JPH10193065A - Detection of depression in vertical direction of solidified shell in mold in continuous casting - Google Patents

Detection of depression in vertical direction of solidified shell in mold in continuous casting

Info

Publication number
JPH10193065A
JPH10193065A JP35926296A JP35926296A JPH10193065A JP H10193065 A JPH10193065 A JP H10193065A JP 35926296 A JP35926296 A JP 35926296A JP 35926296 A JP35926296 A JP 35926296A JP H10193065 A JPH10193065 A JP H10193065A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
depression
continuous casting
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35926296A
Other languages
Japanese (ja)
Inventor
Kenichiro Kimura
健一郎 木村
Takashi Kano
隆 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP35926296A priority Critical patent/JPH10193065A/en
Publication of JPH10193065A publication Critical patent/JPH10193065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the depression in the longitudinal direction and to predict the breakout caused by breakage of solidified shell by continuously measuring the temp. of inner surface of a mold over on the whole periphery and indicating downward peak wave form rapidly lowered and raised in the measured temp. curve at a prescribed position with time. SOLUTION: The solidified shell 100 is locally shrunk with uneven flow, etc., of mold powder into the inner surface of the mold 102 to develop the recessed part 104 and the air gap 106 between the mold 102 and the solidified shell 100 is developed to develop the delay of solidification. In the case this condition continuously succeds, a prescribed length of recessed part and depression are developed in the longitudinal direction on the solidified shell 100, and the longitudinal crack is developed with the shrinkage accompanied with the surrounding shrinkage, and the solidified shell 100 is broken at a position taken off the lower part from the mold 102 to develop the breakout flowing out molten steel. At the time of developing the depression on the solidified shell 100, the temp. is rapidly lowered with the air gap 106 and reversely, at the time of bringing the normal solidified shell into contact with the inner surface of the mold, the temp. is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は連続鋳造に際して
モールド内で凝固シェルの一部が上下所定長さに亘って
凹み変形する凝固シェルの縦方向デプレッションの検知
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a vertical depression of a solidified shell in which a part of the solidified shell is dented and deformed over a predetermined length in a mold during continuous casting.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】モール
ド内に溶鋼を連続的に流し込みつつ冷却によりモールド
内で生じた凝固シェルを連続的に下方に引き抜いて鋳造
を行う連続鋳造が広く実施されている。この連続鋳造に
際して、モールド内で凝固シェルが何らかの原因で部分
的に破れ、その破断部がモールドから下側に抜け出たと
ころで内部の溶鋼が流出するブレイクアウトが従来から
大きな問題となっている。このブレイクアウトは種々の
原因で生じるが、そのうちの1つに凝固シェルのデプレ
ッションに起因するブレイクアウトがある。
2. Description of the Related Art Continuous casting has been widely practiced in which molten steel is continuously poured into a mold and a solidified shell formed in the mold by cooling is continuously drawn downward to perform casting. I have. During this continuous casting, a breakout in which the solidified shell is partially broken in the mold for some reason and the molten steel flows out when the broken portion escapes downward from the mold has conventionally been a major problem. This breakout can occur for a variety of reasons, one of which is breakout due to solidified shell depletion.

【0003】ここで凝固シェルのデプレッションとは、
図4の平面図に示しているように、凝固シェル100の
周方向の一部が上下に所定長さに亘って凝固シェル中心
側に凹み変形する現象であり、このデプレッション(凹
み)104は、例えばモールド102内面へのモールド
パウダーの不均一な流入等によって、凝固シェル100
が局部的に収縮して凝固シェル100の中心側に凹み変
形する現象で、このような凹み104が生じると、モー
ルド102と凝固シェル100との間にエアギャップ1
06が生じてその部分が凝固遅れを起こし、これが連続
的に続くと凝固シェル100に縦方向に所定長さの凹み
(デプレッション)が生じて、周辺の凝固に伴う収縮時
の引張力でデプレッション部に小さな縦割れが発生す
る。そしてその縦割れが段々と大きくなると、モールド
102を下側に抜けたところで凝固シェル100が破れ
て内部の溶鋼が外部に流出するブレイクアウトを生じ
る。
Here, the depression of the solidified shell is
As shown in the plan view of FIG. 4, this is a phenomenon in which a part of the solidified shell 100 in the circumferential direction is dented and deformed vertically toward the center of the solidified shell over a predetermined length. For example, due to uneven flow of mold powder into the inner surface of the mold 102, the solidified shell 100
Is locally contracted and deformed into the center of the solidified shell 100. When such a dent 104 occurs, the air gap 1 between the mold 102 and the solidified shell 100 is reduced.
06 is caused and a solidification delay is caused in the portion. If the solidification delay continues, a depression (depression) of a predetermined length is generated in the solidified shell 100 in the longitudinal direction, and a depressed portion is formed by a tensile force at the time of contraction caused by solidification in the periphery. Small vertical cracks occur When the vertical cracks are gradually increased, the solidified shell 100 is broken when the mold 102 is pulled downward, causing a breakout in which the molten steel flows out to the outside.

【0004】またこのようなブレイクアウトを生じない
までも、凝固シェル100、即ち鋳片108(図5参
照)の表層部に縦割れ110(図示の例では長さが15
0mm)が残って、後の圧延工程でその縦割れ110を
起点として粒界割れを生じるなどの問題を引き起こした
り、或いはそのような縦割れ110が製品鋼材に残って
しまってそこが欠陥部となったりする問題を生じるので
ある。
Further, even if such a breakout does not occur, a vertical crack 110 (having a length of 15 mm in the illustrated example) is formed in the surface layer of the solidified shell 100, that is, the slab 108 (see FIG. 5).
0 mm) remains, causing problems such as grain boundary cracks starting from the vertical cracks 110 in the subsequent rolling process, or such vertical cracks 110 remain in the product steel and become defective parts. This creates a problem of becoming dull.

【0005】[0005]

【課題を解決するための手段】本願の発明の縦方向デプ
レッションの検知方法はこのような課題を解決するため
に創出されたものである。而して請求項1の検知方法
は、連続鋳造に際して、モールド内部で凝固シェルの周
方向の一部が上下に所定長さに亘って該モールド内面よ
り該凝固シェル中心側に凹陥する凝固シェルの縦方向デ
プレッションの検知方法であって、該モールドの内面の
温度を全周に亘って連続的に計測し、所定測定部位にお
ける計測温度曲線が時間の経過につれて急激に下降した
後再び急激に上昇する形態の下向きのピーク波形を示す
ことをもって、前記縦方向デプレッションの発生を検知
することを特徴とする。
SUMMARY OF THE INVENTION The method for detecting vertical depression according to the present invention has been created to solve such a problem. According to the detection method of the present invention, in the continuous casting, a part of the solidified shell in the circumferential direction inside the mold is vertically depressed to a center side of the solidified shell from the inner surface of the mold over a predetermined length. This is a method of detecting vertical depletion, in which the temperature of the inner surface of the mold is continuously measured over the entire circumference, and the measured temperature curve at a predetermined measurement site sharply decreases with time and then sharply increases again. The generation of the vertical direction depression is detected by showing a downward peak waveform of the form.

【0006】請求項2の検知方法は、請求項1におい
て、前記モールドの内面近傍に且つ全周に亘って複数の
熱電対をモールド内部に埋設し、それら熱電対にてモー
ルド内面の各部の温度計測を行うことを特徴とする。
According to a second aspect of the present invention, in the first aspect, a plurality of thermocouples are embedded in the mold near the inner surface of the mold and over the entire circumference, and the thermocouples are used to detect the temperature of each part of the inner surface of the mold. It is characterized by performing measurement.

【0007】[0007]

【作用及び発明の効果】一般のブレイクアウトの場合、
即ちモールド内で凝固シェルが破断して凝固シェル内部
の溶鋼がモールド内面に直接露出接触する形のブレイク
アウトの場合、モールドの内面の温度は高温の溶鋼への
接触によってその接触部位の温度が急上昇し、続いて二
次シェルの形成により下降する現象を生じる。
[Function and Effect of the Invention] In the case of a general breakout,
In other words, in the case of a breakout in which the solidified shell breaks in the mold and the molten steel inside the solidified shell is exposed directly to the inner surface of the mold, the temperature of the inner surface of the mold rises sharply due to the contact with the high-temperature molten steel. Then, a phenomenon of descending due to the formation of the secondary shell occurs.

【0008】これに対して上記デプレッションが生じた
場合、そのデプレッションの生成部位においてモールド
内面の温度が上記とは逆に急激に降下し、続いて急激に
上昇する傾向を示すことが本発明者の研究の結果判明し
た。これは以下の理由に基づく。
[0008] On the other hand, when the above-mentioned depletion occurs, the present inventor has found that the temperature of the inner surface of the mold at the site where the depletion is generated tends to suddenly decrease and then rapidly increase. As a result of research, it turned out. This is based on the following reasons.

【0009】即ち、凝固シェルにこのようなデプレッシ
ョンが生じると、モールド内面と凝固シェルとの間のエ
アギャップによってモールド内面の所定部位、つまりデ
プレッションに対応する部位の温度が部分的に降下す
る。そしてそのようなデプレッションが通過してモール
ド内面が正常な凝固シェルにエアギャップなく直接接触
するようになると、上記所定部位のモールド内面の温度
が上昇に転じる。
That is, when such depletion occurs in the solidified shell, the temperature of a predetermined portion of the inner surface of the mold, that is, a portion corresponding to the depletion, partially drops due to an air gap between the inner surface of the mold and the solidified shell. Then, when such depletion passes and the inner surface of the mold comes into direct contact with a normal solidified shell without an air gap, the temperature of the inner surface of the mold at the predetermined portion starts to rise.

【0010】従ってモールド内面の温度計測を連続的に
実施し、計測した温度曲線が下向きのピーク波形を示す
ことをもって、上記デプレッションを検知することがで
きる。本発明はこのような知見の下になされたものであ
る。
Therefore, the above-mentioned depletion can be detected when the temperature of the inner surface of the mold is continuously measured and the measured temperature curve shows a downward peak waveform. The present invention has been made based on such knowledge.

【0011】かかる本発明によれば、デプレッションに
起因するブレイクアウトを事前に予知することができ、
かかるブレイクアウトの発生を未然に防ぐことが可能と
なる。或いはまた、その情報を後の圧延工程等にフィー
ドフォワードすることによって疵取りを容易となし得、
圧延に伴う粒界割れを防止したり、又は製品鋼材中に欠
陥として残ってしまうといったことを防ぐことができ
る。
According to the present invention, the breakout caused by the depression can be predicted in advance,
It is possible to prevent such a breakout from occurring. Alternatively, the information can be fed forward to a subsequent rolling process or the like to facilitate flaw removal,
It is possible to prevent intergranular cracks caused by rolling or to prevent defects in the product steel material from remaining.

【0012】本発明においては、上記モールドの内面近
傍に且つ全周に亘って複数の温度センサを埋設し、それ
ら温度センサにてモールド内面の各部の温度計測を行う
ようになすことができる。このようにすることによって
簡単な方法でモールド内面の各部の温度を監視すること
ができる。ここで温度センサとしては熱電対を好適に用
いることができる(請求項2)。
In the present invention, a plurality of temperature sensors can be embedded near the inner surface of the mold and over the entire circumference, and the temperature sensors can measure the temperature of each part of the inner surface of the mold. By doing so, the temperature of each part on the inner surface of the mold can be monitored by a simple method. Here, a thermocouple can be suitably used as the temperature sensor (claim 2).

【0013】[0013]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。図1は連続鋳造設備及び連続鋳造方法を示し
たもので、図中10はタンディッシュであり、内部の溶
鋼12を下側のモールド14に連続的に供給する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 1 shows a continuous casting facility and a continuous casting method. In the figure, reference numeral 10 denotes a tundish, in which molten steel 12 inside is continuously supplied to a lower mold 14.

【0014】モールド14の内部には冷却水通路が設け
てあって、その通路を流通する冷却水によって溶鋼12
の一次冷却が行われる。そしてその冷却によって、モー
ルド14内部において溶鋼12の外周部に凝固シェル1
6が形成される。
A cooling water passage is provided inside the mold 14, and the molten steel 12 is cooled by the cooling water flowing through the passage.
Primary cooling is performed. Then, by the cooling, the solidified shell 1 is formed on the outer peripheral portion of the molten steel 12 inside the mold 14.
6 are formed.

【0015】18は二次冷却帯であって、スプレーノズ
ルから冷却水をスプレー噴霧し、モールド14に続いて
溶鋼12の冷却を行う。20は引抜ロールであって、こ
の引抜ロール20によって凝固体である鋳片22が連続
的にモールド14から引き抜かれて行く。
Reference numeral 18 denotes a secondary cooling zone, which sprays cooling water from a spray nozzle to cool the molten steel 12 following the mold 14. Reference numeral 20 denotes a drawing roll, and the slab 22 as a solidified body is continuously drawn from the mold 14 by the drawing roll 20.

【0016】上記モールド14は平面形状が矩形状をな
しており、その内面近傍部位に、図2に示すパターンで
温度センサとしての熱電対24が埋設されている。
The mold 14 has a rectangular planar shape, and a thermocouple 24 as a temperature sensor is embedded in a portion near the inner surface thereof in a pattern shown in FIG.

【0017】図2はモールド14の内面を左右に展開し
て示したもので、図に示しているようにこの例では長辺
部分14A,短辺部分14Bともに熱電対24が周方向
の3箇所に、且つ同一周方向位置において上下に3段に
配置されている。また長辺部分14Aのコーナー部にお
いては、熱電対24が上下に4段に配置されている。
FIG. 2 shows the inner surface of the mold 14 developed right and left. As shown in FIG. 2, in this example, the thermocouples 24 are provided at three places in the circumferential direction for both the long side portion 14A and the short side portion 14B. , And at the same circumferential position in three stages vertically. At the corners of the long side portion 14A, the thermocouples 24 are vertically arranged in four stages.

【0018】図3は、長辺部分14Aの幅寸法が480
mm,短辺部分14Bの幅寸法が370mm,高さ寸法
が60mmの大きさのモールド14を用い、鋼種SCM
420肌焼鋼を鋳造最大速度0.70m/分の速度で連
続鋳造し、熱電対24による温度計測を実施したときに
得られた温度曲線を表している。但し縦軸は温度を、横
軸は時間を表している。
FIG. 3 shows that the width of the long side portion 14A is 480.
mm, the width of the short side portion 14B is 370 mm, and the height is 60 mm.
It shows a temperature curve obtained when 420 case-hardened steel was continuously cast at a maximum casting speed of 0.70 m / min, and the temperature was measured by the thermocouple 24. However, the vertical axis represents temperature, and the horizontal axis represents time.

【0019】この図は、連続鋳造の際に周方向所定位置
の熱電対24により計測した温度曲線を示したものであ
るが、同図に示しているようにこの温度曲線の場合、特
定の時間帯で下向きのピーク波形P,P’が現われてい
る。
FIG. 2 shows a temperature curve measured by a thermocouple 24 at a predetermined position in the circumferential direction during continuous casting. As shown in FIG. The downward peak waveforms P and P ′ appear in the band.

【0020】尚、図中上側の実線は最上段の熱電対24
による計測結果を、また下側の破線で示す曲線は周方向
同一位置にある熱電対24であって最上段の熱電対24
の直下の熱電対24による計測結果をそれぞれ示してい
る。
The upper solid line in the figure indicates the uppermost thermocouple 24.
The curve indicated by the broken line on the lower side is the thermocouple 24 at the same position in the circumferential direction,
Respectively show the measurement results obtained by the thermocouple 24 immediately below the.

【0021】これらの温度曲線において、ピーク波形
P,P’の大きさ、即ち温度降下幅は25〜35℃であ
り、下向きのピーク波形P,P’以外の部分(図中S,
S’の部分)の温度は約100℃であった。またそのピ
ーク波形P,P’を示した部分において、上記デプレッ
ションが生じていることが確認された。
In these temperature curves, the magnitude of the peak waveforms P and P ′, that is, the temperature drop width is 25 to 35 ° C., and portions other than the downward peak waveforms P and P ′ (S and S in the figure)
S ′) was about 100 ° C. In addition, it was confirmed that the above-described depletion occurred in the portions showing the peak waveforms P and P ′.

【0022】この実施例の場合、最上段の熱電対24と
その直下の熱電対24との間でそれ程大きな時間的ずれ
を生じることなく下向きのピーク波形P,P’が現われ
ている。これはデプレッションが上下の熱電対24間に
またがってほぼ同時的に生じたことによるものと考えら
れる。
In the case of this embodiment, downward peak waveforms P and P 'appear without significant time lag between the uppermost thermocouple 24 and the thermocouple 24 immediately below. This is considered to be due to the fact that the depression occurred almost simultaneously between the upper and lower thermocouples 24.

