JPH10192834A - Soil pollution cleaning method - Google Patents

Soil pollution cleaning method

Info

Publication number
JPH10192834A
JPH10192834A JP9017546A JP1754697A JPH10192834A JP H10192834 A JPH10192834 A JP H10192834A JP 9017546 A JP9017546 A JP 9017546A JP 1754697 A JP1754697 A JP 1754697A JP H10192834 A JPH10192834 A JP H10192834A
Authority
JP
Japan
Prior art keywords
water level
soil
vacuum pump
groundwater
cylinder pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9017546A
Other languages
Japanese (ja)
Other versions
JP3509449B2 (en
Inventor
Yoichiro Ono
陽一朗 小野
Akio Tanaka
明雄 田中
Masayoshi Sakuma
正芳 佐久間
Hajime Inoue
肇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP01754697A priority Critical patent/JP3509449B2/en
Publication of JPH10192834A publication Critical patent/JPH10192834A/en
Application granted granted Critical
Publication of JP3509449B2 publication Critical patent/JP3509449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soil pollution cleaning method for enabling the sensing of the water level position of underground water even during the suction operation. SOLUTION: A suction well 22 is constituted of an outer cylinder pipe 24 provided with a strainer 26 at the end and an inner cylinder pipe 28 to be inserted into the outer cylinder pipe 24. A gas-liquid separation tank and a vacuum pump are connected with the ground surface of the inner cylinder pipe 28, while an end opening 28A is formed in the vicinity of the strainer 26. A floating type water level indicator for sensing the water level position of underground water 29 is set between the inner cylinder pipe 28 and the outer cylinder 24. In a cleaning device 20 of the above-referred constitution, gas phases and liquid phases containing pollutants are introduced from the end opening 28A through the strainer 26. As a float is placed on the stabilized water surface between the inner cylinder pipe 28 and the outer cylinder pipe 24, the accurate water level can be found. The efficient purification can be carried out by adjusting the degree of vacuum and the displacement based on the value of measuring the above-referred water level.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば工場廃棄物
によって汚染された土壌から、汚染物質であるトリクロ
ロエチレン、テトラクロロエチレン、トリクロロエタン
等の有害な揮発性有機塩素系化合物を真空抽出で吸引除
去する土壌汚染浄化方法に関する。
[0001] The present invention relates to a method for soil contamination, in which harmful volatile organic chlorine compounds such as trichloroethylene, tetrachloroethylene, and trichloroethane are removed from a soil contaminated by industrial waste by vacuum extraction. It relates to a purification method.

【0002】[0002]

【従来の技術】揮発性有機塩素系化合物による土壌汚染
では、汚染物は土壌中および地下水中に気相あるいは液
相として存在している。このような汚染物を土壌より除
去させるため、対象となる汚染領域まで地表面から吸引
井戸を掘り、地表面に設置した真空ポンプで、吸引井戸
を通し土壌中の汚染物を吸引除去する真空抽出法が知ら
れている。
2. Description of the Related Art In the case of soil contamination by volatile organochlorine compounds, the contaminants are present in the soil and groundwater as a gas phase or a liquid phase. In order to remove such contaminants from the soil, a suction well is dug from the ground surface to the target contaminated area, and a vacuum pump installed on the ground surface is used to extract the contaminants in the soil through the suction wells by vacuum extraction. The law is known.

【0003】図4は、真空抽出法を用いた浄化装置の構
成を表す構造説明図である。同図に示すように浄化装置
1では、まず汚染領域を掘削し土壌中に吸引井戸2を気
密に挿入する。ここで当該吸引井戸2の先端にはストレ
ーナ3が設けられており、後述する真空ポンプの稼働に
よって、このストレーナ3より汚染物を土壌中の空気、
汚染物蒸気、水蒸気、および汚染地下水の気液混合流と
して矢印4のような流れで吸引させる。またストレーナ
3は、吸引中に吸引井戸2の内部に土壌等の固体が侵入
するのを防止する役目も果たしている。
FIG. 4 is a structural explanatory view showing the structure of a purifying apparatus using a vacuum extraction method. As shown in the figure, in the purification device 1, first, a contaminated area is excavated, and a suction well 2 is hermetically inserted into soil. Here, a strainer 3 is provided at the tip of the suction well 2, and by operating a vacuum pump described later, contaminants are removed from the strainer 3 by air in the soil,
As a vapor-liquid mixed flow of contaminant vapor, water vapor, and contaminated groundwater, the mixture is sucked in a flow as indicated by arrow 4. The strainer 3 also serves to prevent solids such as soil from entering the inside of the suction well 2 during suction.

