JP3658936B2 - Soil purification equipment - Google Patents

Soil purification equipment Download PDF

Info

Publication number
JP3658936B2
JP3658936B2 JP22761897A JP22761897A JP3658936B2 JP 3658936 B2 JP3658936 B2 JP 3658936B2 JP 22761897 A JP22761897 A JP 22761897A JP 22761897 A JP22761897 A JP 22761897A JP 3658936 B2 JP3658936 B2 JP 3658936B2
Authority
JP
Japan
Prior art keywords
soil
well
heating
suction
contaminants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22761897A
Other languages
Japanese (ja)
Other versions
JPH1157685A (en
Inventor
正芳 佐久間
陽一郎 小野
肇 井上
明雄 田中
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP22761897A priority Critical patent/JP3658936B2/en
Publication of JPH1157685A publication Critical patent/JPH1157685A/en
Application granted granted Critical
Publication of JP3658936B2 publication Critical patent/JP3658936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有害物で汚染された土壌の浄化装置に係り、特に工場廃棄物によって汚染された土壌から有害な揮発性化合物を真空抽出によって吸引除去する土壌浄化装置に関する。
【0002】
【従来の技術】
近年、洗浄剤として多用されているトリクロロエチレン、テトラクロロエチレン、1,1,1−トリクロロエタン等の揮発性有機塩素系化合物が地中に浸透し、土壌及び地下水を汚染することが問題となっている。土壌汚染の場合、揮発性有機塩素系化合物などの汚染物は、土壌中及び地下水中に気相あるいは液相として存在している。そこで、土壌中に存在する揮発性の汚染物を除去するために、従来、真空抽出法が利用されている。真空抽出法とは、地表面から土壌中の汚染領域まで吸引井戸を掘り、地表面に設置した真空ポンプで土壌中の汚染物を吸引井戸を通して吸引除去するものである。
【0003】
真空抽出法で汚染物を吸引除去するには、従来、図2に示す土壌浄化装置が使用されている。この装置では、まず、汚染領域を掘削し、土壌中に吸引井戸1を気密に挿入する。吸引井戸1の先端にはストレーナ2が付いており、この部分から、汚染物は、土壌中の空気、汚染物蒸気、水蒸気及び汚染地下水の気液混合流として矢印8のような流れで吸引される。ストレーナ2は、吸引中に井戸内に土壌等の固体を吸い込まない役目もはたしている。吸引井戸1は、地表面で連結管3と接続され、さらに気液分離槽4、真空ポンプ5等の吸引装置に接続される。真空ポンプ5の後段には、処理槽6が設置され、汚染物は処理槽6で活性炭などに吸着されるか、又は熱分解や他の方法で分解された後、排気管7から排出される。
【0004】
真空抽出による土壌浄化は、土壌中の揮発性を有する汚染物質を吸引して行う性質上、汚染土壌の性質に左右される。土壌の性質のなかでも通気性は、浄化効率を決定する大きな要因となっている。特に、粘土など、通気性の悪い土壌に存在している汚染物は、吸引除去が困難である。また、真空ポンプで汚染物を吸引除去していると、汚染物と一緒に土壌中の水分や地下水が吸引されて、吸引井戸内や吸引井戸周辺に水分が集積し、これによっても土壌の通気性が悪くなり、汚染物の吸引除去が阻害され、浄化効率が低下する。
そのため、土壌の通気性が悪い場合には、地下水を揚水除去するなどして通気性を改善する必要があり、真空抽出法単独では、土壌中の揮発性有機塩素系化合物を効率よく除去することができないという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、前記従来技術の欠点を解消し、土壌中の汚染物、例えば、揮発性有機塩素系化合物を効率よく除去できる土壌浄化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、吸引井戸の他に加熱井戸を掘削し、この井戸内部に加熱源を設置し、井戸内の地下水を加熱し、土壌内の温度上昇によって揮発性有機塩素系化合物を含む汚染物のガス化を促進して、効率よく有機塩素系化合物を除去するように構成したものである。
【0007】
すなわち、本発明の土壌浄化装置は、有害物質で汚染された土壌に、汚染物を抽出する井戸を掘削し、土壌中の汚染物を真空ポンプで吸引除去する土壌浄化装置において、吸引井戸の他に熱源を備えた加熱井戸を有するとともに、該加熱井戸内に地下水のレベルセンサを有し、そのセンサの測定水位によって前記熱源の作動・停止が制御されることを特徴とする。本発明において、吸引井戸と加熱井戸の配置は、特に限定されるものではなく、吸引井戸を中心にしてその周辺に複数個の加熱井戸を設置したもの、あるいは加熱井戸を中心にしてその周辺に複数個の吸引井戸を設置したものでよい。吸引井戸と加熱井戸の設置距離、複数の加熱井戸を設置する場合のそれらの設置距離あるいは複数の吸引井戸を設置する場合のそれらの設置距離は、土壌の種類(粘土層、砂層など)や含水率などを考慮して適宜設定することができる。
【0008】
【発明の実施の形態】
図1は、本発明の一実施例を示す土壌浄化装置を土壌中に設置した状態で示す構成図である。土壌中に、先端にストレーナ2が付いた吸引井戸1が設置されている。この吸引井戸1は、従来使用されているものであるが、本発明の土壌浄化装置では吸引井戸1の周辺に加熱井戸10が気密に挿入されている。この加熱井戸10の先端にはストレーナ2及び熱源11が付いている。
【0009】
本発明の土壌浄化装置においては、加熱井戸10の先端に設置された熱源11により加熱井戸10の内部及び周辺の水分が加熱され、その温度が上昇する。また、その一部が蒸気となることにより、加熱井戸10の内部の圧力が高くなる。さらに、加熱により加熱井戸10の周辺の土壌温度が上昇することから、土壌中の揮発性有機汚染物の蒸気圧も高くなる。図6に代表的な揮発性有機汚染物であるトリクロロエチレンの蒸気圧線図を示す。トリクロロエチレンの蒸気圧は、温度の上昇とともに高くなることから、土壌粒子間や土壌に吸着している揮発性有機汚染物がガス化しやすくなる。したがって、揮発性有機汚染物が土壌内部を移動しやすくなり、吸引井戸1で吸引されやすくなる。また、他の揮発性有機汚染物に対しても同様の効果を期待できる。
このように、吸引井戸1での吸引圧による負圧と加熱井戸10での加熱による蒸気発生に伴う正圧で、吸引井戸と加熱井戸との圧力差を大きくすることができ、土壌粒子間や土壌に吸着されている揮発性有機汚染物のガス化を促進し、浄化を促進することができる。
【0010】
