 A JP 35093196A JP H10197121 A JPH10197121 A JP H10197121A
Authority
JP
Japan
Prior art keywords
ice making
heat exchanger
ice
hot gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35093196A
Other languages
Japanese (ja)
Other versions
JP3169564B2 (en
Inventor
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP35093196A priority Critical patent/JP3169564B2/en
Publication of JPH10197121A publication Critical patent/JPH10197121A/en
Application granted granted Critical
Publication of JP3169564B2 publication Critical patent/JP3169564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform a smooth removal of ice in an automatic ice making machine having an ice making chamber arranged in a vertical direction. SOLUTION: An automatic ice making machine is constructed such that the back surface of an ice making chamber 1 is provided with a heat exchanger 35 for a cooling or a heating operation which may act as an evaporator having a low pressure refrigerant flowing from an upper part to a lower part within a heat exchanging pipe 35a during an ice making operation and as a heater having hot gas communicated from an upper part to a lower part within the heat exchanging pipe 35a during an ice removing operation. In this case, a heat exchanger 51 capable of heat exchanging with a lower part of the back surface of the ice making chamber 1 is arranged, and in turn during an ice removing operation hot gas is fed into a heat exchanger 35 for a cooling operation or a heating operation through the heat exchanger 51 for the heating operation so as to heat the lower part of the ice making chamber 1. The heat exchanger 51 for the heating operation is constructed such that an intermediate part of a hot gas bypass pipe 38 is arranged at the lower part of the back surface of the ice making chamber 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の製氷小室を
略垂直の面に格子状に配列するとともに、該製氷小室を
横方向に開口してなる製氷室を備えた自動製氷機に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic ice making machine having a plurality of ice making compartments arranged in a grid on a substantially vertical surface and having an ice making compartment having a horizontal opening. is there.

【0002】[0002]

【従来の技術】図8に示される自動製氷機としての縦型
製氷機は、製氷小室5が略垂直面に格子状に配列され、
該製氷小室5がそれぞれ横方向に開口されてなる製氷室
1、該製氷室1の開口面を開閉する外部壁11を備えた
水皿9、該水皿9内に形成された製氷水路21及び圧力
室19、製氷室1の下方に配置された製氷水タンク6
1、製氷水タンク61内の製氷水を圧力室19に導く循
環ポンプ67等からなる。
2. Description of the Related Art In a vertical ice maker as an automatic ice maker shown in FIG. 8, an ice maker 5 is arranged in a lattice shape on a substantially vertical plane.
An ice making chamber 1 in which each of the ice making chambers 5 is opened in the lateral direction, a water tray 9 having an external wall 11 for opening and closing the opening surface of the ice making chamber 1, an ice making water channel 21 formed in the water tray 9, and Pressure chamber 19, ice making water tank 6 arranged below ice making chamber 1
1. A circulation pump 67 for guiding the ice making water in the ice making water tank 61 to the pressure chamber 19 and the like.

【0003】製氷室1は、格子状に縦横に延びる仕切板
3a,3bによって、開口側から見て略正方形に画成さ
れた複数の製氷小室5を有する。仕切板3a,3bのう
ち横方向の仕切板3bは、製氷小室5の奥側から開口側
に向かって、水平方向よりも所定の角度だけ下向きに傾
斜している。それによって、除氷工程の際、各製氷小室
5内の氷は、自重により離氷して貯氷庫(図示しない)
に落下し易くなっている。一方、水皿9が閉止位置にあ
るとき各製氷小室5の開口を纏めて全体を閉じる水皿9
の外部壁11には、一つの製氷小室5に対し一つの噴水
口7が配設されるように設けられていて、製氷水タンク
61内の製氷水が、循環ポンプ67によって、送水管6
9を通り、水皿9の上方部分にある圧力室19の連絡口
70に圧送され、圧力室19に供給される。製氷水路2
1は圧力室19の下部側面に連結され、図10の如く外
部壁11を利用して水皿9内に形成されている。圧力室
19に供給された製氷水は製氷水路21を流下し、各噴
水口7より噴射して各製氷小室5に供給される。また、
製氷室1の背面には、上部から下部へ左右に複数回蛇行
して形成された熱交換パイプ35aが添設されて、冷却
加熱用熱交換器35が構成されている。
The ice making chamber 1 has a plurality of ice making chambers 5 which are defined in a substantially square shape when viewed from the opening side by partitioning plates 3a and 3b extending in a lattice shape in the vertical and horizontal directions. Among the partition plates 3a, 3b, the horizontal partition plate 3b is inclined downward by a predetermined angle from the horizontal direction from the back side of the ice making chamber 5 toward the opening side. Thereby, during the deicing step, the ice in each ice making chamber 5 is separated by its own weight and separated from the ice storage (not shown).
It is easy to fall. On the other hand, when the water tray 9 is in the closed position, the openings of the ice making compartments 5 are collectively closed and the water tray 9 is closed.
Is provided so that one fountain port 7 is provided for one ice making chamber 5, and ice making water in an ice making water tank 61 is supplied by a circulation pump 67 to a water supply pipe 6.
9, the pressure is fed to the communication port 70 of the pressure chamber 19 located above the water tray 9, and supplied to the pressure chamber 19. Ice making waterway 2
1 is connected to the lower side surface of the pressure chamber 19 and is formed in the water tray 9 using the outer wall 11 as shown in FIG. The ice making water supplied to the pressure chamber 19 flows down the ice making channel 21, is jetted from each fountain port 7, and is supplied to each ice making small chamber 5. Also,
At the back of the ice making chamber 1, a heat exchange pipe 35 a formed to meander left and right a plurality of times from the upper part to the lower part is additionally provided to constitute a heat exchanger 35 for cooling and heating.

【0004】図9は図8におけるX−X断面図であり、
また、図10は図9におけるY−Y断面図であるが、図
9において、2点鎖線3a及び3bは製氷室1の縦仕切
板及び横仕切板を示すものであって、これら仕切板3
a,3bにより仕切られる各製氷小室5に対して、製氷
水路21の外側の噴水口7の左右同一高さ位置となる外
部壁11には、二つの戻り口71が穿設されており、製
氷小室5に供給された未氷結水はこれら戻り口71を通
して還水路42に還水され、下方の製氷水タンク61に
戻される。また、この従来技術においては、図10の如
く製氷水路21は、筒状体40と水皿9の内部壁39と
が一体に形成されて構成されている。また、外部壁11
は製氷室1を画成する縦横方向に延びる外枠板1a、1
bとは当接しているが、縦横方向に延びる前記仕切板3
a,3bは外枠板1a,1bよりも短くなっており、こ
れら仕切板3a、3bとは接触せず、両者の間に隙間1
0が形成される。従って、各製氷室1同士は隙間10よ
り製氷水の出入りが可能となっている。
FIG. 9 is a sectional view taken along line XX in FIG.
FIG. 10 is a sectional view taken along the line YY in FIG. 9. In FIG. 9, two-dot chain lines 3a and 3b show a vertical partition plate and a horizontal partition plate of the ice making chamber 1, respectively.
Two return ports 71 are formed in the outer wall 11 at the same height position on the left and right of the fountain port 7 outside the ice making channel 21 for each ice making chamber 5 partitioned by the ice making chambers a and 3b. The non-iced water supplied to the small chamber 5 is returned to the return water channel 42 through these return ports 71 and returned to the ice making water tank 61 below. Further, in this prior art, as shown in FIG. 10, the ice making water channel 21 is formed by integrally forming a cylindrical body 40 and an inner wall 39 of the water tray 9. In addition, the outer wall 11
Are outer frame plates 1a, 1 extending in the vertical and horizontal directions that define the ice making chamber 1.
b, but the partition plate 3 extends in the vertical and horizontal directions.
a, 3b are shorter than the outer frame plates 1a, 1b, do not contact these partition plates 3a, 3b, and have a gap 1 between them.
0 is formed. Therefore, the ice making chambers 1 are allowed to enter and leave the ice making water from the gap 10.

【0005】図11は、上記従来の縦型製氷機の製氷室
の背面に配設された冷却加熱用熱交換器及び該冷却加熱
用熱交換器35を含む冷媒配管系統図を示す。この冷媒
配管系統図の基本回路は、圧縮機30、凝縮器31、ド
ライヤ32、キャピラリーチューブ33、冷却加熱用熱
交換器35、アキュムレータ36が順次接続されて構成
されている。また、圧縮機30と凝縮器31とを接続す
る配管の途中からは、ホットガスバイパス弁37を介装
するホットガスバイパス管38が分岐されている。ま
た、冷却加熱用熱交換器35を構成する熱交換パイプ3
5aの入口部35bにおいて前記キャピラリーチューブ
33とホットガスバイパス管38が接続されている。
尚、図11において8は、各製氷小室5の背面上方に設
けられた空気孔である。
FIG. 11 is a diagram showing a refrigerant piping system including a cooling / heating heat exchanger and a cooling / heating heat exchanger 35 provided at the back of the ice making chamber of the conventional vertical ice making machine. The basic circuit of the refrigerant piping system diagram includes a compressor 30, a condenser 31, a dryer 32, a capillary tube 33, a heat exchanger 35 for cooling and heating, and an accumulator 36 which are sequentially connected. Further, a hot gas bypass pipe 38 provided with a hot gas bypass valve 37 is branched from the middle of a pipe connecting the compressor 30 and the condenser 31. In addition, the heat exchange pipe 3 constituting the heat exchanger 35 for cooling and heating is used.
The capillary tube 33 and the hot gas bypass pipe 38 are connected at the inlet 35b of 5a.
In FIG. 11, reference numeral 8 denotes an air hole provided above the back surface of each ice making chamber 5.

【0006】次に、上記構成の自動製氷機の動作につい
て説明する。製氷運転のときには、製氷水タンク61内
の製氷水が循環ポンプ67により圧力室19に供給さ
れ、製氷水路21を流下し、各噴水口7より噴射して製
氷小室5に供給される。一方、冷媒回路が動作し、圧縮
機30から吐出された冷媒ガスは、凝縮器31で凝縮液
化し、ドライヤ32を経てキャピラリーチューブ33で
減圧膨張され、冷却加熱用熱交換器35に流入される。
冷却加熱用熱交換器35では、低圧冷媒が低圧力下で蒸
発して製氷室1を冷却する。このため、製氷水は製氷小
室5内で氷となって次第に成長していき、角氷が形成さ
れる。また、前記隙間10において各角氷間を連結する
ひだ(氷連結部)が形成される。
Next, the operation of the automatic ice maker having the above configuration will be described. During the ice making operation, the ice making water in the ice making water tank 61 is supplied to the pressure chamber 19 by the circulation pump 67, flows down the ice making water channel 21, is jetted from each fountain port 7, and is supplied to the ice making small chamber 5. On the other hand, the refrigerant circuit operates, and the refrigerant gas discharged from the compressor 30 is condensed and liquefied in the condenser 31, decompressed and expanded in the capillary tube 33 through the dryer 32, and flows into the cooling / heating heat exchanger 35. .
In the heat exchanger 35 for cooling and heating, the low-pressure refrigerant evaporates under low pressure to cool the ice making chamber 1. Therefore, the ice making water becomes ice in the ice making chamber 5 and grows gradually, and ice cubes are formed. Also, folds (ice connecting portions) are formed in the gap 10 to connect the ice cubes.

【0007】製氷運転が継続され、角氷が所定の大きさ
に発達すると、製氷完了検知手段が動作して、循環ポン
プ67の運転が停止されるとともに、図12の如く水皿
9が回動して、製氷室1の全面が開放され、製氷運転が
終了して除氷運転に移行する。除氷運転では、ホットガ
スバイパス弁37が開放されるので、圧縮機30からの
高温高圧冷媒ガス(ホットガス)が冷却加熱用熱交換器
35内に流れ、製氷小室5と氷の接触部の氷を溶かし、
横仕切板3bの傾斜面に沿って脱氷し、下方の貯氷庫
(図示しない)に蓄えられる。除氷により製氷室1の温
度が上昇すると、除氷サーモ(図示しない)が動作し
て、ホットガスバイパス弁37が閉弁し、水皿9が図8
の状態に閉じられ、循環ポンプ67の運転が再開される
ことにより、除氷運転は終了して製氷運転が再開され
る。製氷運転及び除氷運転が繰り返されるに従い、貯氷
庫内の氷が増量し、所定量に達すると貯氷スイッチ(図
示しない)が満氷検知を行い、所定量に低下するまで製
氷機の運転は休止される。
When the ice making operation is continued and the ice cubes develop to a predetermined size, the ice making completion detecting means is operated, the operation of the circulation pump 67 is stopped, and the water tray 9 is rotated as shown in FIG. Then, the entire surface of the ice making chamber 1 is opened, the ice making operation ends, and the operation shifts to the deicing operation. In the deicing operation, the hot gas bypass valve 37 is opened, so that the high-temperature and high-pressure refrigerant gas (hot gas) from the compressor 30 flows into the heat exchanger 35 for cooling and heating, and the contact portion between the ice making small chamber 5 and the ice is formed. Melt the ice,
The ice is de-iced along the inclined surface of the horizontal partition plate 3b and stored in a lower ice storage (not shown). When the temperature of the ice making chamber 1 rises due to deicing, a deicing thermostat (not shown) operates, the hot gas bypass valve 37 is closed, and the water tray 9 is moved to the state shown in FIG.
Then, the operation of the circulation pump 67 is restarted, whereby the deicing operation is completed and the ice making operation is restarted. As the ice making operation and the de-icing operation are repeated, the amount of ice in the ice storage increases, and when the ice reaches a predetermined amount, an ice storage switch (not shown) detects full ice, and the operation of the ice making machine is stopped until the ice storage switch drops to the predetermined amount. Is done.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の自動製
氷機は、除氷運転時、製氷室1の背面において、圧縮機
30から吐出されたホットガスが冷却加熱用熱交換器3
5の入口から流れるため、製氷室1は上部から下部へと
順次加熱されていた。また、ホットガスは冷却加熱用熱
交換器35の入口側ほど温度が高くなるため、上部と下
部とでの製氷室1に対する加熱量が顕著に相違し、上部
ほど大きくなっていた。
However, in the conventional automatic ice making machine, during deicing operation, hot gas discharged from the compressor 30 is supplied to the heat exchanger 3 for cooling and heating at the back of the ice making chamber 1.
5, the ice making chamber 1 was sequentially heated from the upper part to the lower part. Further, since the temperature of the hot gas becomes higher on the inlet side of the cooling / heating heat exchanger 35, the amount of heating of the ice making chamber 1 in the upper part and the lower part is remarkably different, and the amount is larger in the upper part.

