JPH03125861A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH03125861A
JPH03125861A JP1264431A JP26443189A JPH03125861A JP H03125861 A JPH03125861 A JP H03125861A JP 1264431 A JP1264431 A JP 1264431A JP 26443189 A JP26443189 A JP 26443189A JP H03125861 A JPH03125861 A JP H03125861A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temp
compressors
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1264431A
Other languages
Japanese (ja)
Inventor
Koji Nagae
公二 永江
Yasuhisa Isaki
伊崎 泰久
Kazue Omi
尾見 和重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1264431A priority Critical patent/JPH03125861A/en
Publication of JPH03125861A publication Critical patent/JPH03125861A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To prevent the faulty insulation of a motor winding and deterioration of lubricating oil in a compressor by installing detectors individually detecting the outlet temp. of refrigerant and controllers sending signals decreasing the capacities of compressors on the basis of the signals from the detectors at protection networks. CONSTITUTION:At the protection networks of a plurality of compressors 3, 4 installed in parallel, detectors 27a, 27b detecting individually the outlet refrigerant temp. of respective compressors are installed and the refrigerant temp. T in either of the two outlet pipes (9a), (9b) is higher than the first set temp. T1, both compressors (3), (4) are stopped to operate an alarmer (30), on the contrary, when the temp. T is lower than the temp. T1, and for the temp. T2 and T3 (T1>T2>T3) the temp. T is in the range T2>=T>=T3 the rising of the operation frequency of a variable capacity type compressor (3) is prohibited and its capacity is maintained by a controller 21 as it is. In case of the range T>T2, the operation frequency of the compressor (3) is decreased to reduce down the capacity. Thereby, the outlet refrigerant temp. of the compressor (3) is reduced and following this reduction, the refrigerant temp. of a refrigerant outlet pipe (9b) of a constant capacity type compressor (4) which is interconnected by a collecting pipe (9) for the refrigerant is also reduced.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明は多室を冷暖房するヒートポンプ式空気調和装置
に適した冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a refrigeration system suitable for a heat pump type air conditioner that cools and heats multiple rooms.

(ロ)従来の技術 能力可変型圧縮機と定能力型圧縮機とを並列に接続する
と共に、これら圧縮機と凝縮器と減圧器と蒸発器とを順
次接続して冷媒回路を形成した冷凍装置が特開昭58−
221349号公報で提示されている。
(b) Conventional technology A refrigeration system in which a variable capacity compressor and a constant capacity compressor are connected in parallel, and these compressors, condensers, pressure reducers, and evaporators are connected in sequence to form a refrigerant circuit. was published in 1988-
It is presented in Publication No. 221349.

(ハ)発明が解決しようとする課題 上記公報で提示の装置において、能力可変型圧縮機と定
能力型圧縮機とから吐出された冷媒が合流する吐出管集
合部に吐出冷媒温度を検出する検出器を設け、吐出冷媒
温度が異常温度以上に上昇すると圧縮機のモータ巻線の
絶縁不良や潤滑油の劣化の促進等の不具合妨が生じる為
、検出器からの信号に基づいて能力可変型圧縮機の能力
を低下させることにより、圧縮機のモータ巻線が絶縁不
良をおこしたり、潤滑油が劣化するのを防止することを
試みた。
(c) Problems to be Solved by the Invention In the device presented in the above publication, the temperature of the discharged refrigerant is detected at the discharge pipe gathering part where the refrigerants discharged from the variable capacity compressor and the constant capacity compressor join together. If the discharge refrigerant temperature rises above abnormal temperature, malfunctions such as poor insulation of the compressor motor windings and accelerated deterioration of the lubricating oil will occur. An attempt was made to prevent insulation failure in the compressor motor windings and deterioration of the lubricating oil by reducing the capacity of the compressor.

一般に圧縮機の吐出冷媒温度は高低圧圧力と吸込冷媒の
過熱度によって決まるが、能力可変型圧縮機と定能力型
圧縮機とが同時運転されている時には能力可変型圧縮機
の能力の大きさによって両圧縮機の吐出冷媒温度に差が
生じてしまい、上述の如く吐出管集合部の吐出冷媒温度
を検出したのでは両圧縮機の吐出冷媒温度の平均値を捕
えてしまう為、吐出冷媒温度を的確にコントロールする
することができないことが判明した。
Generally, the discharge refrigerant temperature of a compressor is determined by the high and low pressures and the degree of superheating of the suction refrigerant, but when a variable capacity compressor and a constant capacity compressor are operated simultaneously, the capacity of the variable capacity compressor is determined by the variable capacity compressor. This causes a difference in the discharge refrigerant temperature of both compressors, and detecting the discharge refrigerant temperature at the discharge pipe collection section as described above captures the average value of the discharge refrigerant temperatures of both compressors, so the discharge refrigerant temperature It turned out that it was not possible to accurately control the

又、各圧縮機の温度及び/又は各圧縮機の吐出冷媒圧力
を検出して何れか一方の圧縮機が異常状態に達すると複
数台の圧縮機を同時に停止きせることも併せて試みたが
、何れの圧縮機が異常状態になったか判別できず、点検
修理に手間を要することが判明した。
We also attempted to detect the temperature of each compressor and/or the discharge refrigerant pressure of each compressor and stop multiple compressors at the same time if one of the compressors reached an abnormal state. It was found that it was not possible to determine which compressor was in an abnormal state, and inspection and repair required time and effort.

本発明はかかる両点に鑑み、的確な吐出冷媒温度制御と
、異常側圧縮機の判別が行なえる保護回路を備えた冷凍
装置を提供することを目的とじたものである。
In view of these two points, it is an object of the present invention to provide a refrigeration system equipped with a protection circuit that can accurately control the temperature of the discharged refrigerant and determine which compressor is on the abnormal side.

り二)課題を解決するための手段 本発明は並列接続された複数台の圧縮機と凝縮器と冷媒
減圧器と蒸発器とを順次環状に接続した冷媒回路と、複
数台の圧縮機の保護回路とを備えた冷凍装置において、
前記保護回路には各圧縮機の吐出冷媒温度を個別に検出
する検出器と、この各検出器からの信号に基づいて圧縮
機に能力を低下させる信号を発する制御器とを設けるよ
うにしたものである。
2) Means for Solving the Problems The present invention provides a refrigerant circuit in which a plurality of compressors, a condenser, a refrigerant pressure reducer, and an evaporator are sequentially connected in a ring in parallel, and protection of the plurality of compressors. In a refrigeration system equipped with a circuit,
The protection circuit is provided with a detector that individually detects the discharge refrigerant temperature of each compressor, and a controller that issues a signal to reduce the capacity of the compressor based on the signals from each detector. It is.

又、本発明は並列接続された複数台の圧縮機と凝縮器と
冷媒減圧器と蒸発器とを順次環状に接続した冷媒回路と
、複数台の圧縮機の保護回路とを備えた冷凍装置におい
て、前記保護回路には各圧縮機の温度及び/又は各圧縮
機の吐出冷媒圧力を個別に検出する検出器と、この各検
出器からの信号に基づいて異常側の圧縮機を指し示す表
示器と、前記信号に基づいて各圧縮機に停止信号を発す
る制御器とを設けるようにしたものである。
Further, the present invention provides a refrigeration system including a refrigerant circuit in which a plurality of compressors, a condenser, a refrigerant pressure reducer, and an evaporator are sequentially connected in an annular manner connected in parallel, and a protection circuit for the plurality of compressors. , the protection circuit includes a detector that individually detects the temperature of each compressor and/or the discharge refrigerant pressure of each compressor, and an indicator that indicates the abnormal compressor based on the signal from each detector. , and a controller that issues a stop signal to each compressor based on the signal.

(*)作用 能力可変型圧縮機と定能力型圧縮機との同時運転時にお
いては、能力可変型圧縮機は定能力型圧縮機で不足の能
力を補なうように運転される為、能力に余裕をもってお
り、この為、通常は定能力型圧縮機の吐出冷媒温度が能
力可変型圧縮機の吐出冷媒温度よりも高くなりがちであ
り、定能力型圧縮機の吐出冷媒温度が上昇して設定温度
に達すると定能力型圧縮機の冷媒吐出管に設けた検出器
の信号に基づいて能力可変型圧縮機の能力が低下される
ことにより能力可変型圧縮機の吐出冷媒温度が低下し、
この低下に伴なって冷媒吐出集合管で連通している定能
力型圧縮機の冷媒吐出管の冷媒温度も低下するため、定
能力型圧縮機のモータ巻線が絶縁不良をおこしたり潤滑
油が劣化するのが防止される。
(*) When a variable capacity compressor and a constant capacity compressor are operated at the same time, the variable capacity compressor is operated to compensate for the lack of capacity with the constant capacity compressor. Therefore, the discharge refrigerant temperature of a constant capacity compressor usually tends to be higher than the discharge refrigerant temperature of a variable capacity compressor, and the discharge refrigerant temperature of a constant capacity compressor increases. When the set temperature is reached, the capacity of the variable capacity compressor is reduced based on a signal from a detector installed in the refrigerant discharge pipe of the constant capacity compressor, thereby reducing the temperature of the refrigerant discharged from the variable capacity compressor.
Along with this decrease, the refrigerant temperature in the refrigerant discharge pipe of the constant capacity compressor, which is connected through the refrigerant discharge collecting pipe, also decreases, which may cause insulation failure in the motor windings of the constant capacity compressor or lubricant leakage. Deterioration is prevented.

又、各圧縮機の温度及び/又は各圧縮機の吐出冷媒圧力
を検出器で個別に検出してこの検出信号に基づいて表示
器で異常側の圧縮機が指し示されるため各圧縮機の運転
停止後に行なう点検修理が楽になる。
In addition, the temperature of each compressor and/or the discharge refrigerant pressure of each compressor is individually detected by a detector, and the display indicates the abnormal compressor based on this detection signal, so the operation of each compressor is controlled. Inspection and repair after stopping becomes easier.

(へ)実施例 本発明の詳細な説明すると、第1図において、(1)は
インバータ装置(2)により運転周波数が変わって最小
能力が2馬力で最大壕力が5馬力である能力可変型圧縮
機(3)と、定格能力が5馬力である定能力型圧縮機(
4)と、熱源側熱交換器(5)と、気液分離器(6)と
を有する熱源側ユニット、(7a)(7b)(7c)は
利用側熱交換器(8a)(8b) <8c)を有し、2
馬力、3馬力、5馬力の能力をもつ利用側ユニットで、
熱源側熱交換器(5)を両圧縮m(3)(4)の冷媒吐
出集合管(9)と冷媒吸込管(10)とに切換弁(ll
a)(llb)を介して分岐接続する一方、熱源側ユニ
ット(1)と利用側ユニット(7a)(7b)(7c)
とを接続するユニット間配管(12)を冷媒吐出集合管
(9)と分岐接続された高圧ガス管(13〉と、冷媒吸
込管(10)と分岐接続された低圧ガス管(14)と、
熱源側熱交換器(5)と接続された液管(15)とで構
成して、各利用側熱交換器(8a)(8b) (8c)
を高圧ガス管(13)と低圧ガス管(14)とには夫々
切換弁(16a)(17a) 、 (16b)(17b
) 、 (16c)(17c)を介して分岐接続すると
共に液管(15)には電動式膨張弁等の冷媒減圧器(1
8a)(18b)<18c)を介して接続している。
(F) Embodiment To explain the present invention in detail, in Fig. 1, (1) is a variable capacity type in which the operating frequency is changed by an inverter device (2), and the minimum capacity is 2 horsepower and the maximum trench force is 5 horsepower. A compressor (3) and a constant capacity compressor (with a rated capacity of 5 horsepower)
4), a heat source side unit having a heat source side heat exchanger (5), and a gas-liquid separator (6), (7a) (7b) (7c) are user side heat exchangers (8a) (8b) < 8c) and 2
A user unit with the capacity of horsepower, 3 horsepower, and 5 horsepower.
A switching valve (ll
a) Branch connection via (llb), while heat source side unit (1) and user side unit (7a) (7b) (7c)
A high-pressure gas pipe (13) is branch-connected to the refrigerant discharge collecting pipe (9), and a low-pressure gas pipe (14) is branch-connected to the refrigerant suction pipe (10).
Consisting of a heat source side heat exchanger (5) and a connected liquid pipe (15), each user side heat exchanger (8a) (8b) (8c)
The high pressure gas pipe (13) and the low pressure gas pipe (14) are equipped with switching valves (16a) (17a), (16b) (17b), respectively.
), (16c) and (17c), and the liquid pipe (15) is connected to a refrigerant pressure reducer (15) such as an electric expansion valve.
8a) (18b)<18c).

(19)は定能力型圧縮機(4)の冷媒吐出管(9b)
に設けられた逆止弁、(20)は冷媒吐出集合管(9)
と冷媒吸込管(10)とに跨がって設けられたバイパス
路で、このバイパス路には制御器(21)からの信号に
よって第2図に示すように定能力型圧縮機(4)が停止
している時と、この圧縮機(4)の運転開始時よりも遅
れて閉g6れるバイパス弁(22) (23)と毛細管
(24)とが設けられている。
(19) is the refrigerant discharge pipe (9b) of the constant capacity compressor (4)
(20) is the refrigerant discharge collecting pipe (9)
This is a bypass path provided across the refrigerant suction pipe (10), and the constant capacity compressor (4) is operated in this bypass path by a signal from the controller (21) as shown in Fig. 2. Bypass valves (22) (23) and a capillary tube (24) are provided which are closed when the compressor (4) is stopped and later than when the compressor (4) starts operating.

(25a)(25b)(25c)は分岐ユニット、(2
6)は電気式膨張弁等の暖房用冷媒減圧器である。
(25a) (25b) (25c) are branching units, (2
6) is a heating refrigerant pressure reducer such as an electric expansion valve.

<27a)(27b)は各圧縮機(3)(4)(7)冷
媒吐出管(9a)(9b)を流れる吐出冷媒温度を検出
する第1の検出器、(28a)(28b)は各圧縮機(
3)(4)のモータ巻線やケース温度等を検出する第2
の検出器、(29a)(29b)は各圧縮機(3)(4
)の冷媒吐出管(9a)(9b)を流れる吐出冷媒圧力
を検出する第3の検出器で、第1の検出器(27a)(
27b)からの信号を制御器(21)が入力してインバ
ータ装置(2)で能力可変型圧縮機(3)の運転周波数
を下げて能力を下げ、最終的には両圧縮機(3)(4)
の運転を停止して警報器(3o)を発し、又、第2の検
出器(28a)(28b)もしくは第3の検出器(29
a)(29b)の何れかが作動するとこの信号を制御器
(21)が入力して両圧縮機(3)(4)を同時に停止
させると共にこれら第2.第3の検出器からの信号に基
づいて表示器(31)で異常側の圧縮機を指し示すよう
になっており、これら制御器(21)と第1〜第3検出
器(27a)(27b) 、 (28a)(28b) 
、 (29a>(29c)と警報器(3o)と表示器(
31)とから両圧縮機(3)(4)の保護回路(32)
が構成されている。
<27a) (27b) are first detectors that detect the temperature of the discharge refrigerant flowing through each compressor (3), (4), and (7) refrigerant discharge pipe (9a) (9b), and (28a) and (28b) are each Compressor (
3) The second unit detects the motor windings and case temperature, etc. in (4).
Detectors (29a) and (29b) are for each compressor (3) and (4).
) The third detector detects the pressure of the discharged refrigerant flowing through the refrigerant discharge pipes (9a) (9b) of the first detector (27a) (
27b) is input to the controller (21), the inverter device (2) lowers the operating frequency of the variable capacity compressor (3) to lower the capacity, and finally both compressors (3) ( 4)
The operation of the detector is stopped and the alarm (3o) is emitted, and the second detector (28a) (28b) or the third detector (29
When any one of the compressors a) and (29b) is activated, the controller (21) inputs this signal to stop both compressors (3) and (4) simultaneously, and simultaneously stops the second compressor (3) and (4). Based on the signal from the third detector, an indicator (31) indicates the abnormal compressor, and these controllers (21) and the first to third detectors (27a) (27b) , (28a) (28b)
, (29a>(29c), alarm (3o), and display (
31) and protection circuit for both compressors (3) and (4) (32)
is configured.

次に運転動作を説明する。全室を同時に冷房する場合は
、熱源側熱交換器(5)の一方の切換弁(11a)を開
くと共に他方の切換弁(llb>を閉じ、且つ利用側熱
交換器(7a)(7b)(7c)(7)一方の切換弁(
16a)(16b)<16c)を閉じると共に他方の切
換弁(17a)(17b)(17c)を開くことにより
、圧縮機(3)(4)から吐出された冷媒は吐出管(9
a)(9b)、吐出集合管(9)、切換弁(lla)、
熱R側熱交換器(5)と順次流れてここで凝縮液化した
後、液管(15)を経て各利用側ユニット(7a)(7
b)(7c)の冷媒減圧器(18a)(18b)(18
c)に分配され、ここで減圧される。然る後、各利用側
熱交換器(8a)(8b) (8c)で蒸発気化した後
、夫々切換弁(17a)(17b)(17c)、低圧ガ
ス管(14)、吸込管(10)、気液分離器(6)を順
次経て圧縮機(3)(4)に吸入される。このように蒸
発器として作用する各利用側熱交換器(8a) (8b
) (8c)で全室が同時に冷房される。
Next, the driving operation will be explained. When cooling all rooms at the same time, open one switching valve (11a) of the heat source side heat exchanger (5), close the other switching valve (llb>), and close the user side heat exchanger (7a) (7b). (7c) (7) One switching valve (
16a) (16b) < 16c) and open the other switching valve (17a) (17b) (17c), the refrigerant discharged from the compressor (3) (4) flows into the discharge pipe (9
a) (9b), discharge collecting pipe (9), switching valve (lla),
After passing through the heat R side heat exchanger (5) and condensing and liquefying there, it passes through the liquid pipe (15) to each user side unit (7a) (7
b) (7c) Refrigerant pressure reducer (18a) (18b) (18
c), where it is depressurized. After that, after being evaporated in each user side heat exchanger (8a) (8b) (8c), the switching valve (17a) (17b) (17c), low pressure gas pipe (14), and suction pipe (10) are removed. , gas-liquid separator (6), and is sucked into the compressor (3) and (4). In this way, each user-side heat exchanger (8a) (8b) acts as an evaporator.
) All rooms are cooled at the same time in (8c).

逆に全室を同時に暖房する場合は、熱源側熱交換器(5
)の一方の切換弁(lla)を閉じると共に他方の切換
弁(llb)を開き、且つ利用側熱交換器(8a)(s
bバ8c)の一方の切換弁(16a)(16b)(16
c)を開くと共に他方の切換弁(17a)(17b)(
17c)を閉じることにより、圧縮機(3)(4)から
吐出された冷媒は吐出管(9a)(9b)、吐出集合管
(9)、高圧ガス管(13)を順次経て切換弁(16a
)(16b)(16c)、各利用側熱交換器(8a)(
8b) (8c)へと分配され、ここで夫々凝縮液化し
た後、各冷媒減圧器(18a)(18b)(18c)で
減圧されて液管(15)で合流きれ、然る後、熱源側熱
交換器(5)で蒸発気化した後、切換弁(llb)、吸
込管(10)、気液分離器(6)を順次経て圧縮機(3
)(4)に吸入される。このように凝縮器として作用す
る各利用側熱交換器(8a)(8b) (8c)で全室
が同時に暖房される。
Conversely, if you want to heat all rooms at the same time, use the heat source side heat exchanger (5
) closes one switching valve (lla) and opens the other switching valve (llb), and closes one switching valve (lla) of the heat exchanger (8a) (s
One of the switching valves (16a) (16b) (16
c) and open the other switching valve (17a) (17b) (
17c), the refrigerant discharged from the compressors (3) and (4) passes through the discharge pipes (9a) (9b), the discharge collecting pipe (9), and the high-pressure gas pipe (13) in sequence, and then passes through the switching valve (16a).
) (16b) (16c), each user side heat exchanger (8a) (
8b) (8c), and after being condensed and liquefied here, the pressure is reduced in each refrigerant pressure reducer (18a), (18b), and (18c), and they are merged in the liquid pipe (15), and then the heat source side After being evaporated in the heat exchanger (5), it passes through the switching valve (llb), the suction pipe (10), and the gas-liquid separator (6) in order to the compressor (3).
) (4). In this way, all the rooms are heated simultaneously by each user side heat exchanger (8a) (8b) (8c) acting as a condenser.

かかる同時冷房運転時及び同時暖房運転時、バイパス弁
(22)(23)が閉じて定能力型圧縮機(4)は定格
の5馬力で、且つ能力可変型圧縮機(3)は最大出力5
馬力で夫々運転されている。
During such simultaneous cooling operation and simultaneous heating operation, the bypass valves (22) and (23) are closed so that the constant capacity compressor (4) has a rated output of 5 horsepower, and the variable capacity compressor (3) has a maximum output of 5 horsepower.
Each is driven by horsepower.

又、例えば利用側ユニット(7b)のみ運転してこの一
室のみ冷房もしくは暖房する場合はこの利用側ユニット
(7b)の3馬力に見合う能力で能力可変型圧縮機(3
)が運転され、定能力型圧縮機(4)が停止している。
For example, if only the user unit (7b) is operated to cool or heat only this one room, a variable capacity compressor (3
) is in operation, and the constant capacity compressor (4) is stopped.

かかる−室運転時、バイパス弁(22)(23)が開い
て定能力型圧縮機(4)の吐出管(9b)内の冷媒圧力
が高くならないように毛細管(24)を介して、圧力を
逃がすと共に逆止弁(19)により能力可変型圧縮機(
3)の吐出冷媒圧力が吐出管(9b)内に加わらないよ
うにしており、このため、定能力型圧縮機(4)はこの
内部の吐出ベーンが開いて円滑に起動される。
During such indoor operation, the bypass valves (22) and (23) are opened to prevent the refrigerant pressure in the discharge pipe (9b) of the constant capacity compressor (4) from increasing through the capillary tube (24). At the same time, the variable capacity compressor (
The discharge refrigerant pressure of 3) is prevented from being applied to the inside of the discharge pipe (9b), so that the constant capacity compressor (4) is smoothly started by opening the discharge vanes therein.

かかる起動は一室運転から、二基運転、更には上述した
全室運転へと移行する時に行なわれ、制御器(21)か
らの制御信号で第2図に示すように、バイパス弁(22
)<23)は利用側ユニットの要求馬力が7馬力に達す
る迄、開いて定佳力型圧縮機(4)から吐出された冷媒
の一部をバイパス路(20)を経て低圧側に導くことに
より5馬力の定能力型圧縮機(4)の出力を3馬力に下
げ、且つ能力可変型圧縮機(3)の能力を2馬力に下げ
ることにより急激に出力が増えないようにした後、徐々
にこの圧縮機(3)のf后力を上げ、然る後、バイパス
弁(23)(24)を閉じると同時に再び能力可変型圧
縮機り3)の能力を2馬力に下げて急激に出力が増えな
いようにした後、この圧縮機(3)の能力を徐々に上げ
ていく。従って、能力可変型圧縮機〈3)の単独運転か
ら能力可変型圧縮機(3)と定能力型圧縮機(4)との
同時運転に移行する時に出力が急激に変動することはな
い。
Such activation is performed when transitioning from single-room operation to dual-unit operation to the above-mentioned all-room operation, and as shown in FIG. 2, the bypass valve (22
)<23) is opened until the required horsepower of the user unit reaches 7 horsepower, and a part of the refrigerant discharged from the constant power compressor (4) is guided to the low pressure side via the bypass path (20). After reducing the output of the 5 horsepower constant capacity compressor (4) to 3 horsepower and reducing the capacity of the variable capacity compressor (3) to 2 horsepower to prevent the output from increasing rapidly, gradually Then, the power of this compressor (3) is increased, and then, at the same time as the bypass valves (23) and (24) are closed, the capacity of the variable capacity compressor (3) is again lowered to 2 horsepower and the output is suddenly increased. After making sure that the amount does not increase, the capacity of this compressor (3) is gradually increased. Therefore, when the variable capacity compressor (3) is operated independently to the simultaneous operation of the variable capacity compressor (3) and the constant capacity compressor (4), the output does not fluctuate rapidly.

又、同時に任意の例えば二基を冷房し一室を暖房する場
合は、熱源側熱交換器(5)の一方の切換弁(11a、
 )を開くと共に他方の切換弁(Ilb>を閉じ、且つ
、冷房する利用側ユニット<7b)(7c)の一方の切
換弁(16b)<16c)を閉じると共に他方の切換弁
(17b)(17c)を開き、且つ暖房する利用側ユニ
ット〈7a)の一方の切換弁(16a)を開くと共に他
方の切換弁(17a)を閉じると、圧縮機<3)(4)
から吐出された冷媒の一部が吐出集合管(9)、切換弁
(lla)を順次繰て熱源側熱交換器(5)に流れると
共に残りの冷媒が高圧ガス管(13)を経て暖房する利
用側ユニット(7a)の切換弁(16a)、利用側熱交
換器(8a)へと流れ、この利用側熱交換器(8a)と
熱源側熱交換器(5)とで凝縮液化される。そして、こ
れら熱交換器(8a)(5)で凝縮液化された冷媒は液
管〈15)を経て利用側ユニット(7b)(7c)の冷
媒減圧器(18b)(18c)で減圧された後、夫々の
利用側熱交換器(8b)(8c)で蒸発気化され、然る
後、各切換弁<17b)(17c)を経て低圧ガス管(
14)で合流され、吸込管(10)、気液分離器(6)
を順次繰て圧縮機(3)(4)に吸入される。このよう
に凝縮器として作用する利用側熱交換器(8a)で−室
が暖房され、蒸発器として作用する他の利用側熱交換器
(sb)(8c)で二基が冷房される。
In addition, if you want to simultaneously cool two units and heat one room at the same time, one switching valve (11a,
) and closes the other switching valve (Ilb>), and closes one switching valve (16b) <16c) of the cooling user unit <7b) (7c) while closing the other switching valve (17b) (17c). ), and when one switching valve (16a) of the heating user unit <7a) is opened and the other switching valve (17a) is closed, the compressor <3) (4)
A part of the refrigerant discharged from the refrigerant passes through the discharge collecting pipe (9) and the switching valve (lla) in order and flows to the heat source side heat exchanger (5), and the remaining refrigerant passes through the high pressure gas pipe (13) for heating. It flows to the switching valve (16a) of the usage side unit (7a) and the usage side heat exchanger (8a), and is condensed and liquefied in the usage side heat exchanger (8a) and the heat source side heat exchanger (5). The refrigerant condensed and liquefied in the heat exchangers (8a) and (5) passes through the liquid pipes (15) and is depressurized in the refrigerant pressure reducers (18b) (18c) of the user units (7b) (7c). , is evaporated in the respective user-side heat exchangers (8b) (8c), and then passes through each switching valve <17b) (17c) to the low-pressure gas pipe (
14), suction pipe (10), gas-liquid separator (6)
are sequentially sucked into the compressors (3) and (4). In this way, the user-side heat exchanger (8a) that functions as a condenser heats the room, and the other user-side heat exchanger (sb) (8c) that functions as an evaporator cools the two rooms.

かかる冷暖房同時運転時、バイパス弁(22) (23
)は閉じており、暖房している利用側ユニット(7a)
の運転能力2馬力と冷房している利用側ユニット(7b
)(7c)の運転能力の合計値8馬力とを比較して、大
きい方の8馬力に見合うように定能力型圧縮機(4)が
5馬力、能力可変型圧縮機(3)が3馬力で運転されて
いる。
During such simultaneous heating and cooling operation, the bypass valve (22) (23
) is closed and the user unit (7a) is heating.
The operating capacity is 2 horsepower and the cooling user unit (7b
) (7c), the constant capacity compressor (4) has 5 horsepower and the variable capacity compressor (3) has 3 horsepower to match the larger 8 horsepower. It is being driven by.

上述した冷房運転、暖房運転、冷暖房同時運転時におい
て、吐出管(9a)を流れる吐出冷媒温度と、吐出管(
9b)を流れる吐出冷媒温度と、吐出集合管(9)を流
れる吐出冷媒温度は第2図に示すように変化しており、
両圧縮機(3)(4)が同時運転されている時の集合吐
出管(9)の冷媒温度は吐出管(9a)の冷媒温度と吐
出管(9b)の冷媒温度との平均値に相当している。従
って集合吐出管(9)の冷媒温度を検出したのでは吐出
管(9b)の冷媒温度が異常温度に達しても判明できず
、この為、本発明では吐出管(9a)(9b)の冷媒温
度を第1の検出器(27a)<27b)で個別に検出し
て第3図に示すフローチャートに基づいて制御している
During the above-mentioned cooling operation, heating operation, and simultaneous cooling and heating operation, the temperature of the discharge refrigerant flowing through the discharge pipe (9a) and the discharge pipe (
The temperature of the discharge refrigerant flowing through the discharge collecting pipe (9b) and the temperature of the discharge refrigerant flowing through the discharge manifold pipe (9) change as shown in FIG.
When both compressors (3) and (4) are operated simultaneously, the refrigerant temperature in the collective discharge pipe (9) corresponds to the average value of the refrigerant temperature in the discharge pipe (9a) and the refrigerant temperature in the discharge pipe (9b). are doing. Therefore, by detecting the refrigerant temperature in the collective discharge pipe (9), it cannot be determined even if the refrigerant temperature in the discharge pipe (9b) reaches an abnormal temperature. The temperature is individually detected by first detectors (27a)<27b) and controlled based on the flowchart shown in FIG.

即ち、吐出管(9a)(9b)の何れか一方の冷媒温度
Tが第1の設定温度T、よりも高い時は両圧縮機(3)
(’4)を停止して警報器(30)が作動し、逆に第1
の設定温度TIよりも低く、且つ冷媒温度TがT2、第
3の設定温度T*、Ts(但し、T、>Tt>T3)に
対しT、≧T≧T、の範囲にある時は能力可変型圧縮機
(3)の運転周波数の上昇を票止して能力を維持する。
That is, when the refrigerant temperature T of either one of the discharge pipes (9a) (9b) is higher than the first set temperature T, both compressors (3)
('4) is stopped, the alarm (30) is activated, and the first
The capacity is lower than the set temperature TI, and when the refrigerant temperature T is in the range of T, ≧T≧T, with respect to T2, the third set temperature T*, Ts (T, > Tt > T3). Capacity is maintained by preventing an increase in the operating frequency of the variable compressor (3).

逆に’r>’rzの範囲にある時は能力可変型圧縮機(
3)の運転周波数を下げて能力をダウンさせることによ
り、能力可変型圧縮機(3)の吐出冷媒温度が低下し、
この低下に伴なって冷媒吐出集合管(9)で連通してい
る定能力型圧縮機(4)の冷媒吐出管(9b)の冷媒温
度も低下する。そして、能力可変型圧縮機(3)が最低
運転周波数(最低能力)に低下すると定能力型圧縮機(
4)が停止する。この停止にもかかわらず、能力可変型
圧縮機(3)が最低運転周波数(最低能力)で運転され
ると能力可変型圧縮機(3)も停止し、警報器(30)
が作動する。
On the other hand, when the range is 'r>'rz, the variable capacity compressor (
By lowering the operating frequency of 3) to lower the capacity, the temperature of the refrigerant discharged from the variable capacity compressor (3) decreases,
Along with this decrease, the refrigerant temperature in the refrigerant discharge pipe (9b) of the constant capacity compressor (4), which is communicated with the refrigerant discharge manifold pipe (9), also decreases. When the variable capacity compressor (3) drops to the lowest operating frequency (minimum capacity), the constant capacity compressor (
4) stops. Despite this stoppage, if the variable capacity compressor (3) is operated at the lowest operating frequency (minimum capacity), the variable capacity compressor (3) will also stop, and the alarm (30) will be activated.
is activated.

このように、吐出管(9a) (9b)の冷媒温度を第
1の検出器(27a)(27b)で個別に検出し、何れ
か一方の冷媒温度が上昇するに従い能力可変型圧縮機(
3)の能力ダウン、定能力型圧縮機(4)の停止といっ
た具合に両圧縮機(3)(4)を運転制御することによ
り吐出冷媒温度を許容温度範囲内に抑えるようにしてい
る。
In this way, the refrigerant temperatures in the discharge pipes (9a) (9b) are individually detected by the first detectors (27a) (27b), and as the refrigerant temperature in either one increases, the variable capacity compressor (
By controlling the operation of both compressors (3) and (4), such as reducing the capacity of 3) and stopping the constant capacity compressor (4), the discharge refrigerant temperature is kept within the permissible temperature range.

併せて、冷房運転、暖房運転、冷暖房同時運転時におイ
テ、第2.第3の検出器(28a)(28b) 、 (
29a)(z9b)にて両圧縮機<3)(4)の温度及
び吐出管〈9a)(9b)の吐出冷媒圧力を検出してお
り、両圧縮機(3)(4)の何れかの温度が設定値13
5°Cを上回わるか、吐出冷媒圧力が設定値28.5k
g/Cm”を上回ると、その何れかの検出器(26a)
(26b) 、 (27g)(27b)の接点が開放さ
れてその警報信号が制御器(21)に入力されるため、
制御器(21)からの信号で両圧縮機(3)(4)が運
転を停止すると同時に設定値を上回った異常側の圧縮機
が何れであるかを第4図に示すフローチャートの如くそ
の警報信号に基づいて表示器(31)で指し示されるの
で、圧縮機(3)(4)の運転停止後に行なう点検修理
が楽になる。
At the same time, there is a second problem when operating cooling, heating, or simultaneous heating and cooling operation. Third detector (28a) (28b), (
29a) (z9b) detects the temperature of both compressors <3) (4) and the discharge refrigerant pressure of the discharge pipes <9a) (9b). Temperature is set value 13
The temperature exceeds 5°C or the discharge refrigerant pressure reaches the set value of 28.5k.
g/Cm", either of the detectors (26a)
Since the contacts (26b), (27g) and (27b) are opened and the alarm signal is input to the controller (21),
Both compressors (3) and (4) stop operating with a signal from the controller (21), and at the same time an alarm is issued to indicate which compressor is on the abnormal side and exceeds the set value, as shown in the flowchart shown in Figure 4. Since the indicator (31) indicates based on the signal, inspection and repair after the compressors (3) and (4) have stopped operating becomes easier.

尚、上記実施例ではユニット間配管(12)を高圧ガス
管(13)、低圧ガス管(14)、液管(15)との3
木の冷媒管で構成したので、単一機能の熱源側熱交換器
を用いた簡易な回路構成のものとで、複数台の利用側ユ
ニットの同時冷房運転及び同時暖房運転はもとより冷暖
房同時運転を任意の利用側ユニットで自由に選択して行
なうことができると共に、冷暖房同時運転時には凝縮器
として作用する利用側熱交換器と、蒸発器として作用す
る利用側熱交換器とがシリーズ接続されるため熱回収に
よる効率の良い運転を行なうことができるが、本発明は
かかる冷媒回路のみに限定されるものではない。
In addition, in the above embodiment, the inter-unit piping (12) is composed of three high-pressure gas pipes (13), low-pressure gas pipes (14), and liquid pipes (15).
Since it is constructed with wooden refrigerant pipes, it has a simple circuit configuration using a single-function heat source side heat exchanger, and can perform simultaneous cooling and heating operations of multiple user-side units as well as simultaneous cooling and heating operations. It can be freely selected and performed on any user unit, and the user heat exchanger, which acts as a condenser, and the user heat exchanger, which acts as an evaporator, are connected in series during simultaneous heating and cooling operation. Although efficient operation can be performed by heat recovery, the present invention is not limited to such a refrigerant circuit.

又、能力可変型圧縮機(3)は運転周波数が変わるイン
バータタイプの他に極数変換タイプやアンローダタイプ
等のように能力が複数段に変わるものであっても良く、
又、複数台の圧縮機が全て能力可変型であっても良い。
In addition to the variable capacity compressor (3), in addition to the inverter type in which the operating frequency changes, the variable capacity compressor (3) may also be one in which the capacity changes in multiple stages, such as a pole conversion type or an unloader type.
Further, all of the plurality of compressors may be of variable capacity type.

(ト)発明の効果 本発明によれば、並列接続された複数台の圧縮機の保護
回路に、各圧縮機の吐出冷媒温度を個別に検出する検出
器を設けたので、一方の能力可変型圧縮機の能力の変化
により変動する冷媒温度の影響を受けて他方の圧縮機の
吐出冷媒温度が異常温度を上回わってもその異常を検出
できない、という虞れは解消され、且つ、吐出冷媒温度
が設定温度に上昇すると能力可変型圧縮機の能力を下げ
るようにしたので、運転を継続させながら圧縮機のモー
タ巻線の絶縁不良防止や潤滑油の劣化防止を図ることが
できる。
(G) Effects of the Invention According to the present invention, a detector for individually detecting the discharge refrigerant temperature of each compressor is provided in the protection circuit of a plurality of compressors connected in parallel. The possibility that an abnormality cannot be detected even if the discharge refrigerant temperature of the other compressor exceeds an abnormal temperature due to the influence of the refrigerant temperature that fluctuates due to a change in the capacity of the compressor is eliminated, and the discharge refrigerant Since the capacity of the variable capacity compressor is reduced when the temperature rises to the set temperature, it is possible to prevent insulation failure in the motor windings of the compressor and prevent deterioration of the lubricating oil while continuing operation.

併せて、並列接続された複数台の圧縮機の保護回路に、
各圧縮機の温度及び/又は各圧縮機の吐出冷媒圧力を個
別に検出する検出器と、この各検出器からの信号に基づ
いて異常側の圧縮機を指し示す表示器とを設けたので、
複数台の圧縮機の運転停止後に行なう点検修理時に、異
常側の圧縮機か何れであるかを表示器で識別できるため
、点検修理作業を容易に行なうことができる。
In addition, a protection circuit for multiple compressors connected in parallel,
A detector that individually detects the temperature of each compressor and/or the discharge refrigerant pressure of each compressor, and an indicator that indicates the abnormal compressor based on the signals from each detector are provided.
When inspecting and repairing a plurality of compressors after the operation is stopped, it is possible to identify which compressor is abnormal on the display, so that inspection and repair work can be easily carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す冷凍装置の冷媒回路図、
第2図は圧縮機の運転パターンと冷媒吐出温度の変化を
示す説明図、第3図は運転動作を示すフローチャート、
第4図は異常表示の動作を示すフローチャートである。 (3)・・・能力可変型圧縮機、 (4)・・・定能力
型圧縮機、 (9g)(9b)−冷媒吐出管、 (18
a)(18b)(18C)・・・冷媒減圧器、 (21
)・・・制御器、 (27a)(z7b) 、 (28
a)(28b) 、 (29a)(29b)・・・検出
器、 (31)−・・表示器。
FIG. 1 is a refrigerant circuit diagram of a refrigeration system showing an embodiment of the present invention;
Fig. 2 is an explanatory diagram showing the operating pattern of the compressor and changes in refrigerant discharge temperature, Fig. 3 is a flowchart showing the operating operation,
FIG. 4 is a flowchart showing the abnormality display operation. (3)...variable capacity compressor, (4)...constant capacity compressor, (9g) (9b)-refrigerant discharge pipe, (18
a) (18b) (18C)... Refrigerant pressure reducer, (21
)...controller, (27a) (z7b), (28
a) (28b), (29a) (29b)...detector, (31)--indicator.

Claims (2)

【特許請求の範囲】[Claims] (1)並列接続された複数台の圧縮機と凝縮器と冷媒減
圧器と蒸発器とを順次環状に接続した冷媒回路と、複数
台の圧縮機の保護回路とを備えた冷凍装置において、前
記保護回路には各圧縮機の吐出冷媒温度を個別に検出す
る検出器と、この各検出器からの信号に基づいて圧縮機
に能力を低下させる信号を発する制御器とを設けたこと
を特徴とする冷凍装置。
(1) In a refrigeration system comprising a refrigerant circuit in which a plurality of compressors, a condenser, a refrigerant pressure reducer, and an evaporator are sequentially connected in an annular manner connected in parallel, and a protection circuit for the plurality of compressors, The protection circuit is equipped with a detector that individually detects the discharge refrigerant temperature of each compressor, and a controller that issues a signal to reduce the capacity of the compressor based on the signals from each detector. refrigeration equipment.
(2)並列接続された複数台の圧縮機と凝縮器と冷媒減
圧器と蒸発器とを順次環状に接続した冷媒回路と、複数
台の圧縮機の保護回路とを備えた冷凍装置において、前
記保護回路には各圧縮機の温度及び/又は各圧縮機の吐
出冷媒圧力を個別に検出する検出器と、この各検出器か
らの信号に基づいて異常側の圧縮機を指し示す表示器と
、前記信号に基づいて各圧縮機に停止信号を発する制御
器を設けたことを特徴とする冷凍装置。
(2) In a refrigeration system comprising a refrigerant circuit in which a plurality of compressors, a condenser, a refrigerant pressure reducer, and an evaporator are sequentially connected in an annular manner connected in parallel, and a protection circuit for the plurality of compressors, The protection circuit includes a detector that individually detects the temperature of each compressor and/or the discharge refrigerant pressure of each compressor, an indicator that indicates the abnormal compressor based on the signal from each detector, and the A refrigeration system comprising a controller that issues a stop signal to each compressor based on the signal.
JP1264431A 1989-10-11 1989-10-11 Refrigerator Pending JPH03125861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1264431A JPH03125861A (en) 1989-10-11 1989-10-11 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1264431A JPH03125861A (en) 1989-10-11 1989-10-11 Refrigerator

Publications (1)

Publication Number Publication Date
JPH03125861A true JPH03125861A (en) 1991-05-29

Family

ID=17403092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1264431A Pending JPH03125861A (en) 1989-10-11 1989-10-11 Refrigerator

Country Status (1)

Country Link
JP (1) JPH03125861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106322639A (en) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 Exhaust temperature frequency limiting protection and control method for air conditioner
US10041236B2 (en) 2016-06-08 2018-08-07 Bradley Corporation Multi-function fixture for a lavatory system
US10100501B2 (en) 2012-08-24 2018-10-16 Bradley Fixtures Corporation Multi-purpose hand washing station
WO2019181595A1 (en) * 2018-03-23 2019-09-26 住友重機械工業株式会社 Cryogenic refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100501B2 (en) 2012-08-24 2018-10-16 Bradley Fixtures Corporation Multi-purpose hand washing station
CN106322639A (en) * 2015-06-30 2017-01-11 青岛海尔空调器有限总公司 Exhaust temperature frequency limiting protection and control method for air conditioner
US10041236B2 (en) 2016-06-08 2018-08-07 Bradley Corporation Multi-function fixture for a lavatory system
WO2019181595A1 (en) * 2018-03-23 2019-09-26 住友重機械工業株式会社 Cryogenic refrigerator
CN111868459A (en) * 2018-03-23 2020-10-30 住友重机械工业株式会社 Cryogenic refrigerator
JPWO2019181595A1 (en) * 2018-03-23 2021-03-11 住友重機械工業株式会社 Cryogenic freezer
CN111868459B (en) * 2018-03-23 2021-08-10 住友重机械工业株式会社 Cryogenic refrigerator
US11649998B2 (en) 2018-03-23 2023-05-16 Sumitomo Heavy Industries, Ltd. Cryocooler

Similar Documents

Publication Publication Date Title
EP3279580B1 (en) Air-conditioning device
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
US9829230B2 (en) Air conditioning apparatus
EP1659348B1 (en) Freezing apparatus
CN101231016B (en) Device and method for connecting and detecting pipe of multi-connected air conditioner
EP2413065B1 (en) Refrigerator
JP4089139B2 (en) Air conditioner
JP6628911B1 (en) Refrigeration cycle device
US11725855B2 (en) Air conditioning apparatus
US11274851B2 (en) Air conditioning apparatus
US11415343B2 (en) Air conditioning apparatus and control method thereof
GB2564367A (en) Air-conditioning device
KR101329752B1 (en) Air conditioning system
US20050252236A1 (en) Refrigeration equipment
JPH03125861A (en) Refrigerator
US11506427B2 (en) Air conditioning apparatus
JPH07120091A (en) Air conditioner
CN113874662B (en) air conditioner
JP2002039598A (en) Air conditioner
JPH01302072A (en) Heat pump type air conditioner
JP2002188874A (en) Refrigerator
JPH01305267A (en) Refrigerator
JPH03267657A (en) Multi-room air-conditioner
JPH04151474A (en) Air conditioner
JP3048658B2 (en) Refrigeration equipment