【0023】上下の熱電対24間で時間的なずれを伴っ
てデプレッションが生じた場合、つまり小さく生じたデ
プレッションが時間の経過に伴って下側に移行したよう
な場合には、上側の熱電対24と下側の熱電対24との
間で時間的なずれを伴って下向きのピーク波形P,P’
が現われることもある。
When depletion occurs with a time lag between the upper and lower thermocouples 24, that is, when the small depletion shifts downward with the passage of time, the upper thermocouple 24 Downward peak waveforms P and P ′ with a time lag between the thermocouple 24 and the lower thermocouple 24.
May appear.

【0024】何れにしろ周方向の同一位置にある上下の
熱電対24による温度計測結果に基づいてデプレッショ
ン検知を行うことで、デプレッション検知をより正確に
行うことが可能である。また正確なデプレッション検知
を行うために、しきい値を超える大きさの下向きのピー
ク波形が現われたときにデプレッションを生じたものと
判定することが可能である。その際のしきい値として例
えばこれを温度下降幅で10〜15℃に設定することが
できる。
In any case, depletion detection can be performed more accurately by detecting depletion based on the results of temperature measurement by the upper and lower thermocouples 24 at the same position in the circumferential direction. Further, in order to perform accurate depletion detection, it is possible to determine that depletion has occurred when a downward peak waveform having a magnitude exceeding a threshold value appears. At this time, the threshold value can be set to, for example, 10 to 15 ° C. in the temperature decrease width.

【0025】かかる本例によれば、デプレッションに起
因するブレイクアウトを事前に予知することができ、か
かるブレイクアウトの発生を未然に防ぐことが可能とな
る。或いはまたその情報を後の圧延工程等にフィードフ
ォワードすることによって疵取りを容易となし得、圧延
に伴う粒界割れを防止したり、又は製品鋼材中に欠陥と
して残ってしまうといったことを防ぐことができる。
According to this embodiment, a breakout caused by the depression can be predicted in advance, and the occurrence of such a breakout can be prevented. Alternatively, the information can be fed forward to a subsequent rolling process, etc., so that flaw removal can be facilitated, thereby preventing grain boundary cracks caused by rolling or preventing defects from remaining in product steel materials. Can be.

【0026】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造設備及び連続鋳造方法の説明図であ
る。
FIG. 1 is an explanatory view of a continuous casting facility and a continuous casting method.

【図2】図1における図2のモールドに埋設した熱電対
の配置パターン例を示す図である。
FIG. 2 is a diagram showing an example of an arrangement pattern of thermocouples embedded in a mold of FIG. 2 in FIG. 1;

【図3】図2の熱電対によって計測したモールド内面の
温度計測結果とそこにおいて現われた下向きのピーク波
形を示す図である。
FIG. 3 is a diagram showing a temperature measurement result of an inner surface of a mold measured by the thermocouple of FIG. 2 and a downward peak waveform appearing therein.

【図4】本発明の検知対象であるデプレッションの説明
図である。
FIG. 4 is an explanatory diagram of depletion which is a detection target of the present invention.

【図5】図4のデプレッションに起因する縦割れを鋳片
とともに示した図である。
FIG. 5 is a view showing a vertical crack caused by the depression of FIG. 4 together with a slab.

【符号の説明】 10 タンディッシュ 12 溶鋼 14 モールド 16 凝固シェル 24 熱電対(温度センサ) P,P’ 下向きのピーク波形[Description of Signs] 10 tundish 12 molten steel 14 mold 16 solidified shell 24 thermocouple (temperature sensor) P, P 'Downward peak waveform

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造に際して、モールド内部で凝固
シェルの周方向の一部が上下に所定長さに亘って該モー
ルド内面より該凝固シェル中心側に凹陥する凝固シェル
の縦方向デプレッションの検知方法であって該モールド
の内面の温度を全周に亘って連続的に計測し、所定測定
部位における計測温度曲線が時間の経過につれて急激に
下降した後再び急激に上昇する形態の下向きのピーク波
形を示すことをもって、前記縦方向デプレッションの発
生を検知することを特徴とする連続鋳造におけるモール
ド内凝固シェルの縦方向デプレッションの検知方法。
1. A method for detecting a longitudinal depression of a solidified shell in which a portion of the solidified shell in the circumferential direction is vertically depressed from the inner surface of the mold toward the center of the solidified shell within a predetermined length within the mold during continuous casting. The temperature of the inner surface of the mold is continuously measured over the entire circumference, and a downward peak waveform of a form in which a measured temperature curve at a predetermined measurement site rapidly decreases with time and then sharply increases again. A method for detecting the longitudinal depression of a solidified shell in a mold in continuous casting, wherein the method includes detecting occurrence of the longitudinal depression.
【請求項2】 請求項1において、前記モールドの内面
近傍に且つ全周に亘って複数の熱電対をモールド内部に
埋設し、それら熱電対にてモールド内面の各部の温度計
測を行うことを特徴とする連続鋳造におけるモールド内
凝固シェルの縦方向デプレッションの検知方法。
2. The mold according to claim 1, wherein a plurality of thermocouples are embedded in the mold in the vicinity of the inner surface of the mold and over the entire circumference, and the thermocouples measure the temperature of each part of the inner surface of the mold. A method for detecting longitudinal depression of a solidified shell in a mold in continuous casting.
JP35926296A 1996-12-27 1996-12-27 Detection of depression in vertical direction of solidified shell in mold in continuous casting Pending JPH10193065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35926296A JPH10193065A (en) 1996-12-27 1996-12-27 Detection of depression in vertical direction of solidified shell in mold in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35926296A JPH10193065A (en) 1996-12-27 1996-12-27 Detection of depression in vertical direction of solidified shell in mold in continuous casting

Publications (1)

Publication Number Publication Date
JPH10193065A true JPH10193065A (en) 1998-07-28

Family

ID=18463598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35926296A Pending JPH10193065A (en) 1996-12-27 1996-12-27 Detection of depression in vertical direction of solidified shell in mold in continuous casting

Country Status (1)

Country Link
JP (1) JPH10193065A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152940A1 (en) * 2008-06-17 2009-12-23 Sms Siemag Ag Device and method for detecting the danger of a breakout of a steel strand during the continuous casting of steel
JP2017177164A (en) * 2016-03-30 2017-10-05 日新製鋼株式会社 Breakout prediction method
CN114850427A (en) * 2022-04-14 2022-08-05 首钢集团有限公司 Method, device, equipment and medium for determining longitudinal cracks on surface of casting blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152940A1 (en) * 2008-06-17 2009-12-23 Sms Siemag Ag Device and method for detecting the danger of a breakout of a steel strand during the continuous casting of steel
JP2017177164A (en) * 2016-03-30 2017-10-05 日新製鋼株式会社 Breakout prediction method
CN114850427A (en) * 2022-04-14 2022-08-05 首钢集团有限公司 Method, device, equipment and medium for determining longitudinal cracks on surface of casting blank

Similar Documents

Publication Publication Date Title
JP2009050913A (en) Method for predicting surface crack in continuously cast slab
JP4259164B2 (en) Quality monitoring device and quality monitoring method for continuous cast slab
JPH10193065A (en) Detection of depression in vertical direction of solidified shell in mold in continuous casting
JP5703828B2 (en) Method for measuring the slab surface temperature in a continuous casting machine
KR101225432B1 (en) Apparatus and method for diagnosing crack of continuous casting slab
US5353861A (en) Roll casting process
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
JP2019098394A (en) Method and device for evaluating quality of steel
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JPH04162949A (en) Device for predicting longitudinal crack in continuous casting
JP2000263203A (en) Method for predicting longitudinal crack on continuously cast slab
Yao et al. Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets
JPH0771726B2 (en) Continuous casting method
JPH0446658A (en) Device for predicting breakout in continuous casting apparatus
JPS60106653A (en) Continuous casting method of steel
JP2001179414A (en) Secondary cooling method and secondary cooling device in continuous casting
JP3856686B2 (en) Casting status monitoring system for continuous casting
KR970033269A (en) How to measure cast iron defects in continuous casting of steel small section billet
JPH0575503B2 (en)
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
US12042851B2 (en) Casting method and associated device
JPH0929407A (en) Continuous caster
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
JPH01284470A (en) Method of controlling continuous casting of round ingot
JPH0957413A (en) Method for preventing cracking and breakout of cast slab in continuous casting