図3は、本発明の土壌浄化装置に用いる加熱井戸の一実施例を示す系統図である。加熱井戸10には、電気ヒータ12が装備されており、地下水が加熱される。地下水の温度は、温度センサ15でセンシングされ、温調器16による電気ヒータ12のコントロール機能により制御される。この実施例では、加熱井戸10内に地下水のレベルをセンシングするレベルセンサ17a、17b及び17cを設置し、温調器16と同様に、レベルスイッチ18による電気ヒータ12のコントロール機能も装備している。ここで、地下水位が低下してくると、レベルセンサ17a、17b及び17cが地下水位をセンシングし、レベルスイッチ18がその地下水位に応じて電気ヒータ12をオンオフするように構成されている。例えば、地下水位がレベルセンサ17b以上であれば、電気ヒータ12を稼動させ、地下水位がレベルセンサ17bより低くなったら、電気ヒータ12のスイッチを切る動作をするように電気ヒータ12のオンオフ回路を組むことができる。このように、簡単なレベルスイッチを設けることにより、電気ヒータ12が井戸内の地下水から露出したときに電気ヒータ12のスイッチを切り、空だきを防ぐことができる。
【0011】
図4は、汚染土壌内の温度測定点の配置例を示す。
温度測定点は、加熱井戸10の底部、吸引井戸1の底部及び加熱井戸と吸引井戸の中間地点である温度測定孔13の底部である。温度は、それぞれの底部に設置された熱電対14で測定される。
【0012】
次に、加熱井戸内の熱源を稼動させ、加熱した場合の各測定点の温度変化を図5に示す。この実施例では、加熱井戸と温度測定孔の間の距離を1mとし、加熱井戸と吸引井戸の間の距離を2mとし、加熱井戸10の温度は、加熱井戸内部において常時熱源を稼動させて、常に90℃に保持した。一方、温度測定孔13の温度は、加熱開始時には約17℃であったが、加熱された汚染ガス、地下水及び土壌中の空気が吸引井戸1から吸引されるため、時間の経過とともに徐々に高くなる。吸引井戸1の温度測定点における温度は、温度測定孔13より加熱井戸10から離れていることから、温度測定孔13の温度より遅れて徐々に高くなっていくことが分かる。
【0013】
したがって、加熱井戸10で地下水、さらには土壌を加熱することにより土壌粒子間及び土壌に吸着されている揮発性有機汚染物のガス化を促進でき、土壌間(井戸間)に大きな圧力差を発生することができ、土壌中からの揮発性有機汚染物の除去を促進することができる。また、揮発性有機汚染物の蒸気圧も温度の上昇とともに高くすることができる(図6)ため、土壌中からの揮発性有機汚染物の除去をさらに促進できる。
すなわち、本発明による土壌浄化方法及び装置で地下水、さらには土壌を加熱することにより、土壌温度を上昇させ、揮発性有機汚染物の蒸気圧を高くし、揮発性有機汚染物が土壌中を移動しやすくすることにより、土壌中の揮発性有機汚染物を効率よく除去することができる。
【0014】
【発明の効果】
本発明の土壌浄化装置によれば、土壌温度を容易に上昇させ、揮発性有機汚染物の蒸気圧を高くし、揮発性有機汚染物が土壌中を移動しやすくすることにより、土壌中の有機塩素系化合物などの揮発性有機汚染物を効率よく除去することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す土壌浄化装置を土壌中に設置した状態で示す土壌浄化装置の構成図である。
【図2】従来の土壌浄化装置の構成図である。
【図3】本発明の土壌浄化装置に用いる加熱井戸の系統図である。
【図4】本発明の方法を実施する際の温度測定点の配置図である。
【図5】図4に示した測定点で測定された温度の経日変化を示すグラフである。
【図6】トリクロロエチレン及び水の蒸気圧線図を示す。
【符号の説明】
1 吸引井戸
2 ストレーナ
3 連結管
4 気液分離槽
5 真空ポンプ
6 処理槽
7 排気管
8 汚染物の流れ
10 加熱井戸
11 熱源
12 電気ヒータ
13 温度測定孔
14 熱電対
15 温度センサ
16 温調器
17a レベルセンサ
17b レベルセンサ
17c レベルセンサ
18 レベルスイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification KaSo location of contaminated with harmful substances soil, on soil purification KaSo location for sucking removed by vacuum extraction of harmful volatile compounds from contaminated soil by particular plant waste.
[0002]
[Prior art]
In recent years, volatile organochlorine compounds such as trichlorethylene, tetrachloroethylene, and 1,1,1-trichloroethane, which are frequently used as cleaning agents, permeate into the ground and contaminate soil and groundwater. In the case of soil contamination, contaminants such as volatile organochlorine compounds are present in the gas phase or liquid phase in soil and groundwater. Therefore, a vacuum extraction method has been conventionally used to remove volatile contaminants present in the soil. In the vacuum extraction method, a suction well is dug from the ground surface to a contaminated area in the soil, and contaminants in the soil are sucked and removed through the suction well with a vacuum pump installed on the ground surface.
[0003]
Conventionally, a soil purification apparatus shown in FIG. 2 is used to remove contaminants by suction using a vacuum extraction method. In this apparatus, first, the contaminated area is excavated and the suction well 1 is inserted into the soil in an airtight manner. A strainer 2 is attached to the tip of the suction well 1, and from this part, contaminants are sucked in a flow as shown by an arrow 8 as a gas-liquid mixed flow of air, contaminant vapor, water vapor and contaminated groundwater in the soil. The The strainer 2 also plays a role of not sucking solids such as soil into the well during suction. The suction well 1 is connected to the connecting pipe 3 on the ground surface, and further connected to a suction device such as a gas-liquid separation tank 4 and a vacuum pump 5. A treatment tank 6 is installed at the subsequent stage of the vacuum pump 5, and contaminants are adsorbed by activated carbon or the like in the treatment tank 6, or decomposed by thermal decomposition or other methods and then discharged from the exhaust pipe 7. .
[0004]
The soil purification by vacuum extraction depends on the nature of the contaminated soil because of the nature of sucking in volatile contaminants in the soil. Among the properties of soil, air permeability is a major factor that determines purification efficiency. In particular, it is difficult to suck and remove contaminants present in soil with poor air permeability, such as clay. In addition, if contaminants are removed by suction with a vacuum pump, moisture and groundwater in the soil are sucked together with the contaminants, and moisture accumulates in and around the suction wells. This deteriorates the performance, impairs the removal of contaminants by suction, and reduces the purification efficiency.
Therefore, if the soil permeability is poor, it is necessary to improve the permeability by pumping and removing groundwater, etc., and the vacuum extraction method alone can efficiently remove volatile organochlorine compounds in the soil. There is a problem that can not be.
[0005]
[Problems to be solved by the invention]
The present invention is the eliminate the disadvantages of the prior art, contaminants in the soil, for example, an object to provide a soil purification KaSo location that can efficiently remove volatile organic chlorine compounds.
[0006]
[Means for Solving the Problems]
In the present invention, a heating well is excavated in addition to a suction well, a heating source is installed inside the well, groundwater in the well is heated, and contaminants containing volatile organochlorine compounds due to a rise in temperature in the soil. It is configured to promote gasification and efficiently remove organochlorine compounds.
[0007]
That is , the soil purification apparatus of the present invention is a soil purification apparatus that excavates a well for extracting contaminants in soil contaminated with harmful substances and removes the contaminants in the soil with a vacuum pump. And a ground level sensor in the heating well, and the operation / stop of the heat source is controlled by the water level measured by the sensor . In the present invention, the arrangement of the suction well and the heating well is not particularly limited, and a plurality of heating wells are installed around the suction well, or around the heating well. A plurality of suction wells may be installed. The installation distance between the suction well and the heating well, the installation distance when installing multiple heating wells, or the installation distance when installing multiple suction wells, the soil type (clay layer, sand layer, etc.) and water content It can be set as appropriate in consideration of the rate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1: is a block diagram shown in the state which installed the soil purification apparatus which shows one Example of this invention in soil. A suction well 1 with a strainer 2 at the tip is installed in the soil. Although this suction well 1 is used conventionally, in the soil purification apparatus of this invention, the heating well 10 is inserted airtightly around the suction well 1. A strainer 2 and a heat source 11 are attached to the tip of the heating well 10.
[0009]
In the soil purification apparatus of the present invention, the moisture inside and around the heating well 10 is heated by the heat source 11 installed at the tip of the heating well 10, and the temperature rises. Moreover, the pressure inside the heating well 10 becomes high because a part thereof becomes steam. Furthermore, since the soil temperature around the heating well 10 is increased by heating, the vapor pressure of volatile organic contaminants in the soil is also increased. FIG. 6 shows a vapor pressure diagram of trichlorethylene, which is a typical volatile organic contaminant. Since the vapor pressure of trichlorethylene increases with an increase in temperature, volatile organic contaminants adsorbed between soil particles and adsorbed on the soil are easily gasified. Therefore, volatile organic contaminants can easily move inside the soil and can be easily sucked by the suction well 1. The same effect can be expected for other volatile organic contaminants.
Thus, the pressure difference between the suction well and the heating well can be increased by the negative pressure due to the suction pressure in the suction well 1 and the positive pressure associated with the generation of steam due to the heating in the heating well 10. Gasification of volatile organic contaminants adsorbed on soil can be promoted, and purification can be promoted.
[0010]
FIG. 3 is a system diagram showing an embodiment of a heating well used in the soil purification apparatus of the present invention. The heating well 10 is equipped with an electric heater 12 to heat the ground water. The temperature of the groundwater is sensed by the temperature sensor 15 and controlled by the control function of the electric heater 12 by the temperature controller 16. In this embodiment, level sensors 17 a, 17 b and 17 c for sensing the level of groundwater are installed in the heating well 10, and similarly to the temperature controller 16, the control function of the electric heater 12 by the level switch 18 is also provided. . Here, when the groundwater level decreases, the level sensors 17a, 17b, and 17c sense the groundwater level, and the level switch 18 turns the electric heater 12 on and off according to the groundwater level. For example, when the groundwater level is equal to or higher than the level sensor 17b, the electric heater 12 is operated, and when the groundwater level becomes lower than the level sensor 17b, an on / off circuit of the electric heater 12 is set so as to switch off the electric heater 12. Can be assembled. Thus, by providing a simple level switch, when the electric heater 12 is exposed from the groundwater in the well, the electric heater 12 can be switched off to prevent emptying.
[0011]
FIG. 4 shows an arrangement example of temperature measurement points in the contaminated soil.
The temperature measurement points are the bottom of the heating well 10, the bottom of the suction well 1, and the bottom of the temperature measurement hole 13, which is an intermediate point between the heating well and the suction well. The temperature is measured with a thermocouple 14 installed at the bottom of each.
[0012]
Next, FIG. 5 shows the temperature change at each measurement point when the heat source in the heating well is operated and heated. In this embodiment, the distance between the heating well and the temperature measurement hole is 1 m, the distance between the heating well and the suction well is 2 m, and the temperature of the heating well 10 is set so that the heat source is always operated inside the heating well, Always kept at 90 ° C. On the other hand, the temperature of the temperature measurement hole 13 was about 17 ° C. at the start of heating, but since the heated polluted gas, groundwater and air in the soil are sucked from the suction well 1, it gradually increases with time. Become. Since the temperature at the temperature measurement point of the suction well 1 is farther from the heating well 10 than the temperature measurement hole 13, it can be seen that the temperature gradually increases after the temperature of the temperature measurement hole 13.
[0013]
Therefore, gasification of volatile organic contaminants adsorbed between the soil particles and the soil can be promoted by heating the groundwater and also the soil in the heating well 10, and a large pressure difference is generated between the soils (between wells). And can facilitate the removal of volatile organic contaminants from the soil. In addition, since the vapor pressure of volatile organic contaminants can be increased with increasing temperature (FIG. 6), the removal of volatile organic contaminants from the soil can be further promoted.
That is, by heating the groundwater and further the soil with the soil purification method and apparatus according to the present invention, the soil temperature is raised, the vapor pressure of the volatile organic contaminants is increased, and the volatile organic contaminants move through the soil. By making it easy to do, volatile organic contaminants in the soil can be efficiently removed.
[0014]
【The invention's effect】
According to the soil purification KaSo location of the present invention, the soil temperature easily increased, increasing the vapor pressure of the volatile organic contaminants, volatile organic contaminants by easily move through the soil, in soil Volatile organic contaminants such as organochlorine compounds can be efficiently removed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a soil purification apparatus shown in a state where a soil purification apparatus according to an embodiment of the present invention is installed in soil.
FIG. 2 is a configuration diagram of a conventional soil purification apparatus.
FIG. 3 is a system diagram of a heating well used in the soil purification apparatus of the present invention.
FIG. 4 is a layout diagram of temperature measurement points when carrying out the method of the present invention.
FIG. 5 is a graph showing changes with time in temperature measured at the measurement points shown in FIG. 4;
FIG. 6 shows a vapor pressure diagram of trichlorethylene and water.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Suction well 2 Strainer 3 Connecting pipe 4 Gas-liquid separation tank 5 Vacuum pump 6 Processing tank 7 Exhaust pipe 8 Flow of contaminant 10 Heating well 11 Heat source 12 Electric heater 13 Temperature measurement hole 14 Thermocouple 15 Temperature sensor 16 Temperature controller 17a Level sensor 17b Level sensor 17c Level sensor 18 Level switch

Claims (1)

有害物質で汚染された土壌に、汚染物を抽出する井戸を掘削し、土壌中の汚染物を真空ポンプで吸引除去する土壌浄化装置において、
吸引井戸の他に熱源を備えた加熱井戸を有するとともに、
加熱井戸内に地下水のレベルセンサを有し、そのセンサの測定水位によって前記熱源の作動・停止が制御されることを特徴とする土壌浄化装置。
In a soil purification device that excavates a well to extract contaminants in soil contaminated with harmful substances and sucks and removes contaminants in the soil with a vacuum pump,
In addition to the suction well, it has a heating well with a heat source,
Has a level sensor of groundwater into the heating the well, soil remediation apparatus characterized by operation and stopping of the heat source by measuring the water level of the sensor is controlled.
JP22761897A 1997-08-08 1997-08-08 Soil purification equipment Expired - Fee Related JP3658936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22761897A JP3658936B2 (en) 1997-08-08 1997-08-08 Soil purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22761897A JP3658936B2 (en) 1997-08-08 1997-08-08 Soil purification equipment

Publications (2)

Publication Number Publication Date
JPH1157685A JPH1157685A (en) 1999-03-02
JP3658936B2 true JP3658936B2 (en) 2005-06-15

Family

ID=16863762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22761897A Expired - Fee Related JP3658936B2 (en) 1997-08-08 1997-08-08 Soil purification equipment

Country Status (1)

Country Link
JP (1) JP3658936B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272273A (en) * 2005-03-30 2006-10-12 Mitsui Kinzoku Shigen Kaihatsu Kk Soil purification system and soil purification method
JP4542572B2 (en) * 2007-07-09 2010-09-15 有限会社アサヒテクノ Contaminated ground purification equipment
JP2014087765A (en) * 2012-10-31 2014-05-15 Dowa Eco-System Co Ltd Soil cleaning method and apparatus
JP2014104425A (en) * 2012-11-28 2014-06-09 Dowa Eco-System Co Ltd Soil purification method and soil purification apparatus
CN108787730B (en) * 2018-08-07 2024-01-30 北京伦至环境科技有限公司 Organic pollutant repairing device suitable for shallow soil and application method of organic pollutant repairing device
CN112974495A (en) * 2021-02-05 2021-06-18 四川国润和洁环境科技有限公司 Remediation method for organic contaminated soil

Also Published As

Publication number Publication date
JPH1157685A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US5879108A (en) Air sparging/soil vapor extraction apparatus
JP3095851B2 (en) Method and apparatus for extracting groundwater using high vacuum
JPH07265898A (en) Method and device for pollutant removal
US5387057A (en) Contaminated ground site remediation system
JP3658936B2 (en) Soil purification equipment
KR101801216B1 (en) Method and apparatus for treatment of contaminated soil with dioxine, agricultural pesticides, oil, organic chemicals and volatile heavy metals
US20020003988A1 (en) Remediation method
JPH1190410A (en) In-situ remediation system of contaminant
JP2006326397A (en) System and method for purification of contaminated ground
JP4166891B2 (en) Method and apparatus for sucking harmful gas from underground pollutants
JPH09174033A (en) Vacuum extraction and purification of soil
JP7514666B2 (en) VOC in-situ purification system and VOC in-situ purification method
JPH05185061A (en) Method for removing contaminant from polluted soil
JPH10290978A (en) Soil pollution purifying method and device therefor
JP2000061443A (en) Device for separating and removing harmful material
JP2022125865A (en) On-site remediation system for contaminated soil and on-site remediation method for contaminated soil
JP3526012B2 (en) Toxic substance separation and removal equipment
JPH0531315A (en) Exhaust treating device
JP4320610B2 (en) Purification method of contaminated groundwater
JPH1190409A (en) In-situ remediation system of contaminant
JP2005074289A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2663252B2 (en) How to remove underground pollutants
JP3862398B2 (en) Gas supply method to groundwater
JP3509449B2 (en) Soil pollution purification method
JP2002301465A (en) Cleaning system for soil and ground water polluted with volatile organic compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees