JPH10196697A - High strength spring with excellent environmental brittleness resistance - Google Patents

High strength spring with excellent environmental brittleness resistance

Info

Publication number
JPH10196697A
JPH10196697A JP9003271A JP327197A JPH10196697A JP H10196697 A JPH10196697 A JP H10196697A JP 9003271 A JP9003271 A JP 9003271A JP 327197 A JP327197 A JP 327197A JP H10196697 A JPH10196697 A JP H10196697A
Authority
JP
Japan
Prior art keywords
base material
spring steel
spring
steel base
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9003271A
Other languages
Japanese (ja)
Inventor
Takenori Nakayama
武典 中山
Takashi Iwata
多加志 岩田
Masaki Shimotsusa
正貴 下津佐
Nobuhiko Ibaraki
信彦 茨木
Hiroshi Kakou
浩 家口
Shigenobu Nanba
茂信 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9003271A priority Critical patent/JPH10196697A/en
Publication of JPH10196697A publication Critical patent/JPH10196697A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To secure high strength and high environmental brittleness resistance by covering at least a part of the surface of a spring steel base material with a corrosion protective film functioning as a sacrifice anode and adding carbonitride forming elements in the spring steel base material. SOLUTION: Spring steel provided with a tensile strength of 1800MPa or more is used as a base material, and at least a part of the surface of the spring steel base material is covered with a corrosion protective film functioning as a sacrifice anode. In this way, a high stress spring can be electrochemically protected from corrosion effectively. However, hydrogen is generated when the spring steel base material is electrochemically protected from corrosion by means of the sacrifice anode, and a detrimental action such as generation of delayed fracture and promotion of growth of a crack based on corrosion fatigue is exerted. Then, carbonitride forming elements such as Ti, Nb, Ta are added to the spring steel base material so that a great amount of fine carbonitride is deposited in the base material. As a result, impurities such as hydrogen and phosphorus penetrating into the base material can be trapped by means of the carbonitride, so that environmental brittleness can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ばね鋼母材の表面
の少なくとも一部に犠牲アノードとして機能する防食膜
を被覆したばね、特に腐食疲労や遅れ破壊などの環境脆
性に強く、しかも高い強度を有するばねに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spring in which at least a part of the surface of a spring steel base material is coated with an anticorrosion film functioning as a sacrificial anode, and is particularly resistant to environmental brittleness such as corrosion fatigue and delayed fracture, and has high strength. The present invention relates to a spring having:

【0002】[0002]

【従来の技術】近年、地球環境保全の立場から、自動車
に代表される輸送機に対して排ガスや燃費低減の要求が
高まっており、このような要求を満足すべく輸送機の軽
量化が望まれている。この軽量化対策の一環として、輸
送機に用いられるばねの高応力化が指向されており、焼
入れ焼戻し後の強度で1800MPa以上を示すような
高強度のばね用鋼をばね母材として用いることが提案さ
れている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, there has been an increasing demand for reducing the exhaust gas and fuel consumption of transport vehicles represented by automobiles, and it has been desired to reduce the weight of transport devices to satisfy such requirements. It is rare. As one of the measures to reduce the weight, the use of springs used in transport aircraft has been increased in stress, and high-strength spring steel having a strength after quenching and tempering of 1800 MPa or more is used as a spring base material. Proposed.

【0003】しかしながら、一般に、鋼を高強度化する
と、腐食環境下における疲労や遅れ脆性などの環境強度
が著しく劣化し、腐食耐久寿命が低下することが知られ
ている。したがって、ばねの高応力化を図る場合、この
ような環境脆性の低下を防止する必要があり、例えば特
開昭62−49035号公報などに記載された技術、つ
まりばね鋼母材の表面の少なくとも一部にばね鋼母材よ
りも卑な金属、例えば亜鉛を電気めっきすることで、当
該亜鉛めっき膜を犠牲アノードとして機能させてばねを
電気化学的に防食することが提案されている。
However, it is generally known that when the strength of steel is increased, environmental strength such as fatigue and delayed brittleness in a corrosive environment is significantly deteriorated, and the corrosion durability life is shortened. Therefore, in order to increase the stress of the spring, it is necessary to prevent such a decrease in environmental embrittlement. For example, the technology described in Japanese Patent Application Laid-Open No. 62-49035, that is, at least the surface of the spring steel base material is required. It has been proposed to electroplate a metal, for example, zinc, which is lower than the base material of the spring steel, so that the galvanized film functions as a sacrificial anode to electrochemically protect the spring.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
にして電気めっきを実行すると、電気めっきを施すとき
に発生した水素がばね鋼母材に侵入して、いわゆるめっ
き脆化を生じるおそれがある。また、犠牲アノード機構
によってばね鋼母材を電気化学的に防食するときには、
局部電池の原理に基づいて陰極部である鋼母材表面に水
素が発生し、これがばね鋼母材中に侵入して遅れ破壊を
生じるという問題がある。
By the way, when the electroplating is performed as described above, hydrogen generated during the electroplating may enter the spring steel base material and cause so-called plating embrittlement. . Also, when the sacrificial anode mechanism electrochemically protects the spring steel base material,
On the basis of the principle of the local battery, there is a problem that hydrogen is generated on the surface of the steel base material, which is the cathode, and penetrates into the spring steel base material to cause delayed fracture.

【0005】また、電気めっき以外の表面処理により犠
牲アノードとして機能する金属膜を形成した場合、例え
ば特開平7−3491号公報に記載されたように亜鉛を
刷毛めっきした場合であっても犠牲アノード作用の発揮
に際しては同様に局部電池の形成による水素発生を起こ
してばね鋼母材への水素侵入による遅れ破壊が生じ、十
分な環境脆性が得られない。このように、従来において
は、高応力化というニーズと、環境脆性に強いというニ
ーズとをともに満足するばねは存在していなかった。
Further, when a metal film functioning as a sacrificial anode is formed by a surface treatment other than electroplating, for example, even when zinc is brush-plated as described in JP-A-7-3491, When the function is exerted, hydrogen is generated by the formation of a local battery, and delayed fracture occurs due to intrusion of hydrogen into the spring steel base material, so that sufficient environmental embrittlement cannot be obtained. As described above, conventionally, there has been no spring that satisfies both the need for high stress and the need for strong environmental embrittlement.

【0006】この発明は、上記のような問題に鑑みてな
されたものであり、高強度で、しかも高い耐環境脆性
(腐食疲労や遅れ破壊などの環境脆化を起こし難い特
性)を有する環境脆性の良好な高強度ばねを提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and has high strength and high environmental brittleness (characteristics that are unlikely to cause environmental embrittlement such as corrosion fatigue and delayed fracture). It is an object of the present invention to provide a high-strength spring having a good spring strength.

【0007】[0007]

【課題を解決するための手段】この発明は、ばね鋼母材
の表面の少なくとも一部が犠牲アノードとして機能する
防食膜で被覆されたばねであって、上記目的を達成する
ため、前記ばね鋼母材に炭窒化物形成元素を添加するこ
とで前記ばね鋼母材中に炭窒化物を微分散させている。
According to the present invention, there is provided a spring in which at least a part of the surface of a spring steel base material is coated with an anticorrosion film functioning as a sacrificial anode. Carbonitride is finely dispersed in the spring steel base material by adding a carbonitride forming element to the material.

【0008】この発明では、犠牲アノードとして機能す
る防食膜をばね鋼母材の表面の少なくとも一部に被覆す
ることでカソード防食するとともに、当該防食膜の欠点
である耐環境脆性の低下を、ばね鋼母材中に分散された
炭窒化物が防いでいる。すなわち、防食膜を形成するこ
とにより発生する水素を上記炭窒化物がトラップして腐
食疲労や遅れ破壊などの抑制する。
According to the present invention, at least a portion of the surface of a spring steel base material is coated with an anticorrosion film functioning as a sacrificial anode to perform cathodic protection, and the disadvantage of the anticorrosion film is reduced in environmental brittleness resistance. Carbon nitrides dispersed in the steel matrix are preventing. That is, the carbonitride traps hydrogen generated by forming the anticorrosion film, thereby suppressing corrosion fatigue and delayed fracture.

【0009】具体的には、前記炭窒化物形成元素とし
て、 Ti:0.001〜0.5% Nb:0.001〜0.5% Ta:0.001〜0.5% の少なくとも1種の元素を添加すると共に、 N:0.001〜0.02% を含有している。
Specifically, at least one of Ti: 0.001 to 0.5% Nb: 0.001 to 0.5% Ta: 0.001 to 0.5% as the carbonitride forming element And N: 0.001 to 0.02%.

【0010】また、前記防食膜としては、前記ばね鋼母
材よりも電気化学的に卑な金属またはその合金からなる
金属膜や、非金属膜中に前記ばね鋼母材よりも電気化学
的に卑な金属またはその合金を多数分散させた複合膜が
用いられている。さらに、前記ばね鋼母材として、C:
0.7%以下、Si:0.1〜4.0%およびMn:
0.01〜2.0%を含有するばね鋼を採用することが
できる。
[0010] The anticorrosion film may be a metal film made of a metal or an alloy thereof that is more electrochemically lower than the spring steel base material, or a non-metal film that is more electrochemically lower than the spring steel base material. A composite film in which many base metals or alloys thereof are dispersed is used. Further, as the spring steel base material, C:
0.7% or less, Si: 0.1 to 4.0% and Mn:
Spring steel containing 0.01 to 2.0% can be employed.

【0011】[0011]

【発明の実施の形態】この発明にかかるばねは、180
0MPa以上の引張強度を有するばね鋼を母材とし、当
該ばね鋼母材の表面の少なくとも一部に犠牲アノードと
して機能する防食膜が被覆されている。この防食膜とし
ては、例えば亜鉛、アルミニウム、マグネシウムなどで
代表されるばね鋼母材よりも電気化学的に卑な金属、あ
るいはそれらの金属元素を少なくとも1つ以上含む合金
からなる膜を用いることができる。また、防食膜として
上記金属膜や合金膜の他に、上記金属あるいはその合金
を非金属膜中に多数分散してなる複合膜を用いることが
できる。このような複合膜としては、例えば金属亜鉛末
(ジンクダスト)を塗膜(非金属膜)中に多数含有する
塗料であるジンクリッチペイント、複合めっきおよび複
合セラミックスなどが含まれる。なお、ばね鋼母材への
防食膜の被覆方法には、電気めっき法や溶融めっき法を
はじめとして、真空蒸着法、スパッタリング法、イオン
プレーティング法、CVD法やイオン注入法などの気相
コーティング法があり、いずれの被覆方法を用いてもよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A spring steel having a tensile strength of 0 MPa or more is used as a base material, and at least a part of the surface of the spring steel base material is coated with an anticorrosion film that functions as a sacrificial anode. As the anticorrosion film, for example, a film made of a metal that is electrochemically lower than a spring steel base material represented by zinc, aluminum, magnesium, or the like, or an alloy containing at least one of those metal elements may be used. it can. Further, as the anticorrosion film, in addition to the above-mentioned metal film and alloy film, a composite film obtained by dispersing a large number of the above-mentioned metals or their alloys in a nonmetal film can be used. Such a composite film includes, for example, a zinc-rich paint which is a paint containing a large amount of metallic zinc powder (zinc dust) in a coating film (non-metal film), a composite plating, a composite ceramic, and the like. The coating method of the anticorrosive film on the base material of the spring steel includes a vapor-phase coating method such as an electroplating method, a hot-dip plating method, a vacuum deposition method, a sputtering method, an ion plating method, a CVD method and an ion implantation method. And any coating method may be used.

【0012】このようにしてばね鋼母材の表面の少なく
とも一部に防食膜を被覆し、当該防食膜とばね鋼母材と
で構成される局部電池によって防食膜の一部が溶解し、
これが犠牲アノードとなってばね鋼母材にカソード電流
を与えるように構成することで、ばね鋼母材をカソード
防食し、高応力のばねを効果的に電気化学的に防食する
ことができる。
In this way, at least a part of the surface of the spring steel base material is coated with the anticorrosion film, and a part of the anticorrosion film is dissolved by the local battery composed of the anticorrosion film and the spring steel base material.
By constituting the sacrificial anode so as to apply a cathodic current to the spring steel base material, the spring steel base material can be cathodic protected, and the high stress spring can be effectively electrochemically protected.

【0013】ところが、ばね鋼母材を犠牲アノードによ
り電気化学的に防食する場合、上記において説明したよ
うに、水素が発生し、遅れ破壊を発生させたり、腐食疲
労に基づくクラックの進展を促進するなどの有害作用を
及ぼす(後で説明する比較例を参照)。特に、防食膜が
ばね鋼母材に対して電気化学的に卑であればある程、防
食効果が高まるものの、その反面、発生する水素量も増
加し、より重大な悪影響を及ぼすことになる。また、防
食膜の形成方法(被覆方法)によっては、防食膜の被覆
時に水素が発生し、上記と同様の問題が生じる。特に、
亜鉛の防食膜を電気めっきでばね鋼母材表面に被覆する
場合、当該めっき時に水素が発生し、水素吸蔵によるめ
っき脆化に至る危険性が極めて高いものとなっている。
また、真空蒸着やスパッタリングなどの気相コーティン
グ法により防食膜をばね鋼母材表面に被覆する場合であ
っても、従来より周知のように、ばね鋼母材表面の酸化
皮膜を予備的に還元する処理が行われており、当該還元
処理によってばね鋼母材に水素が侵入する。さらに、い
ずれの被覆方法を採用したとしても、酸化スケールの酸
洗い処理時に少なからずばね鋼母材の水素吸蔵が生じ、
これが脆化促進の要因の一つをなっている。このよう
に、ばね鋼母材の表面に防食膜を全面あるいは局部的に
被覆する場合には、いかなる被覆方法を採用するかに拘
らず、水素による悪影響(腐食疲労や遅れ破壊などの環
境脆化)を抑制することが重要となる。
However, when the spring steel base material is electrochemically protected by the sacrificial anode, as described above, hydrogen is generated, which causes delayed fracture or accelerates crack propagation based on corrosion fatigue. And other adverse effects (see Comparative Examples described later). In particular, the more the anticorrosion film is electrochemically lower than the base material of the spring steel, the higher the anticorrosion effect, but on the other hand, the greater the amount of generated hydrogen, which has a more serious adverse effect. Further, depending on the method of forming the anticorrosion film (coating method), hydrogen is generated at the time of coating the anticorrosion film, causing the same problem as described above. Especially,
When a zinc anticorrosive film is coated on the surface of a spring steel base material by electroplating, hydrogen is generated at the time of the plating, and the danger of plating embrittlement due to hydrogen absorption is extremely high.
Also, even when the anticorrosion film is coated on the surface of the spring steel base material by a vapor phase coating method such as vacuum evaporation or sputtering, as is well known, the oxide film on the surface of the spring steel base material is preliminarily reduced. Is performed, and hydrogen enters the spring steel base material by the reduction process. Furthermore, no matter which coating method is adopted, not a little hydrogen absorption of the spring steel base material occurs during pickling treatment of the oxide scale,
This is one of the factors promoting the embrittlement. As described above, when the anticorrosion film is entirely or locally coated on the surface of the spring steel base material, regardless of the coating method used, the adverse effects of hydrogen (environmental embrittlement such as corrosion fatigue and delayed fracture) may occur. ) Is important.

【0014】そこで、本発明の実施形態にかかるばねで
は、ばね鋼母材にTi、NbやTaなどの炭窒化物形成
元素が添加されて、前記ばね鋼母材中に微細な炭窒化物
が多数分散析出されているので、防食膜の被覆前処理お
よび被覆処理によって発生し、ばね鋼母材中に侵入して
くる水素やリンなどの不純物を当該炭窒化物がトラップ
して環境脆化を抑制している。また、微細な炭窒化物に
よってばね鋼母材自体の強度・靭性が高められており、
ばね全体の高応力化を図っている。
Therefore, in the spring according to the embodiment of the present invention, a carbonitride forming element such as Ti, Nb or Ta is added to a spring steel base material, and fine carbonitrides are contained in the spring steel base material. Since a large number of particles are dispersed and precipitated, the carbonitride traps impurities such as hydrogen and phosphorus which are generated by the pre-coating process and the coating process of the anticorrosion film and penetrate into the spring steel base material, thereby causing environmental embrittlement. Restrained. In addition, the strength and toughness of the spring steel base material itself is enhanced by fine carbonitrides,
The stress of the whole spring is increased.

【0015】また、炭窒化物形成元素のばね鋼母材への
添加により耐環境脆性を高める上では、炭窒化物形成元
素としてTi、NbおよびTaの少なくとも1種の元素
を、0.001〜0.5%の範囲で含有させるととも
に、Nを0.001〜0.02%の範囲で含有させるの
が好ましい。これは、Ti、NbおよびTaの少なくと
も1種の元素を炭窒化物形成元素として添加し、炭窒化
物を形成するためには少なくとも当該元素を0.001
%以上添加するとともに、ばね鋼母材中にNを0.00
1%以上含有する必要がある一方、逆に当該炭窒化物形
成元素が0.5%を越えて、またNが0.02%を越え
て含有されると、製造プロセスの凝固過程でばね鋼に粗
大な炭窒化物が生成され、また粗大炭窒化物の個数が増
大してばねの疲労特性を劣化させるおそれがあるという
理由からである。なお、炭窒化物形成元素としてTi、
NbおよびTaを微量ずつ添加した場合であっても、そ
れらの総量が0.001%以上であれば、Ti、Nbお
よびTaの少なくとも1種の元素を炭窒化物形成元素と
して添加した場合と同様の効果が得られる。
In order to enhance environmental brittleness resistance by adding a carbonitride forming element to a spring steel base material, at least one of Ti, Nb and Ta as a carbonitride forming element is added in an amount of 0.001 to 0.001. It is preferable that N be contained in the range of 0.5% and N be contained in the range of 0.001 to 0.02%. This is because at least one element of Ti, Nb and Ta is added as a carbonitride forming element, and at least 0.001 element is added to form a carbonitride.
% Or more, and N in the base material of the spring steel is 0.00%.
On the other hand, if the content of the carbonitride forming element exceeds 0.5% and the content of N exceeds 0.02%, the spring steel is solidified during the manufacturing process. This is because coarse carbonitrides may be generated, and the number of coarse carbonitrides may increase to deteriorate the fatigue characteristics of the spring. In addition, Ti as a carbonitride forming element,
Even when Nb and Ta are added in trace amounts, as long as the total amount thereof is 0.001% or more, at least one element of Ti, Nb and Ta is added as a carbonitride forming element. The effect of is obtained.

【0016】さらに、粗大析出物が起点となってばね疲
労寿命を低下させるという危険性を回避するために、炭
窒化物形成元素として添加されたTi、NbあるいはT
aは0.1%以下に調整するとともに、Nは0.01%
以下、さらに好ましくは0.007%以下に調整するの
が望ましい。
Further, in order to avoid the danger that the coarse precipitates serve as starting points to shorten the spring fatigue life, Ti, Nb or T added as a carbonitride forming element is used.
a is adjusted to 0.1% or less and N is 0.01%
Below, it is more desirable to adjust to 0.007% or less.

【0017】ところで、上記においては、引張強度が1
800MPa以上のばね鋼母材の表面の少なくとも一部
に犠牲アノードとして機能する防食膜を被覆するととも
に、当該ばね鋼母材が炭窒化物形成元素を含有するよう
に構成することで、高強度で、しかも高い耐環境脆性を
有するばねを提供しているが、ばね鋼母材の成分を以下
のように調整することでばね鋼母材自体の特性(強度、
靭性、へたり性および疲労など)を改善して優れたばね
を提供することが可能となる。以下、その理由について
説明する。
In the above description, the tensile strength is 1
At least a part of the surface of the spring steel base material of 800 MPa or more is coated with an anticorrosion film functioning as a sacrificial anode, and the spring steel base material is configured to contain a carbonitride forming element, thereby achieving high strength. In addition, while providing a spring having high environmental brittleness resistance, the properties (strength, strength, etc.) of the spring steel base material itself are adjusted by adjusting the components of the spring steel base material as follows.
It is possible to provide an excellent spring with improved toughness, sag and fatigue. Hereinafter, the reason will be described.

【0018】C:0.7%以下 Cは鋼中に必須的に含まれてくる元素であり、微量でも
存在すればその存在量に応じて焼入れ焼戻し後の強度
(硬さ)の向上に寄与する。そしてC量が0.3%未満
では、焼入れ焼戻し後の強度(硬さ)がやや不十分とな
り、一方0.7%を超えると、焼入れ焼戻し後の靭延性
が劣化するばかりでなく、耐食性にも悪影響が現われて
くる。ばね鋼としての強度と靭性を考慮すると、より好
ましいC量は0.3〜0.55%、更に耐水素脆性や腐
食疲労特性のより確実な改善を図る上では0.30〜
0.50%の範囲が好ましい。
C: 0.7% or less C is an element essentially contained in steel, and if present even in a trace amount, contributes to improvement in strength (hardness) after quenching and tempering depending on the amount of C. I do. If the C content is less than 0.3%, the strength (hardness) after quenching and tempering is slightly insufficient, while if it exceeds 0.7%, not only does the toughness and ductility after quenching and tempering deteriorate, but also the corrosion resistance decreases. Will also have adverse effects. In consideration of the strength and toughness of the spring steel, the more preferable C content is 0.3 to 0.55%, and in order to more reliably improve the hydrogen embrittlement resistance and the corrosion fatigue characteristics, the C content is 0.30 to 0.50%.
A range of 0.50% is preferred.

【0019】Si:0.1〜4.0% Siは固溶強化元素として強度向上に寄与する元素であ
り、0.1%未満ではマトリックス強度が不足気味にな
る嫌いがある。しかし4.0%を超えて過多に添加する
と、焼入れ加熱時に炭化物の溶け込みが不十分となり、
均一にオーステナイト化させるのにより高温の加熱が必
要となって表面の脱炭が進み、ばねの疲労特性が悪くな
る。ばね素材としての強度と硬さおよび脱炭抑制という
観点から、Siのより好ましい範囲は1.0〜2.0%
の範囲である。
Si: 0.1 to 4.0% Si is an element that contributes to strength improvement as a solid solution strengthening element. If it is less than 0.1%, the matrix strength tends to be insufficient. However, if it is added in excess of 4.0%, the carbide will not sufficiently dissolve during quenching and heating,
Uniform austenitization requires high-temperature heating, decarburization of the surface proceeds, and the fatigue characteristics of the spring deteriorate. From the viewpoint of strength and hardness as a spring material and suppression of decarburization, a more preferable range of Si is 1.0 to 2.0%.
Range.

【0020】Mn:0.01〜2.0% Mnは焼入れ性向上元素として0.01%以上含有させ
るのがよい。しかし2.0%を超えると、焼入れ時に多
量の残留オーステナイトが出現し、強度や硬さを悪化さ
せることがあるので注意しなければならない。Mnのよ
り好ましい含有量は0.1〜0.5%の範囲である。
Mn: 0.01 to 2.0% Mn is preferably contained at 0.01% or more as a hardenability improving element. However, if the content exceeds 2.0%, a large amount of retained austenite appears during quenching, and the strength and hardness may be deteriorated. The more preferred content of Mn is in the range of 0.1 to 0.5%.

【0021】P:0.01%以下 Pは鋼中に不可避的に混入してくる不純物であり、粒界
偏析を起こして粒界強度を低下させ粒界破壊の原因とな
るので、0.01%程度以下に抑えるべきである。
P: 0.01% or less P is an impurity unavoidably mixed into steel, causing segregation at the grain boundaries, lowering the strength of the grain boundaries and causing fracture at the grain boundaries. % Or less.

【0022】S:0.01%以下 Sは他の元素と結合して硫化物系介在物を形成するが、
Sの含有量の増加に伴って硫化物系介在物のサイズおよ
び個数が増大して疲労特性に悪影響が現われてくるの
で、Sは0.01%以下に抑えるべきである。
S: 0.01% or less S combines with other elements to form sulfide-based inclusions.
Since the size and number of the sulfide-based inclusions increase with an increase in the content of S and adversely affect the fatigue properties, the S content should be suppressed to 0.01% or less.

【0023】Ni:5.0%以下 Niは、微量でも存在すればその存在量に応じて焼入れ
焼戻し後の素材の靭性を高めると共に、生成する錆を非
晶質で緻密なものとして耐食性を高める作用があり、更
にばね特性として重要なへたり特性を改善する作用も有
しているが、5.0%を超えて含有させると焼入れ性が
過度に増大し、圧延後に過冷却組織が出易くなる。Ni
のより好ましい範囲は0.1〜2.0%の範囲である。
Ni: not more than 5.0% Ni, if present even in a trace amount, increases the toughness of the material after quenching and tempering according to the amount thereof, and enhances the corrosion resistance by making the generated rust amorphous and dense. It has an effect and also has an effect of improving the sag property, which is important as a spring property. However, if it is contained more than 5.0%, the hardenability is excessively increased, and a supercooled structure is easily generated after rolling. Become. Ni
Is more preferably in the range of 0.1 to 2.0%.

【0024】Cu:1.0%以下 Cuは電気化学的に鉄より貴な元素であり、耐食性を高
める作用がある。こうした作用は、Cuが微量でも存在
すればその存在量に応じて発揮されるが、0.05%以
上の添加によって特に有効に発揮される。しかし、1.
0%を超えてもそれ以上の耐食性向上効果は期待でき
ず、むしろ熱間圧延による素材の脆化を引き起こす恐れ
が生じてくる。Cuのより好ましい範囲は0.1〜0.
5%の範囲である。
Cu: 1.0% or less Cu is an element that is electrochemically nobler than iron and has an effect of improving corrosion resistance. Such an effect is exhibited in accordance with the amount of Cu, even if present in a very small amount, but is particularly effectively exhibited by adding 0.05% or more. However, 1.
If it exceeds 0%, no further improvement in corrosion resistance can be expected, but rather the material may be embrittled by hot rolling. The more preferable range of Cu is 0.1 to 0.1.
The range is 5%.

【0025】Cr:5.0%以下 Crは、表層部に生成する錆を非晶質で緻密なものと
し、耐食性の向上に寄与する他、Mnと同様に焼入れ性
向上にも有効に作用する。こうした効果は、Crが微量
でも存在すればその存在量に応じて発揮されるが、0.
05%以上の添加によって特に有効に発揮される。しか
し、5.0%を超えて過度に添加すると、焼入れ時に炭
化物の溶け込みが起こりにくくなって強度や硬さに悪影
響を及ぼす様になる。Crのより好ましい含有量は0.
2〜1.5%の範囲である。
Cr: 5.0% or less Cr makes the rust formed on the surface layer amorphous and dense, contributes to the improvement of corrosion resistance, and effectively acts to improve the hardenability similarly to Mn. . Such an effect is exhibited in accordance with the amount of Cr, even if present in a very small amount.
It is particularly effective when added at not less than 05%. However, if it is added in excess of 5.0%, the carbide hardly dissolves during quenching, which adversely affects the strength and hardness. The more preferable content of Cr is 0.1.
It is in the range of 2 to 1.5%.

【0026】V:0.5%以下 Vは微量でも存在すればその存在量に応じて炭・窒・硫
化物よりなる微細析出物を形成して耐水素脆性および疲
労特性を一段と高める作用を発揮するばかりでなく、結
晶粒微細化効果を発揮して靭性や耐力を高め、更には耐
食性や耐へたり性の向上にも寄与する。しかし多過ぎる
と、焼き入れ加熱時にオーステナイト中に固溶されない
炭化物量が増大して満足な強度と硬さが得られにくくな
るので、0.5%以下、より好ましくは0.05%以上
0.3%以下に抑えるべきである。
V: 0.5% or less If V exists even in a trace amount, it forms fine precipitates of carbon, nitrogen, and sulfide in accordance with the amount of V, and exhibits an effect of further increasing hydrogen embrittlement resistance and fatigue characteristics. In addition, it exerts a crystal grain refinement effect to increase toughness and proof stress, and further contributes to improvement in corrosion resistance and sag resistance. However, if it is too large, the amount of carbides not solid-dissolved in austenite at the time of quenching heating increases, and it becomes difficult to obtain satisfactory strength and hardness, so that it is 0.5% or less, more preferably 0.05% or more. Should be kept below 3%.

【0027】Mo:1.0%以下 Moは、微量でも存在すればその存在量に応じて焼入性
を向上させると共に、腐食溶解時に生成するモリブデー
トイオンの吸着作用によって耐食性を高める作用も有し
ており、更には粒界強度を高めて耐水素脆性を改善する
効果も発揮する。これらの作用は0.05%以上、好ま
しくは0.1%以上含有させることによって有効に発揮
される。しかし、それらの効果は約1.0%で飽和する
ので、それ以上の添加は経済的に全く無駄である。
Mo: 1.0% or less Mo, if present even in a trace amount, has the effect of improving the hardenability in accordance with the amount present, and also has the effect of increasing the corrosion resistance by adsorbing molybdate ions generated during corrosion dissolution. Further, it also has the effect of increasing the grain boundary strength and improving hydrogen embrittlement resistance. These effects are effectively exhibited by containing 0.05% or more, preferably 0.1% or more. However, their effect saturates at about 1.0%, so further additions are economically entirely useless.

【0028】Al,B,Co,Wよりなる群から選択さ
れる少なくとも1種 いずれも靭性を高めて耐へたり性の向上に寄与する元素
であり、またAlは結晶粒度を微細化して耐力比を向上
させ、Bは焼入性の向上により粒界強度を高める作用を
有し、CoとWは焼入れ焼戻し後の強度と硬さを高める
他、Bは表面に生成する錆を緻密化して耐食性を高め、
Wは腐食溶解時にタングステン酸塩イオンを形成して耐
食性の向上に寄与する。これら元素の作用は、Al:
0.005%程度以上、B:1ppm程度以上、Co:
0.01%程度以上、W:0.01%程度以上の添加で
有効に発揮されるが、Alが1.0%を超えると酸化物
系介在物の生成量が増大すると共にそのサイズも粗大化
して疲労特性に悪影響を及ぼし、BおよびCoの上記添
加効果は約50ppmおよび5.0%で飽和するので、
それ以上の添加は経済的に無駄であり、またW量が1.
0%を超えると素材靭性に悪影響を及ぼす様になる。こ
れらの観点から上記元素のより好ましい含有量は、A
l:0.01〜0.5%、B:5〜30ppm、Co:
0.5〜3.0%、W:0.1〜0.5%の範囲であ
る。
At least one element selected from the group consisting of Al, B, Co, and W is an element that enhances toughness and contributes to improvement in sag resistance, and Al reduces the yield strength by reducing the crystal grain size. B has the effect of increasing the grain boundary strength by improving the hardenability, while Co and W increase the strength and hardness after quenching and tempering, and B makes the rust generated on the surface denser and has corrosion resistance. To increase
W forms tungstate ions at the time of corrosion dissolution and contributes to improvement of corrosion resistance. The action of these elements is Al:
About 0.005% or more, B: about 1 ppm or more, Co:
It is effective when added at about 0.01% or more and W: about 0.01% or more. However, when Al exceeds 1.0%, the amount of oxide-based inclusions increases and the size thereof is coarse. And adversely affect fatigue properties, and the above effect of adding B and Co saturates at about 50 ppm and 5.0%.
Further addition is economically wasteful, and W content is 1.
If it exceeds 0%, the material toughness is adversely affected. From these viewpoints, a more preferable content of the above element is A
l: 0.01 to 0.5%, B: 5 to 30 ppm, Co:
0.5-3.0%, W: 0.1-0.5%.

【0029】Ca,La,Ce,Remの1種以上 これらの元素はいずれも耐食性の向上に寄与する元素で
あり、又Caは更に強脱酸元素としての作用を発揮して
鋼中の酸化物系介在物を微細化して靭性の向上にも寄与
する。これらの元素によって耐食性が高められる理由
は、次の様に考えられる。即ち鋼の腐食が進行していく
際に、腐食疲労の起点となる腐食ピット内では、 Fe→Fe2++2e- Fe2++2H2 O→Fe(OH)2 +2H+ の反応が起こり、腐食ピット内部が酸性化すると共に、
電気的中性を保つために外部よりCl- イオンが集ま
り、腐食ピット内部の液性が厳しくなって腐食ピットの
成長が促進される。ところが鋼中に適量のCa,La,
Ce,Remが存在するとこれらは鉄と共に溶解する
が、これらの元素は塩基性元素であるため液性も塩基性
化し、その結果、腐食ピット内部の液が中性化されて該
ピットのその後の成長が著しく抑制されるためと考えら
れる。こうした効果は、Caで0.1ppm以上、L
a,Ce,Remでは夫々0.001%以上、より確実
には0.005%以上含有させることによって有効に発
揮されるが、Ca量が200ppm以上になると製鋼時
における炉壁耐火物の損傷が著しくなり、またLa,C
e,Remの効果は夫々約0.1%で飽和するため、そ
れ以上の添加は経済的に無駄である。
One or more of Ca, La, Ce, and Rem These elements are all elements that contribute to the improvement of corrosion resistance, and Ca further acts as a strongly deoxidizing element to form oxides in steel. It refines system inclusions and contributes to improvement of toughness. The reason why the corrosion resistance is enhanced by these elements is considered as follows. In other words, as the corrosion of steel progresses, a reaction of Fe → Fe 2+ + 2e Fe 2+ + 2H 2 O → Fe (OH) 2 + 2H + occurs in the corrosion pit which is the starting point of corrosion fatigue, As the inside of the pit acidifies,
Cl - ions collect from the outside to maintain electrical neutrality, and the liquidity inside the corrosion pit becomes severe, thereby promoting the growth of the corrosion pit. However, an appropriate amount of Ca, La,
When Ce and Rem are present, they dissolve together with iron, but since these elements are basic elements, the liquidity is also basified. As a result, the liquid inside the corrosion pit is neutralized and the pit after the pit is neutralized. It is considered that the growth was significantly suppressed. These effects are attained by 0.1 ppm or more of Ca and L
In a, Ce, and Rem, 0.001% or more, and more certainly 0.005% or more, respectively, can be effectively used, but when the Ca content is 200 ppm or more, damage to the furnace wall refractories during steelmaking is caused. And La, C
Since the effects of e and Rem saturate at about 0.1% each, further addition is economically useless.

【0030】また、上記成分組成のばね鋼を懸架ばね等
のばねに加工する場合、鋳片を熱間圧延して線状に加工
した後焼入れ焼戻し処理し、或はオイルテンパー処理を
施して所定の素線硬さ(引張強度)に調質してからばね
状に加工されるが、その際、旧オーステナイト粒径が2
0μm以下(より好ましくは15μm以下)、硬さがH
RC50以上(より好ましくは52以上)、破壊靭性値
ICが40MPa√m以上(より好ましくは50MPa
√m以上)となる様に調整することが望ましい。
When the spring steel having the above-mentioned composition is processed into a spring such as a suspension spring, the cast slab is hot-rolled and processed into a linear shape, followed by quenching and tempering or oil tempering. After being refined to a strand hardness (tensile strength) of the steel, it is processed into a spring shape.
0 μm or less (more preferably 15 μm or less) and hardness H
RC50 or more (more preferably 52 or more), fracture toughness value K IC is 40 MPa√m or more (more preferably 50 MPa
以上 m or more).

【0031】しかして、旧オーステナイト結晶粒径が2
0μm以下のものでは、該微細な結晶粒界に生成する前
記炭・窒・硫化物も極めて微細なものとなり、靭性や疲
労特性には殆んど悪影響を及ぼすことなく拡散性水素ト
ラップとしての機能を有効に発揮し得るものとなるから
である。この様な結晶粒径を得るには、オーステナイト
化熱処理条件を適正に調整すればよい。
Thus, the prior austenite grain size was 2
When the thickness is less than 0 μm, the carbon / nitride / sulfide generated at the fine crystal grain boundaries is also extremely fine, and functions as a diffusible hydrogen trap with almost no adverse effect on toughness and fatigue characteristics. It is because it becomes possible to exhibit the effect effectively. In order to obtain such a crystal grain size, the austenitizing heat treatment conditions may be appropriately adjusted.

【0032】また、高強度懸架ばね等として満足のいく
耐久性や耐へたり性を確保するうえで、焼入れ焼戻し後
の素線硬さも重要であり、懸架ばねとして満足のいく耐
久性と耐へたり性を確保するには、焼入れ焼戻し後の素
線硬さでHRC50以上、破壊靭性値で40MPa√m
以上を確保するのがよく、HRC50未満では耐久性や
耐へたり性が不足気味となり、また破壊靭性値が40M
Pa√m未満では、靭性不足により満足のいく耐水素脆
性が発揮されにくくなる。耐久性、耐へたり性、耐水素
脆性等を総合的に考慮してより好ましい硬さはHRC5
2以上、破壊靭性値は50MPa√m以上である。
In order to ensure satisfactory durability and sag resistance as a high-strength suspension spring, the strand hardness after quenching and tempering is also important, so that the suspension spring has satisfactory durability and durability. In order to secure the rust resistance, the wire hardness after quenching and tempering is HRC 50 or more, and the fracture toughness value is 40 MPa√m.
It is preferable to secure the above, and if the HRC is less than 50, the durability and the sag resistance tend to be insufficient, and the fracture toughness value is 40 M
If it is less than Pa√m, satisfactory hydrogen embrittlement resistance is hardly exhibited due to insufficient toughness. The more preferable hardness is HRC5 in consideration of durability, sag resistance, hydrogen embrittlement resistance and the like.
2 or more, and the fracture toughness value is 50 MPa√m or more.

【0033】[0033]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited by the following examples, and the present invention can be practiced with appropriate modifications within a range that can conform to the spirit of the preceding and following examples. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0034】実施例1 表1に示すNo.1〜19の化学成分の鋼材を溶製した
後、造塊法または連続鋳造法によって鋳造し、その後分
塊圧延によって155mm角のビレットを作製し、更に
熱間圧延によって直径14mmの線材に加工した。各線
材を直径12.5mmまで引き抜き加工してから焼入れ
焼戻し処理を行ない、機械加工によって板状試験片を作
製した後、塩化浴(2.2mol ZnCl2 :5.5mol
NH4 Clベース)を用いて電気亜鉛めっき(めっき厚
さ10μm)を施して犠牲アノードとして機能する防食
膜を形成し、当該試験片を試験に供した。なお、引張強
度については、焼戻し温度により調整した。
Example 1 A steel material having a chemical composition of Nos. 1 to 19 shown in Table 1 was melted, cast by an ingot casting method or a continuous casting method, and then a 155 mm square billet was produced by slab rolling. Further, it was processed into a wire rod having a diameter of 14 mm by hot rolling. Each wire is drawn out to a diameter of 12.5 mm, then quenched and tempered, and a plate-like test piece is produced by machining, followed by a chloride bath (2.2 mol ZnCl 2 : 5.5 mol).
An anticorrosion film functioning as a sacrificial anode was formed by electrogalvanizing (plating thickness: 10 μm) using NH 4 Cl (based on NH 4 Cl), and the test piece was subjected to a test. The tensile strength was adjusted by the tempering temperature.

【0035】同表中の「めっき脆性」については、電気
亜鉛めっき(膜厚10μm)後、直ちに引張強度の60
%の応力を負荷しながら放置しておき、割れを生じたも
のに対して同欄中に「●」を付す一方、割れを生じなか
ったものに対して同欄中に「○」を付している。
The “plating brittleness” in the same table means that immediately after the electrogalvanizing (thickness: 10 μm), the tensile strength was 60%.
% While applying a stress of%, and those with cracks are marked with "●" in the same column, while those without cracks are marked with "○" in the same column. ing.

【0036】また、試験片のうち割れを生じなかったも
のについてのみ引張強度の80%の一定負荷を与えなが
ら、8時間の塩水噴霧処理(35℃、5%NaCl)と
16時間の恒温恒湿処理(35℃、60%相対湿度)と
を繰り返す複合サイクル試験を行い、亜鉛めっき(防食
膜)の表面に赤錆が発生した時点で試験を停止すること
とし、その試験中に割れが生じたものに対して「遅れ破
壊」の欄中に「●」を付す一方、割れを生じなかったも
のに対して同欄中に「○」を付している。表1に本発明
の比較例(No. 1〜6)および本発明例(No. 7〜1
9)の鋼材組成と、環境脆化(めっき脆性および遅れ破
壊)に対する性能試験結果を示す。
In addition, while applying a constant load of 80% of the tensile strength only to the test pieces which did not crack, a salt spray treatment (35 ° C., 5% NaCl) for 8 hours and constant temperature and humidity for 16 hours A composite cycle test that repeats the treatment (35 ° C, 60% relative humidity) is performed, and the test is stopped when red rust is generated on the surface of the galvanized (anticorrosion film), and cracks occur during the test Are given in the column of “Delayed fracture”, while those that did not crack are marked with a “○” in the same column. Table 1 shows Comparative Examples (Nos. 1 to 6) of the present invention and Examples of the present invention (Nos. 7 to 1).
9) shows the steel material composition and the performance test results for environmental embrittlement (plating embrittlement and delayed fracture).

【0037】[0037]

【表1】 [Table 1]

【0038】表1より次の様に考察することができる。
比較例(No. 1〜6)から明らかなように引張強度が1
800MPaを超えるばね鋼母材に犠牲アノードとして
機能する防食膜(この実施例では電気亜鉛めっき膜)を
被覆すると、めっき脆化あるいは遅れ破壊が生じてばね
の環境脆性は低くなっているが、本発明で規定したよう
にばね鋼母材が炭窒化物形成元素を含有する本発明例
(No. 7〜19)では、防食膜を被覆した場合であって
も、めっき脆化および遅れ破壊のいずれも発生していな
い。したがって、同表から、本発明によれば高い耐環境
脆性を有するばねが得られることがわかる。
The following can be considered from Table 1.
As apparent from the comparative examples (Nos. 1 to 6), the tensile strength was 1
When a spring steel base material exceeding 800 MPa is coated with an anticorrosion film (electrogalvanized film in this embodiment) functioning as a sacrificial anode, plating embrittlement or delayed fracture occurs, and the environmental embrittlement of the spring is reduced. In the present invention examples (Nos. 7 to 19) in which the spring steel base material contains a carbonitride forming element as specified in the present invention, even when the anticorrosion film is coated, either of the plating embrittlement or the delayed fracture occurs. Also has not occurred. Therefore, it can be seen from the table that a spring having high environmental brittleness resistance can be obtained according to the present invention.

【0039】実施例2 また、以下の実施例2から、上記したようにばね鋼母材
の鋼成分を調整することでばね鋼母材自体の特性を高め
ることができ、ばねの特性を高めることができることが
わかる。
Example 2 From Example 2 below, the characteristics of the spring steel base material itself can be improved by adjusting the steel composition of the spring steel base material as described above, and the characteristics of the spring can be improved. You can see that you can do it.

【0040】表2,3に示すNo.21〜53の化学成分
の鋼材を溶製した後、造塊法または連続鋳造法によって
鋳造し、その後分塊圧延によって155mm角のビレッ
トを作製し、更に熱間圧延によって直径14mmの線材
に加工した。各線材を直径12.5mmまで引き抜き加
工してから焼入れ焼戻し処理を行ない、機械加工によっ
て破壊靭性試験片、水素脆化試験片、回転曲げ腐食疲労
試験片および回転曲げ疲労試験片を作製した。尚焼戻し
条件は、350〜450℃×1時間の範囲で硬さがHR
C53〜55となる様に調整した。
After smelting steel materials having the chemical components of Nos. 21 to 53 shown in Tables 2 and 3, they are cast by an ingot casting method or a continuous casting method, and thereafter, 155 mm square billets are produced by slab rolling. It was processed into a wire rod having a diameter of 14 mm by hot rolling. Each wire was drawn out to a diameter of 12.5 mm, and then quenched and tempered, and a fracture toughness test piece, a hydrogen embrittlement test piece, a rotary bending corrosion fatigue test piece and a rotary bending fatigue test piece were produced by machining. The tempering condition is that the hardness is HR in the range of 350 to 450 ° C. × 1 hour.
C53-55 was adjusted.

【0041】破壊靭性試験片はCT試験片で、長さ約3
mmの疲労予亀裂を導入したものを使用し、10トン・
オートグラフ引張試験機を用いて大気中室温で試験を行
なった。腐食疲労試験は、35℃の5%NaCl水溶液
を試験片に滴下する方式で行ない、試験片には全て同一
条件のショットピーニング処理を行ない、応力784M
Pa、回転速度100rpmで行なった。水素脆化割れ
試験は、陰極チャージによる4点曲げで0.5mol/
1−H2 SO4 と0.01mol/1−KSCN(チオ
シアン酸カリウム)混合溶液中に試験片を浸漬し、ポテ
ンショスタットを用いて−700mV vs SCEの
電圧をかけて行なった。応力は曲げ応力で1400MP
aとした。回転曲げ疲労試験は、試験片に全て同一の条
件でショットピーニング処理を施し、応力881MP
a、試験本数各10本とし、1.0×107 回で試験中
止とした。
The fracture toughness test piece is a CT test piece having a length of about 3
mm with a pre-fatigue crack of 10 mm
The test was performed at room temperature in the air using an autograph tensile tester. The corrosion fatigue test was conducted by dropping a 5% aqueous solution of NaCl at 35 ° C. onto the test pieces, and all the test pieces were subjected to a shot peening treatment under the same conditions, and a stress of 784 M
The test was performed at Pa and a rotation speed of 100 rpm. Hydrogen embrittlement cracking test is 0.5mol /
1-H 2 SO 4 and 0.01mol / 1-KSCN (potassium thiocyanate) was immersed specimen in the mixed solution was performed by applying a voltage of -700 mV vs SCE using potentiostat. The stress is a bending stress of 1400MP
a. In the rotating bending fatigue test, the test pieces were all subjected to shot peening under the same conditions, and the stress was 881MP.
a, the number of test pieces was 10 each, and the test was stopped at 1.0 × 10 7 times.

【0042】またTi,Nb,Vの炭・窒・硫化物の大
きさと個数の測定にはEPMAを使用した。即ち、回転
曲げ試験片の縦断面(中心線を通る)の表面から深さ
0.3mmよりも内部において被検面積(長辺/短辺=
5、表層から深さ0.3mmの部分に長辺が接する)2
0mm2 を網羅する様に自動運転して全介在物をピック
アップし、平均粒子径3μm以上の介在物の大きさと組
成分析を行なった。また平均粒子径が3μm未満の析出
物については、水素脆化試験後の試験片を使用し、EP
MAおよびAuger電子分光装置を用いて各鋼種の合
計20視野を観察して析出物の組成を同定すると共に、
写真撮影(1000〜20000倍)によってその大き
さと個数を測定し、個数については被検面積20mm2
として換算して求めた。表2に本発明の鋼材組成を、ま
た表3に比較例の鋼材組成を示し、また表4,5に性能
試験結果を示す。
EPMA was used to measure the size and number of carbon, nitrogen and sulfide of Ti, Nb and V. That is, the area to be inspected (long side / short side =
5. The long side is in contact with the part 0.3 mm deep from the surface layer) 2
All the inclusions were picked up by automatic operation so as to cover 0 mm 2, and the size and composition of the inclusions having an average particle diameter of 3 μm or more were analyzed. For precipitates having an average particle size of less than 3 μm, the test piece after the hydrogen embrittlement test was used and EP
Using a MA and an Auger electron spectrometer, a total of 20 fields of each steel type were observed to identify the composition of the precipitate,
Photographed and measuring the size and number by (1,000 to 20,000 times), for the number inspection area 20 mm 2
It was obtained by conversion. Table 2 shows the steel composition of the present invention, Table 3 shows the steel composition of the comparative example, and Tables 4 and 5 show the performance test results.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】表2〜5より次の様に考察することができ
る。本発明の規定要件を全て満足するNo.21〜41
の実施例は、耐水素脆性、腐食疲労寿命、疲労特性のい
ずれにおいても良好な結果が得られている。特に耐水素
脆性について、Ti,Nbを含まないNo.42,43
の比較例と対比すると、実施例の方が格段に優れている
ことが分かる。
From Tables 2 to 5, it can be considered as follows. No. satisfying all the requirements of the present invention. 21-41
In Examples of the present invention, good results were obtained in hydrogen embrittlement resistance, corrosion fatigue life, and fatigue properties. In particular, regarding hydrogen embrittlement resistance, No. 42, 43
It can be seen that the example is much better than the comparative example.

【0048】また実施例の中でも、適量のVを含むもの
は、Vを含まない他の実施例に比べて耐水素脆性、腐食
疲労寿命、疲労特性のいずれにおいても良好な結果を示
している。また、C含有量が0.30〜0.50%の最
適範囲内にある鋼種(No.23〜41)は破壊靭性値
が高く水素脆化割れ寿命も長くなっている。主たる含有
元素については規定要件を満足するものであっても、不
純物元素であるPやS、あるいはZn,Sn,As,S
b等の含有量が多く、その為に粗大介在物サイズと個数
が好適要件を外れる比較例(No.46)では、水素脆
化割れ寿命の改善効果が殆んど発揮されなくなる。
Among the examples, those containing an appropriate amount of V showed better results in all of hydrogen embrittlement resistance, corrosion fatigue life, and fatigue properties as compared with other examples not containing V. Further, steel types (Nos. 23 to 41) having a C content within the optimum range of 0.30 to 0.50% have a high fracture toughness value and a long hydrogen embrittlement crack life. Even if the main contained element satisfies the specified requirements, the elemental element P or S, or Zn, Sn, As, S
In the comparative example (No. 46) in which the content of b and the like is large and the size and the number of coarse inclusions deviate from the suitable requirements, the effect of improving the hydrogen embrittlement cracking life is hardly exhibited.

【0049】腐食耐久性を考慮してNo22〜26の如
くNi,Cr,Moを適量含有させたものでは、これら
を含まないNo.21の実施例(但し、少量のCrが含
まれている)に比べて腐食疲労寿命が格段に高まること
が分かる。更に、強度と靭性を高めるため適量のAl,
B,Co,Wを積極添加した鋼種(No.27〜30)
では、耐水素脆性、腐食疲労寿命のいずれにおいてもN
o.22〜26と同等レベルの優れた特性を示してい
る。耐食性向上を目的として適量のCa,La,Ce,
Remを添加した鋼種(No.31〜34)は、比較鋼
種(No.42〜53)に比べて腐食疲労寿命の向上が
明確に表われている。
In the case where Ni, Cr and Mo are appropriately contained as in Nos. 22 to 26 in consideration of corrosion durability, No. It can be seen that the corrosion fatigue life is significantly longer than that of Example 21 (however, a small amount of Cr is contained). Furthermore, in order to increase strength and toughness, a proper amount of Al,
Steel type to which B, Co, and W are positively added (Nos. 27 to 30)
For both hydrogen embrittlement resistance and corrosion fatigue life,
o. It shows excellent characteristics on the same level as 22 to 26. Suitable amounts of Ca, La, Ce, for the purpose of improving corrosion resistance
The steel types (Nos. 31 to 34) to which Rem is added clearly show an improvement in the corrosion fatigue life as compared with the comparative steel types (Nos. 42 to 53).

【0050】析出物のサイズと個数の影響を見ると、本
発明の好適要件を満たすものでは疲労試験による介在物
切損がなく、疲労特性に悪影響を及ぼしていないことが
分かる。これに対してNo.44,45は、凝固時の冷
却速度を遅くすることにより粗大な介在物を多量生成さ
せた比較例であり、粗大介在物起因の折損の確率が高く
なり、疲労寿命が極端に低下している。
Looking at the influence of the size and the number of the precipitates, it can be seen that those satisfying the preferred requirements of the present invention have no inclusion breakage by the fatigue test and do not adversely affect the fatigue properties. On the other hand, No. Nos. 44 and 45 are comparative examples in which a large amount of coarse inclusions were generated by slowing down the cooling rate during solidification, and the probability of breakage due to the coarse inclusions increased, and the fatigue life was extremely reduced. .

【0051】鋼中の主要元素であるC,Si,Mnにつ
いては、C量が不足気味であるものでは焼入れ焼戻し後
の強度がやや低く、逆に多過ぎるもの(No.47)で
は、破壊靭性値が低下すると共に水素脆化割れ寿命も悪
くなる傾向がうかがわれる。Si量が不足気味であるも
のでは硬さやや不足し、逆に多過ぎるNo.48では靭
性がやや低くなっている。またMn量が不足気味である
ものでは焼きが入りにくくなって硬さ不足となる傾向が
うかがわれる。更にMn,Cr,Mo量が多過ぎるもの
(No.49〜51)では、残留オーステナイトが多量
に存在することによる硬さ不足の傾向が表われている。
また、NやS含有量が規定要件を外れる比較例(No.
52,53)では、Ti,Nb炭・窒・硫化物よりなる
粗大介在物の個数が多くなり、疲労特性等の劣化が著し
いことが分かる。
Regarding C, Si and Mn, which are the main elements in the steel, the strength after quenching and tempering is slightly lower when the amount of C is slightly insufficient, and when the amount is too large (No. 47), the fracture toughness is higher. It can be seen that the hydrogen embrittlement crack life tends to decrease as the value decreases. When the amount of Si is slightly insufficient, the hardness is slightly insufficient. In No. 48, the toughness is slightly low. In addition, if the Mn content tends to be insufficient, it tends to be difficult to burn and the hardness tends to be insufficient. Furthermore, when the amounts of Mn, Cr, and Mo are too large (Nos. 49 to 51), the tendency of insufficient hardness due to the presence of a large amount of retained austenite appears.
Comparative examples in which the N and S contents are outside the specified requirements (No.
52, 53), it can be seen that the number of coarse inclusions composed of Ti, Nb charcoal, nitrogen, and sulfide increases, and that the fatigue characteristics and the like are significantly deteriorated.

【0052】[0052]

【発明の効果】以上のように、この発明によれば、ばね
鋼母材の表面の少なくとも一部を犠牲アノードとして機
能する防食膜で被覆することでカソード防食するととも
に、当該ばね鋼母材に炭窒化物形成元素を添加すること
で前記ばね鋼母材中に炭窒化物を微分散させているた
め、防食膜を形成することにより発生する水素をトラッ
プすることができ、腐食疲労や遅れ破壊などの抑制し、
耐環境脆性を向上させることができる。
As described above, according to the present invention, at least a part of the surface of the spring steel base material is covered with the anticorrosion film functioning as a sacrificial anode to perform cathodic protection, and the spring steel base material Since the carbonitride is finely dispersed in the spring steel base material by adding the carbonitride forming element, hydrogen generated by forming the anticorrosion film can be trapped, thereby causing corrosion fatigue and delayed fracture. Such as suppression,
Environmental brittleness resistance can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 茨木 信彦 神戸市灘区灘浜東町2番地 株式会社神戸 製鋼所神戸製鉄所内 (72)発明者 家口 浩 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 難波 茂信 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuhiko Ibaraki 2 Nadahama-Higashi-cho, Nada-ku, Kobe Inside Kobe Steel, Ltd.Kobe Steel Works (72) Inventor Hiroshi Ieguchi 1-5-5 Takatsukadai, Nishi-ku, Kobe Stock Company Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Shigenobu Namba 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Kobe Steel Works Kobe Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ばね鋼母材の表面の少なくとも一部が犠
牲アノードとして機能する防食膜で被覆されたばねにお
いて、 前記ばね鋼母材に炭窒化物形成元素が添加されて前記ば
ね鋼母材中に炭窒化物が微分散していることを特徴とす
る環境脆性の良好な高強度ばね。
1. A spring in which at least a part of a surface of a spring steel base material is coated with an anticorrosion film functioning as a sacrificial anode, wherein a carbonitride forming element is added to the spring steel base material, and High strength spring with good environmental embrittlement, characterized in that carbonitrides are finely dispersed in the spring.
【請求項2】 前記ばね鋼母材が、 前記炭窒化物形成元素として、 Ti:0.001〜0.5%(質量%を意味する、以下
同じ) Nb:0.001〜0.5% Ta:0.001〜0.5% の少なくとも1種の元素を含有すると共に、 N:0.001〜0.02% を含有する請求項1記載の環境脆性の良好な高強度ば
ね。
2. The spring steel base material comprises: Ti: 0.001 to 0.5% (meaning mass%, the same applies hereinafter) Nb: 0.001 to 0.5% as the carbonitride forming element The high-strength spring with good environmental embrittlement according to claim 1, containing at least one element of Ta: 0.001 to 0.5% and N: 0.001 to 0.02%.
【請求項3】 前記防食膜が、前記ばね鋼母材よりも電
気化学的に卑な金属またはその合金からなる請求項1ま
たは2記載の環境脆性の良好な高強度ばね。
3. The high-strength spring according to claim 1, wherein the anticorrosion film is made of a metal or an alloy thereof that is electrochemically lower than the spring steel base material.
【請求項4】 前記防食膜が、前記ばね鋼母材よりも電
気化学的に卑な金属またはその合金を非金属膜中に多数
分散させたものである請求項1または2記載の環境脆性
の良好な高強度ばね。
4. The environmental embrittlement according to claim 1, wherein the anticorrosion film is formed by dispersing a large number of metals or alloys which are electrochemically lower than the spring steel base material in a nonmetal film. Good high strength spring.
【請求項5】 前記ばね鋼母材が、C:0.7%以下、
Si:0.1〜4.0%およびMn:0.01〜2.0
%を含有するばね鋼である請求項1ないし4のいずれか
に記載の環境脆性の良好な高強度ばね。
5. The method according to claim 1, wherein the spring steel base material has C: 0.7% or less,
Si: 0.1 to 4.0% and Mn: 0.01 to 2.0
The high-strength spring having good environmental embrittlement according to any one of claims 1 to 4, wherein the high-strength spring is a spring steel containing 0.1% by weight.
JP9003271A 1997-01-10 1997-01-10 High strength spring with excellent environmental brittleness resistance Pending JPH10196697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9003271A JPH10196697A (en) 1997-01-10 1997-01-10 High strength spring with excellent environmental brittleness resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9003271A JPH10196697A (en) 1997-01-10 1997-01-10 High strength spring with excellent environmental brittleness resistance

Publications (1)

Publication Number Publication Date
JPH10196697A true JPH10196697A (en) 1998-07-31

Family

ID=11552795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9003271A Pending JPH10196697A (en) 1997-01-10 1997-01-10 High strength spring with excellent environmental brittleness resistance

Country Status (1)

Country Link
JP (1) JPH10196697A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998051834A1 (en) * 1997-05-12 1998-11-19 Nippon Steel Corporation High-toughness spring steel
JP2001288539A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
JP2006152351A (en) * 2004-11-26 2006-06-15 Toyo Kohan Co Ltd Material for spring and producing method therefor
JP2007031747A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Steel wire rod for spring, and method for judging its fatigue resistance
JP2009013436A (en) * 2007-06-29 2009-01-22 Piolax Inc Spring workpiece and manufacturing method therefor
WO2011121887A1 (en) 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
JP2015163735A (en) * 2014-01-29 2015-09-10 株式会社神戸製鋼所 Spring steel wire material excellent in fatigue characteristic and spring
WO2016186033A1 (en) * 2015-05-15 2016-11-24 新日鐵住金株式会社 Spring steel
WO2017002806A1 (en) * 2015-06-29 2017-01-05 日本発條株式会社 Elastic member and wire rod for elastic member
US9573432B2 (en) 2013-10-01 2017-02-21 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
CN110423953A (en) * 2019-08-21 2019-11-08 马鞍山钢铁股份有限公司 The excellent hot formed member and preparation method thereof of a kind of 1800MPa grades of tensile strength or more of cold-bending property

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406565B1 (en) 1997-05-12 2002-06-18 Nippon Steel Corporation High toughness spring steel
WO1998051834A1 (en) * 1997-05-12 1998-11-19 Nippon Steel Corporation High-toughness spring steel
JP2001288539A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
JP4580739B2 (en) * 2004-11-26 2010-11-17 東洋鋼鈑株式会社 Spring material and manufacturing method thereof
JP2006152351A (en) * 2004-11-26 2006-06-15 Toyo Kohan Co Ltd Material for spring and producing method therefor
JP4515347B2 (en) * 2005-07-22 2010-07-28 株式会社神戸製鋼所 Method for determining fatigue resistance of spring steel wires and spring steel wires
JP2007031747A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Steel wire rod for spring, and method for judging its fatigue resistance
JP2009013436A (en) * 2007-06-29 2009-01-22 Piolax Inc Spring workpiece and manufacturing method therefor
WO2011121887A1 (en) 2010-03-29 2011-10-06 Jfeスチール株式会社 Spring steel and method of manufacture for same
US8608874B2 (en) 2010-03-29 2013-12-17 Jfe Steel Corporation Spring steel and method for manufacturing the same
US9618070B2 (en) 2010-03-29 2017-04-11 Jfe Steel Corporation Spring steel and method for manufacturing the same
US9573432B2 (en) 2013-10-01 2017-02-21 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
US9890440B2 (en) 2013-10-01 2018-02-13 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
JP2015163735A (en) * 2014-01-29 2015-09-10 株式会社神戸製鋼所 Spring steel wire material excellent in fatigue characteristic and spring
CN107614723A (en) * 2015-05-15 2018-01-19 新日铁住金株式会社 Spring steel
WO2016186033A1 (en) * 2015-05-15 2016-11-24 新日鐵住金株式会社 Spring steel
JPWO2016186033A1 (en) * 2015-05-15 2018-04-05 新日鐵住金株式会社 Spring steel
US10724125B2 (en) 2015-05-15 2020-07-28 Nippon Steel Corporation Spring steel
WO2017002806A1 (en) * 2015-06-29 2017-01-05 日本発條株式会社 Elastic member and wire rod for elastic member
EP3315811A4 (en) * 2015-06-29 2019-03-13 NHK Spring Co., Ltd. Elastic member and wire rod for elastic member
US10591011B2 (en) 2015-06-29 2020-03-17 Nhk Spring Co., Ltd. Elastic member and wire for elastic member
US11028893B2 (en) 2015-06-29 2021-06-08 Nhk Spring Co., Ltd. Elastic member and wire for elastic member
CN110423953A (en) * 2019-08-21 2019-11-08 马鞍山钢铁股份有限公司 The excellent hot formed member and preparation method thereof of a kind of 1800MPa grades of tensile strength or more of cold-bending property

Similar Documents

Publication Publication Date Title
EP3517644B1 (en) Steel sheet
KR101402503B1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
CN110777290B (en) Hot-dip galvanized aluminum-magnesium high-strength steel, preparation method and application
EP2762590A1 (en) Galvanized steel sheet and method of manufacturing same
EP3561135B1 (en) Hot-dipped galvanized steel material having excellent weldability and press workability and manufacturing method therefor
EP3561141A1 (en) Hot dip aluminized steel material having excellent corrosion resistance and workability, and manuracturing method therefor
KR101668638B1 (en) Hot-dip galvannealed steel sheet
KR101943240B1 (en) Structural steel material having excellent atmospheric corrosion resistance
JP3753088B2 (en) Steel material for cargo oil tanks
KR20180095698A (en) High Yield High Strength Galvanized Steel Sheet and Method for Manufacturing the Same
JP5796549B2 (en) Steel material for weatherproof bolts
US20220064766A1 (en) Bolt, and steel material for bolts
JP2002180187A (en) High strength and high toughness weather resistant steel having excellent shade weather resistance
JPH10196697A (en) High strength spring with excellent environmental brittleness resistance
JP3474373B2 (en) Spring steel with excellent hydrogen embrittlement resistance and fatigue properties
JPH10287958A (en) High strength spring excellent in immunity to environmental embrittlement
JP3219686B2 (en) Spring steel excellent in hydrogen embrittlement resistance and fatigue properties, method for manufacturing the spring steel, and spring using the spring steel
WO2017009936A1 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and production methods therefor
JP3524790B2 (en) Coating steel excellent in coating film durability and method for producing the same
JP4241552B2 (en) High-strength low-alloy steel with hydrogen penetration inhibition effect
JP6500848B2 (en) Steel for bolts
JPH10299803A (en) High strength spring favourable in environmental brittleness resistance
JP3294699B2 (en) Manufacturing method of high-strength and high-strength steel sheet with excellent perforated corrosion resistance
JP2002371342A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP6988858B2 (en) Steel for bolts

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030415