【0004】吸引井戸2は地表面で連結管5と接続し、
さらに気液分離槽6、吸引作用を発生させる真空ポンプ
7等へと接続される。そして真空ポンプ7の後段には処
理槽8が設けられ、汚染物は処理槽8で活性炭等にて吸
着されるか、または熱分解や他の方法で分解された後、
排気管9から大気中へと排出される。そして浄化の進捗
状況の把握は、吸引したガスや地下水中の汚染物の濃
度、および吸引量を測定することで行っている。
[0004] The suction well 2 is connected to the connecting pipe 5 on the ground surface,
Further, it is connected to a gas-liquid separation tank 6, a vacuum pump 7 for generating a suction action, and the like. A processing tank 8 is provided at the subsequent stage of the vacuum pump 7, and the contaminants are adsorbed by activated carbon or the like in the processing tank 8, or decomposed by thermal decomposition or other methods.
It is discharged from the exhaust pipe 9 to the atmosphere. The progress of the purification is grasped by measuring the concentration of the sucked gas and contaminants in the groundwater, and the amount of suction.

【0005】しかし上述した真空抽出法の浄化効率は、
土壌中の汚染物質を吸引して行う性質上、吸引井戸2の
周囲の土壌の性質に左右される。そして土壌の性質の中
でも通気性は、浄化効率を決定する大きな要因となって
いる。このため土壌浄化の効率を高めるには、土壌中に
地下水が存在すると、真空ポンプ7の負荷を大とし早急
に地下水を揚水し、地下水位が低下し通気性が良好にな
った後は、真空ポンプ7の負荷を抑えるといったよう
に、土壌内の状態に応じて真空ポンプ7の真空度や排気
量を変更するといったことが必要であった。よって浄化
作業中における吸引井戸2内部の地下水位を検知するこ
とが必要とされたが、上述した吸引井戸2の構造では、
それを達成することができなかった。
[0005] However, the purification efficiency of the above-mentioned vacuum extraction method is as follows.
The nature of sucking the contaminants in the soil depends on the properties of the soil around the suction well 2. And among the properties of soil, the permeability is a major factor that determines the purification efficiency. Therefore, in order to increase the efficiency of soil purification, if groundwater is present in the soil, the load on the vacuum pump 7 is increased and the groundwater is immediately pumped up. It was necessary to change the degree of vacuum and the amount of exhaust of the vacuum pump 7 according to the state in the soil, such as suppressing the load on the pump 7. Therefore, it was necessary to detect the groundwater level inside the suction well 2 during the purification work. However, in the structure of the suction well 2 described above,
It could not be achieved.

【0006】この吸引井戸2内部の地下水位を検知する
ことができない理由を図5〜図7を用いて説明する。
The reason why the groundwater level inside the suction well 2 cannot be detected will be described with reference to FIGS.

【0007】図5は、同一の地層内において真空ポンプ
を停止させた時の地下水の状態を示した断面図であり、
図6は図5において真空ポンプを稼働させた際の状態を
示した断面図である。そして図7は、従来の吸引井戸内
部にフロート式水位計を設けた浄化装置の稼働状態を示
した説明図である。図5に示すように真空ポンプ7の停
止時には、通常地下水位10は、降水量、大気圧の変化
および潮位等で変動しているが、同一の地層内では一定
の水位を保っている。しかし図6に示すように真空ポン
プ7の運転時には、吸引井戸1内部は負圧になり、地下
水が地上に排出されるため、吸引井戸1周囲の地下水位
10はその周辺のレベルより低下する。
FIG. 5 is a sectional view showing the state of groundwater when the vacuum pump is stopped in the same stratum.
FIG. 6 is a sectional view showing a state when the vacuum pump is operated in FIG. FIG. 7 is an explanatory diagram showing an operation state of a conventional purification device provided with a float type water level meter inside a suction well. As shown in FIG. 5, when the vacuum pump 7 is stopped, the normal groundwater level 10 fluctuates due to precipitation, changes in atmospheric pressure, tide level, and the like, but maintains a constant water level in the same stratum. However, as shown in FIG. 6, when the vacuum pump 7 is operated, the inside of the suction well 1 becomes negative pressure and the groundwater is discharged to the ground, so that the groundwater level 10 around the suction well 1 becomes lower than the level around the suction well.

【0008】ここで図7に示すように、吸引井戸1内部
では、気相(土壌中の空気、汚染物蒸気、水蒸気)と液
相(汚染地下水)とが、気液混合流となって地上に吸い
上げられているので、吸引井戸1内部における井戸内部
地下水位11には乱れが発生している。よってフロート
式水位計12では、フロート14が井戸内部地下水位1
1とともに上下移動し、安定した水位を測定することが
できなかった。またフロート式水位計12の代わりに接
針式水位計を用いても、地下水が気液混合流となって吸
引井戸1内部を移動するので、どの位置にあっても通電
する可能性があり、安定した水位を測定することができ
ない。さらに水圧式水位計を用いても、吸引井戸1内部
がすでに負圧となっているため、水位を求めることがで
きなかった。
As shown in FIG. 7, inside the suction well 1, a gas phase (air in soil, contaminant vapor, water vapor) and a liquid phase (contaminated groundwater) form a gas-liquid mixed flow on the ground. The groundwater level 11 inside the well 1 inside the suction well 1 is disturbed. Therefore, in the float type water level meter 12, the float 14 has the groundwater level 1 inside the well.
1 and moved up and down, and a stable water level could not be measured. In addition, even if a needle-type water level meter is used instead of the float type water level meter 12, since the groundwater moves in the suction well 1 as a gas-liquid mixed flow, there is a possibility that electricity may be supplied at any position, The stable water level cannot be measured. Further, even when a water pressure type water level meter was used, the water level could not be obtained because the inside of the suction well 1 was already at a negative pressure.

【0009】これらのことから従来の吸引井戸1では、
真空ポンプ7を稼働させている最中、井戸内部地下水位
11の位置を把握することができず、管内が空で空気を
吸っているのか、あるいは地下水を吸っているのかが不
明であった。このため従来の方法では真空ポンプ7の吸
引を作業用中に何度か停止し、地下水位10の検知を行
っている。そして地下水位10に応じるように真空ポン
プ7の真空度および排気量を調整し、再度浄化作業を行
っていた。
From these facts, in the conventional suction well 1,
During the operation of the vacuum pump 7, the position of the groundwater level 11 inside the well could not be grasped, and it was unclear whether the pipe was empty and sucking air or groundwater. For this reason, in the conventional method, the suction of the vacuum pump 7 is stopped several times during operation, and the groundwater level 10 is detected. Then, the degree of vacuum and the exhaust amount of the vacuum pump 7 were adjusted so as to correspond to the groundwater level 10, and the purification operation was performed again.

【0010】[0010]

【発明が解決しようとする課題】しかし上述のような浄
化方法では、作業途中に真空ポンプの稼働を停止させる
ことが必要となり、浄化効率を低下させる要因となって
いた。
However, in the above-mentioned purification method, it is necessary to stop the operation of the vacuum pump during the operation, which causes a reduction in purification efficiency.

【0011】本発明は上記従来の問題点を解消するため
になされたもので、真空抽出を行う吸引井戸内部の地下
水位を、吸引作業を停止することなく測定できる土壌汚
染浄化方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a method for purifying a soil contamination capable of measuring a groundwater level in a suction well for performing vacuum extraction without stopping a suction operation. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明は吸引井戸を二重
管構造にすれば、真空ポンプが稼働中であっても内筒管
と外筒管との間で安定した水位の計測がなされ、その計
測結果を基に真空ポンプの能力を最適に制御できるとい
う知見に基づいてなされたものである。すなわち本発明
に係る土壌汚染浄化方法は、有害物で汚染された土壌
に、汚染物質を抽出する井戸を掘削し、土壌中の汚染物
質を真空ポンプで吸引除去する土壌汚染浄化方法におい
て、吸引井戸を二重管とし、前記二重管の内筒管と外筒
管の間に設けた水位計により土壌浄化中の地下水位を測
定可能とすることとした。
According to the present invention, if the suction well has a double pipe structure, the water level can be measured stably between the inner pipe and the outer pipe even when the vacuum pump is operating. Based on the knowledge that the capacity of the vacuum pump can be optimally controlled based on the measurement results. That is, the soil contamination purification method according to the present invention is a soil contamination purification method in which a well for extracting contaminants is excavated in soil contaminated with harmful substances, and the contaminants in the soil are removed by suction using a vacuum pump. Is a double pipe, and the groundwater level during soil purification can be measured by a water level gauge provided between the inner pipe and the outer pipe of the double pipe.

【0013】また前記二重管の内筒管と外筒管との間の
水位計により土壌浄化中の地下水位を測定し、当該計測
水位に基づき、真空ポンプで発生させる真空度や真空ポ
ンプの排気量を調節して土壌汚染浄化処理をなすことと
した。
The groundwater level during soil purification is measured by a water gauge between the inner pipe and the outer pipe of the double pipe. Based on the measured water level, the degree of vacuum generated by a vacuum pump and the vacuum pump Soil pollution purification treatment was performed by adjusting the displacement.

【0014】[0014]

【作用】上記構成によれば、真空ポンプを稼働させると
内筒管から気相と液相とが気液混合流となって地上に吸
い上げられ、内筒管内部の水面には乱れが発生する。し
かし内筒管と外筒管との間には、真空ポンプからの吸引
力が常に鉛直方向に働き、外筒管により吸引井戸外部に
発生した水面の乱れも防止できることから、安定した水
面を形成することができる。このため内筒管と外筒管と
の間に水位計を設け、当該水位計にて水位検知を行え
ば、正確な地下水の水位変動を捕らえることできる。そ
してこの値をもって真空ポンプの吸引力を変動させれ
ば、内筒管の内部状態に応じた浄化作業が可能となり、
もって浄化効率を向上させることができる。
According to the above construction, when the vacuum pump is operated, the gas phase and the liquid phase become a gas-liquid mixed flow from the inner tube and are sucked to the ground, and the water surface inside the inner tube is disturbed. . However, a stable water surface is formed between the inner tube and the outer tube because the suction force from the vacuum pump always works in the vertical direction and the outer tube prevents the water surface from being disturbed outside the suction well. can do. Therefore, if a water level gauge is provided between the inner pipe and the outer pipe, and the water level is detected by the water level gauge, it is possible to accurately capture the fluctuation of the groundwater level. Then, if the suction force of the vacuum pump is varied with this value, the purifying operation according to the internal state of the inner tube becomes possible,
As a result, the purification efficiency can be improved.

【0015】[0015]

【発明の実施の形態】以下に、本発明に係る土壌汚染浄
化方法の好適な具体的実施例を図面を参照して詳細に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for purifying soil contamination according to the present invention will be described below in detail with reference to the drawings.

【0016】図1は、本発明に係る土壌汚染浄化方法を
適用した浄化装置の構成図である。同図に示すように浄
化装置20は、従来の真空抽出法と同様、汚染領域に吸
引井戸22を掘削し、外筒管24をフタ25によって気
密に挿入している。ここで当該外筒管24の先端にはス
トレーナ26が設けられており、地中での吸引を行うと
ともに、後述する吸引作業時に外筒管24内部に土壌等
の固体が侵入するのを防止している。
FIG. 1 is a configuration diagram of a purification apparatus to which the soil contamination purification method according to the present invention is applied. As shown in the figure, in the purifying apparatus 20, a suction well 22 is excavated in a contaminated area and an outer tube 24 is hermetically inserted by a lid 25 as in the conventional vacuum extraction method. Here, a strainer 26 is provided at the tip of the outer tube 24 to perform suction in the ground and to prevent solids such as soil from entering the inside of the outer tube 24 during a suction operation described later. ing.

【0017】そしてこのように構成された外筒管24の
内側には内筒管28が挿入されている。当該内筒管28
の地上部も含めた全長は外筒管24の全長よりも長く設
定され、地中側の先端開口部28Aの位置は、当該外筒
管24の先端に取り付けられたストレーナ26に達する
寸前までとなっている。また地表面側に突出する片側端
部には、気液分離槽27A、真空ポンプ27B、処理槽
27Cが接続されている。そして当該処理槽27Cの後
にはこれら装置を経由して浄化された気体を大気へと放
出するための排気管27Dが設けられている。
An inner tube 28 is inserted inside the outer tube 24 constructed as described above. The inner tube 28
The overall length including the above-mentioned ground portion is set longer than the overall length of the outer tube 24, and the position of the tip opening 28A on the underground side is just before reaching the strainer 26 attached to the tip of the outer tube 24. Has become. A gas-liquid separation tank 27A, a vacuum pump 27B, and a processing tank 27C are connected to one end protruding toward the ground surface. After the processing tank 27C, an exhaust pipe 27D for discharging the purified gas via these devices to the atmosphere is provided.

