JPH10191667A - Oscillation type driving device - Google Patents

Oscillation type driving device

Info

Publication number
JPH10191667A
JPH10191667A JP8348569A JP34856996A JPH10191667A JP H10191667 A JPH10191667 A JP H10191667A JP 8348569 A JP8348569 A JP 8348569A JP 34856996 A JP34856996 A JP 34856996A JP H10191667 A JPH10191667 A JP H10191667A
Authority
JP
Japan
Prior art keywords
output shaft
bearing
driving device
type driving
vibration type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8348569A
Other languages
Japanese (ja)
Other versions
JP3397609B2 (en
Inventor
Kosuke Fujimoto
幸輔 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34856996A priority Critical patent/JP3397609B2/en
Priority to US08/997,814 priority patent/US6107723A/en
Priority to CNB971208557A priority patent/CN1166049C/en
Priority to CNB031453325A priority patent/CN1262359C/en
Priority to KR1019970073887A priority patent/KR100341720B1/en
Publication of JPH10191667A publication Critical patent/JPH10191667A/en
Priority to US09/266,854 priority patent/US6225730B1/en
Application granted granted Critical
Publication of JP3397609B2 publication Critical patent/JP3397609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the load to be borne by a part of bearings from being increased in an oscillation type driving device. SOLUTION: In an oscillation type driving device provided with an oscillating body 2 by which the oscillation is excited, a moving body 3 which is brought into contact with the oscillating body and driven, a pressing member 6 to connect the moving body to an output shaft 4, and to pressingly bring the moving body into contact with the oscillating body, and a plurality of bearing members (e.g. roller bearing) 81, 82 to rotatably support the output shaft, the press reaction by the pressing member 6 is borne by a plurality of bearing members 81, 82 through the output shaft, and in addition, the press reaction to be borne respective is used as the internal pre-load of the bearing members 81, 82.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、振動体に移動体を
加圧接触させて駆動力を得る振動型駆動装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration type driving device for obtaining a driving force by bringing a moving body into pressure contact with a vibrating body.

【0002】[0002]

【従来の技術】振動型駆動装置(振動型モータ)は、電
気−機械エネルギ変換素子を接合した弾性部材からなる
振動体に移動体を加圧接触させ、上記変換素子に交流電
圧を印加して振動体に進行性振動波を発生させることに
より、移動体を摩擦駆動するものである。
2. Description of the Related Art A vibration-type driving device (vibration-type motor) brings a moving body into pressure contact with a vibrating body made of an elastic member to which an electro-mechanical energy conversion element is joined, and applies an AC voltage to the conversion element. The moving body is driven by friction by generating a progressive vibration wave in the vibrating body.

【0003】図7には、従来の振動型モータを示してい
る。ベース101に固定されたリング状のステータ(振
動体)102、弾性体121の下面に、コネクタ110
およびフレキシブル基板111を通じて通電される電気
−機械エネルギ変換素子122を接合し、弾性体121
の上面に摩擦部材123を接着して構成されている。ロ
ータ(移動体)103の上面にはゴム板107を介して
加圧ばね106の外周部が取り付けられており、加圧ば
ね106の内周部は出力軸104に焼嵌めされたディス
ク105に取り付けられている。
FIG. 7 shows a conventional vibration type motor. A connector 110 is provided on the lower surface of a ring-shaped stator (vibrating body) 102 fixed to a base 101 and an elastic body 121.
And the electro-mechanical energy conversion element 122 energized through the flexible substrate 111 and the elastic body 121.
A friction member 123 is adhered to the upper surface of the first member. The outer periphery of a pressure spring 106 is attached to the upper surface of the rotor (moving body) 103 via a rubber plate 107, and the inner periphery of the pressure spring 106 is attached to a disk 105 shrink-fitted to an output shaft 104. Have been.

【0004】出力軸104は、ベース101に固定され
た外輪と、出力軸104の外周に嵌合した内輪とを有す
る一対のころがり軸受181,182によって回転自在
に支持される。ディスク105はころがり軸受182の
内輪に当接している。一方、ころがり軸受181の内輪
は、ロータ103をステータ102に適切な力で加圧接
触させるための加圧ばね106の変位量分だけ、ディス
ク105ところがり軸受182の内輪とともに出力軸1
04をステータ102側へ押し込んだ状態で、出力軸1
04の溝に装着したスナップリング109と係合してい
る。
The output shaft 104 is rotatably supported by a pair of rolling bearings 181 and 182 having an outer ring fixed to the base 101 and an inner ring fitted on the outer periphery of the output shaft 104. The disk 105 is in contact with the inner ring of the rolling bearing 182. On the other hand, the inner ring of the rolling bearing 181 has the output shaft 1 together with the inner ring of the disk 105 and the rolling bearing 182 by the amount of displacement of the pressure spring 106 for bringing the rotor 103 into press contact with the stator 102 with an appropriate force.
04 with the output shaft 1 pushed into the stator 102 side.
It is engaged with the snap ring 109 attached to the groove of No. 04.

【0005】これにより、図6に示すように、軸受18
2では、ディスク105によって内輪に加圧バネ106
の加圧力と同方向の予圧がかけられて軸受182内の径
方向がたが排除される。一方、軸受181では、スナッ
プリング109によって内輪に加圧バネ106の加圧力
と反対方向の予圧力がかけられて軸受182内の径方向
がたが排除される。こうして、各軸受181,182の
径方向がたがなくなることにより、出力軸104の径方
向のぶれも抑えられる。
As a result, as shown in FIG.
2, the pressing spring 106 is applied to the inner ring by the disk 105.
A preload in the same direction as the pressing force is applied, and the radial play in the bearing 182 is eliminated. On the other hand, in the bearing 181, a preload is applied to the inner ring by the snap ring 109 in a direction opposite to the pressing force of the pressing spring 106, and the radial direction in the bearing 182 is eliminated. In this way, since the radial directions of the bearings 181 and 182 are eliminated, the radial deviation of the output shaft 104 can be suppressed.