【0009】このため、製氷小室5内の氷は上部の氷か
ら解け始めるが、下部の氷が解け出した頃には上部の氷
は解け過ぎて、本来氷を1体で一度に脱氷させるために
形成されているひだ(氷連結部)28が、図12の様に
上部では解け、ばらばらになった上部の角氷は重量が軽
いため脱氷しないことがあった。また、上部においてひ
だ28が解け下部のひだ28のみが保持されている場合
は、連結する氷の重量が軽いことと、下部が解け始めた
ときには氷が解け始めてからの時間が短いため、製氷小
室5内の氷が製氷小室5内に密接しており、製氷小室5
内に小さな突起や僅かな変形があっても脱氷し難い問題
があった。このように、脱氷が順調に行えないと、氷が
軽くなり、また製氷量も減少し、ひいては電気や水を無
駄に消費することになる。また、氷が変形するため氷の
商品価値が低下することになる。
For this reason, the ice in the ice making compartment 5 starts to melt from the upper ice, but when the lower ice melts, the upper ice melts too much and the ice is originally defrosted at once by itself. As shown in FIG. 12, the folds (ice connection portions) 28 formed at the upper portion are melted at the upper portion, and the separated ice cubes at the upper portion may not be deiced because of their light weight. In the case where the folds 28 are melted at the upper part and only the folds 28 at the lower part are held, since the weight of the ice to be connected is light, and when the lower part starts to melt, the time since the ice starts to melt is short. The ice in the ice making compartment 5 is close to the ice making compartment 5.
There was a problem that it was difficult to de-ice even if there were small projections or slight deformation inside. As described above, if deicing cannot be performed smoothly, the ice becomes lighter, the amount of ice making decreases, and electricity and water are wasted. Further, since the ice is deformed, the commercial value of the ice is reduced.

【0010】本発明は、このような従来の技術に存在す
る問題点に着目してなされたものであって、垂直方向に
配設された製氷室を有する自動製氷機において、脱氷を
円滑に行わせることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and has been made in order to facilitate deicing in an automatic ice making machine having an ice making chamber arranged vertically. It is intended to be performed.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1記載の発明では、縦方向に一定間隔をお
いて並設されているとともに先端部が下方に傾斜した横
仕切板と、この横仕切板に直交して並設した複数個の縦
仕切板とにより形成された複数個の製氷小室を有する製
氷室と、製氷室の背面に、熱交換パイプが上部から下部
へ左右に蛇行して添設され、製氷運転時に低圧冷媒が前
記熱交換パイプ内を上部から下部へ流通して蒸発器とし
て作用し、除氷運転時に前記熱交換パイプ内をホットガ
スが上部から下部へ流通して加熱器として作用する冷却
加熱用熱交換器とを備え、製氷運転時には製氷小室内に
流入した製氷水を前記冷却加熱用熱交換器により冷却し
て製氷小室内に氷を生成し、また、除氷運転時には製氷
室内の氷を前記冷却加熱用熱交換器により加熱して製氷
小室内から氷を離脱する自動製氷機において、製氷室の
背面に、該背面の下部と熱交換し得る加熱用熱交換器を
配設し、除氷運転時に該加熱用熱交換器を介して前記冷
却加熱用熱交換器にホットガスを導入させる如くしたも
のである。
In order to achieve the above-mentioned object, according to the first aspect of the present invention, there is provided a horizontal partition plate which is juxtaposed at regular intervals in a vertical direction and whose tip end is inclined downward. And an ice making room having a plurality of ice making compartments formed by a plurality of vertical dividing plates arranged side by side at right angles to the horizontal partition plate, and a heat exchange pipe on the back of the ice making room, from top to bottom. During the ice making operation, the low-pressure refrigerant flows from the upper part to the lower part in the heat exchange pipe to act as an evaporator, and the hot gas flows from the upper part to the lower part in the heat exchange pipe during the deicing operation. A cooling and heating heat exchanger that acts as a heater through circulation, and in the ice making operation, ice making water flowing into the ice making small room is cooled by the cooling and heating heat exchanger to produce ice in the ice making small room; During the deicing operation, the ice in the ice making room is cooled as described above. 2. Description of the Related Art In an automatic ice making machine that removes ice from an ice making chamber by heating with a heating heat exchanger, a heating heat exchanger that can exchange heat with the lower part of the back is provided at the back of the ice making room, and deicing operation is performed. Sometimes, hot gas is introduced into the heat exchanger for cooling and heating via the heat exchanger for heating.

【0012】請求項2記載の発明では、前記加熱用熱交
換器は、圧縮機からのホットガスを流通させるホットガ
スバイパス管の中間の一部分が製氷室の背面下部に水平
方向に添設されて構成されているものである。
According to the second aspect of the present invention, in the heating heat exchanger, a middle part of a hot gas bypass pipe for flowing hot gas from a compressor is horizontally attached to a lower portion of the back of the ice making chamber. It is configured.

【0013】請求項3記載の発明では、前記加熱用熱交
換器は、圧縮機からのホットガスを流通させるホットガ
スバイパス管の中間の一部分が前記熱交換パイプの下部
の水平方向部分の背面側に添設されて構成されているも
のである。
According to the third aspect of the present invention, in the heating heat exchanger, a middle part of a hot gas bypass pipe through which hot gas from a compressor flows is a rear side of a horizontal part below the heat exchange pipe. It is configured to be attached to

【0014】請求項4記載の発明では、前記加熱用熱交
換器は、一端が閉塞された一本の直管が前記熱交換パイ
プの下部の蛇行状水平部間に配設され、該直管の他端
に、圧縮機からのホットガスを流通させるホットガスバ
イパス管が入口側部と出口側部とに分断挿入されてそれ
ぞれ接続されるとともに、分断された何れか一方のホッ
トガスバイパス管が前記閉塞された一端側近傍まで挿入
されて構成されているものである。
According to a fourth aspect of the present invention, in the heat exchanger for heating, one straight pipe having one end closed is disposed between the meandering horizontal portions below the heat exchange pipe. At the other end, a hot gas bypass pipe for flowing hot gas from the compressor is divided and inserted into the inlet side and the outlet side and connected to each other, and one of the divided hot gas bypass pipes is It is configured to be inserted to the vicinity of the closed one end side.

【0015】請求項5記載の発明では、前記加熱用熱交
換器は、圧縮機からのホットガスを流通させるホットガ
スバイパス管の中間の一部分が前記製氷室の背面下部に
添設されるとともに、他の一部分が前記熱交換パイプの
背面側に下部から上部へ直交添設されて構成されている
ものである。
[0015] In the invention according to claim 5, the heating heat exchanger is such that a middle part of a hot gas bypass pipe for flowing hot gas from a compressor is attached to a lower rear portion of the ice making chamber, Another part is orthogonally attached from the lower part to the upper part on the back side of the heat exchange pipe.

【0016】請求項1記載の自動製氷機においては、製
氷運転時にあっては、熱交換パイプが左右に蛇行して配
設された冷却加熱用熱交換器の上部から下部に向かって
低圧の液ガス混合冷媒が流通されるが、この流通方向
は、熱交換器内で液冷媒が円滑に流れるので効率の良い
製氷運転が行われる、また、冷凍機油がこの冷却加熱用
熱交換器内に滞留しないので冷凍機油の充填量が低減で
きる利点もあり、合理的と考えられる。一方、除氷運転
時にあっては、圧縮機からのホットガスが製氷室の背面
の下部に設けられた加熱用熱交換器に入り、製氷室の下
部を加熱してから、上部に立ち上がって冷却加熱用熱交
換器の入口に流入するので、冷却加熱用熱交換器により
上部の製氷小室から加熱されることに加え、下部の製氷
小室がより加熱されるので、従来のように製氷室の上部
の氷が先に解けてしまうといった脱氷上の不都合が解消
される。
In the automatic ice making machine according to the first aspect of the present invention, during the ice making operation, a low-pressure liquid is supplied from the upper part to the lower part of the cooling / heating heat exchanger in which the heat exchange pipes meander left and right. The gas mixture refrigerant is circulated, but in the direction of circulation, the liquid refrigerant flows smoothly in the heat exchanger, so that an efficient ice making operation is performed, and the refrigerating machine oil stays in the cooling / heating heat exchanger. Since it is not necessary, there is an advantage that the filling amount of the refrigerating machine oil can be reduced, which is considered to be rational. On the other hand, during deicing operation, hot gas from the compressor enters the heating heat exchanger provided at the lower part of the back of the ice making room, heats the lower part of the ice making room, rises to the upper part, and cools down. As it flows into the inlet of the heat exchanger for heating, it is heated by the heat exchanger for cooling and heating from the upper ice making chamber, and the lower ice making chamber is further heated. The inconvenience of deicing, such as melting of the ice first, is eliminated.

【0017】請求項2記載の自動製氷機においては、ホ
ットガスバイパス管の中間の一部分が製氷室の背面下部
に添設されて構成されているので、加熱用熱交換器の構
成が簡略化されコストが低減される。
In the automatic ice maker according to the second aspect, the middle part of the hot gas bypass pipe is attached to the lower part of the back of the ice making chamber, so that the configuration of the heating heat exchanger is simplified. Cost is reduced.

【0018】請求項3記載の自動製氷機においては、ホ
ットガスバイパス管の中間の一部分が冷却加熱用熱交換
器の熱交換パイプの背面側に添設される構造であるの
で、ホットガスバイパス管の中間部により平面的に加熱
用熱交換器を構成することができ、加熱用熱交換器の構
造がより一層簡略化される。
In the automatic ice making machine according to the third aspect, the middle part of the hot gas bypass pipe is structured to be attached to the back side of the heat exchange pipe of the heat exchanger for cooling and heating. The heat exchanger for heating can be configured in a plane by the intermediate portion of, and the structure of the heat exchanger for heating is further simplified.

【0019】請求項4記載の自動製氷機においては、加
熱用熱交換器が一本の直管により構成され、この直管の
一端部にホットガスバイパス管の入口側部と出口側部と
が接続されているので、加熱用熱交換器の製氷室背面へ
の納まりが良く、製氷機の小型化に寄与することができ
る。
In the automatic ice making machine according to the fourth aspect, the heat exchanger for heating is constituted by one straight pipe, and one end of the straight pipe is provided with an inlet side and an outlet side of the hot gas bypass pipe. Because of the connection, the heating heat exchanger can be easily accommodated in the back of the ice making room, which can contribute to the miniaturization of the ice making machine.

【0020】請求項5記載の自動製氷機においては、加
熱用熱交換器としてのホットガスによる製氷室の加熱
が、下部並びに下部から上部にかけて行われるのでより
均一化される。
In the automatic ice making machine according to the fifth aspect, since the heating of the ice making room by the hot gas as the heat exchanger for heating is performed from the lower part and the lower part to the upper part, it is more uniform.

【0021】[0021]

【発明の実施の形態】以下、この発明を自動製氷機とし
ての縦型製氷機に具体化した実施の形態を図1〜図7に
基づいて説明するが、図8〜図12に基づき説明した従
来の自動製氷機とは、製氷室の背面に加熱用熱交換器を
配設した点が相違するだけであるので、この相違点につ
いては詳細に説明するが、図1〜図7において上記従来
技術と同一または相当部分には図8〜図12と同一の符
号を付すことによって、その説明を省略する。先ず図1
及び図2に基づいて第1の実施の形態を説明する。図1
において、製氷室1の背面には、冷却加熱用熱交換器3
5の最下段の水平方向の熱交換パイプ35aと下から2
段目の水平方向の熱交換パイプ35aとの間に水平方向
に、ホットガスバイパス管38の中間の一部分が添設さ
れ、この部分が加熱用熱交換器51として構成されてい
る。この加熱用熱交換器51の左端は斜め上方へ立ち上
げられ、冷却加熱用熱交換器35の上部右端の入口部に
キャピラリーチューブ33とともに挿入して接続してい
る。尚、冷却加熱用熱交換器35の入口部において、ホ
ットガスバイパス管38が左方の湾曲部付近まで挿入さ
れているが、これは製氷室1の背面上部における除氷運
転時の加熱量を低く設定するための処置であるが、製氷
室全体の融氷バランスの関係で採用するものである。ま
た、前記加熱用熱交換器51の位置は、この加熱用熱交
換器51を添設することにより、製氷室1の背面に設け
られた空気孔8が塞がれることのないように、空気孔8
を避けた位置に選定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a vertical ice maker as an automatic ice maker will be described below with reference to FIGS. 1 to 7, but will be described with reference to FIGS. It differs from the conventional automatic ice making machine only in that a heat exchanger for heating is provided on the back of the ice making room. This difference will be described in detail. The same or corresponding parts as those in the technology are denoted by the same reference numerals as those in FIGS. First, FIG.
The first embodiment will be described with reference to FIG. FIG.
At the back of the ice making room 1, a heat exchanger 3 for cooling and heating is provided.
5 and the horizontal heat exchange pipe 35a at the bottom
An intermediate part of the hot gas bypass pipe 38 is provided in the horizontal direction between the horizontal heat exchange pipe 35a of the stage and this part is configured as a heat exchanger 51 for heating. The left end of the heat exchanger for heating 51 rises obliquely upward, and is connected to the inlet of the upper right end of the heat exchanger for cooling and heating 35 by being inserted together with the capillary tube 33. At the inlet of the cooling / heating heat exchanger 35, a hot gas bypass pipe 38 is inserted to the vicinity of the left curved portion. Although this is a measure for setting the temperature lower, it is adopted in relation to the ice melting balance of the entire ice making room. The position of the heating heat exchanger 51 is adjusted so that the air hole 8 provided on the back surface of the ice making chamber 1 is not blocked by the addition of the heating heat exchanger 51. Hole 8
Is selected in a location that avoids

【0022】上記のように構成すると、製氷運転時にあ
っては、熱交換パイプ35aが左右に蛇行して配設され
た冷却加熱用熱交換器35の上部から下部に向かって低
圧の液ガス混合冷媒が流通されるが、この流通方向は、
冷却加熱用熱交換器35内で液冷媒が円滑に流れるので
効率の良い製氷運転が行われる、また、冷凍機油がこの
冷却加熱用熱交換器35内に滞留する虞れがない。従っ
て、冷凍機油の充填量が低減できる利点があり合理的と
考えられる。一方、除氷運転時にあっては、製氷室1の
背面に添設された冷却加熱用熱交換器35により、製氷
小室5が上部から下部へ順次加熱されるとともに、加熱
用熱交換器51により下部の製氷小室5がより早く、か
つより強く加熱されるため、融氷バランスが良くなり、
図2の如く各製氷小室5に形成された角氷がひだ(氷連
結部)28により連結された状態で、一体となって製氷
小室5から脱氷落下するようになる。従って、従来に比
し形の整った氷が得られる。また、従来のように上部の
氷が無駄に解けて小さくなってしまうようなことがな
く、従来に比し製氷効率が向上し、製氷能力が向上す
る。また、各角氷がひだで繋がっており製氷小室5内に
小さな変形や突起があっても比較的スムーズに脱氷でき
る。また、このような脱氷は、製氷小室にできた氷を機
械的に押し出すような複雑な機構を必要とせず、ホット
ガスバイパス管38の中間の一部分を製氷室1の背面に
添設するだけであるので、故障の心配がなくコストも低
廉なものとすることができる。
With the above-described structure, during the ice making operation, the low-pressure liquid-gas mixing is performed from the upper part to the lower part of the cooling / heating heat exchanger 35 in which the heat exchange pipes 35a meander left and right. The refrigerant is circulated.
Since the liquid refrigerant flows smoothly in the heat exchanger 35 for cooling and heating, an efficient ice making operation is performed, and there is no possibility that the refrigerating machine oil stays in the heat exchanger 35 for cooling and heating. Therefore, there is an advantage that the filling amount of the refrigerating machine oil can be reduced, which is considered to be rational. On the other hand, during the deicing operation, the ice making small chambers 5 are sequentially heated from the upper part to the lower part by the cooling and heating heat exchanger 35 attached to the back of the ice making chamber 1, and the heating heat exchanger 51 is used. Since the lower ice making compartment 5 is heated faster and more strongly, the melting ice balance is improved,
As shown in FIG. 2, ice cubes formed in the respective ice making compartments 5 are deiced and dropped from the ice making compartments 5 integrally in a state where they are connected by folds (ice connecting portions) 28. Therefore, ice with a more uniform shape than before can be obtained. Further, unlike the conventional case, the upper ice is not melted and wasted, so that the ice making efficiency is improved and the ice making capacity is improved as compared with the conventional case. In addition, the ice cubes are connected by folds, and even if there are small deformations or protrusions in the ice making chamber 5, deicing can be performed relatively smoothly. In addition, such deicing does not require a complicated mechanism for mechanically pushing out the ice formed in the ice making compartment, and only a part of the middle of the hot gas bypass pipe 38 is attached to the back of the ice making compartment 1. Therefore, there is no fear of failure and the cost can be reduced.

【0023】図3〜図7は第2〜第6の実施の形態であ
って、上記第1の実施の形態と比較し加熱用熱交換器の
構成のみが相違する。以下これら実施の形態について第
1の実施の形態との相違点を中心に説明する。先ず、図
3に基づき第2の実施の形態について説明する。図3に
おいて、製氷室1の背面の最下部水平方向に、空気孔8
を避けてホットガスバイパス管38の中間の一部分が添
設され、この水平方向の中間部分が加熱用熱交換器52
として構成されている。また、その左端は、前記第1の
実施の形態と同様に立ち上げられ冷却加熱用熱交換器3
5の入口部35bに接続されている。従って、第1の実
施の形態と比較すると、製氷室1の背面に添設されるホ
ットガスバイパス管38の中間部分の位置が、冷却加熱
用熱交換器35の最下段の水平配管より下部とされた点
で前記第1の実施の形態と相違する。このようにするこ
とにより、製氷室1の最下部を加熱することができるよ
うにしたものであるが、基本的には前記第1の実施の形
態と同じである。
FIGS. 3 to 7 show the second to sixth embodiments, which are different from the first embodiment only in the configuration of the heating heat exchanger. Hereinafter, these embodiments will be described focusing on the differences from the first embodiment. First, a second embodiment will be described with reference to FIG. In FIG. 3, air holes 8
A middle part of the hot gas bypass pipe 38 is attached so as to avoid the heat.
Is configured as The left end of the heat exchanger 3 is started up in the same manner as in the first embodiment and is started up.
5 is connected to the entrance 35b. Therefore, as compared with the first embodiment, the position of the intermediate portion of the hot gas bypass pipe 38 attached to the back of the ice making chamber 1 is lower than the lowermost horizontal pipe of the heat exchanger 35 for cooling and heating. This is different from the first embodiment in that it is performed. By doing so, the lowermost part of the ice making chamber 1 can be heated, but it is basically the same as the first embodiment.

【0024】次に、図4は第3の実施の形態で、製氷室
1の背面下部において、ホットガスバイパス管38の中
間の一部分を水平方向に1回蛇行させて2段として添設
され、この部分が加熱用熱交換器53として形成されて
いる。また、その右端は、立ち上げられ冷却加熱用熱交
換器35の入口部35bへ接続されている。このように
加熱部の熱交換面積を大きくすることにより、製氷室1
の下部をより早く加熱することができるようにしたもの
であるが、基本的には前記第1の実施の形態と同じであ
る。
Next, FIG. 4 shows a third embodiment, in which a middle part of a hot gas bypass pipe 38 is meandered once in the horizontal direction at the lower rear portion of the ice making chamber 1, and is attached as two stages. This portion is formed as a heat exchanger 53 for heating. The right end is connected to the inlet 35b of the heat exchanger 35 for cooling and heating. By increasing the heat exchange area of the heating unit in this way, the ice making chamber 1
The lower portion of the first embodiment can be heated more quickly, but is basically the same as the first embodiment.

【0025】図5は、第4の実施の形態で、製氷室1の
背面下部において、ホットガスバイパス管38の中間の
一部分を、冷却加熱用熱交換器35下部の熱交換パイプ
35aに沿う形状に水平方向に1回蛇行させて2段と
し、該熱交換パイプ35aの背面側に添設され、この部
分が加熱用熱交換器54として形成されている。また、
その右端は、立ち上げられ冷却加熱用熱交換器35の入
口部35bへ接続されている。このようにすることによ
り、加熱用熱交換器54は2段に形成されるが、ホット
ガスバイパス管38の中間部において平面的に折り曲げ
て構成することができ、その構造を簡略化することがで
きる。
FIG. 5 shows a fourth embodiment in which a middle part of a hot gas bypass pipe 38 is formed in a lower portion of the back of the ice making chamber 1 along a heat exchange pipe 35a below a heat exchanger 35 for cooling and heating. This is meandered once in the horizontal direction to form two stages, which are attached to the back side of the heat exchange pipe 35a, and this portion is formed as a heat exchanger 54 for heating. Also,
The right end thereof is connected to an inlet 35b of the heat exchanger 35 for cooling and heating. By doing so, the heating heat exchanger 54 is formed in two stages, but can be configured to be bent in a plane at an intermediate portion of the hot gas bypass pipe 38, and the structure can be simplified. it can.

【0026】図6は、第5の実施の形態で、製氷室1の
背面下部において、一端155aが閉塞された一本の直
管155が前記冷却加熱用熱交換器35下部の熱交換パ
イプ35aの蛇行状水平部間に配設され、該直管155
の他端155bにホットガスバイパス管38が入口側部
38aと出口側部38bとに分断され挿入接続されてい
る。また、前記入口側部38aは閉鎖端(前記一端)1
55aの近傍まで挿入されて開口されている。この実施
の形態においては加熱用熱交換器55が以上のように構
成されている。このようにすることにより、加熱用熱交
換器55の直管155内において、ホットガスが閉鎖端
155a側から他端155b側に流通される。また、製
氷室1の背面に添設されるのは直管155であり、しか
もホットガスバイパス管38の入口側部38aと出口側
部38bとが直管155の一方側の端部(前記他端)1
55bに接続されているので、配管の納まりが良く、製
氷機の小形化に寄与することができる。尚、上記実施の
形態においては、ホットガスバイパス管38の入口側部
38aを直管155の閉鎖端155a近傍まで延ばして
いるが、これに代わりホットガスバイパス管38の出口
側部38bを閉鎖端155a近傍まで延ばし、入口側部
38aの挿入長さを短くしても良い。
FIG. 6 shows a fifth embodiment in which a single straight pipe 155 having one end 155a closed at the lower rear portion of the ice making chamber 1 is provided with a heat exchange pipe 35a at a lower portion of the heat exchanger 35 for cooling and heating. The straight pipe 155
A hot gas bypass pipe 38 is divided into an inlet side portion 38a and an outlet side portion 38b and connected to the other end 155b. The inlet side portion 38a is a closed end (the one end) 1
It is inserted and opened to the vicinity of 55a. In this embodiment, the heating heat exchanger 55 is configured as described above. By doing so, the hot gas flows from the closed end 155a side to the other end 155b side in the straight pipe 155 of the heating heat exchanger 55. A straight pipe 155 is attached to the back of the ice making chamber 1, and the inlet side 38 a and the outlet side 38 b of the hot gas bypass pipe 38 are connected to one end of the straight pipe 155 (the other end). Edge) 1
Since it is connected to 55b, the pipe can be accommodated well, which can contribute to downsizing of the ice making machine. In the above embodiment, the inlet side portion 38a of the hot gas bypass pipe 38 is extended to the vicinity of the closed end 155a of the straight pipe 155. Instead, the outlet side part 38b of the hot gas bypass pipe 38 is closed. It may be extended to the vicinity of 155a to shorten the insertion length of the inlet side portion 38a.

【0027】図7は、第6の実施の形態で、製氷室1の
背面下部において、ホットガスバイパス管38の中間の
一部分56aが製氷室1の背面下部に添設されるととも
に、この一部分56aに続く他の一部分56bが冷却加
熱用熱交換器35の熱交換パイプ35aの背面側を下部
から上部へ直交して添設されて、加熱用熱交換器56が
形成されている。また、該加熱用熱交換器56は上端部
から冷却加熱用熱交換器35の入口部35bへ連結さ
れ、該入口部35bにおいてキャピラリーチューブ33
とともに接続されている。このようにすることにより、
冷却加熱用熱交換器35による製氷室1の加熱ととも
に、冷却加熱用熱交換器35に入る前のホットガスによ
り製氷室1の下部が直接強く加熱され、また、製氷室1
の中間部が冷却加熱用熱交換器35の熱交換パイプ35
aを介し加熱されることになるため、製氷室1全体が比
較的均一に加熱される。
FIG. 7 shows a sixth embodiment in which a middle portion 56a of a hot gas bypass pipe 38 is attached to a lower rear portion of the ice making chamber 1 at a lower rear portion of the ice making chamber 1 and a lower portion 56a of the hot gas bypass pipe 38 is provided. The heating heat exchanger 56 is formed by adding another portion 56b that follows the heat exchanger pipe 35a of the cooling / heating heat exchanger 35 from the lower side to the upper side at right angles. The heating heat exchanger 56 is connected from the upper end to the inlet 35b of the cooling / heating heat exchanger 35, and the capillary tube 33 is connected at the inlet 35b.
Connected with. By doing this,
With the cooling and heating heat exchanger 35 heating the ice making chamber 1, the lower part of the ice making chamber 1 is directly and strongly heated by the hot gas before entering the cooling and heating heat exchanger 35.
Is the heat exchange pipe 35 of the heat exchanger 35 for cooling and heating.
a, the entire ice making chamber 1 is relatively uniformly heated.

【0028】上記各実施の形態は、各製氷小室に製氷水
を噴射させる噴射セル方式の自動製氷機としての縦型製
氷機についてのものであるが、本発明は製氷室の上部か
ら製氷水を流下させる流下セル方式の自動製氷機に適用
することもできる。
Each of the above embodiments is directed to a vertical ice making machine as an automatic ice making machine of a spray cell type for injecting ice making water into each ice making small chamber. The present invention can also be applied to an automatic ice maker of a falling cell system in which the liquid flows down.

【0029】[0029]

【発明の効果】本発明は以上の様に構成されているた
め、次のような効果を奏する。請求項1記載の発明によ
れば、除氷運転時、冷却加熱用熱交換器に入る前のホッ
トガスを加熱用熱交換器に導入し、該加熱用熱交換器に
より製氷室の背面下部を加熱するごとくしたので、融氷
バランスが良くなり、氷が製氷室からひだで連結された
まま一体となって円滑に脱氷落下する。この結果、形の
整った氷が得られ、製氷能力が向上する。また、機械的
に複雑な機構も必要としないので、故障の心配がなくコ
ストも低廉なものとすることができる。
As described above, the present invention has the following advantages. According to the first aspect of the present invention, during the deicing operation, hot gas before entering the cooling / heating heat exchanger is introduced into the heating heat exchanger, and the heating heat exchanger causes the lower rear portion of the ice making chamber to be introduced. Since the heat is applied as if heated, the ice-melting balance is improved, and the ice is smoothly de-iced and dropped from the ice-making room while being connected with the folds. As a result, well-shaped ice is obtained, and the ice making capacity is improved. Also, since no mechanically complicated mechanism is required, there is no need to worry about a failure and the cost can be reduced.

【0030】請求項2記載の発明によれば、加熱用熱交
換器は、ホットガスバイパス管の中間の一部分を製氷室
の背面下部に添設するだけであるので、構造が簡略化さ
れコストが低減される。
According to the second aspect of the present invention, since the heating heat exchanger only has a middle part of the hot gas bypass pipe attached to the lower part of the back of the ice making chamber, the structure is simplified and the cost is reduced. Reduced.

【0031】請求項3の発明によれば、加熱用熱交換器
は、ホットガスバイパス管の中間の一部分を冷却加熱用
熱交換器の熱交換パイプの背面側に添設したものである
ので、平面的構造となりより一層簡略化される。
According to the third aspect of the present invention, the heating heat exchanger has a middle part of the hot gas bypass pipe attached to the back side of the heat exchange pipe of the cooling and heating heat exchanger. A planar structure is further simplified.

【0032】請求項4記載の発明によれば、加熱用熱交
換器が一本の直管により構成されるので、加熱用熱交換
器の製氷室背面への納まりが良くなり、製氷機の小形化
に寄与することができる。
According to the fourth aspect of the present invention, since the heating heat exchanger is constituted by one straight pipe, the heating heat exchanger can be easily accommodated in the back of the ice making room, and the size of the ice making machine can be reduced. It can contribute to the conversion.

【0033】請求項5記載の発明によれば、製氷室に対
する加熱が、下部並びに下部から上部にかけて行われる
のでより均一化される。
According to the fifth aspect of the present invention, the heating of the ice making chamber is performed from the lower part and from the lower part to the upper part, so that the heating is more uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 1 is a diagram showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice making machine according to a first embodiment.

【図2】 図1の製氷室において氷の離脱状態を説明す
る図面である。
FIG. 2 is a view illustrating a state in which ice is separated from the ice making chamber of FIG. 1;

【図3】 第2の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 3 is a drawing showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice machine according to a second embodiment.

【図4】 第3の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 4 is a diagram showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice maker according to a third embodiment.

【図5】 第4の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 5 is a diagram showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice machine according to a fourth embodiment.

【図6】 第5の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 6 is a drawing showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice maker of a fifth embodiment.

【図7】 第6の実施形態の縦型製氷機における製氷室
の背面から見た冷却加熱用熱交換器及び冷媒配管系統図
を示す図面である。
FIG. 7 is a drawing showing a cooling / heating heat exchanger and a refrigerant piping system diagram as viewed from the back of an ice making room in a vertical ice maker according to a sixth embodiment.

【図8】 従来の噴射セル方式の自動製氷機の製氷状態
における全体構成図である。
FIG. 8 is an overall configuration diagram of an automatic ice maker of a conventional injection cell type in an ice making state.

【図9】 図8におけるX−X断面図である。FIG. 9 is a sectional view taken along line XX in FIG. 8;

【図10】 図9におけるY−Y断面図である。FIG. 10 is a sectional view taken along line YY in FIG. 9;

【図11】 図8自動製氷機の冷却加熱用熱交換器及び
冷媒配管系統図を示す図面である。
FIG. 11 is a drawing showing a heat exchanger for cooling and heating and a refrigerant piping system diagram of the automatic ice making machine.

【図12】 従来の噴射セル方式の自動製氷機の脱氷状
態における全体構成図である。
FIG. 12 is an overall configuration diagram of a conventional automatic ice maker of the injection cell type in a de-icing state.

【符号の説明】[Explanation of symbols]

1…製氷室、3a…縦仕切板、3b…横仕切板、5…製
氷小室、8…空気孔、9…水皿、21…製氷水路、28
…ひだ、35…冷却加熱用熱交換器、35a…熱交換パ
イプ、35b…熱交換パイプの入口部、38…ホットガ
スバイパス管、38a…ホットガスバイパス管の入口側
部、38b…ホットガスバイパス管の出口側部、51、
52、53、54、55、56…加熱用熱交換器、56
a…ホットガスバイパス管の中間の一部分、56b…ホ
ットガスバイパス管の中間の他の一部分、61…製氷水
タンク、67…循環ポンプ、155…直管、155a…
直管の一端、155b…直管の他端。
DESCRIPTION OF SYMBOLS 1 ... Ice making room, 3a ... Vertical partition plate, 3b ... Horizontal partition plate, 5 ... Ice making small room, 8 ... Air hole, 9 ... Water tray, 21 ... Ice making channel, 28
... folds, 35 ... heat exchanger for cooling and heating, 35a ... heat exchange pipe, 35b ... entrance of heat exchange pipe, 38 ... hot gas bypass pipe, 38a ... entrance side of hot gas bypass pipe, 38b ... hot gas bypass Outlet side of the tube, 51,
52, 53, 54, 55, 56 ... heat exchanger for heating, 56
a: middle part of the hot gas bypass pipe, 56b: other part of the middle of the hot gas bypass pipe, 61: ice making water tank, 67: circulation pump, 155: straight pipe, 155a ...
One end of the straight pipe, 155b ... The other end of the straight pipe.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 縦方向に一定間隔をおいて並設されてい
るとともに先端部が下方に傾斜した横仕切板と、この横
仕切板に直交して並設した複数個の縦仕切板とにより形
成された複数個の製氷小室を有する製氷室と、 製氷室の背面に、熱交換パイプが上部から下部へ左右に
蛇行して添設され、製氷運転時に低圧冷媒が前記熱交換
パイプ内を上部から下部へ流通して蒸発器として作用
し、除氷運転時に前記熱交換パイプ内をホットガスが上
部から下部へ流通して加熱器として作用する冷却加熱用
熱交換器とを備え、 製氷運転時には製氷小室内に流入した製氷水を前記冷却
加熱用熱交換器により冷却して製氷小室内に氷を生成
し、また、除氷運転時には製氷室内の氷を前記冷却加熱
用熱交換器により加熱して製氷小室内から氷を離脱する
自動製氷機において、 製氷室の背面に、該背面の下部と熱交換し得る加熱用熱
交換器を配設し、除氷運転時に該加熱用熱交換器を介し
て前記冷却加熱用熱交換器にホットガスを導入させる如
くしたことを特徴とする自動製氷機。
1. A horizontal partition plate which is juxtaposed at a predetermined interval in a vertical direction and whose tip is inclined downward, and a plurality of vertical partition plates juxtaposed orthogonally to the horizontal partition plate. An ice making chamber having a plurality of formed ice making chambers, and a heat exchange pipe is provided on the back of the ice making chamber in a meandering manner from the upper part to the lower part, and a low-pressure refrigerant flows upward in the heat exchange pipe during an ice making operation. And a cooling / heating heat exchanger in which the hot gas flows from the upper part to the lower part in the heat exchange pipe and acts as a heater during the deicing operation. The ice making water flowing into the ice making compartment is cooled by the cooling and heating heat exchanger to generate ice in the ice making compartment, and the ice in the ice making compartment is heated by the cooling and heating heat exchanger during deicing operation. Ice machine that removes ice from the ice making compartment A heating heat exchanger capable of exchanging heat with the lower part of the rear surface is provided on the back of the ice making room, and hot water is supplied to the cooling / heating heat exchanger via the heating heat exchanger during deicing operation. An automatic ice maker characterized by introducing gas.
【請求項2】 前記加熱用熱交換器は、圧縮機からのホ
ットガスを流通させるホットガスバイパス管の中間の一
部分が製氷室の背面下部に水平方向に添設されて構成さ
れていることを特徴とする請求項1記載の自動製氷機。
2. The heating heat exchanger according to claim 1, wherein a middle part of a hot gas bypass pipe for flowing hot gas from a compressor is horizontally attached to a lower part of a back surface of the ice making chamber. The automatic ice maker according to claim 1, characterized in that:
【請求項3】 前記加熱用熱交換器は、圧縮機からのホ
ットガスを流通させるホットガスバイパス管の中間の一
部分が前記熱交換パイプの下部の水平方向部分の背面側
に添設されて構成されていることを特徴とする請求項1
記載の自動製氷機。
3. The heating heat exchanger has a configuration in which a middle part of a hot gas bypass pipe through which hot gas from a compressor flows is attached to a back side of a horizontal portion below a heat exchange pipe. 2. The method according to claim 1, wherein
Automatic ice maker as described.
【請求項4】 前記加熱用熱交換器は、一端が閉塞され
た一本の直管が前記熱交換パイプの下部の蛇行状水平部
間に配設され、該直管の他端に、圧縮機からのホットガ
スを流通させるホットガスバイパス管が入口側部と出口
側部とに分断挿入されてそれぞれ接続されるとともに、
分断された何れか一方のホットガスバイパス管が前記閉
塞された一端側近傍まで挿入されて構成されていること
を特徴とする請求項1記載の自動製氷機。
4. The heating heat exchanger, wherein one straight pipe whose one end is closed is disposed between the meandering horizontal portions below the heat exchange pipe, and the other end of the straight pipe is compressed. A hot gas bypass pipe for flowing hot gas from the machine is inserted and connected to the inlet side and the outlet side, respectively, and connected,
2. The automatic ice making machine according to claim 1, wherein one of the divided hot gas bypass pipes is inserted into the vicinity of the closed one end side.
【請求項5】 前記加熱用熱交換器は、圧縮機からのホ
ットガスを流通させるホットガスバイパス管の中間の一
部分が前記製氷室の背面下部に添設されるとともに、他
の一部分が前記熱交換パイプの背面側に下部から上部へ
直交添設されて構成されていることを特徴とする請求項
1記載の自動製氷機。
5. The heating heat exchanger has a middle part of a hot gas bypass pipe for flowing hot gas from a compressor attached to a lower portion of the back of the ice making chamber, and another part of the hot gas bypass pipe has a lower part. 2. The automatic ice making machine according to claim 1, wherein the replacement pipe is provided so as to be orthogonally attached from the lower part to the upper part on the back side.
JP35093196A 1996-12-27 1996-12-27 Automatic ice machine Expired - Fee Related JP3169564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35093196A JP3169564B2 (en) 1996-12-27 1996-12-27 Automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35093196A JP3169564B2 (en) 1996-12-27 1996-12-27 Automatic ice machine

Publications (2)

Publication Number Publication Date
JPH10197121A true JPH10197121A (en) 1998-07-31
JP3169564B2 JP3169564B2 (en) 2001-05-28

Family

ID=18413891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35093196A Expired - Fee Related JP3169564B2 (en) 1996-12-27 1996-12-27 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP3169564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092147A (en) * 2014-10-06 2017-08-10 아이스브레이커 노르딕 에이피에스 Ice cube producing unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434473A1 (en) * 2017-07-27 2019-01-30 Zanini Auto Grup, S.A. Emblem for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092147A (en) * 2014-10-06 2017-08-10 아이스브레이커 노르딕 에이피에스 Ice cube producing unit
KR20220104068A (en) * 2014-10-06 2022-07-25 아이스브레이커 노르딕 에이피에스 Ice cube producing unit

Also Published As

Publication number Publication date
JP3169564B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR20030029882A (en) Heat pump
KR20230044385A (en) Water purifier with ice maker
JP2003232563A (en) Thermal storage hot water supply apparatus
JP3169564B2 (en) Automatic ice machine
KR101343462B1 (en) Ice-making and cooling system
CN105737436A (en) Water chilling unit integrating air cooling and compression refrigeration and control method
KR101640127B1 (en) Refrigerating cycle having shell and tube type heat exchanger, condenser in one body type of cooling water tank and vaporizer
JP5448482B2 (en) Automatic ice machine
JPH0320708Y2 (en)
JPH09310894A (en) Ice heat accumulator
JPH0643658Y2 (en) Ice machine
JPH09310893A (en) Ice heat accumulator
JPH0972585A (en) Thermal storage type cold water device
JP3412677B2 (en) How to operate an automatic ice maker
JP3141777B2 (en) Ice storage device
JPH038925Y2 (en)
JP3365371B2 (en) Ice storage device
JP2001004255A (en) Automatic ice maker and operating method thereof
JP2508240B2 (en) Ice heat storage device and ice heat storage type air conditioner equipped with the ice heat storage device
KR200478083Y1 (en) Anti-Freezing Burst Apparatus Using Condensed Waste Heat
JP3000907B2 (en) Operation control method of ice storage type chiller
JP3337017B2 (en) Heat storage device
JP2005164100A (en) Automatic ice maker
JPH0674498A (en) Ice making device
JP2515606B2 (en) A heat source system for air conditioning that stores ice and hot water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees