JPH10192692A - Gas-liquid contact reactor - Google Patents

Gas-liquid contact reactor

Info

Publication number
JPH10192692A
JPH10192692A JP410197A JP410197A JPH10192692A JP H10192692 A JPH10192692 A JP H10192692A JP 410197 A JP410197 A JP 410197A JP 410197 A JP410197 A JP 410197A JP H10192692 A JPH10192692 A JP H10192692A
Authority
JP
Japan
Prior art keywords
gas
liquid
reaction
raw material
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP410197A
Other languages
Japanese (ja)
Inventor
Masatoshi Akatsuchi
雅敏 赤土
Yasuo Suzuki
康夫 鈴木
Tsutomu Katagiri
務 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP410197A priority Critical patent/JPH10192692A/en
Publication of JPH10192692A publication Critical patent/JPH10192692A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform a gas-liquid contact reaction simply, inexpensively and highly efficiently. SOLUTION: In a gas-liquid contact reactor blowing reactive raw material gas into a reactive raw material liquid 23 to perform chemical reaction, a gas return member 36 having a rising passage 48 collecting a gas product to allow the same to pass and a falling passage 50 communicating with the rising passage to allow the gas product to flow into the reactive raw material liquid formed thereto is provided in a reaction column 32 storing the reactive raw material liquid. By this constitution, heat energy necessary for a gas-liquid contact reaction can be conserved and the production efficiency of the gas product is enhanced and an output can be increased and the purifying degree of the gas product can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体と気体を反応さ
せる気液接触反応に用いる反応器に関するもので、特に
硫黄と水素とを反応させて硫化水素(H2S)を製造す
る反応器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor used for a gas-liquid contact reaction for reacting a liquid and a gas, and more particularly, to a reactor for producing hydrogen sulfide (H 2 S) by reacting sulfur with hydrogen. Things.

【0002】[0002]

【従来の技術】硫黄と水素とを気相で反応させて硫化水
素を製造する方法は良く知られているが、硫黄と水素を
反応させる際には反応熱による温度上昇が大きく、その
為、反応器の温度制御が必要となる。従来、その対策と
して水素を大過剰とし、硫黄を少量にして両者の反応量
を制限して温度上昇を抑える方法が知られている。しか
しながら、この方法では、水素の利用率が低いばかりで
なく、硫化水素生産量当りの装置の大きさが大きくな
り、また、大量の水素の循環とこれに伴う吸収、再生工
程等の過大な設備が必要となり、製造装置が大型かつ高
価になってしまう問題があった。そこで、特公昭46−
5572号公報には、気相反応室を2つ以上連設し、こ
れに、硫黄を気化させるに十分な温度に加熱した水素を
通じながら各反応室の入口に設けた硫黄導入気化室に硫
黄を分割供給して反応させる方法が示されている。しか
し、この方法では、1段で温度上昇を100℃以内に抑
えるには、約1モル%分のS8(硫黄蒸気)しか反応で
きないので、硫化水素を高濃度にするためには段数が多
く必要となり不経済である。
2. Description of the Related Art A method for producing hydrogen sulfide by reacting sulfur and hydrogen in a gas phase is well known. However, when reacting sulfur and hydrogen, the temperature rise due to reaction heat is large. Temperature control of the reactor is required. Heretofore, as a countermeasure, a method has been known in which a large excess of hydrogen and a small amount of sulfur are used to limit the reaction amount of the two to suppress the temperature rise. However, in this method, not only is the utilization rate of hydrogen low, but the size of the apparatus per unit of hydrogen sulfide production increases, and excessive equipment such as a large amount of hydrogen circulation and the absorption and regeneration steps involved. Is required, and there is a problem that the manufacturing apparatus becomes large and expensive. Therefore, Tokiko Sho 46-
No. 5572 discloses that two or more gas-phase reaction chambers are connected in series, and sulfur is introduced into a sulfur introduction vaporization chamber provided at the inlet of each reaction chamber while passing hydrogen heated to a temperature sufficient to vaporize sulfur. A method of reacting by split supply is shown. However, in this method, only about 1 mol% of S 8 (sulfur vapor) can be reacted to suppress the temperature rise to within 100 ° C. in one step. It is necessary and uneconomical.

【0003】また、特公平5−11046号公報には、
液相部の硫黄と水素ガスを反応させることで硫化水素を
製造する方法が示されている。この方法を図4を参照し
て説明する。この方法では、まず、反応塔1内の温調器
4によって液体硫黄2を250℃以上の所定温度範囲に
加熱する。そして、供給ライン3を通じて反応塔1内に
水素ガスを供給し、反応塔1内の下部に配設されたノズ
ル5から液体硫黄2中に水素ガスを吹き出す。反応塔1
内に吹き込まれた水素ガスは反応塔1内の液体硫黄2と
接触し、硫化水素ガスを生じる。生じた硫化水素ガスは
反応塔1からライン6を通って凝縮分離器7に送られ
る。この反応塔1から流出されるガスには、硫化水素ガ
スの他、硫黄蒸気、未反応水素等が同伴されている。凝
縮分離器7ではライン6を通って送られてきたガスを冷
却し、混入する硫黄蒸気を凝縮分離、回収する。また、
反応塔1から流出したガスの一部は水添反応器8に送ら
れ、硫黄蒸気と水素を気相接触反応させて硫化水素を生
成させる。また、凝縮分離器7からライン9により取り
出された分離ガス中には、硫化水素の他、依然、未反応
水素、硫黄蒸気を含んでいるおそれがあるので、水添反
応器10で気相接触反応させてさらに精製し、硫黄蒸気
を減少させると共に、硫化水素量を増加させる。
[0003] Also, Japanese Patent Publication No. Hei 5-11046 discloses that
A method for producing hydrogen sulfide by reacting sulfur in a liquid phase with hydrogen gas is disclosed. This method will be described with reference to FIG. In this method, first, the liquid sulfur 2 is heated to a predetermined temperature range of 250 ° C. or higher by the temperature controller 4 in the reaction tower 1. Then, a hydrogen gas is supplied into the reaction tower 1 through the supply line 3, and the hydrogen gas is blown out into the liquid sulfur 2 from a nozzle 5 disposed at a lower part in the reaction tower 1. Reaction tower 1
The hydrogen gas blown into the reactor comes into contact with the liquid sulfur 2 in the reaction tower 1 to generate hydrogen sulfide gas. The generated hydrogen sulfide gas is sent from the reaction tower 1 to the condensation separator 7 through the line 6. The gas flowing out of the reaction tower 1 is accompanied by sulfur vapor, unreacted hydrogen and the like in addition to the hydrogen sulfide gas. In the condensing separator 7, the gas sent through the line 6 is cooled, and the contaminated sulfur vapor is separated and recovered. Also,
A part of the gas flowing out of the reaction tower 1 is sent to a hydrogenation reactor 8, where sulfur vapor and hydrogen are brought into gas phase contact reaction to generate hydrogen sulfide. Further, the separation gas taken out from the condensation separator 7 by the line 9 may still contain unreacted hydrogen and sulfur vapor in addition to hydrogen sulfide. The reaction is further refined to reduce sulfur vapor and increase the amount of hydrogen sulfide.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した反
応塔1においては、その気相部16においても、硫黄蒸
気と水素とが気相接触反応しており、その反応による発
熱量は大きく、これを考慮せずに液相硫黄2の温度制御
は容易でなく、熱収支を最適にすることが困難である。
また、液体硫黄2を所定温度に保つために、温調器4に
よる加熱または冷却だけでなく、この気相部16の周囲
を覆うように冷却ジャケット18等の制御装置を付設
し、気相部16を冷却することも考えられるが、装置が
複雑化してしまう。また、より高効率に硫化水素を製造
することも希求されている。また、特開平6−2853
64号公報には、図5に示すように、反応原料液23を
貯溜する反応塔20内に、隔壁21を設け、下方に設け
たガス吹込みノズル22から反応原料気体を吹き込み、
循環流動させて気液接触の効率を高める方法が示されて
いるが、このものであっても、上述した不具合を生じ易
い。さらに、特公平5−67562号公報には、気相部
に硫黄蒸気を還流する内部リフラックス装置を備えて硫
黄蒸気を冷却、液化することで、気相部での反応を抑え
て発熱量を低下させ、また、硫黄蒸気の除去によって硫
化水素の濃度を高めたものが示されているが、生産量の
増加等において必ずしも満足なものではない。本発明は
前記課題を解決するためになされたもので、簡易かつ安
価に、かつ高効率に気液接触反応させる反応器を提供す
ることにある。
Incidentally, in the above-mentioned reaction tower 1, even in the gas phase section 16, sulfur vapor and hydrogen are in gas phase contact reaction, and the calorific value due to the reaction is large. It is not easy to control the temperature of the liquid-phase sulfur 2 without taking into account the above, and it is difficult to optimize the heat balance.
In order to maintain the temperature of the liquid sulfur 2 at a predetermined temperature, not only heating or cooling by the temperature controller 4 but also a control device such as a cooling jacket 18 is provided so as to cover the periphery of the gas phase section 16. Although it is conceivable to cool 16, the device becomes complicated. There is also a need for more efficient production of hydrogen sulfide. Also, Japanese Patent Application Laid-Open No. 6-2853
No. 64, as shown in FIG. 5, a partition 21 is provided in a reaction tower 20 for storing a reaction raw material liquid 23, and a reaction raw material gas is blown from a gas blowing nozzle 22 provided below.
Although a method of increasing the efficiency of gas-liquid contact by circulating and flowing is disclosed, even with this method, the above-described disadvantages are likely to occur. Furthermore, Japanese Patent Publication No. 5-67562 discloses that an internal reflux device for refluxing sulfur vapor in a gas phase is provided to cool and liquefy the sulfur vapor, thereby suppressing the reaction in the gas phase and reducing the calorific value. Although it is shown that the concentration is reduced and the concentration of hydrogen sulfide is increased by removing sulfur vapor, it is not always satisfactory in increasing the production amount. The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to provide a reactor for performing a gas-liquid contact reaction easily, inexpensively, and efficiently.

【0005】[0005]

【課題を解決するための手段】本発明者等は液体硫黄中
に水素ガスを吹き込んで硫化水素を生成する反応につい
て、鋭意研究を重ねたところ、液体硫黄中での反応も下
記の2反応が主体であることを見い出した。 S6(g)+6H2 → 6H2S+53kcal/molS6 ・・・(1) S8(g)+8H2 → 8H2S+62kcal/molS8 ・・・(2) さらに、液体硫黄の蒸発潜熱が68kcal/kgS(420
℃)であることと、反応速度とを総合的に勘案して、本
発明を完成するに至った。すなわち、本発明の気液接触
反応器は、反応原料液に反応原料気体を吹き込んで化学
反応を行なわせる気液接触反応器において、反応原料液
を貯溜する反応塔内に、気体生成物を収集し通過させる
上昇流路と、該上昇流路と連通し気体生成物を反応原料
液中に流出する下降流路とが形成された気体返送体を具
備していることを特徴とするものである。この際、気体
返送体としては、上端が閉塞し下端が反応原料液中に開
放された外管体と、その外管体内に配置された内管体と
を有し、その内管体の内部に上昇流路が形成され、内管
体と外管体の間隙に下降流路が形成されたものが好まし
い。
Means for Solving the Problems The present inventors have conducted intensive studies on the reaction of generating hydrogen sulfide by blowing hydrogen gas into liquid sulfur. As a result, the following two reactions also occur in liquid sulfur. I found that I was the subject. S 6 (g) + 6H 2 → 6H 2 S + 53 kcal / mol S 6 ... (1) S 8 (g) + 8H 2 → 8H 2 S + 62 kcal / mol S 8 ... (2) Further, the latent heat of vaporization of liquid sulfur is 68 kcal / kgS (420
° C) and the reaction rate were taken into consideration comprehensively, and the present invention was completed. That is, in the gas-liquid contact reactor of the present invention, in a gas-liquid contact reactor in which a reaction raw material gas is blown into a reaction raw material liquid to perform a chemical reaction, a gas product is collected in a reaction tower for storing the reaction raw material liquid. And a gas returning body formed with a descending passage communicating with the rising passage and allowing the gaseous product to flow out into the reaction raw material liquid. . At this time, the gas returning body has an outer tube having an upper end closed and a lower end opened into the reaction raw material liquid, and an inner tube arranged in the outer tube. It is preferable that an ascending flow path is formed in the inner pipe and a descending flow path is formed in a gap between the inner pipe and the outer pipe.

【0006】また、上昇流路の下端には、下方が拡径し
た気体収集体を設けておくことが好ましい。さらに、こ
の気体返送体は複数個設けられていてもよい。また、請
求項4記載の気液接触反応器は、反応原料液に反応原料
気体を吹き込んで化学反応を行なわせる気液接触反応器
において、下端部に気体収集部を設けた内筒と、上端を
蓋し下端を開放した外筒よりなり、内部に連通した上下
方向の気体流路を有する筒状構造物が液相部に設置され
てなることを特徴とするものであり、請求項5記載の気
液接触反応器は、反応原料液に反応原料気体を吹き込ん
で化学反応を行なわせる気液接触反応器において、内部
に連通した上下方向の気体流路を有し、気体流路の下端
部に気体収集部を設けると共に、他方の気体流路を下方
に開放してなる構造物が液相部に設置されてなることを
特徴とするものである。これらの反応器は、液体硫黄中
に水素ガスを吹き込んで硫化水素を製造する場合に特に
適している。
Further, it is preferable to provide a gas collecting body whose diameter is enlarged downward at the lower end of the rising channel. Further, a plurality of the gas returning bodies may be provided. A gas-liquid contact reactor according to claim 4 is a gas-liquid contact reactor in which a reaction material gas is blown into a reaction material liquid to perform a chemical reaction. 6. A cylindrical structure comprising an outer cylinder having a lower end and an open lower end, and having a vertical gas flow path communicating with the inside thereof, wherein the cylindrical structure is provided in the liquid phase portion, wherein: The gas-liquid contact reactor is a gas-liquid contact reactor in which a reactant gas is blown into a reactant liquid to carry out a chemical reaction. The gas-liquid contact reactor has a vertical gas passage communicating with the inside thereof, and a lower end of the gas passage. And a structure in which the other gas flow path is opened downward is provided in the liquid phase portion. These reactors are particularly suitable for producing hydrogen sulfide by blowing hydrogen gas into liquid sulfur.

【0007】[0007]

【発明の実施の形態】本発明を図1を参照して説明す
る。図1に示す反応器30においては、反応塔32と、
その反応塔32の下部に反応原料液23を供給する液体
供給管34と、反応原料気体を供給する気体導入手段
と、反応塔32内に配置される気体返送体36と、反応
器出口35とを具備して概略構成される。気体導入手段
は、反応原料気体を送給する配管39と、その配管39
と接続し、反応塔32内に貯溜した反応原料液23内に
位置するノズル38とを具備して概略構成され、配管3
9に接続された気体タンクからコンプレッサ(図示略)
により送給された反応原料気体がノズル38から吹き出
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. In the reactor 30 shown in FIG.
A liquid supply pipe 34 for supplying the reaction raw material liquid 23 to a lower portion of the reaction tower 32, a gas introduction means for supplying a reaction raw material gas, a gas return body 36 disposed in the reaction tower 32, and a reactor outlet 35. The configuration is schematically provided. The gas introduction means includes a pipe 39 for supplying the reactant gas, and the pipe 39.
And a nozzle 38 positioned in the reaction raw material liquid 23 stored in the reaction tower 32.
Compressor (not shown) from the gas tank connected to 9
The reaction raw material gas supplied by the nozzle blows out from the nozzle 38.

【0008】図示例の気体返送体36は、上端が閉塞
し、下端が開口した円管状の外管体(外筒)40と、そ
の外管体40の内部に設けられ、上端及び下端共に開口
した円管状の内管体(内筒)42とを具備した筒状構造
物で概略構成され、内管体42の上端44と外管体40
の上壁46との間には間隙45が形成され、内管体42
の内部空間である上昇流路48と、内管体42と外管体
40の間に形成される空間である下降流路50とは間隙
45により連通する。この際、少なくとも下降流路50
の下端部52は、貯溜している反応原料液(液相部)2
3内に位置することが必要である。また、気体返送体3
6は反応塔32内において、反応塔32の内壁33と間
隙54を形成して配置される。また、気体返送体36
は、その一部が気相部16に露出するように配置させて
も良いが、後述する熱交換効果を高めるために、図示の
ごとく、全体が反応原料液23内に浸漬するように設け
ることが好ましい。
The illustrated gas returning body 36 is provided with a cylindrical outer tube (outer tube) 40 whose upper end is closed and whose lower end is open, and is provided inside the outer tube 40, and both upper and lower ends are open. And an upper end 44 of the inner tube 42 and an outer tube 40.
A gap 45 is formed between the inner tube 42 and the upper wall 46.
The ascending flow path 48, which is the internal space of the pipe, and the descending flow path 50, which is a space formed between the inner pipe body 42 and the outer pipe body 40, communicate with each other through a gap 45. At this time, at least the descending flow path 50
The lower end 52 of the reaction raw material liquid (liquid phase portion) 2
3 is required. In addition, gas returning body 3
6 is disposed inside the reaction tower 32 so as to form a gap 54 with the inner wall 33 of the reaction tower 32. Also, the gas returning body 36
May be arranged so that a part thereof is exposed to the gas phase portion 16. However, in order to enhance the heat exchange effect described later, as shown in FIG. Is preferred.

【0009】また、気体返送体36の設置数は1つに限
られず、図3に示すように、複数個、例えば、3個、ま
たは7個の気体返送体36,36,・・・を1つの反応塔
32内に設けても良い。
The number of the gas returning bodies 36 is not limited to one. As shown in FIG. 3, a plurality of, for example, three or seven gas returning bodies 36, 36,. It may be provided in one reaction tower 32.

【0010】この気体返送体36は、反応塔32の内壁
と同様に、反応原料液、反応原料気体、反応生成物等に
よって腐食されず、耐熱性を有するものであれば、特に
その材料は限定されないが、熱交換効果を高めるため
に、熱伝導率の高いもので構成することが好ましい。例
えば、オーステナイト系ステンレス鋼などが挙げられ
る。また、図示例のものでは、気液接触反応により生じ
た気体生成物を収集しやすいように、下方が拡径した気
体収集体56が内管体42の下端に設けられている。さ
らにまた、図示例の反応器においては、反応原料液23
内であってノズル38の上方に、反応原料液23を加熱
または冷却するための温調器58が設けられている。温
調器58には、例えば、電気ヒータ等が適用できる。
尚、符号60は、メンテナンス時などに利用するマンホ
ールである。
[0010] Like the inner wall of the reaction tower 32, the material of the gas returning body 36 is not particularly limited as long as it is not corroded by a reaction raw material liquid, a reaction raw material gas, a reaction product and the like and has heat resistance. However, in order to enhance the heat exchange effect, it is preferable to use a material having a high thermal conductivity. For example, austenitic stainless steel may be used. Further, in the illustrated example, a gas collector 56 whose diameter is expanded downward is provided at the lower end of the inner tube 42 so as to easily collect the gas product generated by the gas-liquid contact reaction. Furthermore, in the illustrated reactor, the reaction raw material liquid 23
Inside, above the nozzle 38, a temperature controller 58 for heating or cooling the reaction raw material liquid 23 is provided. For example, an electric heater or the like can be applied to the temperature controller 58.
Reference numeral 60 denotes a manhole used for maintenance or the like.

【0011】この反応器30を使用するには、まず、反
応塔32内に液体供給管34から反応原料液を供給し、
貯溜する。そして、所定の温度に温調器58で反応原料
液23を加熱する。そして、配管39を通じて送給され
てきた反応原料気体をノズル38から吹き出して、反応
原料液と反応原料気体の気液接触反応を起こさせ、気体
生成物を生成する。気体生成物は、反応原料液23内を
上昇するので、これを気体収集体56で収集し、そのま
ま上昇流路48内を上昇させる。この際、この気液接触
反応により生じた気体生成物の他にも、反応原料気体や
反応原料液の蒸気等も気体収集体56で収集され、上昇
流路48内を上昇する。これらの混合ガスは、次々と生
じる気体生成物、反応原料気体や反応原料液の蒸気によ
って上方に送り込まれ、間隙45を通過後、下降流路5
0内を下降し、下降流路50の下端52から反応原料液
23内に流出し、戻される。この間に、上昇流路48な
いし下降流路50内にて反応原料気体と反応原料液の蒸
気による気相反応によっても気体生成物が生成される。
その後、反応原料液23内に戻された気体生成物は、外
管体40と反応塔32の内壁33の間隙54を通過して
上昇し、気相部16に送られた後、反応器出口35から
次工程に送給される。
To use this reactor 30, first, a reaction raw material liquid is supplied into a reaction tower 32 from a liquid supply pipe 34,
To store. Then, the reaction raw material liquid 23 is heated to a predetermined temperature by the temperature controller 58. Then, the reaction raw material gas sent through the pipe 39 is blown out from the nozzle 38 to cause a gas-liquid contact reaction between the reaction raw material liquid and the reaction raw material gas to generate a gas product. Since the gaseous product rises in the reaction raw material liquid 23, the gaseous product is collected by the gas collector 56 and is raised in the rising flow path 48 as it is. At this time, in addition to the gaseous products generated by the gas-liquid contact reaction, the reaction raw material gas and the vapor of the reaction raw material liquid are also collected by the gas collector 56 and rise in the rising flow path 48. These mixed gases are sent upward by a gas product, a reactant gas or a reactant liquid vapor generated one after another.
0, flows out from the lower end 52 of the descending flow path 50 into the reaction raw material liquid 23, and returns. During this time, a gaseous product is also generated by a gas phase reaction between the reactant gas and the vapor of the reactant liquid in the ascending flow path 48 or the descending flow path 50.
Thereafter, the gaseous product returned into the reaction raw material liquid 23 rises through the gap 54 between the outer tube 40 and the inner wall 33 of the reaction tower 32, and is sent to the gas phase section 16, and then the reactor outlet From 35 is sent to the next process.

【0012】このような反応器であると、気体返送体3
6内での気相反応による発熱の熱エネルギは、外管体4
0を伝わって反応原料液23に放出されると共に、高熱
の気体生成物が下降流路50を出て反応原料液23中を
通過するので、気体生成物と反応原料液23との間で熱
交換が生じ、気体生成物は冷却されると共に反応原料液
23の温度は高められる。従って、温調器58による加
熱量が補われる。尚、反応原料液の蒸発量が増えれば、
気相反応での発熱量も増えるので、これを還元すれば、
反応原料液の蒸発に係る蒸発潜熱を賄うことができる
が、熱収支の悪化等により、反応原料液の蒸気が低減し
たり気相反応が少なくなった場合には、温調器58によ
る加熱温度を高めればよい。また、気体返送体36内で
気相反応も生じさせることから、生成物を短時間で高濃
度に生産することができる。したがって、この反応器で
あれば、装置が簡易で、大型または高価になることな
く、高濃度に目的生成物を得ることができ、かつ触媒を
必ずしも必要としないのでメンテナンス等が容易であ
り、経済的でもある。しかも、従来、気体生成物の精製
度を高める為、または気相反応が生じることによる高温
化を防止する為に、反応原料液はなるべく蒸発させない
ようにしていたが、本発明では蒸発した反応原料液によ
る気相反応を積極的に利用するもので、その気体生成物
ならびに気相反応による発熱を考慮するものであり、反
応原料液への熱交換により気相反応による発熱は除熱さ
れ、その熱エネルギは反応原料液の蒸発潜熱と、反応原
料液の加熱とに費やされ、反応原料液の加熱に要するエ
ネルギを節約することができる。
With such a reactor, the gas recirculation body 3
The heat energy of the heat generated by the gas phase reaction in the outer tube 4
0 and is released to the reaction raw material liquid 23, and the high-temperature gaseous product exits the downflow channel 50 and passes through the reaction raw material liquid 23, so that heat is generated between the gaseous product and the reaction raw material liquid 23. Exchange occurs, the gaseous product is cooled, and the temperature of the reaction raw material liquid 23 is raised. Therefore, the amount of heating by the temperature controller 58 is supplemented. In addition, if the evaporation amount of the reaction raw material liquid increases,
Since the calorific value in the gas phase reaction also increases, if this is reduced,
The latent heat of vaporization associated with the evaporation of the reactant liquid can be covered, but when the vapor of the reactant liquid is reduced or the gas phase reaction is reduced due to deterioration of the heat balance, the heating temperature by the temperature controller 58 is reduced. Should be raised. In addition, since a gas phase reaction is also caused in the gas returning body 36, the product can be produced in a high concentration in a short time. Therefore, with this reactor, the desired product can be obtained at a high concentration without a simple and large-sized or expensive apparatus, and a catalyst is not necessarily required, so that maintenance and the like are easy and economical. It is also a target. In addition, conventionally, in order to increase the degree of purification of the gaseous product or to prevent a high temperature due to the occurrence of a gas phase reaction, the reaction raw material liquid is not evaporated as much as possible. It actively utilizes the gas phase reaction by the liquid, taking into account the gas product and the heat generated by the gas phase reaction.The heat generated by the gas phase reaction is removed by heat exchange with the reaction raw material liquid. The heat energy is used for the latent heat of evaporation of the reaction material liquid and for heating the reaction material liquid, so that the energy required for heating the reaction material liquid can be saved.

【0013】尚、上述した図1に基づく例では、気体返
送体36を内管体(内筒)42とこれを覆う外管体(外
筒)40とで概略構成したが、本発明の気体返送体とし
てはこれに限られるものではなく、例えば、図2に示す
ように、上昇流路48を形成する内管体42と、内管体
42の周囲を螺旋状に下降する下降流路51を形成する
外管体41とを有する構造物で概略構成されるものであ
ってもよい。この図2に示すものであると、反応原料液
23と接触する気体返送体37の表面積を増加すること
ができるので、気体返送体37と反応原料液23の間で
の熱交換効率をより高めることができる。
In the example based on FIG. 1 described above, the gas returning member 36 is schematically constituted by an inner tube (inner tube) 42 and an outer tube (outer tube) 40 covering the same. The return body is not limited to this. For example, as shown in FIG. 2, an inner pipe 42 forming an ascending flow path 48, and a descending flow path 51 spirally descending around the inner pipe 42. May be roughly constituted by a structure having the outer tube body 41 forming the above. 2, the surface area of the gas returning body 37 in contact with the reaction raw material liquid 23 can be increased, so that the heat exchange efficiency between the gas returning body 37 and the reaction raw material liquid 23 is further improved. be able to.

【0014】上述した反応器は、適用する反応原料液、
反応原料気体、反応生成物は特に限られるものではない
が、液体硫黄と水素ガスとの気液接触反応による硫化水
素の製造が好適である。この硫化水素の製造の場合、ま
ず、反応塔32内に液体供給管34から液体硫黄を供給
し、貯溜する。そして、所定の温度に温調器58で液体
硫黄を加熱する。ここで、所定温度とは、400〜48
0℃であることが好ましい。また、反応圧力(ゲージ
圧)は0.3〜30kg/cm2Gであることが好ましく、5k
g/cm2G程度がより好ましい。そして、配管39を通じ
て送給されてきた水素ガスをノズル38から吹き出し、
液体硫黄と水素ガスの気液接触反応を起こさせる。水素
ガスとしては、例えば、LPG、ナフサ等の水蒸気改質
水素、電解水素、別プラントからの回収水素などが使用
できる。
The above-mentioned reactor is provided with a reaction raw material liquid to be applied,
The reaction raw material gas and reaction product are not particularly limited, but production of hydrogen sulfide by a gas-liquid contact reaction between liquid sulfur and hydrogen gas is preferred. In the case of the production of hydrogen sulfide, first, liquid sulfur is supplied into the reaction tower 32 from the liquid supply pipe 34 and stored. Then, the liquid sulfur is heated to a predetermined temperature by the temperature controller 58. Here, the predetermined temperature is 400 to 48.
Preferably it is 0 ° C. The reaction pressure (gauge pressure) is preferably from 0.3 to 30 kg / cm 2 G, and
g / cm 2 G is more preferable. Then, the hydrogen gas sent through the pipe 39 is blown out from the nozzle 38,
A gas-liquid contact reaction between liquid sulfur and hydrogen gas occurs. As the hydrogen gas, for example, steam reforming hydrogen such as LPG and naphtha, electrolytic hydrogen, and hydrogen recovered from another plant can be used.

【0015】そして、液体硫黄23内を上昇する気液接
触反応により生成された硫化水素は、水素ガスや硫黄蒸
気等と共に、気体収集体56で収集され、上昇流路48
内を上昇する。そして、上昇流路48内のこれらの混合
ガスは、次々と生じる生成硫化水素を含む混合ガスによ
って上方に送り込まれ、その後、下降流路50内を下降
し、下降流路の下端から液体硫黄23内に流出し、戻さ
れる。また、硫化水素に同伴した水素ガスと硫黄蒸気は
上昇流路48及び下降流路50内で気相反応し、硫化水
素が生じる。この気相反応による硫化水素も下降流路5
0の下端から液体硫黄23内に戻される。そして、これ
ら気液接触反応による硫化水素ならびに気相反応による
硫化水素は共に、液体硫黄内を気体返送体36の外部を
通って上昇し、気相部16から反応器出口35を通じて
次工程に送給される。したがって、液相での硫化水素の
生成に加えて、気液接触反応しなかった水素ガス及び硫
黄蒸気が気体返送体内において反応して硫化水素が生成
されるので、高効率に硫化水素を製造でき、生産量を増
加でき、しかも、採集されるガス中の硫化水素の濃度が
高く、水素ガスや硫黄蒸気量が少ないので、次工程以降
での凝縮器や水添反応器の削減を図ることもできる。
尚、十分に反応が進行する反応系であれば必ずしも必要
ではないが、場合に応じて適宜、気相及び又は液相で触
媒を適用することも可能である。
The hydrogen sulfide generated by the gas-liquid contact reaction that rises in the liquid sulfur 23 is collected by the gas collector 56 together with hydrogen gas, sulfur vapor, etc.
Rises inside. Then, these mixed gases in the ascending flow path 48 are sent upward by a mixed gas containing generated hydrogen sulfide generated one after another, and then descend in the descending flow path 50, and the liquid sulfur 23 Spilled into and returned. Further, the hydrogen gas and the sulfur vapor accompanying the hydrogen sulfide undergo a gas phase reaction in the ascending flow path 48 and the descending flow path 50 to generate hydrogen sulfide. Hydrogen sulfide due to this gas phase reaction is
0 is returned into the liquid sulfur 23 from the lower end. Then, both the hydrogen sulfide by the gas-liquid contact reaction and the hydrogen sulfide by the gas phase reaction rise inside the liquid sulfur through the outside of the gas recirculation body 36 and are sent from the gas phase part 16 to the next step through the reactor outlet 35. Be paid. Therefore, in addition to the production of hydrogen sulfide in the liquid phase, hydrogen gas and sulfur vapor that have not undergone a gas-liquid contact reaction react in the gas recirculation body to produce hydrogen sulfide, so that hydrogen sulfide can be produced with high efficiency. In addition, the production volume can be increased, and the concentration of hydrogen sulfide in the collected gas is high, and the amount of hydrogen gas and sulfur vapor is small, so it is possible to reduce the number of condensers and hydrogenation reactors in the next and subsequent steps. it can.
The catalyst is not necessarily required as long as the reaction proceeds sufficiently, but it is also possible to apply the catalyst in a gas phase and / or a liquid phase as appropriate.

【0016】[0016]

【実施例】図1に示す反応器を用い、反応塔32内に液
体硫黄を1.85kg・mol/hr供給し、水素ガスを3.7kg・
mol/hr供給し続け、反応塔32の頂部に設けたセンサ
によって、気相部16内の硫化水素濃度が45vol%にな
るのに必要な電熱量を計測した。尚、温調器58により
気液接触反応温度は420℃に設定し、触媒は使用しな
かった。また、比較例として、気体返送体を用いないこ
と以外は同様の反応器を用いて、液体硫黄と水素ガスと
を気液反応させて硫化水素を製造した。その結果、気体
返送体を用いた本実施例の反応器において、硫化水素濃
度が45vol%になるのに必要な電熱量を100とする
と、比較例の反応器では硫化水素濃度を45vol%にする
のに必要な電熱量は302であり、本実施例のものであ
れば、液体硫黄の加熱に必要とする外部からのエネルギ
を約1/3に削減できた。さらに、本実施例の反応器で
は、気相部分の除熱が不要であり、さらなる省エネルギ
が達成された。
EXAMPLE Using the reactor shown in FIG. 1, 1.85 kg · mol / hr of liquid sulfur was supplied into the reaction tower 32, and 3.7 kg · of hydrogen gas was supplied.
The supply of mol / hr was continued, and the amount of electric heat required for the hydrogen sulfide concentration in the gas phase 16 to reach 45 vol% was measured by a sensor provided at the top of the reaction tower 32. The gas-liquid contact reaction temperature was set at 420 ° C. by the temperature controller 58, and no catalyst was used. In addition, as a comparative example, hydrogen sulfide was produced by performing a gas-liquid reaction between liquid sulfur and hydrogen gas using the same reactor except that no gas returning body was used. As a result, in the reactor of this example using the gas recirculation body, when the amount of electric heat required for the hydrogen sulfide concentration to be 45 vol% is 100, the hydrogen sulfide concentration is 45 vol% in the reactor of the comparative example. The amount of electric heat required for this is 302, and in the case of the present embodiment, the external energy required for heating the liquid sulfur could be reduced to about 1/3. Further, in the reactor of the present example, heat removal of the gas phase portion was unnecessary, and further energy saving was achieved.

【0017】[0017]

【発明の効果】本発明は、気液接触反応を行なう液相部
に気相反応を行なわせる特殊構造物を設置し、気相部で
の反応熱を液相部の熱源の一部として有効利用すること
により、気液接触反応に必要な加熱エネルギを節減する
ことができると共に、気体生成物の製造効率を高め、生
産量の増加を図ることができる上、気体生成物の精製度
を高めることもできる。また、気相反応に伴う発熱を効
果的に除熱することもできる。特に、熱的バランスに優
れ、熱ユーティリティが簡潔で温度制御を簡易かつ安価
にできる。また、大過剰の水素を使用する必要がなく、
硫化水素の製造に使用する水素の量を削減することがで
き、また、装置が簡易で、大型になることがなく、しか
も付帯設備の小規模化または削減も可能で、コストダウ
ンを図ることもでき、経済的でもある。
According to the present invention, a special structure for performing a gas phase reaction is provided in a liquid phase portion for performing a gas-liquid contact reaction, and the heat of reaction in the gas phase portion is effectively used as a part of a heat source in the liquid phase portion. By utilizing, the heating energy required for the gas-liquid contact reaction can be reduced, the production efficiency of the gas product can be increased, the production amount can be increased, and the purification degree of the gas product can be increased. You can also. In addition, heat generated by the gas phase reaction can be effectively removed. In particular, the thermal balance is excellent, the thermal utility is simple, and the temperature control can be simple and inexpensive. Also, there is no need to use a large excess of hydrogen,
The amount of hydrogen used for the production of hydrogen sulfide can be reduced, and the equipment is simple and does not increase in size. It is possible and economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態例を示す側断面図であ
る。
FIG. 1 is a side sectional view showing an embodiment of the present invention.

【図2】 本発明の一実施形態例を示す側断面図であ
る。
FIG. 2 is a side sectional view showing an embodiment of the present invention.

【図3】 本発明の一実施形態例を示す側断面図であ
る。
FIG. 3 is a side sectional view showing one embodiment of the present invention.

【図4】 従来例の反応方法を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a conventional reaction method.

【図5】 従来例の反応器を示す側断面図である。FIG. 5 is a side sectional view showing a conventional reactor.

【符号の説明】[Explanation of symbols]

1 反応塔 2 液体硫黄 20 反応塔 23 反応原料液 30 反応器 32 反応塔 36 気体返送体 37 気体返送体 40 外管体 41 外管体 42 内管体 48 上昇流路 50 下降流路 51 下降流路 DESCRIPTION OF SYMBOLS 1 Reaction tower 2 Liquid sulfur 20 Reaction tower 23 Reaction raw material liquid 30 Reactor 32 Reaction tower 36 Gas returning body 37 Gas returning body 40 Outer pipe 41 Outer pipe 42 Inner pipe 48 Up flow path 50 Down flow path 51 Down flow Road

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 反応原料液に反応原料気体を吹き込んで
化学反応を行なわせる気液接触反応器において、反応原
料液を貯溜する反応塔内に、気体生成物を収集し通過さ
せる上昇流路と、該上昇流路と連通し気体生成物を反応
原料液中に流出する下降流路とが形成された気体返送体
を具備していることを特徴とする気液接触反応器。
1. A gas-liquid contact reactor for blowing a reaction raw material gas into a reaction raw material liquid to carry out a chemical reaction, wherein an ascending flow path for collecting and passing gaseous products in a reaction tower for storing the reaction raw material liquid. A gas-returning body formed with a downward flow passage communicating with the upward flow passage and allowing a gaseous product to flow into the reaction raw material liquid.
【請求項2】 前記気体返送体が、上端が閉塞し下端が
反応原料液中に開放された外管体と、その外管体内に配
置された内管体とを有し、該内管体の内部に上昇流路が
形成され、内管体と外管体の間隙に下降流路が形成され
ることを特徴とする請求項1記載の気液接触反応器。
2. The gas returning body has an outer tube having an upper end closed and a lower end opened into a reaction raw material liquid, and an inner tube disposed in the outer tube. 2. The gas-liquid contact reactor according to claim 1, wherein an ascending flow path is formed inside the inner pipe, and a descending flow path is formed in a gap between the inner pipe and the outer pipe.
【請求項3】 上昇流路の下端に、下方が拡径した気体
収集体が設けられていることを特徴とする請求項1また
は2記載の気液接触反応器。
3. The gas-liquid contact reactor according to claim 1, wherein a gas collector whose diameter is increased downward is provided at a lower end of the ascending flow path.
【請求項4】 反応原料液に反応原料気体を吹き込んで
化学反応を行なわせる気液接触反応器において、下端部
に気体収集部を設けた内筒と、上端を蓋し下端を開放し
た外筒よりなり、内部に連通した上下方向の気体流路を
有する筒状構造物が液相部に設置されてなることを特徴
とする気液接触反応器。
4. A gas-liquid contact reactor in which a reactant gas is blown into a reactant liquid to carry out a chemical reaction, wherein an inner cylinder having a gas collecting section at a lower end, and an outer cylinder having a closed upper end and an open lower end. A gas-liquid contact reactor characterized in that a cylindrical structure having a vertical gas flow path communicating with the inside thereof is provided in a liquid phase portion.
【請求項5】 反応原料液に反応原料気体を吹き込んで
化学反応を行なわせる気液接触反応器において、内部に
連通した上下方向の気体流路を有し、気体流路の下端部
に気体収集部を設けると共に、他方の気体流路を下方に
開放してなる構造物が液相部に設置されてなることを特
徴とする気液接触反応器。
5. A gas-liquid contact reactor for injecting a reactant gas into a reactant liquid to carry out a chemical reaction, the reactor having a vertical gas passage communicating with the inside thereof, and collecting gas at a lower end of the gas passage. A gas-liquid contact reactor characterized in that a structure is provided in a liquid phase portion, the structure being provided with a second gas flow path opened downward.
【請求項6】 複数個の気体返送体を具備していること
を特徴とする請求項1または2記載の気液接触反応器。
6. The gas-liquid contact reactor according to claim 1, comprising a plurality of gas returning bodies.
【請求項7】 反応原料液が液体硫黄で、反応原料気体
が水素ガスであることを特徴とする請求項1〜6のいず
れかに記載の気液接触反応器。
7. The gas-liquid contact reactor according to claim 1, wherein the reaction raw material liquid is liquid sulfur and the reaction raw material gas is hydrogen gas.
JP410197A 1997-01-13 1997-01-13 Gas-liquid contact reactor Withdrawn JPH10192692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP410197A JPH10192692A (en) 1997-01-13 1997-01-13 Gas-liquid contact reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP410197A JPH10192692A (en) 1997-01-13 1997-01-13 Gas-liquid contact reactor

Publications (1)

Publication Number Publication Date
JPH10192692A true JPH10192692A (en) 1998-07-28

Family

ID=11575409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP410197A Withdrawn JPH10192692A (en) 1997-01-13 1997-01-13 Gas-liquid contact reactor

Country Status (1)

Country Link
JP (1) JPH10192692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528277A (en) * 2008-07-18 2011-11-17 エボニック デグサ ゲーエムベーハー Reaction vessel and method of use
CN115784170A (en) * 2022-11-14 2023-03-14 重庆双象电子材料有限公司 Air supply mechanism of sulfur burning furnace
WO2023163428A1 (en) * 2022-02-28 2023-08-31 주식회사 레이크테크놀로지 Apparatus for preparing lithium sulfide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528277A (en) * 2008-07-18 2011-11-17 エボニック デグサ ゲーエムベーハー Reaction vessel and method of use
WO2023163428A1 (en) * 2022-02-28 2023-08-31 주식회사 레이크테크놀로지 Apparatus for preparing lithium sulfide
CN115784170A (en) * 2022-11-14 2023-03-14 重庆双象电子材料有限公司 Air supply mechanism of sulfur burning furnace

Similar Documents

Publication Publication Date Title
KR970000480B1 (en) Method for steam reforming method
EP1839735B1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
RU2411075C2 (en) Compact reforming reactor
JP5306232B2 (en) Method and apparatus for continuously producing hydrogen sulfide
RU2517510C2 (en) Reactor and method of use
CN102766021B (en) Production system and production method for continuously producing ethanol by ethyl acetate through using hydrogenation
EP0080270B1 (en) Synthesis process and reactor
PL124655B1 (en) Method of operation of reaction between gaseous raw materials and reactor therefor
JPH0331694B2 (en)
KR20000028926A (en) Isothermal ammonia converter
JP2011512241A (en) Reactor for performing high-pressure reaction, method for initiating reaction, and method for performing reaction
EP0002298B1 (en) Process and apparatus for the removal of ammonium carbamate from a urea-synthesis solution
CN112142004A (en) Hydrogen production and purification method by methanol-water reforming reaction
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
US4215099A (en) Ammonia synthesis process
EP0206608A2 (en) Fuel cell integrated with steam reformer
US2876070A (en) Method for producing hydrogen sulfide by synthesis
JP2652690B2 (en) Method for continuously generating and preheating a hydrocarbon gas / steam mixture as a charge for a reforming process for producing hydrogen or synthesis gas and an upright heat exchanger
RU2552623C2 (en) Heat exchanger for cooling of hot gases, and heat exchange system
US4138468A (en) Method and apparatus for producing or recovering alkanolamine from a mixture containing oxazolidone
RU2501600C1 (en) Device to produce sulfur
JP2010013422A (en) Methanol synthesis reactor and methanol synthesis method
KR101385915B1 (en) Method and device for using reaction heat during the production of 1,2-dichlorethane
JPH10192692A (en) Gas-liquid contact reactor
JP5312355B2 (en) Reactor and reaction product manufacturing method using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406