JPH10192812A - Treatment of heavy metal and dioxin in incineration ash by catalyst - Google Patents

Treatment of heavy metal and dioxin in incineration ash by catalyst

Info

Publication number
JPH10192812A
JPH10192812A JP35925196A JP35925196A JPH10192812A JP H10192812 A JPH10192812 A JP H10192812A JP 35925196 A JP35925196 A JP 35925196A JP 35925196 A JP35925196 A JP 35925196A JP H10192812 A JPH10192812 A JP H10192812A
Authority
JP
Japan
Prior art keywords
incinerated ash
treatment
temperature
incineration ashes
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35925196A
Other languages
Japanese (ja)
Inventor
Tsugio Yokota
次男 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35925196A priority Critical patent/JPH10192812A/en
Publication of JPH10192812A publication Critical patent/JPH10192812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce such safe cement-based material of general incineration ashes of municipal refuse that the environment is not contaminated by heavy metals and dioxin in the future. SOLUTION: In pretreatment for making incineration ashes harmless, discharged incineration ashes are held at constant temperature at constant time in the oxygen-reducing atmosphere and incineration ashes are efficiently dissociated mutually. Heavy metallic compounds contained therein are acted as a catalyst and thereby incineration ashes and various compounds of different kinds of metals containing heavy metals contained therein are changed into stable compounds by chemical reaction. Before treatment, incineration ashes are previously crushed and treated to enlarge surface area and previously regulated to about 50 mesh and maintained at 400-600 deg.C at 30-50 minutes. In treatment, a second kiln is used in combination with a first kiln. After prescribed time elapses, temperature is lowered to 180 deg.C (±10 deg.C) in the oxygen-reducing atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焼却灰の無害化のため
の低温度下で行う触媒反応による前処理法に関するもの
である。本発明は、焼却灰の低温度における触媒反応に
よる焼却灰の重金属類及びダイオキシン類の処理法に関
するものである。本発明は、最終的に埋立処分された都
市ゴミ一般焼却灰が雨水や海水に浸蝕されても重金属類
やダイオキシン類が侵出水とともに流出されても害のな
い焼却灰の処理法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method using a catalytic reaction at a low temperature for detoxifying incinerated ash. TECHNICAL FIELD The present invention relates to a method for treating heavy metals and dioxins in incinerated ash by a catalytic reaction at a low temperature of the incinerated ash. The present invention relates to a method for treating incinerated ash that is harmless even if municipal garbage general incinerated ash that is finally landfilled is eroded by rainwater or seawater and heavy metals and dioxins are discharged along with leaching water.

【0002】[0002]

【従来の技術】これまで都市ゴミ一般焼却灰(飛灰、主
灰)のほとんどは、最終的には埋立処分されている。埋
立処分されたこれら焼却灰は長い年月を経て雨水や海水
に浸蝕されるが、その浸蝕過程で共存している廃棄物な
どによって様々な変化を受け重金属類や飛灰に含まれて
いるダイオキシン類が侵出水とともに流出することが予
想される。重金属類は酸化物又は塩化物となっており、
比較的水に溶け易い金属化合物となっており、ダイオキ
シンは水溶性物質ではないが、少しずつ水に溶け出した
場合の環境汚染の観点から処理法の開発、確立が求めら
れている。
2. Description of the Related Art Up to now, most of general incinerated ash (fly ash and main ash) of municipal waste has been finally disposed of in landfills. These incinerated ash that has been landfilled is eroded by rainwater and seawater over a long period of time, but the dioxin contained in heavy metals and fly ash undergoes various changes due to the waste that coexists in the erosion process. It is expected that species will flow out with the leaching water. Heavy metals are oxides or chlorides,
Since it is a metal compound that is relatively soluble in water, dioxin is not a water-soluble substance, but the development and establishment of a treatment method is required from the viewpoint of environmental pollution when it is gradually dissolved in water.

【0003】[0003]

【発明が解決しようとする課題】本発明は、都市ゴミ一
般焼却灰の無害化のための前処理法を提供することを目
的としている。本発明は、都市ゴミ一般焼却灰から将来
にわたり重金属類やダイオキシン類で環境を汚染するこ
とがない安全なセメント系の資材をつくる方法を提供す
ることを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pretreatment method for detoxifying municipal incineration ash. It is an object of the present invention to provide a method for producing safe cement-based materials from general incinerated ash from municipal waste without polluting the environment with heavy metals and dioxins in the future.

【0004】[0004]

【課題を解決するための手段】本発明は、焼却灰の無害
化のための前処理であって、排出された焼却灰を減酸素
雰囲気、一定温度、一定時間保持して、該焼却灰を効率
よく相互解離させ、かつ、その中の重金属化合物を触媒
として作用させることにより、該焼却灰およびその中の
重金属類を含む異種金属の各種化合物を化学反応により
安定な化合物に変化させることを特徴とする焼却灰の処
理法を要旨としている。上記排出された焼却灰を効率よ
く相互解離させるために、処理の前にあらかじめ焼却灰
を粉砕処理して表面積を拡大することが一つの効果的手
段である。具体的には、処理の前にあらかじめ焼却灰を
おおよそ50メッシュにする。上記温度は400°〜6
00°に維持する。上記時間は30分〜50分保持す
る。本発明の焼却灰の処理法は、第1キルンおよび第2
キルンを組み合わせ温度差を利用する処理法である。す
なわち、所定時間経過後、減酸素雰囲気で温度を180
℃(±10℃)に下げることが好ましい態様である。
SUMMARY OF THE INVENTION The present invention is a pretreatment for detoxifying incineration ash. The incineration ash discharged is kept in a reduced oxygen atmosphere, at a constant temperature for a certain time, and the incineration ash is removed. By efficiently dissociating each other and using the heavy metal compound therein as a catalyst, various compounds of different metals including the incinerated ash and heavy metals therein are changed into stable compounds by a chemical reaction. The method of treating incinerated ash is summarized. In order to efficiently dissociate the discharged incinerated ash, one effective means is to pulverize the incinerated ash before processing to increase the surface area. Specifically, the incineration ash is reduced to about 50 mesh before the treatment. The above temperature is 400 ° -6
Maintain at 00 °. The above time is maintained for 30 to 50 minutes. The method for treating incinerated ash of the present invention comprises the first kiln and the second kiln.
This is a processing method that uses a temperature difference by combining kilns. That is, after a lapse of a predetermined time, the temperature is set to 180 in a reduced oxygen atmosphere.
In a preferred embodiment, the temperature is lowered to 10 ° C (± 10 ° C).

【0005】[0005]

【発明の実施の態様】焼却灰は一般に含水率が高く、重
金属等を多く含有しているため、水硬性セメントによる
固化が最も難しい。この固化阻害要因をもつ金属の無害
化、ならびに有機質化合物の硬化を促進させるために、
乾留と減酸素雰囲気による燃焼により阻害要因を取り除
く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Incinerated ash is generally most difficult to solidify with hydraulic cement since it has a high water content and contains a lot of heavy metals and the like. In order to detoxify the metal having this solidification inhibition factor and to promote the curing of organic compounds,
Eliminate the inhibiting factors by carbonization and combustion in a reduced oxygen atmosphere.

【0006】重金属を含む異種金属の混合物である焼却
灰を効率よく相互分解させ、重金属塩類を触媒として作
用させて金属塩を溶離し、その時、結晶化させることに
より安定化する方法(以下、「焼却灰再資源化工法」)
が開発されている(特開平6−15248,特開平8−
66494,特願平8−151594,特願平8−15
1595)。特開平6−15248では、焼却灰にセメ
ントと共にエトリンガイトの作用による固化のみではな
く、キレート作用による安定固化のため、ナトリウム、
カリウム、窒素、ホウ素、カルシウム等をイオン状態で
含有する有害物質安定固化剤を添加することを特徴とす
る焼却灰の安定固化方法である。酸化物、水酸化物、硫
酸化物、硫化物、リン化物等、それぞれの金属によって
安定化する。As、PなどはCaOと反応して安定化合
物となる。アルカリ金属とアルカリ土類金属以外の金属
の水酸化物〔Cu(OH)2,Al(OH)2,Zn(O
H)2,Pb(OH)2,Fe(OH)2など。〕は水に
溶けにくい化合物となる。
A method of efficiently decomposing incinerated ash, which is a mixture of dissimilar metals containing heavy metals, elute metal salts by using heavy metal salts as a catalyst, and then stabilize them by crystallization (hereinafter, referred to as " Incineration ash recycling method ”)
(Japanese Patent Application Laid-Open Nos. 6-15248 and 8-
66494, Japanese Patent Application No. 8-151594, Japanese Patent Application No. 8-15
1595). In Japanese Patent Application Laid-Open No. 6-15248, not only solidification by the action of ettringite with incinerated ash together with cement, but also sodium,
This is a method for stably solidifying incinerated ash, which comprises adding a harmful substance stabilizing agent containing potassium, nitrogen, boron, calcium and the like in an ionic state. Stabilized by metals such as oxides, hydroxides, sulfates, sulfides and phosphides. As, P, etc. react with CaO to become stable compounds. Hydroxides of metals other than alkali metals and alkaline earth metals [Cu (OH) 2 , Al (OH) 2 , Zn (O
H) 2 , Pb (OH) 2 , Fe (OH) 2 and the like. ] Is a compound that is hardly soluble in water.

【0007】また、焼却灰は塩基度CaO/SiO2
高く、徐冷、水冷により、結晶化する性質があり、急冷
するとガラス質になる。即ち、水に溶けにくい物質とし
て安定かつ安全な物質を生成することにある。反応とし
て、元素には電気的に陽性になりやすいものと陰性にな
りやすいものがあり、陰陽の組み合わせによって安定な
化合物が生まれる。多くの金属元素は陽性の元素で、ま
た、非金属元素は陰性の元素であり、その組み合わせで
生まれる化合物(塩類)は陽成分と陰成分からなり、単
塩、複塩およびまたは錯塩である。
Further, incinerated ash has a high basicity CaO / SiO 2 , has a property of being crystallized by slow cooling and water cooling, and becomes vitreous when rapidly cooled. That is, it is to produce a stable and safe substance as a substance that is hardly soluble in water. As a reaction, some elements tend to be electrically positive and others tend to be negative, and a stable compound is produced by a combination of yin and yang. Many metal elements are positive elements, and non-metal elements are negative elements. Compounds (salts) produced by the combination are composed of a positive component and a negative component, and are single salts, double salts and / or complex salts.

【0008】貴金属といわれる金属以外の金属は単体と
して産出しない。アルカリ金属は水中にイオンとなって
存在する。多くの金属はイオン化傾向があり、酸溶液
で、溶け出そうとする。元素は太陽エネルギーと地球内
部の地殻エネルギーにより、岩石、大気、海水と変成作
用を通じて循環しているのであって、O,Si,Al,
Fe,Ca,Na,K,Mgとほとんどケイ酸塩ででき
ている。他に化合物の種類としては、ハロゲン化物、炭
酸塩、硫化物、酸化物、水酸化物、硫酸塩、硝酸塩、リ
ン酸塩、ヒ酸塩、ホウ酸塩など、いずれもイオン性化合
物としての性質をもっている。ハロゲン化物や硫化物、
酸化物は陰性の元素が単独で陰イオンとなり、陽イオン
と結合してできたものであり、その他の化合物はいずれ
も陰性の元素が酸素と結びついて、オキソ酸イオンとな
り、陽イオンと結合してできたものである。陽イオンは
塩化物イオン(Cl-)、硫化物イオン(S2-)、酸化
物イオン(O2-)など、オキソ酸イオンは炭酸イオン
(CO3 2-)、リン酸イオン(PO4 3-)、水酸化イオン
(OH-)、ヒ酸イオン(AsO4 3-)、硫酸イオン(S
4 2-)、ホウ酸イオン(BO3 3-)、硝酸イオン(NO
3 -)、ケイ酸イオン(SiO4 4-)が例示される。
[0008] Metals other than metals called noble metals are not produced as a simple substance. Alkali metals exist as ions in water. Many metals have a tendency to ionize and tend to dissolve in acid solutions. Elements are circulated through rocks, the atmosphere, seawater and metamorphism by solar energy and crustal energy inside the earth, and O, Si, Al,
Mostly made of silicate with Fe, Ca, Na, K, Mg. Other types of compounds include halides, carbonates, sulfides, oxides, hydroxides, sulfates, nitrates, phosphates, arsenates, and borates, all of which are ionic compounds. Have. Halides and sulfides,
Oxides are formed by the negative element alone becoming an anion and binding to the cation.In all other compounds, the negative element is combined with oxygen to form an oxoacid ion, which binds to the cation. It was made. Cations are chloride ions (Cl ), sulfide ions (S 2− ), oxide ions (O 2− ), etc., and oxo acid ions are carbonate ions (CO 3 2− ) and phosphate ions (PO 4 3). -), hydroxide ions (OH -), arsenate ion (AsO 4 3-), sulfate ion (S
O 4 2- ), borate ion (BO 3 3- ), nitrate ion (NO
3 -), silicate ions (SiO 4 4-) are exemplified.

【0009】これらイオンが化合物を構成しているので
あって、このイオン性化合物の陽イオン、陰イオンそれ
ぞれの溶けることのできる量を溶解度と規定され、S2-
やSO4 2-,CO3 3-は金属イオンと反応して難溶性の化
合物をつくる。しかし水は強い配位子だから金属元素イ
オンに配位しやすく、多くの金属錯体は水に溶けると直
ちにアクア錯体に変わってしまう。
[0009] A than these ions constitute the compound, the cation of the ionic compound is defined as the amount the solubility that can dissolve the respective anion, S 2-
And SO 4 2- and CO 3 3- react with metal ions to form poorly soluble compounds. However, since water is a strong ligand, it is easy to coordinate with metal element ions, and many metal complexes immediately turn into aqua complexes when dissolved in water.

【0010】水溶性物質を難溶性物質に変えることが必
要であるが、そのために高温・高圧を用いたのでは経済
性に欠ける。触媒作用による金属反応を促進させ、ま
た、イオン反応による物質構成がおこりやすくするた
め、粉末化による反応表面積を拡大し、反応雰囲気の空
間状態など外気と絶縁された脱酸素状態の空間で一定温
度および一定時間維持する。触媒になる物質は気体、液
体、固体を問わず多種多様である。金属触媒は金属の表
面積が小さく触媒としては能率が悪いので、金属を細か
い粉末としてできるだけ表面積を広くした状態で用い
る。すなわち、これらの触媒になる成分を含有する焼却
灰を粉砕し粒度を小さくしてから処理すると、結果とし
て、触媒になる成分も表面積が増大し触媒活性が大きく
なる。
It is necessary to convert a water-soluble substance into a hardly soluble substance, but using high temperature and high pressure is not economical. In order to promote the metal reaction by the catalytic action and to facilitate the formation of the substance by the ionic reaction, the reaction surface area is increased by powdering, and the temperature is constant in the deoxygenated space insulated from the outside air such as the reaction atmosphere. And maintain for a certain time. There are a wide variety of substances that can be catalysts, whether gas, liquid, or solid. Since the metal catalyst has a small metal surface area and is inefficient as a catalyst, the metal is used as a fine powder with the surface area being as large as possible. That is, when the incinerated ash containing these catalyst components is pulverized to reduce the particle size and then treated, as a result, the catalyst components also have an increased surface area and a higher catalytic activity.

【0011】触媒は、主成分として、酸化鉄(Fe
34)、助触媒として酸化カリウム(K2O)(0.5
〜1.5%)、アルミナ(Al23)(2〜4%)、酸
化カルシウム(CaO)(1〜3%)、シリカ(SiO
2)(0.2〜1%)、酸化マグネシウム(MgO)
(0.2〜4%)などを用いる。触媒の作用によって難
溶性の化合物を形成する。主な反応は硫化反応である。
The catalyst contains iron oxide (Fe) as a main component.
3 O 4 ), potassium oxide (K 2 O) (0.5
1.5%), alumina (Al 2 O 3) (2~4 %), calcium oxide (CaO) (1 to 3%), silica (SiO
2 ) (0.2-1%), magnesium oxide (MgO)
(0.2 to 4%). A sparingly soluble compound is formed by the action of a catalyst. The main reaction is a sulfidation reaction.

【0012】触媒は強固な共有結合の化合物を原子解離
させなければならない。そのためには分子の解離・吸着
が必要である。例えば、アンモニア合成の場合、N2
N+Nとするため、K+1/2N2→KNである。この働
きを担うのがK原子であり、N≡Nの一方のNがKNの
化学吸着に先行すると同時に原子解離した片方のNがF
e原子に引きつけられて、FeNを形成し、一方のアル
ミナの酸点上で原子解離したHとFeNのNとが結合す
る。
The catalyst must dissociate the strongly covalent compound from the atom. For that purpose, it is necessary to dissociate and adsorb the molecules. For example, in the case of ammonia synthesis, N 2
In order to make N + N, K + 1 / 2N 2 → KN. The K atom plays this role, and one N of N≡N precedes the chemisorption of KN and at the same time, one of the dissociated N becomes F
It is attracted to the e atom to form FeN, and the H atom dissociated on the acid point of one alumina and N of FeN are bonded.

【0013】カリウムのもう一つの重大な役割は、その
塩基性にある。酸点の酸強度を中和して弱めることによ
り生成物の脱離を容易にして合成の流れをよくする。こ
の酸点が触媒の活性点で原子不足の状態にあり、電子受
容能がある。このことは反応分子の反応位が供与型電子
であれば、反応基質は容易に酸点に吸着させるというこ
とで、反応基質が触媒表面に吸着解離されると表面上で
基質どうしの原子または原子団が交換される。電子不足
状態では、容易に付加結合しているが、不安定な状態に
あるため、反応をおこしやすい。すなわち、電子供与型
のグループに電子受容的基質がくれば、当然電子の過不
足を相補う形となり、化学的共有結合が成立して反応の
くり返しが行われるのである。
[0013] Another important role of potassium is in its basicity. Neutralizing and weakening the acid strength at the acid sites facilitates the elimination of the product and improves the flow of the synthesis. These acid sites are in an atom-deficient state at the active site of the catalyst and have an electron accepting ability. This means that if the reactive position of the reaction molecule is a donor electron, the reaction substrate is easily adsorbed to the acid site.When the reaction substrate is adsorbed and dissociated on the catalyst surface, the atoms or The group is exchanged. In the electron deficient state, the bond is easily added, but the reaction is liable to occur because of the unstable state. In other words, when an electron accepting substrate is added to the electron donating group, the excess or deficiency of electrons is naturally complemented, and a chemical covalent bond is established and the reaction is repeated.

【0014】セメントは水と反応して水和物の結晶を析
出し、これが互いに連結し合って固化するもので、その
水和物結晶は常温で安定である。主要成分は石炭分(C
aO)であり、次いでケイ酸分(SiO2)であり、こ
れらの含量は全体の88%である。次いでアルミナ分
(Al23)、鉄分(Fe23)、硫酸根(SO3)な
どである。これらの化学成分は単に酸化物として存在す
るのではなく、化合物として存在し、水と反応して水和
物を生成する。いわゆる水硬性硬物として存在するので
ある。
Cement reacts with water to precipitate hydrate crystals, which are interconnected and solidified, and the hydrate crystals are stable at room temperature. The main component is coal (C
aO), followed by silicic acid (SiO 2 ), whose content is 88% of the total. Next are alumina (Al 2 O 3 ), iron (Fe 2 O 3 ), sulfate (SO 3 ) and the like. These chemical components do not simply exist as oxides, but as compounds and react with water to form hydrates. It exists as a so-called hydraulic hard material.

【0015】普通ポルトランドセメントについて、その
水和強さを支配する鉱物は一般にAliteと呼ばれる
3CaO,SiO2、およびBeliteと呼ばれる2
CaO,SiO2で、AliteとBeliteで全体
の76%を占める。これらいずれも石灰分(CaO)と
ケイ酸分(SiO2)との化合物であって、水と接触し
て次の様な反応で水和物結晶となる。 2Ca3SiO5 + 6H2O = Ca3Si27・3H2O + 3Ca(OH)2 2Ca2Si4 + 4H2O = Ca3Si27・3H2O + Ca(OH)2
[0015] For ordinary Portland cement, the minerals that govern its hydration strength are 3CaO, SiO 2 , which is commonly called Alite, and 2Ca, which is called Belite.
CaO, in SiO 2, accounts for 76% of the total Alite and Belite. Each of these compounds is a compound of lime (CaO) and silicic acid (SiO 2 ), and forms hydrate crystals by the following reaction upon contact with water. 2Ca 3 SiO 5 + 6H 2 O = Ca 3 Si 2 O 7 · 3H 2 O + 3Ca (OH) 2 2Ca 2 Si 4 + 4H 2 O = Ca 3 Si 2 O 7 · 3H 2 O + Ca (OH) 2

【0016】これら水硬性ケイ酸石灰塩は水和反応の速
度や、結晶時のメカニズムに差はあるが、いずれも結果
的には3CaO・2SiO3・3H2Oという形のケイ酸
石灰塩水和物を形成する点で一致している。一方、この
ほかの主要化合物として、アルミナ分(Al23)を含
む相に3CaO・Al23(アルミン酸三石灰)およ
び、4CaO・Al23・Fe23(アルミン酸鉄酸四
石灰)などがあるが、これらは水と反応して3CaO・
Al23・6H2Oという形の結晶を析出する。なお、
ここで硫酸根(SO3)が存在するとアルミン酸石灰塩
水和物はSO3と結びついて無機の複塩を生成する。こ
れが一般にセメントパチルスと呼ばれるエトリンガイト
(3CaO・Al23・3CaSO4・3H2O)であ
る。このエトリンガイトが、セメントにおける重金属を
封じ込める結晶である。1分子中に32分子もの水を結
晶構造の単位として保有しているが、SO3の供給がな
くなると3CaO・Al23・CaSO4・12H2Oに
変化してこのようなコンバージョンにより構造体の密度
変化、遊離水の発生により結合力を弱める。
Although these hydraulic silicate lime salts differ in the hydration reaction speed and the mechanism of crystallization, all of them result in the hydration of silicate lime salt in the form of 3CaO.2SiO 3 .3H 2 O. They agree in forming things. On the other hand, as the other major compounds, alumina content (Al 2 O 3) 3CaO · Al 2 O 3 to a phase containing (aluminate tricalcium) and, 4CaO · Al 2 O 3 · Fe 2 O 3 ( aluminate iron Acid lime), which react with water to produce 3CaO
Crystals of the form Al 2 O 3 .6H 2 O precipitate. In addition,
Here, when sulfate groups (SO 3 ) are present, lime aluminate hydrate combines with SO 3 to form an inorganic double salt. This is ettringite (3CaO.Al 2 O 3 .3CaSO 4 .3H 2 O) generally called cement paillus. This ettringite is a crystal that encapsulates heavy metals in cement. As many as 32 molecules of water are contained in one molecule as a unit of the crystal structure, but when the supply of SO 3 is stopped, it changes to 3CaO.Al 2 O 3 .CaSO 4 .12H 2 O and the structure is changed by such conversion. Changes in body density and generation of free water weakens the binding force.

【0017】本発明の生成物(以下、「焼却灰セメント
化物」と言うこともある。)は、潜在水硬性をもち、ア
ルカリまたは硫酸塩などの刺激作用によって水硬性を発
揮する。化学成分で示される塩基度の値(CaO+Al
23+MgO)%/SiO2%が1.35〜1.45ぐ
らい。ポルトランドセメントに比べると1%ほど塩基度
も低く、水和力も低い。このためポルトランドセメント
と焼却灰を混合粉砕して、水和性と硬化性を高める。ポ
ルトランドセメントの配合比率はセメント10%〜30
%程度で焼却灰に含まれている化合物の構成比と粉末度
の相異により焼却灰セメント化物の性質も違ってくる。
The product of the present invention (hereinafter sometimes referred to as “incinerated ash cement”) has latent hydraulic properties, and exhibits hydraulic properties by stimulating action of alkali or sulfate. The basicity value (CaO + Al
2 O 3 + MgO)% / SiO 2% is about 1.35 to 1.45. Compared with Portland cement, its basicity is about 1% lower and its hydration power is lower. For this reason, Portland cement and incineration ash are mixed and pulverized to enhance hydration and hardening properties. Portland cement is 10% to 30% cement
%, The properties of the incinerated ash cementitious materials differ depending on the composition ratio and fineness of the compounds contained in the incinerated ash.

【0018】また、焼却灰セメント化物は水と炭酸ガス
による反応がないので、セメントの様に風化されて固結
してしまうことはない。焼却灰セメント化物は含有成分
の成分比によって反応の激しい、アルミナやマグネシア
がカルシウム分に比べて非常に高いため、反応速度が早
く膨張係数も高くなる。使用目的により、膨張係数を必
要とせず、固化を充点に考えるならば、石膏と塩化アン
モニウムの調整で膨張は止まる。セメントよりも造岩性
が強く長期強度が大きいのは、セメントによる水和によ
ってできる水酸化カルシウム、焼却灰の化合物が、材令
28日前後に再反応するため、焼却灰の潜在水硬性が発
揮されて、水和が進み、セメントの水和力を助けるた
め、長期にわたって強度が増進する。よって初期強度
(材令3日〜7日)はセメントよりやや低い値を示す。
Further, since the incinerated ash cementitious product does not react with water and carbon dioxide, it does not weather and solidify like cement. The incinerated ash cementitious material reacts violently depending on the component ratio of the components. Since alumina and magnesia are much higher than calcium, the reaction speed is high and the expansion coefficient is high. Depending on the purpose of use, if the expansion coefficient is not required and solidification is considered as a satisfactory point, the expansion is stopped by adjusting gypsum and ammonium chloride. The rock formation property and the long-term strength are greater than that of cement because the compound of calcium hydroxide and incineration ash formed by hydration with cement reacts 28 days before the material age, and the latent hydraulic property of incineration ash is exhibited. As the hydration proceeds, the hydration of the cement is promoted, and the strength is increased over a long period of time. Therefore, the initial strength (age 3 to 7 days) shows a value slightly lower than that of cement.

【0019】焼却灰セメント化物は、海水、下水、地下
水の構造物に強い。コンクリート構造物が破壊しやすく
なるのは、硫酸塩がコンクリート中のCa(OH)2
化合して硫酸カルシウム(CaSO4)をつくり、更に
アルミン酸3石灰水和物(3CaO・Al23・nH2
O)と結合して、セメントパチルスになるためである。
焼却灰セメント化物は、膨張係数が大きく、反応が初期
に始まるため、硬化物中のCa(OH)2が少なくな
り、C3Aも少なくなるため、逆に抵抗性がよりでてく
る。焼却灰セメント化物は、表面活性力が大きいため、
固化に必要な起泡能力と分散能力に優れ、流動性があ
り、これらの面を合わせ持ち、セメントの水和反応を促
進させる。
The incinerated ash cementitious material is resistant to structures of seawater, sewage, and groundwater. The reason why the concrete structure is easily broken is that sulfate combines with Ca (OH) 2 in the concrete to form calcium sulfate (CaSO 4 ), and further, tricalcium aluminate hydrate (3CaO · Al 2 O 3)・ NH 2
This is because they combine with O) to become cement patilus.
The incinerated ash cementitious material has a large expansion coefficient and the reaction starts at an early stage, so that Ca (OH) 2 in the hardened material is reduced and C 3 A is also reduced, and conversely, the resistance is increased. Cemented incineration ash has a large surface activity,
It has excellent foaming and dispersing ability necessary for solidification, has fluidity, has these aspects, and promotes the hydration reaction of cement.

【0020】ダイオキシンの熱分解処理 フライアッシュを低酸素雰囲気で加熱処理する考えは、
フライアッシュの酸化雰囲気での加熱(250°〜40
0℃)により各種金属化合物の触媒作用からダイオキシ
ンが生成するのと表裏一体を成している。すなわちフラ
イアッシュ加熱を酸素欠乏下の低酸素雰囲気で行うこと
より、ダイオキシン類の脱塩素化/水素化が図られるこ
とになる。これらを前提とする絶対条件として、次のこ
とが考えられる。 A.酸素欠乏状態の維持:外気と絶縁された脱酸素状態
の空間で加熱 B.一定温度の維持:加熱温度は400°〜600°に
維持する C.滞留時間:40分〜60分の乾留時間を維持する D.冷却後排出:所定時間経過後、脱酸素状態で温度を
180℃以下に下げる
Thermal decomposition of dioxin The idea of heat treating fly ash in a low oxygen atmosphere is as follows.
Heating fly ash in an oxidizing atmosphere (250 ° -40
0 ° C.), and dioxin is formed by the catalytic action of various metal compounds. That is, by performing fly ash heating in a low oxygen atmosphere under oxygen deficiency, dechlorination / hydrogenation of dioxins can be achieved. The following are conceivable as absolute conditions based on these assumptions. A. Maintaining an oxygen-deficient state: heating in a deoxygenated space insulated from the outside air B. Maintaining a constant temperature: Maintain the heating temperature between 400 ° and 600 °. D. Retention time: Maintain a dry distillation time of 40 minutes to 60 minutes. Discharge after cooling: After a predetermined time has elapsed, the temperature is lowered to 180 ° C or less in a deoxidized state

【0021】ダイオキシンの生成と分解 ダイオキシンの生成機構は、都市ゴミを焼却する燃焼過
程における熱力学や、反応速度、さらには分子の電子状
態による反応機構や処理装置から発生し、未燃分の残留
炭素、酸素および塩化物(金属塩化物など)の反応によ
る有機塩素化合物の生成からなるものである。
Dioxin generation and decomposition Dioxin generation mechanism is generated from the reaction mechanism and the processing mechanism due to thermodynamics, reaction rate, and electronic state of molecules in the combustion process of burning municipal garbage, and the unburned matter remains. It consists of the formation of organic chlorine compounds by the reaction of carbon, oxygen and chlorides (such as metal chlorides).

【0022】焼却炉においては、塩化ビニル系プラスチ
ックの焼却、水溶性塩素の排ガス中のCO2,SO2との
反応による塩化水素の発生がみられるが、大量の炭化水
素(Cnm)が発生し、O2との接触により、炭酸ガス
(CO2)と水(H2O)に分解する。しかし不完全燃焼
によるダイオキシンや前駆体の発生もありうる。
In the incinerator, incineration of vinyl chloride plastic and generation of hydrogen chloride due to the reaction of water-soluble chlorine with CO 2 and SO 2 in the exhaust gas are observed, but a large amount of hydrocarbon (C n H m ) is generated. Are generated and are decomposed into carbon dioxide (CO 2 ) and water (H 2 O) by contact with O 2 . However, incomplete combustion may produce dioxins and precursors.

【0023】燃焼に伴って発生するC2やC4の化合物
が、塩酸と酸素から高温で生成する塩素ガスや金属塩化
物によって触媒反応で塩素化され、クロロエチレンやク
ロロアセチレン系の化合物を経てクロロベンゼンが生成
する。クロロベンゼンはヒドロキシルラジカル(OH
・)や酸素、その他の燃焼排ガスと反応しクロロフェノ
ールやクロロフェノキシルラジカルとなり、C2やC4
化合物と結合してポリクロロモノベンヅジオキシンやポ
リクロロモノベンゾフラン、さらにはダイオキシンが生
成する。
The C 2 and C 4 compounds generated during the combustion are chlorinated in a catalytic reaction by chlorine gas or metal chloride generated at a high temperature from hydrochloric acid and oxygen, and pass through chloroethylene and chloroacetylene compounds. Chlorobenzene is formed. Chlorobenzene is a hydroxyl radical (OH
·) And oxygen, become other flue gas reacts with chlorophenol and chloro phenoxyl radicals, C 2 and compound binds to polychlorotrifluoroethylene mono Ben Uz dioxin and polychlorotrifluoroethylene mono benzofuran of C 4, further generates dioxin .

【0024】これらダイオキシン類の発生抑制や排出低
減にあたっては、焼却炉内での燃焼プロセス、排出口か
ら排ガス処理装置までの熱回収、ガス冷却過程そして排
ガス処理装置におけるダストを中心とした大気汚染物質
の除去等により抑制される。ダイオキシン類は完全燃焼
により発生抑制が可能で、燃焼と排ガス処理過程で不完
全燃焼物を発生させなければダイオキシン類の発生のお
それはない。
[0024] In controlling the generation and emission reduction of these dioxins, the combustion process in the incinerator, heat recovery from the discharge port to the exhaust gas treatment device, the gas cooling process, and the air pollutants such as dust in the exhaust gas treatment device. Is suppressed by the removal or the like. The generation of dioxins can be suppressed by complete combustion, and there is no danger of generating dioxins unless incomplete combustion products are generated during the combustion and exhaust gas treatment processes.

【0025】そこで完全燃焼をするため、排出された焼
却灰を更に燃焼させ、不燃物を取り除き、燃焼キルンに
よる燃焼ガス温度を一定に保ち充分なガスの滞留時間で
キルン内での充分なガス攪拌、二次空気との混合するこ
とにより、燃焼ガス中の未燃カーボン、炭化水素等の物
質を減らすことである。
Therefore, in order to perform complete combustion, the discharged incinerated ash is further burned to remove incombustible substances, the temperature of the combustion gas is kept constant by the combustion kiln, and sufficient gas agitation in the kiln is performed with a sufficient gas residence time. And mixing with secondary air to reduce substances such as unburned carbon and hydrocarbons in the combustion gas.

【0026】次に粒子を100メッシュにして表面積を
拡大し、減酸素雰囲気の燃結キルンに投入する。キルン
内の化学反応は触媒反応であり、自由エネルギーが減少
され、反応速度が高まりラジカルが生成し、連鎖機構に
よって気相に拡散し反応が促進される。CaO,K
2O,Al23,SiO2などラジカルの反応により固体
表面の吸着や温度変化によって反応気体と触れ、表面に
触媒機能をもった物質を合成することにより活性点の高
い触媒となる。酸化雰囲気ではダイオキシン類は前駆体
物質から飛灰中の塩化物や炭素を触媒として300℃付
近で多く生成されるが、還元雰囲気下で200℃以下に
加熱すれば、触媒作用により分解できる。まず、脱塩酸
反応が生じ、その後に還元され、脱塩素化/水素化の処
理になる。この乾留状態の中からアンモニア(NH3
が排出し、その還元力によりNOxを抑制することもで
きる。同時に重金属類の安定化処理も施される。
Next, the particles are made into a 100 mesh to increase the surface area, and then charged into a combustion kiln in a reduced oxygen atmosphere. The chemical reaction in the kiln is a catalytic reaction, in which the free energy is reduced, the reaction rate is increased, radicals are generated, and the radicals are diffused into the gas phase by a chain mechanism to accelerate the reaction. CaO, K
A catalyst having a high active point is obtained by synthesizing a substance having a catalytic function on the surface by contacting a reactive gas by adsorption of a solid surface or a temperature change by the reaction of radicals such as 2 O, Al 2 O 3 , and SiO 2 . In an oxidizing atmosphere, a large amount of dioxins are generated from precursor materials at around 300 ° C. using chlorides and carbon in fly ash as catalysts, but can be decomposed by a catalytic action when heated to 200 ° C. or less in a reducing atmosphere. First, a dehydrochlorination reaction occurs, followed by reduction, resulting in a dechlorination / hydrogenation process. Ammonia (NH 3 ) from this dry distillation state
Is discharged, and NOx can be suppressed by its reducing power. At the same time, a stabilization treatment for heavy metals is performed.

【0027】[0027]

【実施例】本願発明の詳細を実施例で説明する。本願発
明はこれら実施例によって何ら限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to embodiments. The present invention is not limited by these examples.

【0028】実施例1 図1に示した、低温度における焼却灰の重金属類及びダ
イオキシン類の処理法を実施する焼却灰のリサイクルプ
ラントフローシートに従って、都市ゴミ一般焼却灰(飛
灰、主灰)を、A.酸素欠乏状態の維持(外気と絶縁さ
れた脱酸素状態の空間で加熱)、B.一定温度の維持
(加熱温度は400°〜600°に維持する)、C.滞
留時間(40分〜60分の乾留時間を維持する)、D.
冷却後排出(所定時間経過後、脱酸素状態で温度を18
0℃以下に下げる)するように処理した。製造された製
品の成分分析を表1〜表3に示す。
Example 1 In accordance with the flow sheet of an incinerated ash recycling plant for performing a method of treating heavy metals and dioxins in incinerated ash at a low temperature shown in FIG. 1, general municipal incinerated ash (fly ash, main ash) To A. B. Maintaining an oxygen-deficient state (heating in a deoxygenated space insulated from the outside air); C. maintaining a constant temperature (heating temperature is maintained at 400 ° to 600 °); D. retention time (maintain 40-60 minutes dry distillation time);
Emission after cooling (after a predetermined time, the temperature is 18
(Lower than 0 ° C.). Tables 1 to 3 show the component analysis of the manufactured products.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】都市ゴミ一般焼却灰から将来にわたり重
金属類やダイオキシン類で環境を汚染することがない安
全なセメント系の資材をつくることができる。
According to the present invention, it is possible to produce a safe cement-based material which does not pollute the environment with heavy metals and dioxins from general incinerated ash from municipal waste.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理法を実施する焼却灰再利用プラン
トフローシートの主要部を示す図面である。
FIG. 1 is a drawing showing a main part of an incineration ash recycling plant flow sheet for carrying out the treatment method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B09B 5/00 N ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B09B 5/00 N

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 焼却灰の無害化のための前処理であっ
て、排出された焼却灰を減酸素雰囲気、一定温度、一定
時間保持して、該焼却灰を効率よく相互解離させ、か
つ、その中の重金属化合物を触媒として作用させること
により、該焼却灰およびその中の重金属類を含む異種金
属の各種化合物を化学反応により安定な化合物に変化さ
せることを特徴とする焼却灰の処理法。
Claims: 1. A pretreatment for detoxifying incinerated ash, wherein the discharged incinerated ash is held in a reduced oxygen atmosphere, at a constant temperature for a fixed time, and the incinerated ash is efficiently dissociated from each other; A method for treating incinerated ash, characterized in that a heavy metal compound therein acts as a catalyst to thereby convert the incinerated ash and various compounds of different metals including heavy metals therein into stable compounds by a chemical reaction.
【請求項2】 処理の前にあらかじめ焼却灰を粉砕処理
して表面積を拡大することである請求項1記載の焼却灰
の処理法。
2. The method for treating incinerated ash according to claim 1, wherein the incinerated ash is pulverized in advance before the treatment to increase the surface area.
【請求項3】 処理の前にあらかじめ焼却灰をおおよそ
50メッシュにする請求項2記載の焼却灰の処理法。
3. The method for treating incinerated ash according to claim 2, wherein the incinerated ash is reduced to about 50 mesh before the treatment.
【請求項4】 温度は400°〜600°に維持する請
求項1、2または3記載の焼却灰の処理法。
4. The method for treating incinerated ash according to claim 1, wherein the temperature is maintained at 400 ° to 600 °.
【請求項5】 時間は30分〜50分保持する請求項1
ないし4のいずれかに記載の焼却灰の処理法。
5. The time is maintained for 30 to 50 minutes.
5. The method for treating incinerated ash according to any one of claims 4 to 4.
【請求項6】 処理は第1キルンおよび第2キルンを組
み合わせ温度差を利用する請求項1ないし5のいずれか
に記載の焼却灰の処理法。
6. The method for treating incinerated ash according to claim 1, wherein the treatment is performed by combining a first kiln and a second kiln and utilizing a temperature difference.
【請求項7】 所定時間経過後、減酸素雰囲気で温度を
180℃(±10℃)に下げる請求項1ないし6のいず
れかの焼却灰の処理法。
7. The method for treating incinerated ash according to claim 1, wherein the temperature is lowered to 180 ° C. (± 10 ° C.) in a reduced oxygen atmosphere after a predetermined time has elapsed.
JP35925196A 1996-12-30 1996-12-30 Treatment of heavy metal and dioxin in incineration ash by catalyst Pending JPH10192812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35925196A JPH10192812A (en) 1996-12-30 1996-12-30 Treatment of heavy metal and dioxin in incineration ash by catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35925196A JPH10192812A (en) 1996-12-30 1996-12-30 Treatment of heavy metal and dioxin in incineration ash by catalyst

Publications (1)

Publication Number Publication Date
JPH10192812A true JPH10192812A (en) 1998-07-28

Family

ID=18463543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35925196A Pending JPH10192812A (en) 1996-12-30 1996-12-30 Treatment of heavy metal and dioxin in incineration ash by catalyst

Country Status (1)

Country Link
JP (1) JPH10192812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128040A (en) * 2018-01-19 2019-08-01 川崎重工業株式会社 Waste incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128040A (en) * 2018-01-19 2019-08-01 川崎重工業株式会社 Waste incinerator

Similar Documents

Publication Publication Date Title
Jiang et al. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review
US5719099A (en) Method and compositions for stabilization of heavy metals, acid gas removal and ph control in contaminated matrices
JP3360827B2 (en) Method and apparatus for treating and utilizing waste by converting waste to non-polluting and reusable materials
Liang et al. The Resource Utilization and Environmental Assessment of MSWI Fly Ash with Solidification and Stabilization: A Review
JP2007283279A (en) Pollutant treating agent containing non-calcinated peridotite principal component and method for using the same
JP4150801B2 (en) Processing method and apparatus for detoxifying and recycling incineration ash
JP3971813B2 (en) Method for treating heavy metals and dioxins in incinerated ash at low temperature
JP5131950B2 (en) Method for treating harmful molecule and drug used in this method
JP2002177924A (en) Detoxification treatment process of incineration ash by diffusing and decomposing incineration ash atoms and equipment for the same process
JP4150800B2 (en) Processing method and apparatus for detoxification and recycling of incinerated ash at low temperature
JPH09299905A (en) Harmful waste treating agent and its treatment
JP2006015290A (en) Fixing method for heavy metal in fly ash using no mixing nor kneading apparatus
WO1997012662A1 (en) Waste gas and dust treatment method
JPH10192812A (en) Treatment of heavy metal and dioxin in incineration ash by catalyst
JP2004330058A (en) Chlorofluorocarbon decomposition method
JPWO2008152855A1 (en) Soil improvement method and land shielding method
JP3854337B2 (en) Solidification agent and solidification product for incineration ash
JP3685553B2 (en) Stabilized incineration ash-based solidification material
KR100258787B1 (en) Tretment method of hazardous heavy metals and dioxins contained in the ash produced during the course of commbustion and reduced as residue from incinerator under the system of lower temperature kiln
JP3814337B2 (en) Incineration ash cementation method
JP3973252B2 (en) Method for detoxification of PCB waste and obtained solidified product
JP2000005730A (en) Treatment for detoxifying/recycling of incinerate ash and device therefor
JP3920937B2 (en) Manufacturing method and stabilizing agent of cement soil improvement agent for incineration ash
WO1997002101A1 (en) Wastes disposing material and method for disposing of wastes
JP3005617B2 (en) Method for stable solidification of incinerated ash and solidified products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050330