【0006】ここで、加圧ばねの加圧反力をF、軸受1
81の予圧力をP1、軸受182の予圧力をP2とする
と、これらの3つの力には、 F=P1−P2 という関係が成立する。
Here, the pressure reaction force of the pressure spring is F, and the bearing 1
Assuming that the preload of 81 is P1 and the preload of the bearing 182 is P2, a relationship of F = P1-P2 is established between these three forces.

【0007】このことから分かるように、軸受181は
加圧反力と軸受182の予圧力の和を予圧力として受け
るため、その予圧力は軸受182の予圧力に比較して極
端に大きくなる。
As can be seen from this, since the bearing 181 receives the sum of the pressure reaction force and the preload of the bearing 182 as the preload, the preload becomes extremely larger than the preload of the bearing 182.

【0008】[0008]

【発明が解決しようとする課題】通常、軸受の疲れ寿命
は、軸受荷重の3乗に反比例する。このため大きな予圧
力を受ける軸受181の疲れ寿命は軸受182に比べて
極端に短い。さらに、振動型モータは低速度での使用が
多く、軸受の転動体と軌道面との間に油膜が形成されに
くいため、軸受の転動体荷重を通常よりも小さくとる必
要がある。
Generally, the fatigue life of a bearing is inversely proportional to the cube of the bearing load. Therefore, the fatigue life of the bearing 181 subjected to a large preload is extremely shorter than that of the bearing 182. Further, since the vibration type motor is often used at a low speed and an oil film is not easily formed between the rolling element of the bearing and the raceway surface, it is necessary to reduce the load of the rolling element of the bearing as compared with usual.

【0009】モータが発生し得るトルクは、ステータと
ロータ間の最大摩擦力に依存する。この摩擦力はロー
タ、ステータ間の摩擦係数と、加圧力によって決定され
るから、最大トルクを大きくする場合には、加圧力を増
すことが有効である。
[0009] The torque that can be generated by the motor depends on the maximum frictional force between the stator and the rotor. Since this frictional force is determined by the friction coefficient between the rotor and the stator and the pressing force, it is effective to increase the pressing force when increasing the maximum torque.

【0010】しかしながら従来のモータでは、加圧力を
すべて軸受181が負担するため、軸受寿命を短くせず
に加圧力を増すにはさらに定格荷重の大きい軸受を使用
しなければならず、軸受が大きくなり、しかも高価とな
る。
However, in the conventional motor, since the bearing 181 bears all the pressing force, a bearing having a larger rated load must be used to increase the pressing force without shortening the life of the bearing. And expensive.

【0011】そこで、本願発明は、軸受寿命ひいては駆
動装置としての寿命を延ばすとともに、定格荷重の小さ
な軸受を使用して安価で省スペースを図れる振動型駆動
装置を提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a vibration-type drive device which can extend the life of a bearing, and hence the life of a drive device, and can use a bearing having a small rated load to save cost and space.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め、本願発明では、振動が励起される振動体と、この振
動体に接触して駆動される移動体と、この移動体と出力
軸とを連結するとともに、移動体と振動体とを加圧接触
させる加圧部材と、出力軸を回転自在に支持する複数の
軸受部材(例えば、ころがり軸受)とを有する振動型駆
動装置において、加圧部材による加圧反力を出力軸を介
して複数の軸受部材に負担させ、さらにそれぞれが負担
する加圧反力を各軸受部材の内部予圧力として用いるよ
うにしている。
In order to achieve the above object, according to the present invention, there is provided a vibrating body in which vibration is excited, a moving body driven in contact with the vibrating body, and a moving body and an output shaft. And a plurality of bearing members (for example, rolling bearings) that rotatably support the output shaft, and a pressurizing member that pressurizes and contacts the moving body and the vibrating body. The pressure reaction force by the pressure member is borne by the plurality of bearing members via the output shaft, and the pressure reaction force borne by each is used as the internal preload of each bearing member.

【0013】すなわち、各軸受の予圧力の方向を等し
く、加圧反力と同じ方向にすることにより、従来1つの
軸受が負担していた加圧反力を複数の軸受に予圧力とし
て分散させることによって軸受ひいては駆動装置の長寿
命化を実現できるようにしている。
In other words, the preload direction of each bearing is made equal and the same direction as the pressing reaction force, so that the pressing reaction force, which was conventionally borne by one bearing, is dispersed as a preload to a plurality of bearings. In this way, the life of the bearing and hence the drive unit can be extended.

【0014】なお、加圧反力を、複数の軸受部材に対
し、これら各軸受部材の定格荷重の比に応じて分担させ
たり、各軸受部材(ころがり軸受)の軌動面と転動体と
の接触面圧が等しくなるように分担させて、各軸受がほ
ぼ等しい寿命となるような条件にすることで、駆動装置
の長寿命化を図るようにするのが望ましい。
The pressure reaction force is applied to a plurality of bearing members in accordance with the ratio of the rated load of each bearing member, or the reaction force between the rolling surface and the rolling element of each bearing member (rolling bearing) is controlled. It is desirable to extend the life of the drive device by sharing the contact surface pressure so that the bearings have substantially the same life.

【0015】具体的構成としては、複数のころがり軸受
の各内輪と出力軸とを出力軸への加圧反力の作用方向に
一体的に移動可能に結合させる。この場合、複数のころ
がり軸受を加圧手段を挟んで出力軸の軸方向両側に配置
してもよい。
As a specific configuration, each inner ring of the plurality of rolling bearings and the output shaft are integrally and movably connected in the direction in which the pressure reaction force acts on the output shaft. In this case, a plurality of rolling bearings may be arranged on both sides in the axial direction of the output shaft with the pressing means interposed therebetween.

【0016】また、複数のころがり軸受のうち所定のこ
ろがり軸受の内輪と出力軸とを出力軸への加圧反力の作
用方向に一体的に移動可能に結合させ、所定のころがり
軸受の内輪と他のころがり軸受の内輪との間にバネを配
設する。この場合、バネの変位を、各ころがり軸受に、
加圧反力をこれら各ころがり軸受の定格荷重の比に応じ
て分担させるよう設定したり、各ころがり軸受の軌動面
と転動体との接触面圧が等しくなるよう設定したりすれ
ばよい。
Further, an inner ring of a predetermined rolling bearing and an output shaft of the plurality of rolling bearings are integrally movably connected in a direction in which a pressure reaction force acts on the output shaft. A spring is arranged between the other rolling bearing and the inner ring. In this case, the displacement of the spring is applied to each rolling bearing,
The pressure reaction force may be set so as to be shared according to the ratio of the rated load of each of the rolling bearings, or may be set so that the contact surface pressure between the raceway surface of each rolling bearing and the rolling element is equal.

【0017】また、複数のころがり軸受の転動体を、出
力軸の外周に形成された軌動溝部を転動させる構成とし
てもよい。
Further, the rolling elements of the plurality of rolling bearings may be configured to roll a track groove formed on the outer periphery of the output shaft.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1には、本願発明の第1実施形態で
ある振動型駆動装置を示している。ベース1に固定され
たリング状の金属製ステータ(振動体)2は、弾性体2
1の下面に、コネクタ10およびフレキシブル基板11
を通じて通電される電気−機械エネルギ変換素子22を
接合し、弾性体21の上面に摩擦部材23を接着して構
成されている。ロータ(移動体)3の上面にはゴム板7
を介して加圧ばね6の外周部が取り付けられており、加
圧ばね6の内周部は出力軸4に焼嵌めされたディスク5
に取り付けられている。
(First Embodiment) FIG. 1 shows a vibration type driving device according to a first embodiment of the present invention. The ring-shaped metal stator (vibration body) 2 fixed to the base 1 is an elastic body 2
1, a connector 10 and a flexible substrate 11
An electro-mechanical energy conversion element 22 that is energized through the elastic member 21 is joined, and a friction member 23 is adhered to the upper surface of the elastic body 21. A rubber plate 7 is provided on the upper surface of the rotor (moving body) 3.
The outer peripheral portion of the pressure spring 6 is attached via a through hole, and the inner peripheral portion of the pressure spring 6 is attached to the disk 5 shrink-fitted to the output shaft 4.
Attached to.

【0019】出力軸4は、ベース1に固定された外輪
と、出力軸4の外周に嵌合した内輪とを有する一対の深
溝玉軸受(ころがり軸受)81,82によって回転自在
に支持される。
The output shaft 4 is rotatably supported by a pair of deep groove ball bearings (rolling bearings) 81, 82 having an outer ring fixed to the base 1 and an inner ring fitted on the outer periphery of the output shaft 4.

【0020】各軸受81,82の内輪は、ロータ3をス
テータ2に適切な力で加圧接触させるための加圧ばね6
の変位量分だけ、ディスク5と出力軸4とをステータ2
側へ押し込んだ状態で、出力軸4における各軸受81,
82の下側に形成された溝に装着されたスナップリング
9と係合している。これにより、加圧ばね6から出力軸
4への加圧反力の作用方向に対して、出力軸4と各軸受
81,82の内輪とが一体的に移動可能となる。なお、
ディスク5は軸受82の内輪および外輪から離れてい
る。
An inner ring of each of the bearings 81 and 82 has a pressure spring 6 for bringing the rotor 3 into pressure contact with the stator 2 with an appropriate force.
The disk 5 and the output shaft 4 by the amount of displacement of the stator 2
Side, and the bearings 81,
82 is engaged with a snap ring 9 mounted in a groove formed on the lower side. Thus, the output shaft 4 and the inner rings of the bearings 81 and 82 can move integrally with each other in the direction in which the pressure reaction force from the pressure spring 6 to the output shaft 4 acts. In addition,
The disk 5 is separated from the inner and outer rings of the bearing 82.

【0021】また、軸受82の内輪とこれに係合するス
ナップリング9との間には、ウェーブワッシャ12が介
在している。このウェーブワッシャ12の変形量は、上
記加圧反力を軸受81と軸受82の定格荷重の比に比例
配分した場合の反力成分が軸受82の内輪に作用する変
形量に設定されている。
A wave washer 12 is interposed between the inner ring of the bearing 82 and the snap ring 9 engaged with the inner ring. The amount of deformation of the wave washer 12 is set to the amount of deformation in which the reaction force component acts on the inner ring of the bearing 82 when the above-described press reaction force is proportionally distributed to the ratio between the rated loads of the bearings 81 and 82.

【0022】このように各軸受81,82の内輪に出力
軸4およびスナップリング9を介して加圧反力を作用さ
せることにより、それぞれが負担する反力成分が軸受8
1,82内の予圧力として用いられることになる。こう
して、各軸受81,82の径方向がたがなくなることに
より、出力軸4の径方向のぶれも抑えられる。
By applying a pressing reaction force to the inner rings of the bearings 81 and 82 via the output shaft 4 and the snap ring 9 as described above, the reaction force components borne by the respective bearings 81 and 82 are reduced.
1,82 will be used as preload. In this way, since the radial directions of the bearings 81 and 82 are eliminated, the radial deviation of the output shaft 4 can be suppressed.

【0023】ここで、各軸受81,82の予圧力の関係
について図5を用いて詳しく説明する。図5は、各軸受
81,82を模式的に示しており、ロータ3、ステータ
2、加圧ばね6は省略してある。
Here, the relationship between the preloads of the bearings 81 and 82 will be described in detail with reference to FIG. FIG. 5 schematically shows the bearings 81 and 82, in which the rotor 3, the stator 2, and the pressure spring 6 are omitted.

【0024】加圧反力Fは、出力軸4に対し上向きの力
として作用しており、この加圧反力Fは2つの軸受8
1,82によって負担され、各軸受81,82の予圧力
はそれぞれP1、P2となっている。
The pressure reaction force F acts as an upward force on the output shaft 4, and the pressure reaction force F is applied to the two bearings 8.
1 and 82, and the preloads of the bearings 81 and 82 are P1 and P2, respectively.

【0025】ここで、予圧力P2は、加圧時の各軸受8
1,82の内輪の軸方向の移動量の差と外輪の相対位置
と出力軸4に施した2つのスナップリング9,9の間隔
で決まるウェーブワッシャ12の変形量に対するバネ力
に等しい。
Here, the preload P2 is determined by each bearing 8 during pressurization.
The spring force for the deformation of the wave washer 12, which is determined by the difference between the axial movement amounts of the inner rings 1, 82, the relative positions of the outer rings, and the interval between the two snap rings 9, 9 applied to the output shaft 4, is equal to the spring force.

【0026】各軸受81,82の予圧力P1,P2の方
向が等しく、加圧反力Fと同じ方向であるので、軸受8
1の予圧力P1は加圧反力の大きさから軸受82の予圧
力P2を差し引いた値となる。結果として、加圧反力F
を2つの軸受81,82に予圧力として分散させること
ができる。
Since the directions of the preloads P1 and P2 of the bearings 81 and 82 are equal and the same direction as the pressing reaction force F,
The preload P1 of 1 is a value obtained by subtracting the preload P2 of the bearing 82 from the magnitude of the pressing reaction force. As a result, the pressing reaction force F
Can be distributed to the two bearings 81 and 82 as preload.

【0027】ところで、玉軸受の疲れ寿命は、次式で表
わされることが経験的に知られている。
It has been empirically known that the fatigue life of a ball bearing is expressed by the following equation.

【0028】L∝(C/P)3 ただし、L;寿命、C;軸受の基本動定格荷重、P;軸
受荷重 複数の軸受を用いる場合、最短の軸受寿命が、駆動装置
の寿命となるため、各軸受がほぼ等しい寿命となるよう
な条件にすることで、駆動装置の長寿命化が図れる。こ
のためには、上の式から各軸受81,82の定格荷重C
と軸受荷重Pの比が等しくなるように加圧反力Fを各軸
受81,82の定格荷重の比に比例配分して各軸受荷重
(予圧力)とすればよい。
L∝ (C / P) 3 where L: life, C: basic dynamic load rating of bearing, P: bearing load When a plurality of bearings are used, the shortest bearing life is the life of the drive unit. By setting the conditions such that the life of each bearing is substantially equal, the life of the drive device can be extended. For this purpose, from the above equation, the rated load C of each of the bearings 81 and 82 can be calculated.
The pressure reaction force F may be proportionally distributed to the ratio of the rated loads of the bearings 81 and 82 so that the ratio between the bearing load P and the bearing load P is equal to each bearing load (preload).

【0029】本実施形態では、加圧反力Fを比例配分し
た軸受荷重を発生させるためのウェーブワッシャ12の
変形量を与えるようにスナップリング9間の間隔および
軸受外輪の位置を定めればよい。
In this embodiment, the distance between the snap rings 9 and the position of the bearing outer ring may be determined so as to give a deformation amount of the wave washer 12 for generating a bearing load in which the press reaction force F is proportionally distributed. .

【0030】また、軸受が静止しているときやきわめて
低速回転している場合に、軸受の軌道面と転動体の接触
面圧が大きいと軌道面や転動体に永久変形を生じ、使用
できなくなるおそれがある。
When the contact surface pressure between the raceway surface of the bearing and the rolling element is large when the bearing is stationary or rotating at extremely low speed, permanent deformation occurs on the raceway surface and the rolling element, and the bearing cannot be used. There is a risk.

【0031】このため、軸受の基本静低格荷重C0 と軸
受への静荷重P0 の比 f=C0 /P0 で表わされる安全係数fを等しくするうように、加圧反
力を各軸受の定格荷重の比に比例配分して各軸受荷重と
すればよい。
For this reason, the pressure reaction force is set so that the safety coefficient f expressed by the ratio f = C 0 / P 0 between the basic static load C 0 of the bearing and the static load P 0 on the bearing is equalized. What is necessary is just to make each bearing load proportionally distributed to the ratio of the rated load of each bearing.

【0032】また厳密には、軌道面と転動体の接触面圧
は軸受荷重に対して比例関係にはないから、軌道面と転
動体の接触面圧が各軸受で等しくなるように軸受荷重を
配分してもよい。
Strictly speaking, since the contact surface pressure between the raceway surface and the rolling element is not proportional to the bearing load, the bearing load is adjusted so that the contact surface pressure between the raceway surface and the rolling element becomes equal in each bearing. May be allocated.

【0033】(第2実施形態)図2は、本発明の第2実
施形態である振動型駆動装置を示している。ベース1に
固定されたリング状の金属製ステータ(振動体)2は、
弾性体21の下面に、コネクタ10およびフレキシブル
基板11を通じて通電される電気−機械エネルギ変換素
子22を接合し、弾性体21の上面に摩擦部材23を接
着して構成されている。ロータ(移動体)3の上面には
ゴム板7を介して加圧ばね6の外周部が取り付けられて
おり、加圧ばね6の内周部は出力軸4に焼嵌めされたデ
ィスク5に取り付けられている。
(Second Embodiment) FIG. 2 shows a vibration type driving device according to a second embodiment of the present invention. A ring-shaped metal stator (vibrator) 2 fixed to the base 1
An electro-mechanical energy conversion element 22 energized through the connector 10 and the flexible substrate 11 is joined to the lower surface of the elastic body 21, and a friction member 23 is bonded to the upper surface of the elastic body 21. An outer peripheral portion of a pressure spring 6 is mounted on the upper surface of the rotor (moving body) 3 via a rubber plate 7, and an inner peripheral portion of the pressure spring 6 is mounted on a disk 5 shrink-fitted on the output shaft 4. Have been.

【0034】出力軸4は、ベース1における加圧ばね6
およびディスク5を挟んだ位置に固定された外輪と、出
力軸4の外周に嵌合した内輪とを有する一対の深溝玉軸
受(ころがり軸受)81,82によって回転自在に支持
される。
The output shaft 4 is provided with a pressure spring 6 on the base 1.
And a pair of deep groove ball bearings (rolling bearings) 81 and 82 having an outer ring fixed at a position sandwiching the disk 5 and an inner ring fitted on the outer periphery of the output shaft 4.

【0035】軸受81の内輪は、ロータ3をステータ2
に適切な力で加圧接触させるための加圧ばね6の変位量
分だけ、ディスク5と出力軸4とをステータ2側へ押し
込んだ状態で、出力軸4における軸受81の下側に形成
された溝に装着されたスナップリング9と係合してい
る。また、軸受82の内輪は、ウェーブワッシャ12を
挟んでディスク5の上面に当接している。これにより、
加圧ばね6から出力軸4への加圧反力の作用方向に対し
て、出力軸4と各軸受81,82の内輪とが一体的に移
動可能となる。
The inner ring of the bearing 81 is connected to the rotor 3 by the stator 2.
The disk 5 and the output shaft 4 are formed on the lower side of the bearing 81 of the output shaft 4 in a state where the disk 5 and the output shaft 4 are pushed toward the stator 2 by an amount corresponding to the displacement amount of the pressure spring 6 for pressurizing contact with an appropriate force. Engaged with the snap ring 9 mounted in the groove. The inner ring of the bearing 82 is in contact with the upper surface of the disk 5 with the wave washer 12 interposed therebetween. This allows
The output shaft 4 and the inner races of the bearings 81 and 82 can move integrally with respect to the direction of action of the pressure reaction force from the pressure spring 6 to the output shaft 4.

【0036】ウェーブワッシャ12の変形量は、上記加
圧反力を軸受81と軸受82の定格荷重の比に比例配分
した場合の反力成分が軸受82の内輪に作用する変形量
に設定されている。
The amount of deformation of the wave washer 12 is set to the amount of deformation in which the reaction force component acts on the inner ring of the bearing 82 when the above-mentioned pressure reaction force is proportionally distributed to the ratio between the rated loads of the bearings 81 and 82. I have.

【0037】本実施形態においても、2つの軸受81,
82に、加圧反力を定格荷重の比に比例配分した同方向
の予圧力を与えることによって、加圧反力を軸受81,
82が均等に負担することになり、駆動装置の長寿命化
が実現できる。
In this embodiment, two bearings 81,
By applying a preload in the same direction in which the pressing reaction force is proportionally distributed to the ratio of the rated load to the bearing 82, the pressing reaction force is applied to the bearings 81 and 82.
As a result, the life of the drive device can be extended.

【0038】また、2つの軸受81,82を加圧ばね6
およびディスク5(つまりはロータ3、ステータ2)を
挟む位置に設けたことによって、軸受間距離を大きくで
き、出力軸4のラジアル荷重に対する剛性を大きくでき
る。
Further, the two bearings 81 and 82 are
Further, by providing the disk 5 (that is, the rotor 3 and the stator 2) at the position, the distance between the bearings can be increased, and the rigidity of the output shaft 4 against the radial load can be increased.

【0039】(第3実施形態)図3には、本発明の第3
実施形態である振動型駆動装置を示している。ベース1
に固定されたリング状の金属製ステータ(振動体)2
は、弾性体21の下面に、コネクタ10およびフレキシ
ブル基板11を通じて通電される電気−機械エネルギ変
換素子22を接合し、弾性体21の上面に摩擦部材23
を接着して構成されている。ロータ(移動体)3の上面
にはゴム板7を介して加圧ばね6の外周部が取り付けら
れており、加圧ばね6の内周部は出力軸4に焼嵌めされ
たディスク5に取り付けられている。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
1 shows a vibration type driving device according to an embodiment. Base 1
Ring-shaped metal stator (vibrator) 2 fixed to
Is connected to an electro-mechanical energy conversion element 22 energized through the connector 10 and the flexible substrate 11 on the lower surface of the elastic body 21, and the friction member 23
It is configured by bonding. An outer peripheral portion of a pressure spring 6 is mounted on the upper surface of the rotor (moving body) 3 via a rubber plate 7, and an inner peripheral portion of the pressure spring 6 is mounted on a disk 5 shrink-fitted on the output shaft 4. Have been.

【0040】出力軸4は、ベース1に固定された外輪
と、出力軸4の外周に嵌合した内輪とを有する一対の深
溝玉軸受(ころがり軸受)81,82によって回転自在
に支持される。
The output shaft 4 is rotatably supported by a pair of deep groove ball bearings (rolling bearings) 81, 82 having an outer ring fixed to the base 1 and an inner ring fitted on the outer periphery of the output shaft 4.

【0041】軸受81の内輪は、ロータ3をステータ2
に適切な力で加圧接触させるための加圧ばね6の変位量
分だけ、ディスク5と出力軸4とをステータ2側へ押し
込んだ状態で、出力軸4の外周に接着されている。ま
た、軸受81の内輪と軸受82の内輪との間には、圧縮
コイルばね32が所定量圧縮された状態で挟持されてい
る。圧縮コイルばね12の圧縮量は、上記加圧反力を軸
受81と軸受82の定格荷重の比に比例配分した場合の
反力成分が軸受82の内輪に作用する変形量に設定され
ている。
The inner ring of the bearing 81 connects the rotor 3 to the stator 2
The disk 5 and the output shaft 4 are bonded to the outer periphery of the output shaft 4 in a state where the disk 5 and the output shaft 4 are pushed toward the stator 2 by the amount of displacement of the pressure spring 6 for bringing the pressure contact into contact with an appropriate force. Further, the compression coil spring 32 is held between the inner ring of the bearing 81 and the inner ring of the bearing 82 in a state of being compressed by a predetermined amount. The amount of compression of the compression coil spring 12 is set to the amount of deformation in which the reaction force component acts on the inner ring of the bearing 82 when the above-described pressure reaction force is proportionally distributed to the ratio between the rated loads of the bearings 81 and 82.

【0042】本実施形態においても、2つの軸受81,
82に、加圧反力を定格荷重の比に比例配分した同方向
の予圧力を与えることによって、加圧反力を軸受81,
82が均等に負担することになり、駆動装置の長寿命化
が実現できる。
In this embodiment, two bearings 81,
By applying a preload in the same direction in which the pressing reaction force is proportionally distributed to the ratio of the rated load to the bearing 82, the pressing reaction force is applied to the bearings 81 and 82.
As a result, the life of the drive device can be extended.

【0043】また、本実施形態では、圧縮ばね32の両
端を軸受内輪で支持し、一方の軸受内輪は出力軸4と接
着しているため、出力軸4にスナップリングをはめる溝
などを加工することなく、安価に長寿命化が可能とな
る。
In this embodiment, since both ends of the compression spring 32 are supported by bearing inner races, and one of the bearing inner races is bonded to the output shaft 4, a groove for fitting a snap ring on the output shaft 4 is machined. Without the cost, it is possible to extend the life at low cost.

【0044】(第4実施形態)図4は、本願発明の第4
実施形態である振動型駆動装置を示している。ベース1
に固定されたリング状の金属製ステータ(振動体)2
は、弾性体21の下面に、コネクタ10およびフレキシ
ブル基板11を通じて通電される電気−機械エネルギ変
換素子22を接合し、弾性体21の上面に摩擦部材23
を接着して構成されている。ロータ(移動体)43は、
加圧ばね部43aおよびディスク部43bを一体に有し
ている。そして、ロータ43のディスク部43bは、出
力軸44をベース1の下方から挿入した上で適当な加圧
力が得られる変位分押し込んだ状態で出力軸44に接着
されている。
(Fourth Embodiment) FIG. 4 shows a fourth embodiment of the present invention.
1 shows a vibration type driving device according to an embodiment. Base 1
Ring-shaped metal stator (vibrator) 2 fixed to
Is connected to an electro-mechanical energy conversion element 22 energized through the connector 10 and the flexible substrate 11 on the lower surface of the elastic body 21, and the friction member 23
It is configured by bonding. The rotor (moving body) 43
The pressure spring 43a and the disk 43b are integrally provided. The disk portion 43b of the rotor 43 is bonded to the output shaft 44 in a state where the output shaft 44 is inserted from below the base 1 and is pushed in by a displacement for obtaining an appropriate pressing force.

【0045】出力軸44は、出力軸44の外周に形成さ
れた軌動溝44a内を転動する転動体を有する出力軸4
4と一体の一対の軸受(ころがり軸受)81,82によ
って回転自在に支持される。軸受81の外輪はベース1
に固定され、軸受82の外輪は圧縮ばね42を介してベ
ース1に保持されている。軸受82の外輪は、ベース1
に対して圧縮ばね42により押し下げられている。
The output shaft 44 includes an output shaft 4 having a rolling element that rolls in a track groove 44a formed on the outer periphery of the output shaft 44.
4 is rotatably supported by a pair of bearings (rolling bearings) 81 and 82 integrated with the bearing 4. The outer ring of the bearing 81 is the base 1
, And the outer ring of the bearing 82 is held by the base 1 via the compression spring 42. The outer ring of the bearing 82 is the base 1
Is pressed down by a compression spring 42.

【0046】圧縮ばね42の圧縮量は、加圧ばね部45
aの加圧反力を軸受81と軸受82の定格荷重の比に比
例配分した場合の反力成分が軸受82の内輪に作用する
変形量に設定されている。
The compression amount of the compression spring 42 is
The reaction force component when the pressure reaction force of a is proportionally distributed to the ratio of the rated loads of the bearings 81 and 82 is set to the amount of deformation acting on the inner ring of the bearing 82.

【0047】本実施形態においても、2つの軸受81,
82に、加圧反力を定格荷重の比に比例配分した同方向
の予圧力を与えることによって、加圧反力を軸受81,
82が均等に負担することになり、駆動装置の長寿命化
が実現できる。
Also in this embodiment, two bearings 81,
By applying a preload in the same direction in which the pressing reaction force is proportionally distributed to the ratio of the rated load to the bearing 82, the pressing reaction force is applied to the bearings 81 and 82.
As a result, the life of the drive device can be extended.

【0048】また、本実施形態では、部品点数が少な
く、さらに軸受内輪を有する軸受と出力軸との嵌合がた
による出力軸の振れ回りも少ないため、安価で、組立性
の良い、長寿命な駆動装置とすることができる。
Further, in this embodiment, the number of parts is small, and the whirling of the output shaft due to the engagement between the bearing having the bearing inner ring and the output shaft is also small. It can be a simple driving device.

【0049】[0049]

【発明の効果】以上説明したように、本願発明によれ
ば、移動体を振動体に加圧接触させるための加圧力の反
力を、複数の軸受に配分負担させるとともに、これを各
軸受の予圧力として用いているので、各軸受の小型化お
よび長寿命化を図ることができ、ひいてはコンパクトで
長寿命な振動型駆動装置を実現することができる。
As described above, according to the present invention, the reaction force of the pressing force for bringing the moving body into pressure contact with the vibrating body is distributed to a plurality of bearings, and this is applied to each bearing. Since the bearing is used as a preload, the size and life of each bearing can be reduced, and a compact and long-life vibration type driving device can be realized.

【0050】なお、各軸受の負担分配を各軸受の定格荷
重の比に比例配分したり、軸受軌道面と転動体との接触
面圧を等しくするように配分したりすれば、さらなる軸
受および振動型駆動装置の長寿命化を図ることができ
る。
If the load distribution of each bearing is proportionally distributed to the ratio of the rated load of each bearing or the contact surface pressure between the bearing raceway surface and the rolling element is made equal, further bearing and vibration The life of the mold driving device can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態である振動型駆動装置の
断面図である。
FIG. 1 is a sectional view of a vibration type driving device according to a first embodiment of the present invention.

【図2】本発明の第2実施形態である振動型駆動装置の
断面図である。
FIG. 2 is a sectional view of a vibration type driving device according to a second embodiment of the present invention.

【図3】本発明の第3実施形態である振動型駆動装置の
断面図である。
FIG. 3 is a sectional view of a vibration type driving device according to a third embodiment of the present invention.

【図4】本発明の第3実施形態である振動型駆動装置の
断面図である。
FIG. 4 is a sectional view of a vibration type driving device according to a third embodiment of the present invention.

【図5】上記第1実施形態の軸受部の模式図である。FIG. 5 is a schematic view of a bearing section of the first embodiment.

【図6】従来の振動型駆動装置の軸受部の模式図であ
る。
FIG. 6 is a schematic view of a bearing portion of a conventional vibration type driving device.

【図7】従来の振動型駆動装置の断面図である。FIG. 7 is a sectional view of a conventional vibration type driving device.

【符号の説明】[Explanation of symbols]

1 ベース 2 ステータ 3,43 ロータ 4,44 出力軸 5 ディスク 6 加圧ばね 7 ゴム 81,82 軸受 9 スナップリング 10 コネクタ 11 フレキシブル基板 12 ウェーブワッシャ 32 圧縮コイルばね 42 圧縮ばね DESCRIPTION OF SYMBOLS 1 Base 2 Stator 3, 43 Rotor 4, 44 Output shaft 5 Disk 6 Pressure spring 7 Rubber 81, 82 Bearing 9 Snap ring 10 Connector 11 Flexible board 12 Wave washer 32 Compression coil spring 42 Compression spring

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 振動が励起される振動体と、この振動体
に接触して駆動される移動体と、この移動体と出力軸と
を連結するとともに、前記移動体と前記振動体とを加圧
接触させる加圧部材と、前記出力軸を回転自在に支持す
る複数の軸受部材とを有する振動型駆動装置において、 前記加圧部材による加圧反力を前記出力軸を介して前記
複数の軸受部材に負担させることを特徴とする振動型駆
動装置。
A vibration member for exciting vibration, a moving member driven by contacting the vibration member, connecting the moving member to an output shaft, and applying a force to the moving member and the vibration member. In a vibration type driving device having a pressing member to be brought into pressure contact and a plurality of bearing members rotatably supporting the output shaft, the plurality of bearings apply a pressing reaction force by the pressing member via the output shaft. A vibration type driving device characterized in that a member is borne.
【請求項2】 前記加圧反力を、前記複数の軸受部材の
内部予圧力として用いることを特徴とする請求項1に記
載の振動型駆動装置。
2. The vibration type driving device according to claim 1, wherein the pressure reaction force is used as an internal preload of the plurality of bearing members.
【請求項3】 前記加圧反力を、前記複数の軸受部材に
対し、これら各軸受部材の定格荷重の比に応じて分担さ
せることを特徴とする請求項1又は2に記載の振動型駆
動装置。
3. The vibration type drive according to claim 1, wherein the pressure reaction force is shared between the plurality of bearing members according to a ratio of a rated load of each of the plurality of bearing members. apparatus.
【請求項4】 前記複数の軸受部材が、ころがり軸受で
あることを特徴とする請求項1から3のいずれかに記載
の振動型駆動装置。
4. The vibration type driving device according to claim 1, wherein the plurality of bearing members are rolling bearings.
【請求項5】 前記加圧反力を、前記複数のころがり軸
受に対し、これら各ころがり軸受の軌動面と転動体との
接触面圧が等しくなるように分担させることを特徴とす
る請求項4に記載の振動型駆動装置。
5. The pressure reaction force is shared by the plurality of rolling bearings so that the contact surface pressure between the raceway surface of each of the rolling bearings and the rolling element is equal. 5. The vibration type driving device according to 4.
【請求項6】 前記複数のころがり軸受の各内輪と前記
出力軸とが、前記出力軸への前記加圧反力の作用方向に
一体的に移動可能に結合していることを特徴とする請求
項4又は5に記載の振動型駆動装置。
6. The output shaft according to claim 6, wherein each of the inner races of the plurality of rolling bearings and the output shaft are integrally movably connected in a direction in which the pressure reaction force acts on the output shaft. Item 6. The vibration type driving device according to item 4 or 5.
【請求項7】 前記複数のころがり軸受が、前記加圧手
段を挟んで前記出力軸の軸方向両側に配置されているこ
とを特徴とする請求項4から6のいずれかに記載の振動
型駆動装置。
7. The vibration type drive according to claim 4, wherein the plurality of rolling bearings are arranged on both sides of the output shaft in the axial direction with the pressing means interposed therebetween. apparatus.
【請求項8】 前記複数のころがり軸受のうち所定のこ
ろがり軸受の内輪と前記出力軸とが前記出力軸への前記
加圧反力の作用方向に一体的に移動可能に結合してお
り、前記所定のころがり軸受の内輪と他のころがり軸受
の内輪との間にバネが配設されていることを特徴とする
請求項4又は5に記載の振動型駆動装置。
8. An inner ring of a predetermined rolling bearing among the plurality of rolling bearings and the output shaft are integrally movably connected in a direction in which the pressure reaction force acts on the output shaft. The vibration type driving device according to claim 4 or 5, wherein a spring is provided between an inner ring of a predetermined rolling bearing and an inner ring of another rolling bearing.
【請求項9】 前記バネの変位を、前記各ころがり軸受
に、前記加圧反力をこれら各ころがり軸受の定格荷重の
比に応じて分担させるよう設定したことを特徴とする請
求項8に記載の振動型駆動装置。
9. The apparatus according to claim 8, wherein the displacement of the spring is set so that the respective rolling bearings share the pressing reaction force in accordance with the ratio of the rated loads of the respective rolling bearings. Vibration type driving device.
【請求項10】 前記バネの変位を、前記各ころがり軸
受の軌動面と転動体との接触面圧が等しくなるよう設定
したことを特徴とする請求項8に記載の振動型駆動装
置。
10. The vibration type driving device according to claim 8, wherein the displacement of the spring is set such that the contact surface pressure between the raceway surface of each of the rolling bearings and the rolling element becomes equal.
【請求項11】 前記複数のころがり軸受の転動体が、
前記出力軸の外周に形成された軌動溝部を転動すること
を特徴とする請求項4又は5に記載の振動型駆動装置。
11. The rolling element of the plurality of rolling bearings,
The vibration type driving device according to claim 4, wherein the orbiting groove formed on the outer periphery of the output shaft is rolled.
JP34856996A 1996-12-26 1996-12-26 Vibration type driving device Expired - Fee Related JP3397609B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP34856996A JP3397609B2 (en) 1996-12-26 1996-12-26 Vibration type driving device
US08/997,814 US6107723A (en) 1996-12-26 1997-12-24 Vibrating type driving device
CNB971208557A CN1166049C (en) 1996-12-26 1997-12-26 Vibrating type driving device
CNB031453325A CN1262359C (en) 1996-12-26 1997-12-26 Vibrating driver
KR1019970073887A KR100341720B1 (en) 1996-12-26 1997-12-26 Vibration Drive
US09/266,854 US6225730B1 (en) 1996-12-26 1999-03-12 Vibrating type driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34856996A JP3397609B2 (en) 1996-12-26 1996-12-26 Vibration type driving device

Publications (2)

Publication Number Publication Date
JPH10191667A true JPH10191667A (en) 1998-07-21
JP3397609B2 JP3397609B2 (en) 2003-04-21

Family

ID=18397906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34856996A Expired - Fee Related JP3397609B2 (en) 1996-12-26 1996-12-26 Vibration type driving device

Country Status (1)

Country Link
JP (1) JP3397609B2 (en)

Also Published As

Publication number Publication date
JP3397609B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US7215063B2 (en) Vibration element and vibration wave driving apparatus
US3786289A (en) Rotating machines having end thrust cushioning arrangements
KR100341720B1 (en) Vibration Drive
JP3825890B2 (en) Vibration actuator
JPH10191667A (en) Oscillation type driving device
JP2006501414A (en) Wedge loading mechanism for traction drive
JPH04344181A (en) Vibration wave motor
JPH10184677A (en) Preload double row tapered roller bearing for receiving thrust load
JP2716312B2 (en) Motor bearing device
JPS622830A (en) Reversible type motor
JP2000087964A (en) Motor supporting bearing structure
JP2535847B2 (en) Ultrasonic motor
GB2556059A (en) Electric supercharger with bearing retention
JP4460365B2 (en) Bearing and ultrasonic motor
JP2000184758A (en) Ultrasonic motor and rotor thereof
JP4725768B2 (en) Toroidal continuously variable transmission
JP2903629B2 (en) Ultrasonic motor
JP4075390B2 (en) Vibration motor integrated bearing unit
JPH05211786A (en) Ultrasonic motor
JPH108915A (en) Rotor shaft
JP2000175402A (en) Motor for driving electric pump
JP2007285143A (en) Scroll fluid machine
JP2583685B2 (en) Scroll compressor
JP2690887B2 (en) Ultrasonic motor
JP2021036749A (en) Axial gap motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees