JPH1019398A - Multi-chanber type air conditioner - Google Patents

Multi-chanber type air conditioner

Info

Publication number
JPH1019398A
JPH1019398A JP8174748A JP17474896A JPH1019398A JP H1019398 A JPH1019398 A JP H1019398A JP 8174748 A JP8174748 A JP 8174748A JP 17474896 A JP17474896 A JP 17474896A JP H1019398 A JPH1019398 A JP H1019398A
Authority
JP
Japan
Prior art keywords
pressure
superheat
degree
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8174748A
Other languages
Japanese (ja)
Inventor
Takayuki Takatani
隆幸 高谷
Hiroshi Kitayama
浩 北山
Kazuo Nakatani
和生 中谷
Masataka Ozeki
正高 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP8174748A priority Critical patent/JPH1019398A/en
Publication of JPH1019398A publication Critical patent/JPH1019398A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the possibility of damaging a compressor due to liquid compression die to liquid return to the compressor and ensure the amount of a refrigerant corresponding to a load in a multi-chamber type or condition err using a non-azeortopic refrigerant. SOLUTION: The present multi-chamber type air conditioner includes a suction pressure sensor 17, an operation frequency detector 25, and a first pressure loss determination means 26 for determining pressure loss in accordance with a detected operation frequency of the operation frequency detector 35. In this case, an outdoor expansion valve 5 is controlled with a difference between detected temperature of the gas piping temperature sensor 18 and saturated temperature at pressure where these is added pressure determined by the first pressure loss determination means 26 to detected pressure by the suction pressure sensor 17 taken as the degree of superheat whereby the degree of superheat is accurately estimated with an inexpensive construction where by liquid compression is prevented and the amount of the refrigerant is ensured corresponding to a load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた多室型空気調和機に係わり、特に室外側膨張弁の
制御に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner using a non-azeotropic mixed refrigerant, and more particularly to control of an outdoor expansion valve.

【0002】[0002]

【従来の技術】従来のこの種の多室型空気調和機として
は、特開平4−190057号公報に掲載されたものが
ある。
2. Description of the Related Art A conventional multi-chamber air conditioner of this type is disclosed in Japanese Patent Application Laid-Open No. H4-190057.

【0003】以下、図面を参照しながら上述した公報の
従来の多室型空気調和機について説明する。
A conventional multi-room air conditioner disclosed in the above publication will be described below with reference to the drawings.

【0004】図7は従来の多室型空気調和機の冷凍サイ
クル図である。この図において、1は多室型空気調和機
の室外機であり、能力可変圧縮機2、四方弁3、室外側
熱交換器4、室外側膨張弁5より構成される。6a,6
bは室内機であり、それぞれ室内側膨張弁7a,7b、
室内側熱交換器8a,8bよりなり、室外機1に液管
9、ガス管10により並列に配管接続される。
FIG. 7 is a refrigeration cycle diagram of a conventional multi-room air conditioner. In this figure, reference numeral 1 denotes an outdoor unit of a multi-room air conditioner, which comprises a variable capacity compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and an outdoor expansion valve 5. 6a, 6
b denotes an indoor unit, and indoor expansion valves 7a and 7b, respectively.
It comprises indoor-side heat exchangers 8a and 8b, and is connected to the outdoor unit 1 in parallel by a liquid pipe 9 and a gas pipe 10.

【0005】11は冷媒過熱度検知手段であり室外側熱
交換器4と能力可変圧縮機2の中間に設置され、その位
置での冷媒過熱度を検知する。室外側熱交換器4と能力
可変圧縮機2の中間の過熱度を計算する冷媒過熱度検知
手段11及び冷媒過熱度検知手段11にて計算された過
熱度に基づいて室外側膨張弁5を動作させる室外側膨張
弁動作手段12を有しており、これらは制御装置13に
収納されている。冷媒過熱度検知手段11については、
詳細に記載されていないが、室外側熱交換器4と能力可
変圧縮機2の中間に設置した冷媒ガス温度センサー14
により検知された検知温度から第2の冷媒圧力センサー
15により検知された検知圧力における飽和温度を引い
た値を過熱度として検出していることは容易に予想され
る。
[0005] Reference numeral 11 denotes refrigerant superheat detecting means, which is provided between the outdoor heat exchanger 4 and the variable capacity compressor 2, and detects the refrigerant superheat at that position. Refrigerant superheat detection means 11 for calculating the degree of superheat between the outdoor heat exchanger 4 and the variable capacity compressor 2, and the outdoor expansion valve 5 is operated based on the superheat calculated by the refrigerant superheat detection means 11. There is an outdoor expansion valve operating means 12 to be operated, and these are housed in a control device 13. Regarding the refrigerant superheat detection means 11,
Although not described in detail, a refrigerant gas temperature sensor 14 installed between the outdoor heat exchanger 4 and the variable capacity compressor 2
It is easily anticipated that the value obtained by subtracting the saturation temperature at the detection pressure detected by the second refrigerant pressure sensor 15 from the detection temperature detected by the above is detected as the degree of superheat.

【0006】以上のように構成された多室型空気調和機
の動作について問題となる暖房運転のみ説明する。
The operation of the multi-room air conditioner configured as described above will be described only for the heating operation, which is a problem.

【0007】暖房運転について説明する。この場合の冷
媒の流れは実践矢印で表わし、各室内側膨張弁7は各室
内負荷に応じた開度である。
[0007] The heating operation will be described. The flow of the refrigerant in this case is represented by a practice arrow, and each indoor expansion valve 7 has an opening degree corresponding to each indoor load.

【0008】圧縮機2より吐出された冷媒は、四方弁3
を介しガス管10を通り、各室内側熱交換器8に流入
し、それぞれ凝縮液化され、室内側膨張弁7を通って液
管9に導かれる。そして室外側膨張弁5で低圧二相状態
まで減圧され、室外側熱交換器4に流入し、蒸発気化し
たあと、四方弁3を介し、圧縮機2に戻り、暖房運転を
行う。
The refrigerant discharged from the compressor 2 is supplied to the four-way valve 3
Through the gas pipe 10, flows into each indoor heat exchanger 8, is condensed and liquefied, and is guided to the liquid pipe 9 through the indoor expansion valve 7. Then, the pressure is reduced to a low-pressure two-phase state by the outdoor expansion valve 5, flows into the outdoor heat exchanger 4, evaporates and returns to the compressor 2 via the four-way valve 3, and performs a heating operation.

【0009】この時、冷媒過熱度検知手段11により算
出した過熱度に応じて、過熱度が大きくなると開成し、
過熱度が小さくなると閉成するよう室外側膨張弁動作手
段12は、室外側膨張弁5の開度を適宜制御し、冷媒を
低温低圧ガスとして、圧縮機1に戻している。
At this time, when the degree of superheat increases in accordance with the degree of superheat calculated by the refrigerant superheat degree detecting means 11, the refrigerant is opened.
The outdoor-side expansion valve operating means 12 appropriately controls the opening degree of the outdoor-side expansion valve 5 so as to close when the degree of superheat is reduced, and returns the refrigerant to the compressor 1 as a low-temperature low-pressure gas.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、室外側熱交換器と能力可変圧縮機の中間の
位置で冷媒過熱度検知を検知しているため、真の室外側
熱交換器出口の過熱度と異なり、最適な冷媒循環量に制
御することが困難であった。即ち、室外側熱交換器と能
力可変圧縮機の中間の位置までの冷媒配管と室外機内の
空気と熱交換し、実際の室外側熱交換器出口の過熱度よ
り高い値を検出し、室外側膨張弁動作手段により、室外
側膨張弁は開成する。このため冷媒は湿り状態となりそ
の結果、例えば圧縮機へ液戻りが生じて液圧縮に至り、
圧縮機を破損する危険性が高いという課題を有してい
た。
However, in the above-mentioned conventional construction, since the detection of the degree of superheat of the refrigerant is detected at a position intermediate between the outdoor heat exchanger and the variable capacity compressor, the true outdoor heat exchanger outlet is detected. In contrast to the degree of superheating, it was difficult to control the amount of the circulating refrigerant to an optimum amount. That is, the refrigerant exchanges heat with the refrigerant pipe and air in the outdoor unit up to the intermediate position between the outdoor heat exchanger and the variable capacity compressor, and detects a value higher than the actual superheat degree of the outdoor heat exchanger outlet, The outdoor expansion valve is opened by the expansion valve operating means. As a result, the refrigerant becomes moist, and as a result, for example, liquid returns to the compressor, leading to liquid compression,
There was a problem that the risk of damaging the compressor was high.

【0011】本発明は上記課題に鑑みなされたもので、
安価な方法で室外機出口の過熱度を算出でき、適切に室
外側膨張弁を制御することができるので、圧縮機への液
戻りによる液圧縮により、圧縮機を破損する危険性を回
避すると共に、負荷に応じた冷媒量を確保できる多室型
空気調和機を提供するものである。
The present invention has been made in view of the above problems, and
Since the degree of superheat at the outdoor unit outlet can be calculated by an inexpensive method, and the outdoor expansion valve can be appropriately controlled, the risk of damaging the compressor due to liquid compression by returning liquid to the compressor can be avoided. Another object of the present invention is to provide a multi-room air conditioner capable of securing a refrigerant amount according to a load.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
本発明の多室型空気調和機は、圧縮機、四方弁、室外側
熱交換器、室外側膨張弁から成る室外機と、室内側膨張
弁、室内側熱交換器から成る複数の室内機とをガス管及
び液管を介して環状に接続し、前記圧縮機の吸入側の冷
媒圧力を検知する吸入圧力センサーと、前記四方弁と前
記室外側熱交換器との間の前記室外側熱交換器近傍のガ
ス冷媒温度を検知するガス配管温度センサーと、前記室
外側熱交換器と前記圧縮機の吸入の間の圧力損失を決定
する圧力損失定数決定手段と、前記吸入圧力センサーの
検知圧力に前記圧力損失定数決定手段で決定した圧力を
加えた圧力の飽和ガス温度を算出する飽和温度計段手段
と、前記ガス配管温度センサーの検知温度と前記飽和温
度計算手段によって算出された飽和温度との差を過熱度
として計算する過熱度計算手段と、前記過熱度計算手段
によって計算した過熱度に基づき過熱度が大きくなると
開成し過熱度が小さくなると閉成するよう室外側膨張弁
を動作させる室外側膨張弁動作手段を設け、冷媒として
非共沸混合物を用いた構成となっている。
In order to achieve this object, a multi-room air conditioner according to the present invention comprises an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve; An expansion valve, a plurality of indoor units including an indoor heat exchanger connected in a ring via a gas pipe and a liquid pipe, and a suction pressure sensor for detecting a refrigerant pressure on a suction side of the compressor; and the four-way valve. A gas pipe temperature sensor for detecting a gas refrigerant temperature near the outdoor heat exchanger between the outdoor heat exchanger and a pressure loss between the outdoor heat exchanger and the suction of the compressor; Pressure loss constant determining means, saturation thermometer stage means for calculating a saturated gas temperature of a pressure obtained by adding the pressure determined by the pressure loss constant determining means to the detected pressure of the suction pressure sensor, and detection of the gas pipe temperature sensor Temperature and the saturation temperature calculating means. A superheat degree calculating means for calculating a difference between the calculated saturation temperature and the superheat degree, and an outdoor side which opens when the superheat degree increases and closes when the superheat degree decreases based on the superheat degree calculated by the superheat degree calculation means. An outdoor expansion valve operating means for operating the expansion valve is provided, and a non-azeotropic mixture is used as a refrigerant.

【0013】これにより、安価な方法で室外機出口の過
熱度を算出でき、適切な室外側膨張弁を制御することが
できるので、圧縮機への液戻りによる液圧縮により、圧
縮機を破損する危険性を回避すると共に、負荷に応じた
冷媒量を確保できる。
Thus, the degree of superheat at the outlet of the outdoor unit can be calculated by an inexpensive method, and an appropriate outdoor expansion valve can be controlled. Therefore, the compressor is damaged by liquid compression due to liquid return to the compressor. Danger can be avoided, and the amount of refrigerant according to the load can be secured.

【0014】また、圧縮機、四方弁、室外側熱交換器、
室外側膨張弁から成る室外機と、室内側膨張弁、室内側
熱交換器からなる複数の室内機とをガス管及び液管を介
して環状に接続し、前記圧縮機の吸入側の冷媒圧力を検
知する吸入圧力センサーと、前記圧縮機の運転周波数を
検知する運転周波数検知器と、前記四方弁と前記室外側
熱交換器との間の前記室外側熱交換器近傍のガス冷媒温
度を検知するガス配管温度センサーと、前記運転周波数
検知器の検知運転周波数に応じた前記室外側熱交換器と
前記圧縮機の吸入の間の圧力損失を決定する第1の圧力
損失決定手段と、前記吸入圧力センサーの検知圧力に前
記第1の圧力損失決定手段で決定した圧力を加えた圧力
の飽和ガス温度を算出する飽和温度計算手段と、前記ガ
ス配管温度センサーの検知温度と前記飽和温度計算手段
によって算出された飽和温度との差を過熱度として計算
する過熱度計算手段と、前記過熱度計算手段によって計
算した過熱度に基づき過熱度が大きくなると開成し過熱
度が小さくなると閉成するよう室外側膨張弁を動作させ
る室外側膨張弁動作手段を設け、冷媒として非共沸混合
物を用いた構成となっている。
A compressor, a four-way valve, an outdoor heat exchanger,
An outdoor unit including an outdoor expansion valve and a plurality of indoor units including an indoor expansion valve and an indoor heat exchanger are connected in a ring via a gas pipe and a liquid pipe, and the refrigerant pressure on the suction side of the compressor is connected. , An operating frequency detector that detects the operating frequency of the compressor, and a gas refrigerant temperature near the outdoor heat exchanger between the four-way valve and the outdoor heat exchanger. A gas pipe temperature sensor, first pressure loss determining means for determining a pressure loss between the outdoor heat exchanger and the suction of the compressor according to a detected operation frequency of the operation frequency detector, and the suction A saturation temperature calculating means for calculating a saturated gas temperature of a pressure obtained by adding the pressure determined by the first pressure loss determining means to the detected pressure of the pressure sensor; and a detection temperature of the gas pipe temperature sensor and the saturation temperature calculating means. Calculated Superheat degree calculating means for calculating the difference from the saturation temperature as the degree of superheat, and an outdoor expansion valve to be opened when the degree of superheat is increased and closed when the degree of superheat is reduced based on the degree of superheat calculated by the degree of superheat calculation means. An outdoor expansion valve operating means for operating is provided, and a non-azeotropic mixture is used as a refrigerant.

【0015】これにより、安価な方法で室外機出口の過
熱度を精度良く算出でき、適切に室外側膨張弁を制御す
ることができるので、圧縮機への液戻りによる液圧縮に
より、圧縮機を破損する危険性を回避すると共に、負荷
に応じた冷媒量を確保できる。
Thus, the degree of superheat at the outdoor unit outlet can be accurately calculated by an inexpensive method, and the outdoor expansion valve can be appropriately controlled. The risk of breakage can be avoided, and the amount of refrigerant according to the load can be secured.

【0016】さらに、圧縮機、四方弁、室外側熱交換
器、室外側膨張弁から成る室外機と、室内側膨張弁、室
内側熱交換器から成る複数の室内機とをガス管及び液管
を介して環状に接続し、前記圧縮機の吸入側の冷媒圧力
を検知する吸入圧力センサーと、前記圧縮機の運転周波
数を検知する運転周波数検知器と、前記四方弁と前記室
外側熱交換器との間の前記室外側熱交換器近傍のガス冷
媒温度を検知するガス配管温度センサーと、前記運転周
波数検知器の検知運転周波数と前記吸入圧力センサーの
検知圧力に応じた前記室外側熱交換器と前記圧縮機の吸
入の間の圧力損失を決定する前記第2の圧力損失決定手
段と、前記吸入圧力センサーの検知圧力に前記第2の圧
力損失決定手段で決定した圧力を加えた圧力の飽和ガス
温度を算出する飽和温度計算手段と、前記ガス配管温度
センサーの検知温度と前記飽和温度計算手段によって算
出された飽和温度との差を過熱度として計算する過熱度
計算手段と、前記過熱度計算手段によって計算した過熱
度に基づき過熱度が大きくなると開成し過熱度が小さく
なると閉成するよう室外側膨張弁を動作させる室外側膨
張弁動作手段を設け、冷媒として非共沸混合物尾を用い
た構成となっている。
Further, an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, and a plurality of indoor units comprising an indoor expansion valve and an indoor heat exchanger are connected to a gas pipe and a liquid pipe. A suction pressure sensor that detects a refrigerant pressure on the suction side of the compressor, an operation frequency detector that detects an operation frequency of the compressor, the four-way valve, and the outdoor heat exchanger A gas pipe temperature sensor for detecting a gas refrigerant temperature near the outdoor heat exchanger between the outdoor heat exchanger, and the outdoor heat exchanger according to a detection operation frequency of the operation frequency detector and a detection pressure of the suction pressure sensor. And a second pressure loss determining means for determining a pressure loss during suction of the compressor, and a pressure saturation obtained by adding a pressure determined by the second pressure loss determining means to a detected pressure of the suction pressure sensor. Saturation to calculate gas temperature Degree calculation means, superheat degree calculation means for calculating the difference between the detected temperature of the gas pipe temperature sensor and the saturation temperature calculated by the saturation temperature calculation means as the degree of superheat, and the degree of superheat calculated by the degree of superheat calculation means An outdoor expansion valve operating means for operating an outdoor expansion valve to open when the degree of superheat is large and close when the degree of superheat is small is provided, and a non-azeotropic mixture tail is used as a refrigerant.

【0017】これにより、安価な方法で室外機出口の過
熱度をさらに精度良く算出でき、適切に室外側膨張弁を
制御することができるので、圧縮機への液戻りによる液
圧縮により圧縮機を破損する危険性を回避すると共に、
負荷に応じた冷媒量を確保できる。
Thus, the degree of superheat at the outlet of the outdoor unit can be calculated more accurately by an inexpensive method, and the outdoor expansion valve can be appropriately controlled. Avoid the risk of damage,
The amount of refrigerant according to the load can be secured.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に記載の発明
は、圧縮機、四方弁、室外側熱交換器、室外側膨張弁か
らなる室外機と、室内側膨張弁、室内側熱交換器から成
る複数の室内機とをガス配管及び液管を介して環状に接
続し、前記圧縮機の吸入側の冷媒圧力を検知する吸入圧
力センサーと、前記四方弁と前記室外側熱交換器との間
の前記室外側熱交換器近傍のガス冷媒温度を検知するガ
ス配管温度センサーと、前記室外側熱交換器と前記圧縮
機の吸入の間の圧力損失を決定する圧力損失定数決定手
段と、前記吸入圧力センサーの検知圧力に前記圧力損失
定数決定手段で決定した圧力を加えた圧力の飽和ガス温
度を算出する飽和温度計算手段と、前記ガス配管温度セ
ンサーの検知温度と前記飽和温度計算手段によって算出
された飽和温度との差を過熱度として計算する過熱度計
算手段と、前記過熱度計算手段によって計算した過熱度
に基づき過熱度が大きくなると開成し過熱度が小さくな
ると閉成するよう室外側膨張弁を動作させる室外側膨張
弁動作手段を設け、冷媒として非共沸混合物を用いた構
成のものであり、安価な方法で室外機出口の過熱度を算
出できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, an indoor expansion valve and an indoor heat exchange. A plurality of indoor units consisting of a unit is connected in a ring via a gas pipe and a liquid pipe, a suction pressure sensor for detecting a refrigerant pressure on a suction side of the compressor, the four-way valve and the outdoor heat exchanger, A gas pipe temperature sensor for detecting a gas refrigerant temperature near the outdoor heat exchanger, and a pressure loss constant determining means for determining a pressure loss between the outdoor heat exchanger and the suction of the compressor, Saturation temperature calculation means for calculating a saturated gas temperature of a pressure obtained by adding the pressure determined by the pressure loss constant determination means to the detection pressure of the suction pressure sensor, and the detection temperature of the gas pipe temperature sensor and the saturation temperature calculation means With the calculated saturation temperature A superheat degree calculating means for calculating the superheat degree as the superheat degree, and an outdoor expansion valve for operating the outdoor expansion valve so as to open when the superheat degree increases and close when the superheat degree decreases based on the superheat degree calculated by the superheat degree calculation means. A valve operating means is provided, and a non-azeotropic mixture is used as a refrigerant. The superheat degree at the outlet of the outdoor unit can be calculated by an inexpensive method.

【0019】請求項2に記載の発明は、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁から成る室外機と、
室内側膨張弁、室内側熱交換器から成る複数の室内機と
をガス管及び液管を介して環状に接続し、前記圧縮機の
吸入側の冷媒圧力を検知する吸入圧力センサーと、前記
圧縮機の運転周波数を検知する運転周波数検知器と、前
記四方弁と前記室外側熱交換器との間の前記室外側熱交
換器近傍のガス冷媒温度を検知するガス配管温度センサ
ーと、前記運転周波数検知器の検知運転周波数に応じた
前記室外側熱交換器と前記圧縮機の吸入の間の圧力損失
を決定する第1の圧力損失決定手段と、前記吸入圧力セ
ンサーの検知圧力に前記第1の圧力損失決定手段で決定
した圧力を加えた圧力の飽和ガス温度を算出する飽和温
度計算手段と、前記ガス配管温度センサーの検知温度と
前記飽和温度計算手段によって算出された飽和温度との
差を過熱度として計算する過熱度計算手段と、前記過熱
度計算手段によって計算した過熱度に基づき過熱度が大
きくなると開成し過熱度が小さくなると閉成するよう室
外側膨張弁を動作させる室外側膨張弁動作手段を設け、
冷媒として非共沸混合物を用いた構成のものであり、運
転周波数により室外側熱交換器と圧縮機の吸入の間の圧
力損失を予測したため、安価な方法で室外機出口の過熱
度を精度良く算出できる。
According to a second aspect of the present invention, there is provided an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve.
A plurality of indoor units including an indoor expansion valve and an indoor heat exchanger connected in a ring through a gas pipe and a liquid pipe, and a suction pressure sensor for detecting a refrigerant pressure on a suction side of the compressor; An operating frequency detector that detects an operating frequency of the machine, a gas pipe temperature sensor that detects a gas refrigerant temperature near the outdoor heat exchanger between the four-way valve and the outdoor heat exchanger, and the operating frequency First pressure loss determining means for determining a pressure loss between the outdoor heat exchanger and the suction of the compressor according to a detection operation frequency of a detector; and Saturation temperature calculation means for calculating a saturated gas temperature of the pressure obtained by adding the pressure determined by the pressure loss determination means, and heating the difference between the detected temperature of the gas pipe temperature sensor and the saturation temperature calculated by the saturation temperature calculation means. As a degree Superheat degree calculating means for calculating, and an outdoor expansion valve operating means for operating an outdoor expansion valve to open when the superheat degree increases and close when the superheat degree decreases based on the superheat degree calculated by the superheat degree calculation means. Provided,
Since the pressure loss between the outdoor heat exchanger and the suction of the compressor is predicted based on the operating frequency, the degree of superheat at the outdoor unit outlet can be accurately determined using an inexpensive method. Can be calculated.

【0020】請求項3に記載の発明は、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁から成る室外機と、
室内側膨張弁、室内側熱交換器から成る複数の室内機と
をガス管及び液管を介して環状に接続し、前記圧縮機の
吸入側の冷媒圧力を検知する吸入圧力センサーと、前記
圧縮機の運転周波数を検知する運転周波数検知器と、前
記四方弁と前記室外側熱交換器との間の前記室外側熱交
換器近傍のガス冷媒温度を検知するガス配管温度センサ
ーと、前記運転周波数検知器の検知運転周波数と前記吸
入圧力センサーの検知圧力に応じた前記室外側熱交換器
と前記圧縮機の吸入の間の圧力損失を決定する前記第2
の圧力損失決定手段と、前記吸入圧力センサーの検知圧
力に前記第2の圧力損失決定手段で決定した圧力を加え
た圧力の飽和ガス温度を算出する飽和温度計算手段と、
前記ガス配管温度センサーの検知温度と前記飽和温度計
算手段によって算出された飽和温度との差を過熱度とし
て計算する過熱度計算手段と、前記過熱度計算手段によ
って計算した過熱度に基づき過熱度が大きくなると開成
し過熱度が小さくなると閉成するよう室外側膨張弁を動
作させる室外側膨張弁動作手段を設け、冷媒として非共
沸混合物を用いた構成のものであり、運転周波数と吸入
圧力により室外側熱交換器と圧縮機の吸入の間の圧力損
失を予測したため、安価な方法で室外機出口の過熱度を
さらに精度良く算出できる。
According to a third aspect of the present invention, there is provided an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve.
A plurality of indoor units including an indoor expansion valve and an indoor heat exchanger connected in a ring through a gas pipe and a liquid pipe, and a suction pressure sensor for detecting a refrigerant pressure on a suction side of the compressor; An operating frequency detector that detects an operating frequency of the machine, a gas pipe temperature sensor that detects a gas refrigerant temperature near the outdoor heat exchanger between the four-way valve and the outdoor heat exchanger, and the operating frequency The second determining the pressure loss between the outdoor heat exchanger and the suction of the compressor according to the detection operation frequency of the detector and the detection pressure of the suction pressure sensor.
Pressure loss determination means, and saturation temperature calculation means for calculating a saturated gas temperature of a pressure obtained by adding the pressure determined by the second pressure loss determination means to the detected pressure of the suction pressure sensor,
Superheat degree calculation means for calculating the difference between the detected temperature of the gas pipe temperature sensor and the saturation temperature calculated by the saturation temperature calculation means as superheat degree, and the degree of superheat calculated based on the degree of superheat calculated by the superheat degree calculation means An outdoor expansion valve operating means for operating an outdoor expansion valve to open when it becomes large and close when the degree of superheat becomes small is provided, and a non-azeotropic mixture is used as a refrigerant. Since the pressure loss between the outdoor heat exchanger and the suction of the compressor is predicted, the degree of superheat at the outdoor unit outlet can be calculated more accurately by an inexpensive method.

【0021】以下、本発明の実施の形態について、図1
から図6を用いて説明する。尚、従来と同一構成につい
ては同一符号を付し、その詳細な説明を省略する。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. Note that the same components as those of the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0022】(実施の形態1)図1は非共沸混合冷媒を
用いた多室方空気調和機の冷媒サイクル図を示し、図1
において、16は多室型空気調和機の室外機であり、1
7は能力可変圧縮機2の吸入管に設けられた吸入圧力セ
ンサー、18は室外熱交換器4と四方弁3との間の室外
側熱交換器4近傍のガス冷媒温度を検知するガス配管温
度センサー、19は室外側熱交換器4と圧縮機2の吸入
の間の配管径および配管長さ等により圧力損失を決定す
る圧力損失定数決定手段、20は吸入圧力センサー17
の検知圧力に圧力損失定数決定手段19で決定した圧力
を加えた圧力の飽和ガス温度を算出する飽和温度計算手
段、21はガス配管温度センサー18の検知温度と飽和
温度計算手段20によって算出された飽和温度との差を
過熱度として計算する過熱度計算手段、22は過熱度計
算手段21によって計算した過熱度に基づき過熱度が大
きくなると開成し過熱度が小さくなると閉成するよう室
外側膨張弁5を動作させる室外側膨張弁動作手段であ
り、これらは制御装置23に収納されている。
(Embodiment 1) FIG. 1 shows a refrigerant cycle diagram of a multi-room air conditioner using a non-azeotropic mixed refrigerant.
, 16 is an outdoor unit of a multi-room air conditioner,
Reference numeral 7 denotes a suction pressure sensor provided on a suction pipe of the variable capacity compressor 2, and reference numeral 18 denotes a gas pipe temperature for detecting a gas refrigerant temperature near the outdoor heat exchanger 4 between the outdoor heat exchanger 4 and the four-way valve 3. A sensor 19 for determining a pressure loss constant based on a pipe diameter and a pipe length between the outdoor heat exchanger 4 and the suction of the compressor 2;
Saturation temperature calculating means for calculating the saturated gas temperature of the pressure obtained by adding the pressure determined by the pressure loss constant determining means 19 to the detected pressure of the above, and the detection temperature of the gas pipe temperature sensor 18 and the saturation temperature calculation means 21 were calculated. Superheat degree calculating means 22 for calculating the difference from the saturation temperature as the degree of superheat is an outdoor expansion valve which is opened based on the degree of superheat calculated by the superheat degree calculating means 21 and is closed when the degree of superheat becomes small and closed when the degree of superheat becomes small. 5 are operating means for operating the outdoor expansion valve, which are housed in the control device 23.

【0023】(実施の形態2)図3は非共沸混合冷媒を
用いた多室型空気調和機の冷媒サイクル図を示し、図3
において、24は多室型空気調和機の室外機であり、1
7は能力可変圧縮機2の吸入管に設けられた吸入圧力セ
ンサー、25は能力可変圧縮機2の運転周波数を検知す
る運転周波数検知器、18は室外側熱交換器4と四方弁
3との間の室外側熱交換器4近傍のガス冷媒温度を検知
するガス配管温度センサー、26は運転周波数検知器2
5の検知運転周波数に応じた室外側熱交換器4と圧縮機
2の吸入の間の圧力損失を決定する第1の圧力損失決定
手段、20は吸入圧力センサー17の検知圧力に第1の
圧力損失決定手段25で決定した圧力を加えた圧力の飽
和ガス温度を算出する飽和温度計算手段、21はガス配
管温度センサー18の検知温度と飽和温度計算手段20
によって算出された飽和温度との差を過熱度として計算
する過熱度計算手段、22は過熱度計算手段21によっ
て計算した過熱度に基づき過熱度が大きくなると開成し
過熱度が小さくなると閉成するよう室外側膨張弁5を動
作させる室外側膨張弁動作手段であり、これらは制御装
置27に収納されている。
(Embodiment 2) FIG. 3 shows a refrigerant cycle diagram of a multi-room air conditioner using a non-azeotropic mixed refrigerant.
, 24 is an outdoor unit of a multi-room air conditioner,
Reference numeral 7 denotes a suction pressure sensor provided in a suction pipe of the variable capacity compressor 2, 25 denotes an operation frequency detector for detecting an operation frequency of the variable capacity compressor 2, and 18 denotes a connection between the outdoor heat exchanger 4 and the four-way valve 3. A gas pipe temperature sensor for detecting the temperature of the gas refrigerant near the outdoor heat exchanger 4 between the two, and 26 is an operating frequency detector 2
A first pressure loss determining means for determining a pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 in accordance with the detection operation frequency of 5; Saturation temperature calculating means 21 for calculating a saturated gas temperature at a pressure obtained by adding the pressure determined by the loss determining means 25, and a detection temperature 21 of the gas pipe temperature sensor 18 and a saturation temperature calculating means
The superheat degree calculating means 22 for calculating the difference between the superheat degree and the saturation temperature calculated as the superheat degree opens based on the superheat degree calculated by the superheat degree calculation means 21 when the superheat degree increases and closes when the superheat degree decreases. Outdoor expansion valve operating means for operating the outdoor expansion valve 5, which are housed in the control device 27.

【0024】(実施の形態3)図5は非共沸混合冷媒を
用いた多室型空気調和機の冷媒サイクル図を示し、図5
において、28は多室型空気調和機の室外機であり、1
7は能力可変圧縮機2の吸入管に設けられた吸入圧力セ
ンサー、24は能力可変圧縮機2の運転周波数を検知す
る運転周波数検知器、18は室外側熱交換器4と四方弁
3との間の室外側熱交換器4近傍のガス冷媒温度を検知
するガス配管温度センサー、29は運転周波数検知器2
4の検知運転周波数と吸入圧力センサー17の検知圧力
に応じた室外側熱交換器4と圧縮機2の吸入の間の圧力
損失を決定する第2の圧力損失決定手段、20は吸入圧
力センサー17の検知圧力に第2の圧力損失決定手段2
9で決定した圧力を加えた圧力の飽和ガス温度を算出す
る飽和温度計算手段、21はガス配管温度センサー18
の検知温度と飽和温度計算手段20によって算出された
飽和温度との差を過熱度として計算する過熱度計算手
段、22は過熱度計算手段21によって計算した過熱度
に基づき過熱度が大きくなると開成し過熱度が小さくな
ると閉成するよう室外側膨張弁5を動作させる室外側膨
張弁動作手段であり、これらは制御装置30に収納され
ている。
(Embodiment 3) FIG. 5 shows a refrigerant cycle diagram of a multi-room air conditioner using a non-azeotropic mixed refrigerant.
And 28, an outdoor unit of a multi-room air conditioner,
Reference numeral 7 denotes a suction pressure sensor provided on a suction pipe of the variable capacity compressor 2, 24 denotes an operation frequency detector for detecting an operation frequency of the variable capacity compressor 2, and 18 denotes a connection between the outdoor heat exchanger 4 and the four-way valve 3. A gas pipe temperature sensor for detecting the temperature of the gas refrigerant in the vicinity of the outdoor heat exchanger 4 between the two;
A second pressure loss determining means for determining a pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 according to the detected operation frequency of the suction pressure sensor 4 and the pressure detected by the suction pressure sensor 17; Pressure loss determining means 2
A saturation temperature calculating means for calculating a saturated gas temperature at a pressure obtained by adding the pressure determined in step 9;
The superheat degree calculating means 22 for calculating the difference between the detected temperature and the saturation temperature calculated by the saturation temperature calculation means 20 as the superheat degree is opened when the superheat degree increases based on the superheat degree calculated by the superheat degree calculation means 21. Outdoor expansion valve operating means for operating the outdoor expansion valve 5 so as to close when the degree of superheat is reduced, and these are housed in the control device 30.

【0025】[0025]

【実施例】以上のように構成された多室型空気調和機に
ついて、ここでは問題となっている暖房運転について動
作の説明を行うこととする。尚、従来と同一の動作につ
いては、詳細な説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the multi-room air conditioner constructed as described above will be described with respect to a heating operation which is a problem here. Note that the detailed description of the same operation as that in the related art is omitted.

【0026】(実施例1)図2は本発明の実施の形態1
における多室型空気調和機のフローチャートである。
Embodiment 1 FIG. 2 shows Embodiment 1 of the present invention.
3 is a flowchart of the multi-room air conditioner in FIG.

【0027】図2より、STEP1で制御装置23が暖
房運転指令を検知すると、STEP2でガス配管温度セ
ンサー18は室外側熱交換器4のガス側配管の温度To
を検知し、吸入圧力センサー17は能力可変圧縮機2の
吸入側の圧力Psを検知する。STEP3では、室外側
熱交換器4と圧縮機2の吸入の間の配管径および配管長
さ等により予め決定しておいた圧力損失定数を決定す
る。STEP4では、STEP2で検知した圧力にST
EP3で決定した圧力損失定数を加えた圧力に基づき、
飽和温度計算手段20によって室外側熱交換器4の出口
の飽和ガス温度Teoを計算する。STEP5では、過
熱度計算手段21によってSTEP2で検知したガス配
管温度ToとSTEP4で算出した飽和ガス温度Teo
とから過熱度SH=To−Teoを算出し、STEP6
では、STEP5で計算された過熱度SHに応じ、過熱
度が大きくなると開成し、過熱度が小さくなると閉成す
るよう室外側膨張弁5を動作させる。
As shown in FIG. 2, when the controller 23 detects a heating operation command in STEP 1, the gas pipe temperature sensor 18 detects the temperature To of the gas side pipe To of the outdoor heat exchanger 4 in STEP 2.
And the suction pressure sensor 17 detects the pressure Ps on the suction side of the variable capacity compressor 2. In STEP 3, a pressure loss constant determined in advance based on a pipe diameter and a pipe length between the outdoor heat exchanger 4 and the suction of the compressor 2 is determined. In STEP4, the pressure detected in STEP2 is
Based on the pressure obtained by adding the pressure loss constant determined in EP3,
The saturated gas temperature Teo at the outlet of the outdoor heat exchanger 4 is calculated by the saturated temperature calculating means 20. In STEP5, the superheat degree calculating means 21 detects the gas pipe temperature To detected in STEP2 and the saturated gas temperature Teo calculated in STEP4.
And the superheat degree SH = To−Teo is calculated from
Then, according to the superheat degree SH calculated in STEP5, the outdoor expansion valve 5 is operated so as to open when the superheat degree increases and close when the superheat degree decreases.

【0028】この第1の実施例によれば、室外側熱交換
器4と圧縮機2の吸入の間の配管径および配管長さ等に
より圧力損失定数を決定したため、安価な方法で室外機
出口の過熱度を算出でき、適切に室外側膨張弁を制御す
ることができるので、圧縮機への液戻りによる液圧縮に
より、圧縮機を破損する危険性を回避すると共に、負荷
に応じた冷媒量を確保できる。
According to the first embodiment, since the pressure loss constant is determined by the pipe diameter and the pipe length between the outdoor heat exchanger 4 and the suction of the compressor 2, etc., the outdoor unit outlet can be inexpensively manufactured. The degree of superheat can be calculated, and the outdoor expansion valve can be appropriately controlled, so that the risk of damage to the compressor due to liquid compression due to liquid return to the compressor can be avoided, and the amount of refrigerant according to the load can be reduced. Can be secured.

【0029】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である。R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、1台の室内機と1台の室外機を有する
空気調和機および複数の室内機と複数の室外機を有する
多室型空気調和機においても適応可能である。
As the non-azeotropic refrigerant mixture, for example, HF
It is a C-based mixed refrigerant. R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. The present invention is also applicable to an air conditioner having one indoor unit and one outdoor unit, and a multi-room air conditioner having a plurality of indoor units and a plurality of outdoor units.

【0030】(実施例2)図4は本発明の実施の形態2
における多室型空気調和機のフローチャートである。
(Embodiment 2) FIG. 4 shows Embodiment 2 of the present invention.
3 is a flowchart of the multi-room air conditioner in FIG.

【0031】図4より、STEP1で制御装置27が暖
房運転指令を検知すると、STEP2でガス配管温度セ
ンサー18は室外側熱交換器4のガス側配管の温度To
を検知し、運転周波数検知器25は能力可変圧縮機2の
運転周波数を検知し、吸入圧力センサー17は能力可変
圧縮機2の吸入側の圧力Psを検知する。STEP3で
は、運転周波数検知器25の検知運転周波数に応じた室
外側熱交換器4と圧縮機2の吸入の間の圧力損失を決定
する第1の圧力損失を決定する。STEP4では、ST
EP2で検知した圧力にSTEP3で決定した第1の圧
力損失を加えた圧力に基づき、飽和温度計算手段20に
よって室外側熱交換器4の出口の飽和ガス温度Teoを
計算する。STEP5では、過熱度計算手段21によっ
てSTEP2で検知したガス配管温度ToとSTEP4
で算出した飽和ガス温度Teoとから過熱度SH=To
−Teoを算出し、STEP6では、STEP5で計算
された過熱度SHに応じ、過熱度が大きくなると開成
し、過熱度が小さくなると閉成するよう室外側膨張弁5
を動作させる。
Referring to FIG. 4, when the control device 27 detects a heating operation command in STEP 1, the gas pipe temperature sensor 18 detects the temperature To of the gas side pipe To of the outdoor heat exchanger 4 in STEP 2.
The operating frequency detector 25 detects the operating frequency of the variable capacity compressor 2, and the suction pressure sensor 17 detects the pressure Ps on the suction side of the variable capacity compressor 2. In STEP 3, the first pressure loss that determines the pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 according to the operation frequency detected by the operation frequency detector 25 is determined. In STEP4, ST
Based on the pressure obtained by adding the first pressure loss determined in STEP 3 to the pressure detected in EP 2, the saturated gas temperature Teo at the outlet of the outdoor heat exchanger 4 is calculated by the saturation temperature calculating means 20. At STEP5, the gas pipe temperature To detected at STEP2 by the superheat degree calculating means 21 is compared with STEP4.
Superheat degree SH = To from the saturated gas temperature Teo calculated in
-Teo is calculated, and in STEP6, in accordance with the superheat degree SH calculated in STEP5, the outdoor expansion valve 5 is opened so as to open when the superheat degree increases and close when the superheat degree decreases.
To work.

【0032】この第2の実施例によれば、検知運転周波
数に応じた室外側熱交換器4と圧縮機2の吸入の間の圧
力損失を決定したため、安価な方法で室外機出口の過熱
度を精度よく算出でき、適切に室外側膨張弁を制御する
ことができるので、圧縮機への液戻りによる液圧縮によ
り、圧縮機を破損する危険性を回避すると共に、負荷に
応じた冷媒量を確保できる。
According to the second embodiment, since the pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 according to the detected operation frequency is determined, the degree of superheat at the outdoor unit outlet can be reduced by an inexpensive method. Can be accurately calculated, and the outdoor expansion valve can be appropriately controlled, so that the risk of damage to the compressor due to liquid compression due to liquid return to the compressor can be avoided, and the amount of refrigerant corresponding to the load can be reduced. Can be secured.

【0033】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である、R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、1台の室内機と1台の室外機を有する
空気調和機および複数の室内機と複数の室外機を有する
多室型空気調和機においても適応可能である。
As the non-azeotropic refrigerant mixture, for example, HF
R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. The present invention is also applicable to an air conditioner having one indoor unit and one outdoor unit, and a multi-room air conditioner having a plurality of indoor units and a plurality of outdoor units.

【0034】(実施例3)図6は本発明の実施の形態2
における多室型空気調和機のフローチャートである。
(Embodiment 3) FIG. 6 shows Embodiment 2 of the present invention.
3 is a flowchart of the multi-room air conditioner in FIG.

【0035】図6より、STEP1で制御装置30が暖
房運転指令を検知すると、STEP2でガス配管温度セ
ンサー18は室外側熱交換器4のガス側配管の温度To
を検知し、運転周波数検知器25は能力可変圧縮機2の
運転周波数を検知し、吸入圧力センサー17は能力可変
圧縮機2の吸入側の圧力Psを検知する。STEP3で
は、運転周波数検知器25の検知運転周波数と吸入圧力
センサー17の検知圧力に応じた室外側熱交換器4と圧
縮機2の吸入の間の圧力損失を決定する第2の圧力損失
を決定する。STEP4では、STEP2で検知した圧
力にSTEP3で決定した第2の圧力損失を加えた圧力
に基づき、飽和温度計算手段20によって室外側熱交換
器4の出口の飽和ガス温度Teoを計算する。STEP
5では、過熱度計算手段21によってSTEP2で検知
したガス配管温度ToとSTEP4で算出した飽和ガス
温度Teoとから過熱度SH=To−Teoを算出し、
STEP6では、STEP5で計算された過熱度SHに
応じ、過熱度が大きくなると開成し、過熱度が小さくな
ると閉成するよう室外側膨張弁5を動作させる。
As shown in FIG. 6, when the control device 30 detects a heating operation command in STEP1, the gas pipe temperature sensor 18 detects the temperature To of the gas pipe of the outdoor heat exchanger 4 in STEP2.
The operating frequency detector 25 detects the operating frequency of the variable capacity compressor 2, and the suction pressure sensor 17 detects the pressure Ps on the suction side of the variable capacity compressor 2. In STEP 3, a second pressure loss that determines a pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 according to the detection operation frequency of the operation frequency detector 25 and the detection pressure of the suction pressure sensor 17 is determined. I do. In STEP4, the saturated gas temperature Teo at the outlet of the outdoor heat exchanger 4 is calculated by the saturation temperature calculating means 20 based on the pressure obtained by adding the second pressure loss determined in STEP3 to the pressure detected in STEP2. STEP
In 5, the superheat degree SH = To−Teo is calculated from the gas pipe temperature To detected in STEP2 by the superheat degree calculation means 21 and the saturation gas temperature Teo calculated in STEP4.
In STEP6, the outdoor expansion valve 5 is operated to open when the degree of superheat increases and close when the degree of superheat decreases, in accordance with the degree of superheat SH calculated in STEP5.

【0036】この第3の実施例によれば、運転周波数と
吸入圧力に応じた室外側熱交換器4と圧縮機2の吸入の
間の圧力損失を決定したため、安価な方法で室外機出口
の過熱度をさらに精度良く算出でき、適切に室外側膨張
弁を制御することができるので、圧縮機への液戻りによ
る液圧縮により、圧縮機を破損する危険性を回避すると
共に、負荷に応じた冷媒量を確保できる。
According to the third embodiment, the pressure loss between the outdoor heat exchanger 4 and the suction of the compressor 2 according to the operating frequency and the suction pressure is determined. The degree of superheat can be calculated more accurately, and the outdoor expansion valve can be appropriately controlled, so that the risk of damaging the compressor due to liquid compression by returning liquid to the compressor can be avoided, and the load can be adjusted according to the load. Refrigerant amount can be secured.

【0037】尚、非共沸混合冷媒として、例えば、HF
C系の混合冷媒である、R32/125/134a(3
0/10/60wt%)やR32/125/134a
(23/25/52wt%)を使用できることは言うま
でもない。また、1台の室内機と1台の室外機を有する
空気調和機および複数の室内機と複数の室外機を有する
多室型空気調和機においても適応可能である。
As the non-azeotropic mixed refrigerant, for example, HF
R32 / 125 / 134a (3
0/10 / 60wt%) or R32 / 125 / 134a
It goes without saying that (23/25/52 wt%) can be used. The present invention is also applicable to an air conditioner having one indoor unit and one outdoor unit, and a multi-room air conditioner having a plurality of indoor units and a plurality of outdoor units.

【0038】[0038]

【発明の効果】以上のように本発明になれば、安価な方
法で室外機出口の過熱度を算出でき、適切に室外側膨張
弁を制御することができるので、圧縮機への液戻りによ
る液圧縮により、圧縮機を破損する危険性を回避すると
共に、負荷に応じた冷媒量を確保できる。
As described above, according to the present invention, the degree of superheat at the outlet of the outdoor unit can be calculated by an inexpensive method, and the outdoor expansion valve can be appropriately controlled. By the liquid compression, the risk of damaging the compressor can be avoided, and the amount of refrigerant according to the load can be secured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における多室型空気調和
機の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to a first embodiment of the present invention.

【図2】同実施例の多室型空気調和機のブロック図FIG. 2 is a block diagram of the multi-room air conditioner of the embodiment.

【図3】同実施例の多室型空気調和機の室外側膨張弁の
制御フローチャート
FIG. 3 is a control flowchart of an outdoor expansion valve of the multi-room air conditioner of the embodiment.

【図4】本発明の第2の実施例における多室型空気調和
機の冷凍サイクル図
FIG. 4 is a refrigeration cycle diagram of a multi-room air conditioner according to a second embodiment of the present invention.

【図5】同実施例の多室型空気調和機のブロック図FIG. 5 is a block diagram of the multi-room air conditioner of the embodiment.

【図6】同実施例の多室型空気調和機の室外側膨張弁の
制御フローチャート
FIG. 6 is a control flowchart of an outdoor expansion valve of the multi-room air conditioner of the embodiment.

【図7】従来の多室型空気調和機の冷凍サイクル図FIG. 7 is a refrigeration cycle diagram of a conventional multi-room air conditioner.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 室外側熱交換器 5 室外側膨張弁 6 室内機 7 室内側膨張弁 8 室内側熱交換器 9 液管 10 ガス管 16 室外機 17 吸入圧力センサー 18 ガス配管温度センサー 19 圧力損失定数決定手段 20 飽和温度計算手段 21 過熱度計算手段 22 室外側膨張弁動作手段 23 制御装置 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Outdoor expansion valve 6 Indoor unit 7 Indoor expansion valve 8 Indoor heat exchanger 9 Liquid pipe 10 Gas pipe 16 Outdoor unit 17 Suction pressure sensor 18 Gas pipe temperature sensor 19 Pressure loss constant determining means 20 Saturation temperature calculating means 21 Superheat degree calculating means 22 Outdoor expansion valve operating means 23 Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中谷 和生 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 尾関 正高 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Kazuo Nakatani, Kazuma, Kazuma, Osaka 1006, Kadoma, Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、四方弁、室外側熱交換器、室外
側膨張弁から成る室外機と、室内側膨張弁、室内側熱交
換器から成る複数の室内機とをガス管及び液管を介して
環状に接続し、前記圧縮機の吸入側の冷媒圧力を検知す
る吸入圧力センサーと前記四方弁と前記室外側熱交換器
との間の前記室外側熱交換器近傍のガス冷媒温度を検知
するガス配管温度センサーと、前記室外側熱交換器と前
記圧縮機の吸入の間の圧力損失を決定する圧力損失定数
決定手段と、前記吸入圧力センサーの検知圧力に前記圧
力損失定数決定手段で決定した圧力を加えた圧力の飽和
ガス温度を算出する飽和温度計算手段と、前記ガス配管
温度センサーの検知温度と前記飽和温度計算手段によっ
て算出された飽和温度との差を過熱度として計算する過
熱度計算手段と、前記過熱度計算手段によって計算した
過熱度に基づき過熱度が大きくなると開成し過熱度が小
さくなると閉成するよう室外側膨張弁を動作させる室外
側膨張弁動作手段を設け、冷媒として非共沸混合物を用
いた多室型空気調和機。
An outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, and a plurality of indoor units comprising an indoor expansion valve and an indoor heat exchanger are connected to a gas pipe and a liquid pipe. A ring-shaped connection via a suction pressure sensor for detecting the refrigerant pressure on the suction side of the compressor and the gas refrigerant temperature near the outdoor heat exchanger between the four-way valve and the outdoor heat exchanger. A gas pipe temperature sensor for detecting, a pressure loss constant determining means for determining a pressure loss between the outdoor heat exchanger and the suction of the compressor, and a pressure loss constant determining means for detecting a pressure of the suction pressure sensor. A saturated temperature calculating means for calculating a saturated gas temperature at a pressure to which the determined pressure is applied; and superheating for calculating a difference between a detected temperature of the gas pipe temperature sensor and a saturated temperature calculated by the saturated temperature calculating means as a degree of superheating. Degree calculation means and before An outdoor expansion valve operating means for operating an outdoor expansion valve to open when the degree of superheat is increased and close when the degree of superheat is reduced based on the degree of superheat calculated by the degree of superheat calculated by the degree of superheat is provided, and the non-azeotropic mixture is used as a refrigerant. Multi-room air conditioner using.
【請求項2】 圧縮機、四方弁、室外側熱交換器、室外
側膨張弁から成る室外機と、室内側膨張弁、室内側熱交
換器から成る複数の室内機とをガス管及び液管を介して
環状に接続し、前記圧縮機の吸入側の冷媒圧力を検知す
る吸入圧力センサーと、前記圧縮機の運転周波数を検知
する運転周波数検知器と、前記四方弁と前記室外側熱交
換器との間の前記室外側熱交換器近傍のガス冷媒温度を
検知するガス配管温度センサーと、前記運転周波数検知
器の検知運転周波数に応じた前記室外側熱交換器と前記
圧縮機の吸入の間の圧力損失を決定する第1の圧力損失
決定手段と、前記吸入圧力センサーの検知圧力に前記第
1の圧力損失損失決定手段と、前記吸入圧力センサーの
検知圧力に前記第1の圧力損失決定手段で決定した圧力
を加えた圧力の飽和ガス温度を算出する飽和温度計算手
段と、前記ガス配管温度センサーの検知温度と前記飽和
温度計算手段によって算出された飽和温度との差を過熱
度として計算する過熱度計算手段と、前記過熱度計算手
段によって計算した過熱度に基づき過熱度が大きくなる
と開成し過熱度が小さくなると閉成するよう室外側膨張
弁を動作させる室外側膨張弁動作手段を設け、冷媒とし
て非共沸混合物を用いた多室型空気調和機。
2. A gas pipe and a liquid pipe including an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, and a plurality of indoor units including an indoor expansion valve and an indoor heat exchanger. A suction pressure sensor that detects a refrigerant pressure on the suction side of the compressor, an operation frequency detector that detects an operation frequency of the compressor, the four-way valve, and the outdoor heat exchanger A gas pipe temperature sensor for detecting a gas refrigerant temperature in the vicinity of the outdoor heat exchanger between the outdoor heat exchanger and the suction of the compressor according to the detected operating frequency of the operating frequency detector. Pressure loss determining means for determining the pressure loss of the suction pressure sensor, the first pressure loss loss determining means for the pressure detected by the suction pressure sensor, and the first pressure loss determining means for the pressure detected by the suction pressure sensor Saturation of pressure plus pressure determined in Saturation temperature calculation means for calculating gas temperature, superheat degree calculation means for calculating the difference between the detected temperature of the gas pipe temperature sensor and the saturation temperature calculated by the saturation temperature calculation means as superheat degree, and the superheat degree calculation An outdoor expansion valve operating means for operating an outdoor expansion valve to open when the degree of superheat increases and close when the degree of superheat decreases when the degree of superheat increases based on the degree of superheat calculated by the means is provided. Room type air conditioner.
【請求項3】 圧縮機、四方弁、室外側熱交換器、室外
側膨張弁から成る室外機と、室内側膨張弁、室内側熱交
換器から成る複数の室内機とをガス管及び液管を介して
環状に接続し、前記圧縮機の吸入側の冷媒圧力を検知す
る吸入圧力センサーと、前記圧縮機の運転周波数を検知
する運転周波数検知器と、前記四方弁と前記室外側熱交
換器との間の前記室外側熱交換器近傍のガス冷媒温度を
検知するガス配管温度センサーと、前記運転周波数検知
器の検知運転周波数と前記吸入圧力センサーの検知圧力
に応じた前記室外側熱交換器と前記圧縮機の吸入の間の
圧力損失を決定する前記第2の圧力損失決定手段と、前
記吸入圧力センサーの検知圧力に前記第2の圧力損失決
定手段で決定した圧力を加えた圧力の飽和ガス温度を算
出する飽和温度計算手段と、前記ガス配管温度センサー
の検知温度と前記飽和温度計算手段によって算出された
飽和温度との差を過熱度として計算する過熱度計算手段
と、前記過熱度計算手段によって計算した過熱度に基づ
き過熱度が大きくなると開成し過熱度が小さくなると閉
成するよう室外側膨張弁を動作させる室外側膨張弁動作
手段を設け、冷媒として非共沸混合物を用いた多室型空
気調和機。
3. A gas pipe and a liquid pipe including an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion valve, and a plurality of indoor units including an indoor expansion valve and an indoor heat exchanger. A suction pressure sensor that detects a refrigerant pressure on the suction side of the compressor, an operation frequency detector that detects an operation frequency of the compressor, the four-way valve, and the outdoor heat exchanger A gas pipe temperature sensor for detecting a gas refrigerant temperature near the outdoor heat exchanger between the outdoor heat exchanger, and the outdoor heat exchanger according to a detection operation frequency of the operation frequency detector and a detection pressure of the suction pressure sensor. And a second pressure loss determining means for determining a pressure loss during suction of the compressor, and a pressure saturation obtained by adding a pressure determined by the second pressure loss determining means to a detected pressure of the suction pressure sensor. Saturation temperature calculation to calculate gas temperature Means, superheat degree calculation means for calculating the difference between the detected temperature of the gas pipe temperature sensor and the saturation temperature calculated by the saturation temperature calculation means as superheat degree, and based on the degree of superheat calculated by the superheat degree calculation means A multi-chamber air conditioner comprising an outdoor expansion valve operating means for operating an outdoor expansion valve to open when the degree of superheat increases and close when the degree of superheat decreases, and using a non-azeotropic mixture as a refrigerant.
JP8174748A 1996-07-04 1996-07-04 Multi-chanber type air conditioner Pending JPH1019398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8174748A JPH1019398A (en) 1996-07-04 1996-07-04 Multi-chanber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8174748A JPH1019398A (en) 1996-07-04 1996-07-04 Multi-chanber type air conditioner

Publications (1)

Publication Number Publication Date
JPH1019398A true JPH1019398A (en) 1998-01-23

Family

ID=15984000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8174748A Pending JPH1019398A (en) 1996-07-04 1996-07-04 Multi-chanber type air conditioner

Country Status (1)

Country Link
JP (1) JPH1019398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
US20110192177A1 (en) * 2010-02-08 2011-08-11 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
JP2018105597A (en) * 2016-12-28 2018-07-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
US20110192177A1 (en) * 2010-02-08 2011-08-11 Samsung Electronics Co., Ltd. Air conditioner and control method thereof
JP2018105597A (en) * 2016-12-28 2018-07-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US11609031B2 (en) Refrigeration cycle apparatus
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP4654828B2 (en) Air conditioner
KR20030095614A (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
US20040093893A1 (en) Freezer
US20220154966A1 (en) Air-conditioning apparatus
AU7108301A (en) Air conditioner
JP4869117B2 (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JPH1019398A (en) Multi-chanber type air conditioner
JP3198859B2 (en) Multi-type air conditioner
JP2002061979A (en) Cooling and heating system
JP2000018685A (en) Multi-room type air conditioner
WO2020208805A1 (en) Air-conditioning device
JPH08136078A (en) Multi-room cooling and heating device
JP2003130426A (en) Air conditioner
JPH1038350A (en) Air conditioner and controlling method thereof
WO2021214816A1 (en) Refrigeration cycle device, air conditioner, and cooling device
JP2003106683A (en) Refrigerator
JPH1151505A (en) Multiroom type air conditioner
WO2024111432A1 (en) Air conditioner
JPH06307723A (en) Multi-room type air conditioner
JPH03125861A (en) Refrigerator
KR20090069915A (en) Air conditioning system
KR100205683B1 (en) Airconditioner and defrosting method