【0018】また内筒管28と外筒管26との間には、
水位計となるフロート式水位計32が設けられている。
これは内筒管28と外筒管26との間に入り込んだ地下
水29にフロート34を浮かせ、当該フロート34が上
下移動する様子をワイヤ36を介して記録計38にて計
測するものとなっている。ここでフタ25においては、
ワイヤ36を挿通させるため挿通穴37が設けられてい
るが、この挿通穴37はワイヤ36が挿通する際僅かに
隙間が生じるだけの径に設定されている。このため地上
部側の圧力が当該挿通穴37を経由して吸引井戸22内
部に影響することがない。
Between the inner tube 28 and the outer tube 26,
A float type water level gauge 32 serving as a water level gauge is provided.
This floats the float 34 in the groundwater 29 that has entered between the inner pipe 28 and the outer pipe 26, and measures the up and down movement of the float 34 with a recorder 38 via a wire 36. I have. Here, in the lid 25,
An insertion hole 37 is provided to allow the wire 36 to be inserted. The insertion hole 37 is set to have a diameter such that a slight gap is generated when the wire 36 is inserted. For this reason, the pressure on the ground side does not affect the inside of the suction well 22 via the insertion hole 37.

【0019】そしてこのフロート34が上下した量を地
下水29の水面変動量としている。また記録計38から
は地下水29の水面変動量を出力するための信号線39
Aが引き出されており、当該信号線39Aは真空ポンプ
27Bの真空度および排気量を調整する制御部39Bに
接続されている。そして当該制御部39Bは、地下水2
9の水面変動量の信号を記録計38より受けると、その
地下水位に応じた最適の真空ポンプ7の真空度および排
気量を算出し、制御信号によって当該真空ポンプ7を制
御する。
The amount by which the float 34 moves up and down is defined as the water level fluctuation of the groundwater 29. A signal line 39 for outputting the water level fluctuation of the groundwater 29 from the recorder 38.
A is drawn out, and the signal line 39A is connected to a control unit 39B for adjusting the degree of vacuum and the exhaust amount of the vacuum pump 27B. And the said control part 39B is the groundwater 2
When the signal of the water surface fluctuation amount 9 is received from the recorder 38, the optimum vacuum degree and the exhaust amount of the vacuum pump 7 according to the groundwater level are calculated, and the vacuum pump 7 is controlled by the control signal.

【0020】このような吸引井戸22では真空ポンプを
稼働させると地下水29は、気相、液相の混在した気液
混合流30となって内筒管28を通り地上へと揚水され
る。そしてこの吸引作業によって内筒管28とストレー
ナ26との間の空間は負圧となり、吸引井戸22の周辺
から連続して地下水29が入り込み、当該入り込んだ地
下水29は吸引井戸22の底部で内筒管28の先端開口
部28Aに流入する。このため内筒管28と外筒管24
との間に存在している地下水29は、内筒管28に発生
する気液混合流30の影響を受けず、常に内筒管28の
開口部に向かった安定した流れが形成されることとな
る。よって内筒管28と外筒管24との間にフロート式
水位計32を設置すれば、吸引井戸22の水位を真空ポ
ンプ27Bの稼働中でも測定することができる。
In such a suction well 22, when a vacuum pump is operated, the groundwater 29 becomes a gas-liquid mixed flow 30 in which a gas phase and a liquid phase are mixed, and is pumped to the ground through the inner tube 28. By this suction work, the space between the inner tube 28 and the strainer 26 becomes a negative pressure, and the groundwater 29 continuously enters from around the suction well 22, and the groundwater 29 enters the inner cylinder at the bottom of the suction well 22. It flows into the distal end opening 28A of the tube 28. Therefore, the inner tube 28 and the outer tube 24
Is not affected by the gas-liquid mixed flow 30 generated in the inner pipe 28, and a stable flow toward the opening of the inner pipe 28 is always formed. Become. Therefore, if the float type water level gauge 32 is installed between the inner pipe 28 and the outer pipe 24, the water level of the suction well 22 can be measured even while the vacuum pump 27B is operating.

【0021】そして地下水29の揚水作業の継続によ
り、地下水29の水位の低下が確認されたならば、気液
混合流30における気相の割合が増大していると判断
し、真空ポンプ27Bの負荷を抑え、真空度および排気
量を調整すればよい。このように地下水29の水位を検
知することによって、当該地下水29の水位に応じた真
空ポンプ27Bの運転が可能となり、浄化効率の向上を
行うことができる。ここで浄化装置20では、水位計と
してフロート式水位計32を用いたが、これに代わり接
針式の水位計を用いてもよい。
If it is confirmed that the water level of the groundwater 29 has dropped due to the continuation of the pumping operation of the groundwater 29, it is determined that the ratio of the gas phase in the gas-liquid mixed flow 30 has increased, and the load of the vacuum pump 27B has been increased. And the degree of vacuum and the amount of exhaust may be adjusted. By detecting the water level of the groundwater 29 in this manner, the operation of the vacuum pump 27B according to the water level of the groundwater 29 becomes possible, and the purification efficiency can be improved. Here, in the purifying device 20, the float type water level meter 32 is used as the water level meter, but a needle type water level meter may be used instead.

【0022】図2は、水位検知を行う接針式水位計の構
造を示す説明図であり、図3は接針式水位計を浄化装置
に適用した場合の構成図である。
FIG. 2 is an explanatory view showing a structure of a needle-type water level meter for detecting a water level, and FIG. 3 is a configuration diagram in a case where the needle-type water level meter is applied to a purification device.

【0023】浄化装置20では吸引井戸22を二重管構
造にすると内筒管28と外筒管24との間の空間が狭く
なり、フロート式水位計32のフロート34が入らない
場合がある。こうした場合には、内筒管28と外筒管2
4との間に図2に示すような接針式水位計40を適用し
てもよい。当該接針式水位計40では、2本の被覆線4
2を深度方向に平行に設置する。そして一対の被覆線4
2の間に電源44を設けるとともに、その経路に電流計
46を配置する。さらに被覆線42においては任意の間
隔毎に針状の導通部となる露出部44を設ける。
In the purifying apparatus 20, when the suction well 22 has a double-pipe structure, the space between the inner pipe 28 and the outer pipe 24 is narrowed, and the float 34 of the float type water level meter 32 may not enter. In such a case, the inner tube 28 and the outer tube 2
A needle-type water level gauge 40 as shown in FIG. In the needle type water level meter 40, two covered wires 4
2 is installed parallel to the depth direction. And a pair of covered wires 4
2, a power supply 44 is provided, and an ammeter 46 is disposed on the path. Further, in the covered wire 42, an exposed portion 44 serving as a needle-shaped conductive portion is provided at an arbitrary interval.

【0024】このように構成された接針式水位計40で
は、露出部48が地下水に浸ると、当該地下水29を経
由して一対の被覆線42に電流が流れ、その電流値を電
流計46によって計測することができる。そして地下水
29の水面が変動すれば、当該地下水29に浸る露出部
48が変わり通電経路の抵抗値が変動する。このことか
ら地下水29の水面位置の変動を電流計46における電
流値として捕らえることが可能になる。よって図3に示
すように、地下水29の水面位置検知をフロート式水位
計32の代わりに接針式水位計40を用いても、本発明
に係る土壌汚染浄化方法を実施することができる。
In the needle-type water level meter 40 configured as described above, when the exposed portion 48 is immersed in the groundwater, a current flows through the pair of covered wires 42 via the groundwater 29, and the current value is measured by an ammeter 46. Can be measured by If the water surface of the groundwater 29 changes, the exposed portion 48 immersed in the groundwater 29 changes, and the resistance value of the current path changes. This makes it possible to capture the fluctuation of the water surface position of the groundwater 29 as a current value in the ammeter 46. Therefore, as shown in FIG. 3, even if the water surface position of the groundwater 29 is detected by using a needle type water level meter 40 instead of the float type water level meter 32, the soil contamination purification method according to the present invention can be implemented.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、有
害物で汚染された土壌に、汚染物質を抽出する井戸を掘
削し、土壌中の汚染物質を真空ポンプで吸引除去する土
壌汚染浄化方法において、吸引井戸を二重管とし、前記
二重管の内筒管と外筒管の間に設けた水位計により土壌
浄化中の地下水位を測定可能としたことにより、内筒管
の管内で発生する水面の乱れの影響を受けることがな
い。このため吸引井戸の地下水位を吸引を停止すること
なく測定することができる。そして前記二重管の内筒管
と外筒管との間の水位計により土壌浄化中の地下水位を
測定し、当該計測水位に基づき、真空ポンプで発生させ
る真空度や真空ポンプの排気量を調節して土壌汚染浄化
処理をなすこととしたので、効率のよい浄化作業を行う
ことができる。
As described above, according to the present invention, a soil contaminated by excavating a well for extracting contaminants in soil contaminated with harmful substances and sucking and removing contaminants in the soil by a vacuum pump. In the method, the suction well is formed as a double pipe, and the groundwater level during soil purification can be measured by a water level gauge provided between the inner pipe and the outer pipe of the double pipe. It is not affected by the turbulence of the water surface generated in the sea. Therefore, the groundwater level in the suction well can be measured without stopping the suction. Then, the groundwater level during soil purification is measured by a water level gauge between the inner cylinder pipe and the outer cylinder pipe of the double pipe, and based on the measured water level, the degree of vacuum generated by the vacuum pump and the displacement of the vacuum pump are determined. Since the soil contamination purification treatment is performed by adjusting the amount, efficient purification work can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る土壌汚染浄化方法を適用した浄化
装置の構成図である。
FIG. 1 is a configuration diagram of a purification apparatus to which a soil contamination purification method according to the present invention is applied.

【図2】水位検知を行う接針式水位計の構造を示す説明
図である。
FIG. 2 is an explanatory diagram showing a structure of a needle-type water level meter that performs water level detection.

【図3】接針式水位計を浄化装置に適用した場合の構成
図である。
FIG. 3 is a configuration diagram in a case where a needle-type water level meter is applied to a purification device.

【図4】真空抽出法を用いた浄化装置の構成を表す構造
説明図である。
FIG. 4 is a structural explanatory diagram showing a configuration of a purification device using a vacuum extraction method.

【図5】同一の地層内において真空ポンプを停止させた
時の地下水の状態を示した断面図である。
FIG. 5 is a sectional view showing a state of groundwater when a vacuum pump is stopped in the same stratum.

【図6】図5において真空ポンプを稼働させた際の状態
を示した断面図である。
FIG. 6 is a cross-sectional view showing a state when the vacuum pump is operated in FIG.

【図7】従来の吸引井戸内部にフロート式水位計を設け
た浄化装置の稼働状態を示した説明図である。
FIG. 7 is an explanatory diagram showing an operation state of a conventional purification device provided with a float type water level meter inside a suction well.

【符号の説明】[Explanation of symbols]

1 浄化装置 2 吸引井戸 3 ストレーナ 4 矢印 5 連結管 6 気液分離槽 7 真空ポンプ 8 処理槽 9 排気管 10 地下水位 11 井戸内部地下水位 12 フロート式水位計 14 フロート 20 浄化装置 22 吸引井戸 24 外筒管 25 フタ 26 ストレーナ 27A 気液分離槽 27B 真空ポンプ 27C 処理槽 27D 排気管 28 内筒管 28A 先端開口部 29 地下水 30 気液混合流 32 フロート式水位計 34 フロート 36 ワイヤ 37 挿通穴 38 記録計 39A 信号線 39B 制御部 40 接針式水位計 42 被覆線 44 電源 46 電流計 48 露出部 DESCRIPTION OF SYMBOLS 1 Purification apparatus 2 Suction well 3 Strainer 4 Arrow 5 Connecting pipe 6 Gas-liquid separation tank 7 Vacuum pump 8 Processing tank 9 Exhaust pipe 10 Groundwater level 11 Well inside groundwater level 12 Float type water level gauge 14 Float 20 Purification apparatus 22 Suction well 24 Outside Cylinder pipe 25 Lid 26 Strainer 27A Gas-liquid separation tank 27B Vacuum pump 27C Processing tank 27D Exhaust pipe 28 Inner cylinder pipe 28A Tip opening 29 Groundwater 30 Gas-liquid mixed flow 32 Float-type water level meter 34 Float 36 Wire 37 Insertion hole 38 Recorder 39A signal wire 39B control unit 40 needle-type water level meter 42 covered wire 44 power supply 46 ammeter 48 exposed part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 肇 東京都千代田区内神田一丁目1番14号 日 立プラント建設株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hajime Inoue 1-1-1 Uchikanda, Chiyoda-ku, Tokyo Inside Hitachi Plant Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有害物で汚染された土壌に、汚染物質を
抽出する井戸を掘削し、土壌中の汚染物質を真空ポンプ
で吸引除去する土壌汚染浄化方法において、吸引井戸を
二重管とし、前記二重管の内筒管と外筒管の間に設けた
水位計により土壌浄化中の地下水位を測定可能としたこ
とを特徴とする土壌汚染浄化方法。
1. A soil pollution purification method in which a well for extracting contaminants is excavated in soil contaminated with harmful substances, and the contaminants in the soil are suctioned and removed by a vacuum pump. A soil contamination purification method, wherein a groundwater level during soil purification can be measured by a water level meter provided between the inner tube and the outer tube of the double tube.
【請求項2】 前記二重管の内筒管と外筒管との間の水
位計により土壌浄化中の地下水位を測定し、当該計測水
位に基づき、真空ポンプで発生させる真空度や真空ポン
プの排気量を調節して土壌汚染浄化処理をなすことを特
徴とする請求項1に記載の土壌汚染浄化方法。
2. A groundwater level during soil purification is measured by a water level gauge between an inner cylinder pipe and an outer cylinder pipe of the double pipe, and a degree of vacuum generated by a vacuum pump and a vacuum pump are measured based on the measured water level. The soil pollution purification method according to claim 1, wherein the soil pollution purification treatment is performed by adjusting the exhaust amount of the soil.
JP01754697A 1997-01-13 1997-01-13 Soil pollution purification method Expired - Fee Related JP3509449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01754697A JP3509449B2 (en) 1997-01-13 1997-01-13 Soil pollution purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01754697A JP3509449B2 (en) 1997-01-13 1997-01-13 Soil pollution purification method

Publications (2)

Publication Number Publication Date
JPH10192834A true JPH10192834A (en) 1998-07-28
JP3509449B2 JP3509449B2 (en) 2004-03-22

Family

ID=11946921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01754697A Expired - Fee Related JP3509449B2 (en) 1997-01-13 1997-01-13 Soil pollution purification method

Country Status (1)

Country Link
JP (1) JP3509449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990517B1 (en) * 2018-01-31 2019-06-18 강원대학교산학협력단 Contaminated Soil and Underwater Purging System
CN110624943A (en) * 2019-09-03 2019-12-31 中科鼎实环境工程有限公司 Device for accurately pumping NAPL pollutants in underground water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990517B1 (en) * 2018-01-31 2019-06-18 강원대학교산학협력단 Contaminated Soil and Underwater Purging System
CN110624943A (en) * 2019-09-03 2019-12-31 中科鼎实环境工程有限公司 Device for accurately pumping NAPL pollutants in underground water

Also Published As

Publication number Publication date
JP3509449B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
Pitkin et al. Field demonstrations using the Waterloo ground water profiler
AU2017284159B2 (en) System and method for treatment of soil and groundwater contaminated with PFAS
US5271467A (en) Methods and systems for recovering subsurface materials
JPH03202586A (en) Two-phase vacuum extracting process for soil contaminating material
JP3819885B2 (en) Soil and groundwater in-situ measurement method and in-situ purification method
JPH10192834A (en) Soil pollution cleaning method
AU2017383532B2 (en) Apparatus and method for removing hydrocarbons from a body of water
US6305473B1 (en) Vacuum extraction apparatus and process
JP2006326397A (en) System and method for purification of contaminated ground
US6659176B2 (en) Method for monitoring remediation of non aqueous phase solution
JP2003279452A (en) Soil pollution survey method, soil pollution survey device, drilling tool and drilling pipe
JPH10290978A (en) Soil pollution purifying method and device therefor
JPH07284753A (en) Method and apparatus for removing underground contaminant
JP2000009721A (en) Investigation method of soil pollution
JP2004016872A (en) Recovery apparatus for polluted water
JP2006130419A (en) Contaminated stratum cleaning system and contaminated stratum cleaning method using it
JP4320610B2 (en) Purification method of contaminated groundwater
JPH06238260A (en) Removal of soil contamination with organochlorine compound
JP3862398B2 (en) Gas supply method to groundwater
O'Melia et al. Dual-phase vacuum extraction technology for soil and ground-water remediation: A case study
JP2004278247A (en) Groundwater sample fixed-quantity sampler
CN115921511B (en) Accurate detection, extraction and repair method for LNAPL pollution source in groundwater
JP2663252B2 (en) How to remove underground pollutants
Pehlivan TWO-PHASE EXTRACTION DESIGNING, PERFORMANCE EVALUATIONS AND VOCS STRIPPING
JP5789289B2 (en) Survey method for contaminated soil

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees