JPH10191503A - Control device of hybrid automobile - Google Patents

Control device of hybrid automobile

Info

Publication number
JPH10191503A
JPH10191503A JP8343916A JP34391696A JPH10191503A JP H10191503 A JPH10191503 A JP H10191503A JP 8343916 A JP8343916 A JP 8343916A JP 34391696 A JP34391696 A JP 34391696A JP H10191503 A JPH10191503 A JP H10191503A
Authority
JP
Japan
Prior art keywords
inverter
battery
output
power
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8343916A
Other languages
Japanese (ja)
Other versions
JP3333814B2 (en
Inventor
Sumikazu Shiyamoto
純和 社本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34391696A priority Critical patent/JP3333814B2/en
Publication of JPH10191503A publication Critical patent/JPH10191503A/en
Application granted granted Critical
Publication of JP3333814B2 publication Critical patent/JP3333814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a hybrid automobile that can perform retract driving, does not apply load to a capacitor for smoothing of an inverter, and is strong against the control disturbance such as curbstone stranding and slip. SOLUTION: When the trouble of a main battery 12 is detected, an SMR 24 is turned off for shifting to a retract driving, at the same time transistors Q7 -Q12 of an inverter 20 are turned off and the DC output of the inverter 20 is allowed to follow the output fluctuation of a motor 10, thus preventing the output surplus of the inverter 20 leading to the overvoltage charging of smoothing capacitors C1 and C2 . Then, even if the output of the motor fluctuates due to, for example, the stranding onto a curbstone, it is possible to follow the fluctuation rapidly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド自動
車(以下「HV」)に搭載される発電装置を制御する制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling a power generator mounted on a hybrid vehicle (hereinafter referred to as "HV").

【0002】[0002]

【従来の技術】HVは、在来のエンジン車両と共通する
性格及び純粋な電気自動車と共通する性格を併有する車
両の総称であり、一般には、充放電可能なバッテリと、
その発電出力にてこのバッテリを充電可能な発電装置と
を、搭載している。発電装置の一例としては、エンジン
及びこのエンジンによって駆動される発電機(エンジン
駆動発電機)、光学的エネルギを電気的エネルギに変換
する太陽電池、電気化学反応例えば水の電気分解の逆反
応にて化学エネルギを電気的エネルギに変換する燃料電
池等があり、バッテリの例としては、鉛電池、ニッケル
水素電池等がある。これら、バッテリ及び発電装置は、
その負荷例えば車両走行用乃至車両加速アシスト用のモ
ータやエアコン駆動系等車載の大電力補機に、その放電
又は発電出力を供給する。バッテリは、更に、発電装置
から負荷への発電出力供給に際して、余剰分を蓄え不足
分を補うというバッファ機能を果たす。また、HVは、
車両を走行させるためのトルクをどの様に発生させるか
により、パラレルHV(以下「PHV」)、シリーズH
V(以下「SHV」)、パラレルシリーズHV(以下
「PSHV」)等に分類できる。このうちPHVは、車
両に複数のトルク源を搭載し各トルク源の出力を加算並
列的に利用して走行する車両であり、その一例として
は、在来のエンジン車両に更にエンジンアシスト用回転
電機を付加した構成、即ちエンジン及びエンジンアシス
ト用回転電機という2種類のトルク源の出力を加算並列
的に利用する構成がある。また、SHVは、車載の発電
装置の出力を車両走行用モータの駆動に利用し当該モー
タの出力にて走行する車両であり、その一例としては、
エンジン駆動発電機を発電装置として利用する構成があ
る。PSHVは、PHV的なトルク発生状態とSHV的
なトルク発生状態とを切り替えながら或いは同時並行的
に発生させる車両、即ちPHVとSHVの結合形態であ
る。HVには、この他にも各種の実現形態がある。
2. Description of the Related Art HV is a general term for vehicles having characteristics common to a conventional engine vehicle and characteristics common to a pure electric vehicle, and generally includes a chargeable / dischargeable battery,
And a power generation device capable of charging the battery with the generated power. Examples of the power generation device include an engine and a generator driven by the engine (engine-driven generator), a solar cell that converts optical energy into electrical energy, and an electrochemical reaction such as a reverse reaction of electrolysis of water. There is a fuel cell or the like that converts chemical energy into electrical energy, and examples of the battery include a lead battery and a nickel hydride battery. These batteries and power generators
The discharge or power generation output is supplied to the load, for example, a motor for driving the vehicle or assisting vehicle acceleration, or a large power auxiliary device mounted on the vehicle such as an air conditioner drive system. Further, the battery has a buffer function of storing a surplus and compensating for a deficiency when power generation output is supplied from the power generator to the load. Also, HV is
Parallel HV (hereinafter “PHV”), series H
V (hereinafter, "SHV"), parallel series HV (hereinafter, "PSHV") and the like. Among them, the PHV is a vehicle in which a plurality of torque sources are mounted on a vehicle and the vehicle runs by using the outputs of the respective torque sources in addition and in parallel. , That is, a configuration in which the outputs of two types of torque sources, that is, an engine and an engine-assisting rotary electric machine, are added and used in parallel. The SHV is a vehicle that uses the output of a vehicle-mounted power generation device to drive a vehicle driving motor and travels using the output of the motor.
There is a configuration in which an engine-driven generator is used as a power generator. PSHV is a vehicle in which a PHV-like torque generation state and an SHV-like torque generation state are generated while switching or simultaneously in parallel, that is, a combined form of PHV and SHV. There are various other forms of realization of the HV.

【0003】[0003]

【発明が解決しようとする課題】ところで、バッテリの
特性は使用年月が積み重なるといずれ劣化していくであ
ろうし、また使用状態使用環境によってはバッテリに過
熱等も生じ得る。この点を考慮すると、バッテリの使用
可否を適当な時点で判別し、使用不能又は使用不適であ
ることが判明したときにはバッテリを発電装置及び負荷
から電気的に切り離す制御を行うようにするのが好まし
い。このようにすれば、何らかの不具合が生じているバ
ッテリの使用を避けながら、発電装置を利用して車両を
推進すること(HVにおける退避走行)等ができる(上
記負荷が車両走行用モータである場合)。しかし、単純
に切り離すのみだと、バッテリが切離し前に果たしてい
た機能の一つであるバッファ機能が失われることになる
から、例えば発電装置の発電出力が負荷での消費を上回
っているときに、当該発電出力の余剰分がその行場を失
う。この余剰分は、結局、発電装置と負荷との間に接続
されている平滑用コンデンサや他の補機等、いずれかの
回路乃至回路部品に流れ込むこととなり、場合によって
は当該回路乃至回路部品の損傷(コンデンサの例では過
電圧充電による損傷)が生じ得る。
By the way, the characteristics of the battery will gradually deteriorate as the use years increase, and the battery may overheat depending on the use environment. In consideration of this point, it is preferable to determine whether or not the battery can be used at an appropriate time, and to control the battery to be electrically disconnected from the power generation device and the load when it is determined that the battery is unusable or inappropriate. . In this way, the vehicle can be propelled by using the power generation device (evacuation traveling in HV) while avoiding the use of a battery having some trouble (in the case where the load is a vehicle traveling motor). ). However, simply disconnecting would result in the loss of the buffer function, one of the functions that the battery performed before disconnection, so, for example, when the power output of the power generator exceeded the load consumption, The surplus of the power generation output loses its place. This surplus will eventually flow into any circuit or circuit component, such as a smoothing capacitor or other auxiliary equipment connected between the power generator and the load, and in some cases, the circuit or circuit component Damage (damage due to overvoltage charging in the example of a capacitor) can occur.

【0004】本発明の目的の一つは、バッテリの使用可
否を適当な時点で判別し、使用不能又は使用不適である
ことが判明したときにはバッテリを発電装置及び負荷か
ら電気的に切り離す制御を行うようにすることにより、
HVにおいていわゆる退避走行を可能にすることにあ
る。本発明の目的の一つは、バッテリを発電装置及び負
荷から電気的に切り離す際、発電装置の動作モードをこ
れに応じて切り替えることにより、当該切離しに伴いバ
ッテリがバッファとして機能し得なくなるにもかかわら
ず平滑用コンデンサ等の回路乃至回路部品に過度の負担
がかからないようにすることにある。本発明の目的の一
つは、上記動作モード切替により、路面の状態等によら
ず安定的に上記各目的を達成し得る即ち外乱に強い制御
手順乃至装置を実現することにある。
One of the objects of the present invention is to judge whether or not the battery can be used at an appropriate time, and to control the battery to be electrically disconnected from the power generator and the load when it is determined that the battery is unusable or unsuitable. By doing so
An object of the present invention is to enable so-called evacuation traveling in an HV. One of the objects of the present invention is to electrically disconnect a battery from a power generator and a load by switching the operation mode of the power generator accordingly, so that the battery cannot function as a buffer with the disconnection. Regardless, an object of the present invention is to prevent an excessive load from being applied to circuits and circuit components such as a smoothing capacitor. One of the objects of the present invention is to realize a control procedure or a device that can stably achieve each of the above objects irrespective of the road surface condition or the like, that is, is resistant to disturbances by switching the operation mode.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、発電装置及び負荷と共にハイブリッド車に搭
載されたバッテリの使用可否を判別するバッテリ使用可
否判別手段と、該バッテリ使用可否判別手段により、バ
ッテリが使用不可と判別された場合、上記バッテリを上
記発電装置及び負荷から電気的に切り離すバッテリ切離
し手段と、該バッテリ切離し手段により、バッテリが切
り離された場合、上記発電装置をその発電出力が上記負
荷に従動する非制御状態で動作させる非制御状態動作手
段と、を備えることを特徴とする。
In order to achieve the above object, there is provided a battery use determination means for determining whether a battery mounted on a hybrid vehicle together with a power generator and a load is usable, and the battery use determination means. The battery disconnecting means for electrically disconnecting the battery from the power generating device and the load when the battery is determined to be unusable, and the power generating output of the power generating device when the battery is disconnected by the battery separating means. And a non-control state operating means operating in a non-control state driven by the load.

【0006】本発明においては、バッテリが使用不可と
判別されたときに、バッテリが発電装置及び負荷から電
気的に切り離され、発電装置が非制御状態、即ちその発
電出力が負荷に従動する状態になる。このように、バッ
テリが使用不可であるときにバッテリを発電装置及び負
荷から電気的に切り離しているため、本発明に係るHV
ではバッテリ不具合の発生に応じ退避走行等を実行可能
である。また、この切離しに伴いバッテリはバッファと
して機能し得なくなるけれども、発電装置の発電出力が
負荷に従動しているため、発電装置と負荷との間に配設
される回路乃至回路部品に負担はかからない。また、負
荷変動(当該負荷が車両走行用モータである場合には縁
石乗上げ、スリップ等)によらず安定的に、負荷に従動
した発電出力を供給できるという強い対外乱性能が得ら
れる。
In the present invention, when it is determined that the battery is unusable, the battery is electrically disconnected from the power generator and the load, and the power generator is in an uncontrolled state, that is, a state in which the generated output is driven by the load. Become. As described above, since the battery is electrically disconnected from the power generation device and the load when the battery is unusable, the HV according to the present invention is used.
In this case, evacuation traveling or the like can be executed in response to the occurrence of a battery failure. Further, although the battery cannot function as a buffer due to the disconnection, since the power generation output of the power generator is driven by the load, a load is not placed on a circuit or a circuit component disposed between the power generator and the load. . In addition, a strong disturbance performance can be obtained in which a power generation output driven by the load can be supplied stably irrespective of load fluctuations (when the load is a motor for driving a vehicle, climbing on a curb, slipping, or the like).

【0007】[0007]

【発明の実施の形態】以下、本発明の好適な実施形態に
関し図面に基づき説明する。まず、図1に、本発明を適
用したSHVの一例システム構成を示す。この図に示さ
れるSHVでは、三相交流モータ(例えば永久磁石励磁
型同期モータ)10を車両走行用モータとして使用して
いる。このモータ10に駆動電力を供給するためのコン
ポーネントとしては、主バッテリ12及び発電機14が
設けられている。主バッテリ12は例えば鉛電池、ニッ
ケル水素電池である。発電機14は三相交流発電機(例
えば永久磁石励磁型同期発電機)であり、エンジン16
によって駆動される。また、主バッテリ12とモータ1
0の間及び発電機14と主バッテリ12の間には、各
々、その直流端子(図中の+、−)から入力される電力
を直流から交流に変換してその交流端子(図中のU,
V,W)から出力することが可能な三相インバータ18
又は20が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 shows an example system configuration of an SHV to which the present invention is applied. In the SHV shown in this figure, a three-phase AC motor (for example, a permanent magnet excitation type synchronous motor) 10 is used as a vehicle traveling motor. As components for supplying drive power to the motor 10, a main battery 12 and a generator 14 are provided. The main battery 12 is, for example, a lead battery or a nickel hydride battery. The generator 14 is a three-phase AC generator (for example, a permanent magnet excitation type synchronous generator), and the engine 16
Driven by The main battery 12 and the motor 1
0, and between the generator 14 and the main battery 12, the power input from the DC terminals (+,-in the figure) is converted from DC to AC, and the AC terminal (U in the figure) is converted. ,
V, W) from the three-phase inverter 18
Or 20 is provided.

【0008】モータ側インバータ18は、3対の電力用
トランジスタQ1 〜Q6 、これに逆並列接続された3対
のダイオードD1 〜D6 及び平滑用コンデンサC1 を内
蔵しており、その直流端子は主バッテリ12側に、交流
端子はモータ10側に接続されている。トランジスタQ
1 とQ2 、Q3 とQ4 、及びQ5 とQ6 は各々対を成し
ており、インバータ18の直流端子間に順方向接続され
ている。平滑用コンデンサC1はインバータ18の直流
端子間に接続されており、インバータ20や主バッテリ
12からの電力はコンデンサC1にて平滑された上でこ
れらのトランジスタ対各々の両端に印加される。従っ
て、トランジスタQ1 〜Q6 をアクセル操作に応じたパ
ターンでスイッチングさせることによりモータ10の出
力トルク(力行)を制御することができ、ブレーキ操作
に応じたパターンでスイッチングさせることによりモー
タ10の出力トルク(回生)ひいては主バッテリ12へ
の回生電力を制御することができる。また、トランジス
タQ1 〜Q6 を全てオフすることにより、インバータ1
8を整流器として動作させることもできる。
The motor-side inverter 18 incorporates three pairs of power transistors Q1 to Q6, three pairs of diodes D1 to D6 connected in anti-parallel thereto, and a smoothing capacitor C1. On the 12 side, the AC terminal is connected to the motor 10 side. Transistor Q
1 and Q2, Q3 and Q4, and Q5 and Q6 each make a pair, and are connected in the forward direction between the DC terminals of the inverter 18. The smoothing capacitor C1 is connected between the DC terminals of the inverter 18, and the power from the inverter 20 and the main battery 12 is applied to both ends of each of these transistor pairs after being smoothed by the capacitor C1. Therefore, the output torque (powering) of the motor 10 can be controlled by switching the transistors Q1 to Q6 in a pattern according to the accelerator operation, and the output torque (motor running) of the motor 10 can be controlled by switching in the pattern according to the brake operation. Regenerative power, and thus, regenerative power to the main battery 12 can be controlled. By turning off all the transistors Q1 to Q6, the inverter 1
8 can also be operated as a rectifier.

【0009】発電機側インバータ20は3対の電力用ト
ランジスタQ7 〜Q12、3対のダイオードD7 〜D12及
び平滑用コンデンサC2 を内蔵しており、その直流端子
は主バッテリ12側に、交流端子は発電機14側に接続
されている。これらの回路素子及び端子相互の接続関係
は、インバータ18におけるそれと同様である。発電機
14の発電出力はトランジスタ対各々の接続点から入力
され、インバータ20の直流端子間からの出力はコンデ
ンサC2 にて平滑される。従って、トランジスタQ7 〜
Q12を要求発電出力に応じたパターンでスイッチングさ
せることにより、発電機14の発電出力を整流及び昇圧
した上で主バッテリ12及びインバータ18側へ出力し
かつ当該出力を制御することができる。更に、エンジン
始動時にトランジスタQ7 〜Q12をスイッチングさせ、
発電機14をスタータモータとして動作させることもで
きる。また、トランジスタQ7 〜Q12を全てオフするこ
とにより、インバータ20を整流器として動作させるこ
ともできる。以下の説明では、トランジスタQ7 〜Q12
をスイッチングさせている状態を「制御状態」又は「イ
ンバータ動作」と呼び、全てオフさせている状態を「非
制御状態」又は「インバータ停止」と呼ぶ。
The generator-side inverter 20 incorporates three pairs of power transistors Q7 to Q12, three pairs of diodes D7 to D12, and a smoothing capacitor C2. The DC terminal is on the main battery 12 side, and the AC terminal is It is connected to the generator 14 side. The connection relationship between these circuit elements and terminals is the same as that in the inverter 18. The power output of the generator 14 is input from the connection point of each transistor pair, and the output between the DC terminals of the inverter 20 is smoothed by the capacitor C2. Therefore, transistors Q7 to
By switching Q12 in a pattern corresponding to the required power output, the power output of the generator 14 is rectified and boosted, and then output to the main battery 12 and the inverter 18 and the output can be controlled. Further, when the engine is started, the transistors Q7 to Q12 are switched,
The generator 14 can be operated as a starter motor. By turning off all the transistors Q7 to Q12, the inverter 20 can be operated as a rectifier. In the following description, transistors Q7 to Q12
Is called a “control state” or “inverter operation”, and a state in which all are turned off is called a “non-control state” or “inverter stop”.

【0010】従って、図1の車両では、エンジン駆動発
電機である発電機14の発電出力をインバータ20にて
交流から直流に変換し(整流及び昇圧し)、得られた直
流電力をインバータ20にて再度交流電力に変換し、得
られた交流電力を用いてモータ10を駆動することがで
きる。また、インバータ20と18の間に主バッテリ1
2が介在しているため、発電機14からの発電出力をモ
ータ10の駆動に必要な電力に厳密に追従させる必要は
なく、後者に対する前者の余剰分を主バッテリ12に蓄
えまた不足分を主バッテリ12にて補うことができる。
更に、制動エネルギをモータ10からインバータ18を
経て主バッテリ12に回収する回生制動や、エンジン1
6を始動するためのトルクを発電機14(この場合はモ
ータとして機能)にて発生させる始動動作が可能であ
る。
Therefore, in the vehicle shown in FIG. 1, the output of the generator 14 which is an engine-driven generator is converted from AC to DC (rectified and boosted) by the inverter 20, and the obtained DC power is supplied to the inverter 20. The AC power is again converted into AC power, and the motor 10 can be driven using the obtained AC power. The main battery 1 is connected between the inverters 20 and 18.
2, the power output from the generator 14 does not need to strictly follow the power required for driving the motor 10. The surplus of the former with respect to the latter is stored in the main battery 12, and the shortage is mainly stored. It can be supplemented by the battery 12.
Further, regenerative braking for recovering braking energy from the motor 10 to the main battery 12 via the inverter 18 or the engine 1
6 can be started by the generator 14 (in this case, functioning as a motor) to start torque.

【0011】これらインバータ18及び20の動作は、
車両操縦者等によるIG(イグニッション)スイッチ、
アクセルペダル、ブレーキペダル等の操作に応じて、電
子制御ユニット(ECU)等から構成される制御装置2
2が制御する。例えば、IGスイッチのオン操作に応じ
て制御装置22はシステムメインリレー(SMR)24
をオンさせ、これにより主バッテリ12をインバータ1
8及び20各々の直流端子と電気的に接続する。制御装
置22は、アクセルペダル、ブレーキペダル等の操作に
応じて、かつモータ10の回転数Nm及び電流Im並びに
エンジン16の回転数Neのフィードバックを受けなが
ら、インバータ18及び20を構成する各トランジスタ
のスイッチング動作を制御することにより、モータ10
からの出力トルクやインバータ20を介した発電出力を
可変制御する。また、制御装置22は、主バッテリ12
の端子電圧、充電状態(SOC)或いは充放電電流量、
温度等を監視し、これらの値に応じてモータ10の出力
トルクを調整する他、例えば過熱等主バッテリ12を引
続き使用し続けるのが好ましくない又は不可能な状況が
生じたときにはSMR24をオフさせ、これにより主バ
ッテリ12とインバータ18及び20との電気的接続を
断つ。なお、回転数、電圧、SOC、温度等の検出方法
に関しては図示を省略しているが、これら諸量の検出方
法としては、公知乃至周知の技術を利用すればよいこと
は、当業者にとり自明であろう。
The operation of these inverters 18 and 20 is as follows:
IG (ignition) switch by vehicle operator, etc.
A control device 2 including an electronic control unit (ECU) and the like in response to operations of an accelerator pedal, a brake pedal, and the like.
2 controls. For example, in response to the ON operation of the IG switch, the control device 22 causes the system main relay (SMR) 24
To turn on the main battery 12 and the inverter 1
8 and 20 are electrically connected to the respective DC terminals. The control device 22 controls each transistor of the inverters 18 and 20 in response to the operation of the accelerator pedal, the brake pedal, and the like, and while receiving the feedback of the rotation speed Nm and the current Im of the motor 10 and the rotation speed Ne of the engine 16. By controlling the switching operation, the motor 10
Variably controls the output torque from the inverter and the power generation output via the inverter 20. The control device 22 also controls the main battery 12
Terminal voltage, state of charge (SOC) or charge / discharge current,
In addition to monitoring the temperature and the like and adjusting the output torque of the motor 10 according to these values, the SMR 24 is turned off when it is not preferable or impossible to continue using the main battery 12 such as overheating. Thereby, the electrical connection between the main battery 12 and the inverters 18 and 20 is cut off. It should be noted that, although illustration of the method of detecting the number of rotations, voltage, SOC, temperature, etc. is omitted, it is obvious to those skilled in the art that a known or well-known technique may be used as a method of detecting these various amounts. Will.

【0012】図2に、制御装置22の動作手順の概要を
示す。制御装置22は、IGスイッチがオンされるのに
応じ(100)、SMR24をオンさせ(102)、車
両各部から各種の検出量乃至状態量を入力する(10
4)。ステップ104にて入力される量としては、アク
セル開度、ブレーキ踏力、シフトポジション、モータ1
0の回転数Nm・電流Im等、エンジン16の回転数N
e、主バッテリ12のSOC(又は充放電電流量)・温
度その他を例示できる。制御装置22は、入力した量の
うち特に主バッテリ12の状態に関する量例えば主バッ
テリ12のSOC・温度等に基づき、現時点で主バッテ
リ12が使用可能な状態にあるか否かに関する評価を実
行する(106)。
FIG. 2 shows an outline of an operation procedure of the control device 22. In response to the IG switch being turned on (100), the control device 22 turns on the SMR 24 (102) and inputs various detection quantities or state quantities from various parts of the vehicle (10).
4). The amounts input in step 104 include the accelerator opening, brake depression force, shift position, motor 1
0 rpm Nm, current Im, etc., the rpm N of the engine 16
e, SOC (or charge / discharge current), temperature, and the like of the main battery 12 can be exemplified. The control device 22 executes an evaluation on whether or not the main battery 12 is in a usable state at the present time, based on an amount related to the state of the main battery 12 among the input amounts, for example, an SOC / temperature of the main battery 12. (106).

【0013】この評価の結果、主バッテリ12に劣化、
過熱その他有意な不具合はなく、従って主バッテリ12
を引き続き使用し続けることができるとの判断に至った
とき(108)、制御装置22は、マップ200を利用
してモータ10に対するトルク指令を決定し(11
0)、更に発電機14に対する発電指令を決定し(11
2)、決定したトルク指令及び発電指令に適宜調整を施
した上で、トルク指令に応じたスイッチング制御信号を
インバータ18に、また発電指令に応じたスイッチング
制御信号をインバータ20に、それぞれ出力する(11
4)。これによって、モータ10の出力トルクがトルク
指令相当値に、また発電機14の発電出力が発電指令相
当値に、制御される。このときのインバータ18の回路
状態は、等価的には、図3に示される状態である。制御
装置22は、IGオフ操作が行われるまで(116)、
主バッテリ12における不具合発生等の状況に至らない
限りは、ステップ104〜114を繰り返し実行し、I
Gオフ操作が行われたときにはSMR24をオフさせる
等所定の終了処理を実行する(118)。
As a result of the evaluation, the main battery 12 is deteriorated,
No overheating or other significant failures
When it is determined that can be used continuously (108), the control device 22 determines a torque command for the motor 10 using the map 200 (11).
0), and further determines a power generation command for the generator 14 (11).
2) After appropriately adjusting the determined torque command and power generation command, a switching control signal corresponding to the torque command is output to the inverter 18 and a switching control signal corresponding to the power generation command is output to the inverter 20 ( 11
4). As a result, the output torque of the motor 10 is controlled to a value corresponding to the torque command, and the power output of the generator 14 is controlled to a value corresponding to the power generation command. The circuit state of the inverter 18 at this time is equivalently the state shown in FIG. The control device 22 continues until the IG off operation is performed (116).
Steps 104 to 114 are repeatedly executed unless a situation such as occurrence of a failure in the main battery 12 is reached.
When the G-off operation is performed, predetermined end processing such as turning off the SMR 24 is executed (118).

【0014】なお、マップ200は、例えば回転数Nm
対最大出力トルクTmax の特性を与えるマップである。
このような内容のマップ200を搭載しているときに
は、制御装置22は、ステップ104にて入力した現在
の回転数Nm に対応する最大出力トルクTmax をマップ
200から獲得し、ステップ104にて入力した現在の
アクセル開度又はブレーキ踏力に応じてこの最大出力ト
ルクTmax を按分する等の手法で、トルク指令を決定す
る。制御装置22は、また、インバータ18を介しモー
タ10に供給すべき電力や主バッテリ12のSOCに応
じ、また発電出力増減に伴うエンジン14の効率低下が
できるだけ顕在化しないよう、発電出力を決定する。モ
ータ10に供給すべき電力は、トルク指令及び回転数N
m から又はモータ10の電流及び電圧から、求めること
ができる。トルク指令及び発電指令の調整は、例えば、
従前のサイクルで出力した指令値の実現状況やインバー
タ18や20の温度等を勘案して実行する。
The map 200 includes, for example, a rotational speed Nm.
This is a map giving characteristics of the maximum output torque Tmax.
When the map 200 having such contents is mounted, the control device 22 acquires from the map 200 the maximum output torque Tmax corresponding to the current rotational speed Nm input in step 104, and inputs the maximum output torque Tmax in step 104. The torque command is determined by a method such as apportioning the maximum output torque Tmax according to the current accelerator opening or the brake pedal force. The control device 22 also determines the power generation output according to the power to be supplied to the motor 10 via the inverter 18 and the SOC of the main battery 12 and so that the decrease in the efficiency of the engine 14 due to the increase and decrease of the power generation output is not as obvious as possible. . The power to be supplied to the motor 10 is a torque command and a rotation speed N.
m or from the current and voltage of the motor 10. Adjustment of the torque command and the power generation command is, for example,
The execution is performed in consideration of the realization status of the command value output in the previous cycle, the temperature of the inverters 18 and 20, and the like.

【0015】前述のステップ108において主バッテリ
12に何等かの不具合が生じていることが検出されたと
き、例えば主バッテリ12に無視し得ない劣化や温度上
昇が見られたときには、制御装置22はSMR24をオ
フさせることにより(120)主バッテリ12をインバ
ータ18及び20から電気的に切り離す。制御装置22
は、更に、制御の安定性確保等のためそれまでのトルク
指令をリセットした上で(122)、インバータ20を
シャットダウン即ちトランジスタQ7 〜Q12を全てオフ
させる(124)。これによって、インバータ20は、
図4に示されるように三相ブリッジ整流器と等価な回路
状態(「非制御状態」)となり、インバータとして機能
していたとき(「制御状態」)に奏していたような昇圧
機能即ち発電機14から発電エネルギを効率的にくみ上
げる機能は奏し得なくなる。制御状態から非制御状態に
移行した上で、制御装置22は、ステップ104と同様
車両各部から各種の検出量乃至状態量を入力し(12
6)、更にマップ300を利用してモータ10に対する
トルク指令を決定し(128)、決定したトルク指令に
応じたスイッチング制御信号をインバータ18に出力す
る(130)。なお、ここで発電指令の決定及び出力は
不要であることに留意されたい。制御装置22は、IG
オフ操作が行われるまで(132)ステップ126〜1
30を繰り返し実行し、IGオフ操作に応じて所定の終
了処理を実行する(134)。
If it is detected in step 108 that the main battery 12 has some problem, for example, if the main battery 12 has a considerable deterioration or temperature rise, the control device 22 The main battery 12 is electrically disconnected from the inverters 18 and 20 by turning off the SMR 24 (120). Control device 22
After resetting the torque command up to that point to ensure control stability (122), the inverter 20 is shut down, that is, all the transistors Q7 to Q12 are turned off (124). As a result, the inverter 20
As shown in FIG. 4, a circuit state equivalent to the three-phase bridge rectifier (“non-control state”) is obtained, and the boosting function, that is, the generator 14 that is performed when functioning as an inverter (“control state”) is performed. The function of efficiently pumping the generated energy from the power cannot be performed. After shifting from the control state to the non-control state, the control device 22 inputs various detection amounts or state amounts from various parts of the vehicle similarly to step 104 (12).
6) Further, a torque command for the motor 10 is determined using the map 300 (128), and a switching control signal corresponding to the determined torque command is output to the inverter 18 (130). Note that it is not necessary to determine and output the power generation command here. The control device 22 includes an IG
Until the OFF operation is performed (132) Steps 126 to 1
30 is repeatedly executed, and a predetermined end process is executed in response to the IG off operation (134).

【0016】以上述べた動作手順のうち、本実施形態の
特徴の一部を成しているのは、主バッテリ12の状態を
評価し(106)その結果不具合が見いだされたときに
SMR24をオフさせている(120)ことである。こ
れによって、主バッテリ12不具合時に退避走行を実行
可能になる。また、本実施形態の特徴の他の一部は、主
バッテリ12に不具合が見いだされたときにインバータ
20の制御モードを非制御状態に切り替える(122以
降)ことである。非制御状態では、インバータ20は整
流器と等価であり、その出力は負荷であるところのモー
タ10の出力の変動に従動することになる。言い換えれ
ば、インバータ20の直流出力電力が常にインバータ1
8の直流入力電力と一致することとなり、後者に対する
前者の余剰分がコンデンサC1 又はC2 に流れ込むこと
はない。従って、コンデンサC1及びC2 の過電圧損傷
は生じない。
Among the operation procedures described above, a part of the feature of the present embodiment is that the state of the main battery 12 is evaluated (106), and as a result, when a failure is found, the SMR 24 is turned off. (120). As a result, the limp-home running can be performed when the main battery 12 is defective. Another part of the features of the present embodiment is that the control mode of the inverter 20 is switched to the non-control state when a failure is found in the main battery 12 (122 and thereafter). In the uncontrolled state, the inverter 20 is equivalent to a rectifier, the output of which will follow the fluctuations of the output of the motor 10, which is the load. In other words, the DC output power of the inverter 20 is always
Thus, the surplus of the former with respect to the latter does not flow into the capacitor C1 or C2. Therefore, no overvoltage damage of the capacitors C1 and C2 occurs.

【0017】また、“インバータ20の直流出力電力が
常にインバータ18の直流入力電力と一致する”状態は
制御状態におけるインバータ20の精密な制御でも大ま
かには実現可能である。しかしながら、現実には、かか
る制御には何等かの制御遅れが伴いあるいはその追従性
にはある程度の限界があるので、予期せぬ外乱に対して
弱いという欠点がある。これに対し、本実施形態のよう
に非制御状態への移行という手法を採用すれば、そのよ
うな追従性上の問題は生じないので、予期せぬ外乱に対
しては強くなる。即ち、縁石乗上げ、スリップ等の外乱
が原因でモータ10の出力が瞬時的に或いは急峻に変動
したときでも、負荷に従動しているインバータ20の直
流出力電力は、モータ10の出力の変動に正確に追従す
る。この点で、本実施形態は、発電機側インバータを具
備する特開平8−126115号の構成と主バッテリ充
電不可能時に目標発電量をモータ出力に追従させる特開
平7−336809号の構成(但し発電機側インバータ
を具備していない)との組合せとは、構成上相違してお
りかつ有意な効果を提供している。
The state in which the DC output power of the inverter 20 always coincides with the DC input power of the inverter 18 can be roughly realized by precise control of the inverter 20 in the control state. However, in reality, such control involves some control delay or has a certain limit in its followability, so that it has a drawback that it is vulnerable to unexpected disturbance. On the other hand, if the method of shifting to the non-control state is adopted as in the present embodiment, such a problem in followability does not occur, and therefore, it is stronger against unexpected disturbance. That is, even when the output of the motor 10 fluctuates instantaneously or steeply due to disturbances such as curb climbing and slipping, the DC output power of the inverter 20 driven by the load changes with the fluctuation of the output of the motor 10. Follow exactly. In this regard, the present embodiment is different from the configuration of JP-A-8-126115 in which the generator-side inverter is provided and the configuration of JP-A-7-336809 in which the target power generation follows the motor output when the main battery cannot be charged. (Without the generator-side inverter) is structurally different and provides a significant effect.

【0018】なお、インバータ20を制御状態で動作さ
せたときと非制御状態で動作させたときとを比べると、
図5に示すように、前者のほうが、電圧の面でも電力の
面でも出力が大きくなる。これは、制御状態の方がより
効率的に発電エネルギをくみ上げられることによる。こ
の点で、非制御状態での動作は制御状態での動作より特
性的に劣っているけれども、本実施形態では非制御状態
での動作を主バッテリ12不具合発生時に限定している
から、非制御状態での動作の採用は、車両全体としての
エネルギ利用効率にさしたる影響を与えない。また、こ
のように非制御状態におけるインバータ20の直流出力
電圧は制御状態におけるそれよりも低いため、インバー
タ20が非制御状態にあるときには制御状態にあるとき
に比べ厳しい制約が、モータ10からの出力トルクに課
せられる。即ち、モータ10の最大出力トルク特性は、
通常、トルク一定の線にて制約される領域(低回転域)
とパワー一定の線にて制約される領域(高回転域)とを
有しており、両領域の境界はインバータ18の直流端子
間に印加される最高電圧が低ければ低いほど低回転域に
ある。従って、マップ200及び300として回転数N
m 対最大出力トルクTmax の特性を与えるマップを用い
るときには、例えば、マップ200は図6中の細い実
線、マップ300は太い実線となる。
When the inverter 20 is operated in a controlled state and when it is operated in a non-controlled state,
As shown in FIG. 5, the former has a larger output in terms of both voltage and power. This is because the generated energy can be pumped more efficiently in the control state. In this respect, the operation in the uncontrolled state is characteristically inferior to the operation in the controlled state, but in the present embodiment, the operation in the uncontrolled state is limited to when the main battery 12 malfunctions. Employing operation in a state does not significantly affect the energy utilization efficiency of the vehicle as a whole. Further, since the DC output voltage of the inverter 20 in the non-control state is lower than that in the control state, when the inverter 20 is in the non-control state, the strict restriction is more than in the control state. Imposed on torque. That is, the maximum output torque characteristic of the motor 10 is:
Usually, the area restricted by the constant torque line (low rotation area)
And a region constrained by a constant power line (high rotation region), and the boundary between both regions is in a low rotation region as the maximum voltage applied between the DC terminals of the inverter 18 is lower. . Therefore, the rotation speed N is set as the maps 200 and 300.
When a map giving the characteristic of m vs. maximum output torque Tmax is used, for example, the map 200 is a thin solid line in FIG. 6, and the map 300 is a thick solid line in FIG.

【0019】また、先に、インバータ20を制御状態に
したままSMR24をオフさせたときの問題点としてコ
ンデンサC1及びC2の過電圧損傷の発生可能性を述
べ、本実施形態ではそのような問題は生じないことを述
べた。本実施形態においてその損傷や負担増大を回避で
きるコンポーネントには、コンデンサC1 及びC2 のみ
ならず、インバータ18・20間にある各種のコンポー
ネントが含まれ得る。図7に、そのようなコンポーネン
トの例を示す。図示されているように、エアコンコンプ
レッサ等比較的大電力を消費するため主バッテリ12か
ら電力供給を受ける補機26及びその制御のための補機
用インバータ28や、制御装置22を構成するECU等
の補機30に駆動電力を供給するためのバッテリである
補機バッテリ32及びその充電のためのDC/DCコン
バータ34等も、インバータ20からの余剰電力の供給
による損傷や負担増大を免れ得る。
The possibility of overvoltage damage to the capacitors C1 and C2 has been described as a problem when the SMR 24 is turned off while the inverter 20 is in the control state. In the present embodiment, such a problem occurs. Not that said. In the present embodiment, components that can avoid the damage and increase in the load can include not only the capacitors C1 and C2 but also various components between the inverters 18 and 20. FIG. 7 shows an example of such a component. As shown in the figure, an auxiliary machine 26 such as an air conditioner compressor which receives power from the main battery 12 to consume relatively large electric power, an auxiliary machine inverter 28 for controlling the auxiliary machine 26, an ECU constituting the control device 22, etc. The auxiliary battery 32, which is a battery for supplying the driving power to the auxiliary equipment 30, and the DC / DC converter 34 for charging the auxiliary equipment 30 can also be prevented from being damaged or increased in burden due to the supply of the surplus power from the inverter 20.

【0020】更に、先に述べた制御手順では、主バッテ
リ12に不具合ありと判別された後は、操縦者等が一旦
IGをオフしその後再度オンするまでは、SMR24は
オフし続けていた。この手順を変形し、主バッテリ12
が正常な状態に復帰したことがステップ126〜132
の間で検出されたときステップ104に移行するように
しても、構わない。但し、この移行処理は、主バッテリ
12における“不具合”が明らかに一時的なものである
と認められる場合にのみ実行するようにするのが、好ま
しい。その他、前述の制御手順には、各種の変形が可能
である。
Further, in the control procedure described above, after it is determined that the main battery 12 has a problem, the SMR 24 is kept off until the driver or the like once turns off the IG and then turns it on again. This procedure is modified so that the main battery 12
Are returned to the normal state.
The process may proceed to step 104 when it is detected between. However, it is preferable that this transition process is performed only when the “failure” in the main battery 12 is clearly recognized as temporary. In addition, various modifications can be made to the above control procedure.

【0021】また、本発明の適用対象は、SHVに限定
されず、PHVやPSHV等にも本発明を適用できる。
PHVに適用した例を、図8に示す。図中のエンジン1
6は駆動輪と機械的に連結されており、モータ兼用発電
機36は、その出力トルクとエンジン16の出力トルク
との加算トルクが駆動輪に伝達されるよう配設されてい
る。モータ兼用発電機36は、モータとして動作してい
るときにはエンジン16を加速方向にアシストし、発電
機として動作しているときには減速方向にアシストす
る。モータ兼用発電機側インバータ38の動作モードに
は制御状態と非制御状態とがあり、制御状態には更に前
述のインバータ18と類似の制御状態とインバータ20
と類似の制御状態とがある。かかる構成においても、主
バッテリ12の不具合が生じたときにSMR24をオフ
させ、補機26等への駆動電力供給をモータ兼用発電機
36の発電出力にて賄うことが可能であり、更にそのと
きインバータ38を非制御状態におくことで、補機用イ
ンバータ28特にその直流端子間のコンデンサ(図示省
略)の過電圧損傷を防止することができる。
The application of the present invention is not limited to SHV, but the present invention can be applied to PHV, PSHV and the like.
An example applied to PHV is shown in FIG. Engine 1 in the figure
Numeral 6 is mechanically connected to the driving wheels, and the motor / generator 36 is arranged such that the added torque of the output torque of the engine 16 and the output torque of the engine 16 is transmitted to the driving wheels. The motor / generator 36 assists the engine 16 in the acceleration direction when operating as a motor, and assists in the deceleration direction when operating as a generator. The operation mode of the motor / generator-side inverter 38 includes a control state and a non-control state. The control state further includes a control state similar to the above-described inverter 18 and an inverter 20.
And a similar control state. In such a configuration as well, it is possible to turn off the SMR 24 when a problem occurs in the main battery 12 and supply the driving power to the auxiliary device 26 and the like with the power generation output of the motor / generator 36. By setting the inverter 38 in an uncontrolled state, it is possible to prevent overvoltage damage to the accessory inverter 28, particularly to a capacitor (not shown) between its DC terminals.

【0022】更に、本発明の適用対象は、交流回転電機
やインバータを用いる構成に限定されるものではない。
例えば、直流回転電機及び昇(降)圧チョッパ回路を用
いる構成でも、昇(降)圧チョッパ回路を構成するトラ
ンジスタ等のスイッチング素子を利用して当該昇(降)
圧チョッパ回路を“非制御状態”におくことができるか
ら、かかる構成にも本発明を適用できる。
Further, the application of the present invention is not limited to a configuration using an AC rotating electric machine or an inverter.
For example, even in a configuration using a DC rotating electric machine and a step-up (step-down) chopper circuit, the step-up (step-down) is performed by using a switching element such as a transistor constituting the step-up (step-down) chopper circuit.
Since the pressure chopper circuit can be kept in the “uncontrolled state”, the present invention can be applied to such a configuration.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
バッテリが使用不可であると判別された場合に、バッテ
リを発電装置及び負荷から電気的に切り離し、発電装置
を非制御状態即ちその発電出力が負荷に従動する状態に
て動作させるようにしたため、バッテリ不具合の発生に
応じ退避走行等を実行できる他、発電装置と負荷との間
に配設される回路乃至回路部品にこの切離しに伴い負担
が加わることを防止でき、また、負荷変動によらず安定
的に負荷に追従できる強い対外乱性能が得られる。
As described above, according to the present invention,
When it is determined that the battery is unusable, the battery is electrically disconnected from the power generation device and the load, and the power generation device is operated in an uncontrolled state, that is, in a state where its power generation output is driven by the load. In addition to being able to perform limp-home running or the like in response to the occurrence of a malfunction, it is possible to prevent a load from being applied to the circuit or circuit components disposed between the power generator and the load due to the disconnection, and to be stable regardless of load fluctuations. Strong disturbance performance that can follow the load is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を適用したSHVの一例システム構成
を示すブロック図である。
FIG. 1 is a block diagram showing an example of a system configuration of an SHV to which the present invention is applied.

【図2】 制御装置の動作手順を示すフローチャートで
ある。
FIG. 2 is a flowchart illustrating an operation procedure of the control device.

【図3】 制御状態における発電機側インバータ等価回
路構成を示す回路図である。
FIG. 3 is a circuit diagram showing a generator-side inverter equivalent circuit configuration in a control state.

【図4】 非制御状態における発電機側インバータ等価
回路構成を示す回路図である。
FIG. 4 is a circuit diagram showing a generator-side inverter equivalent circuit configuration in a non-control state.

【図5】 制御状態と非制御状態とで発電機側インバー
タの直流出力性能を比較対照した特性図である。
FIG. 5 is a characteristic diagram comparing and comparing the DC output performance of the generator-side inverter in a control state and a non-control state.

【図6】 マップの一例を示す特性図である。FIG. 6 is a characteristic diagram showing an example of a map.

【図7】 発電機側インバータとモータ側インバータと
の間にあるコンポーネントを例示するブロック図であ
る。
FIG. 7 is a block diagram illustrating components between a generator-side inverter and a motor-side inverter.

【図8】 本発明を適用したPHVの一例システム構成
の要部を示すブロック図である。
FIG. 8 is a block diagram showing a main part of an example system configuration of a PHV to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10 モータ、12 主バッテリ、14 発電機、16
エンジン、18,20,28,38 インバータ、2
2 制御装置、24 SMR、26,30 補機、32
補機バッテリ、34 DC/DCコンバータ、36
モータ兼用発電機。
10 motor, 12 main battery, 14 generator, 16
Engine, 18, 20, 28, 38 inverter, 2
2 control device, 24 SMR, 26, 30 accessories, 32
Auxiliary battery, 34 DC / DC converter, 36
Motor / generator.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02J 7/00 H02J 7/00 P H02M 7/72 H02M 7/72 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H02J 7/00 H02J 7/00 P H02M 7/72 H02M 7/72

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発電装置及び負荷と共にハイブリッド車
に搭載されたバッテリの使用可否を判別するバッテリ使
用可否判別手段と、 該バッテリ使用可否判別手段により、バッテリが使用不
可と判別された場合、上記バッテリを上記発電装置及び
負荷から電気的に切り離すバッテリ切離し手段と、 該バッテリ切離し手段により、バッテリが切り離された
場合、上記発電装置をその発電出力が上記負荷に従動す
る非制御状態で動作させる非制御状態動作手段と、 を備えることを特徴とする制御装置。
1. A battery use determination unit for determining whether a battery mounted on a hybrid vehicle together with a power generation device and a load is usable, and the battery is determined to be unusable by the battery use determination unit. Battery disconnecting means for electrically disconnecting the power generating device and the load from the load; and non-controlling operation of the power generating device in an uncontrolled state in which the power generation output is driven by the load when the battery is disconnected by the battery disconnecting means. A control device comprising: state operation means.
JP34391696A 1996-12-24 1996-12-24 Hybrid vehicle control device Expired - Fee Related JP3333814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34391696A JP3333814B2 (en) 1996-12-24 1996-12-24 Hybrid vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34391696A JP3333814B2 (en) 1996-12-24 1996-12-24 Hybrid vehicle control device

Publications (2)

Publication Number Publication Date
JPH10191503A true JPH10191503A (en) 1998-07-21
JP3333814B2 JP3333814B2 (en) 2002-10-15

Family

ID=18365240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34391696A Expired - Fee Related JP3333814B2 (en) 1996-12-24 1996-12-24 Hybrid vehicle control device

Country Status (1)

Country Link
JP (1) JP3333814B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004236424A (en) * 2003-01-30 2004-08-19 Toyota Motor Corp Power output device, motor driving method, and recording medium of program for making computer perform motor drive control and readable by computer
US7084601B2 (en) * 2001-09-25 2006-08-01 Daikin Industries, Ltd. Phase current detector
JP2007143290A (en) * 2005-11-18 2007-06-07 Hitachi Ltd Hybrid vehicle
JP2007311290A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Power supply
JP2008066306A (en) * 2003-10-21 2008-03-21 Shin Kobe Electric Mach Co Ltd Vehicular control system using battery module having lithium battery
JP2009241684A (en) * 2008-03-31 2009-10-22 Hitachi Constr Mach Co Ltd Electric drive vehicle
USRE41303E1 (en) 2001-10-25 2010-05-04 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2010130877A (en) * 2008-12-01 2010-06-10 Hitachi Automotive Systems Ltd Vehicle battery controller, vehicle battery system and method for controlling vehicle battery
CN102064725A (en) * 2009-11-18 2011-05-18 通用汽车环球科技运作公司 Dual voltage-source inverter system and method
JP2011122485A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Vehicle drive control system
JP2012005279A (en) * 2010-06-18 2012-01-05 Fuji Electric Co Ltd Power converter
US8111026B2 (en) 2006-02-06 2012-02-07 Toyota Jidosha Kabushiki Kaisha Electric motor drive apparatus, hybrid vehicle with the same and stop control method of electric power converting device
US8140205B2 (en) 2006-01-13 2012-03-20 Nissan Motor Co., Ltd. Driving system for hybrid vehicle
JP2012205495A (en) * 2011-03-23 2012-10-22 General Electric Co <Ge> System for supplying propulsion energy from auxiliary driving part and production method thereof
JP2013049324A (en) * 2011-08-30 2013-03-14 Honda Motor Co Ltd Control device of hybrid vehicle and control method
KR20140134649A (en) * 2012-02-21 2014-11-24 르노 에스.아.에스. Method and device for saving the operation of a vehicle
JP2018027713A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Vehicle system
CN109996712A (en) * 2016-11-22 2019-07-09 株式会社电装 Controller of vehicle, control method for vehicle and the storage medium for being stored with vehicle control program
WO2021024780A1 (en) * 2019-08-02 2021-02-11 日立建機株式会社 Work vehicle and vehicle control device for use in same
JP2021059265A (en) * 2019-10-09 2021-04-15 日産自動車株式会社 Charge control method for hybrid vehicle and charge control device for hybrid vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877509A (en) * 1972-01-20 1973-10-18
JPH0787614A (en) * 1993-09-16 1995-03-31 Toyota Motor Corp Motor voltage controller for hybrid vehicle
JPH07336809A (en) * 1994-06-06 1995-12-22 Toyota Motor Corp Control method of series hybrid vehicle
JPH08163709A (en) * 1994-12-06 1996-06-21 Mitsubishi Motors Corp Hybrid electric vehicle
JPH09154204A (en) * 1995-09-28 1997-06-10 Mitsubishi Motors Corp Hybrid electric vehicle
JPH1054262A (en) * 1996-08-09 1998-02-24 Aqueous Res:Kk Hybrid vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877509A (en) * 1972-01-20 1973-10-18
JPH0787614A (en) * 1993-09-16 1995-03-31 Toyota Motor Corp Motor voltage controller for hybrid vehicle
JPH07336809A (en) * 1994-06-06 1995-12-22 Toyota Motor Corp Control method of series hybrid vehicle
JPH08163709A (en) * 1994-12-06 1996-06-21 Mitsubishi Motors Corp Hybrid electric vehicle
JPH09154204A (en) * 1995-09-28 1997-06-10 Mitsubishi Motors Corp Hybrid electric vehicle
JPH1054262A (en) * 1996-08-09 1998-02-24 Aqueous Res:Kk Hybrid vehicle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084601B2 (en) * 2001-09-25 2006-08-01 Daikin Industries, Ltd. Phase current detector
USRE41303E1 (en) 2001-10-25 2010-05-04 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP2004236424A (en) * 2003-01-30 2004-08-19 Toyota Motor Corp Power output device, motor driving method, and recording medium of program for making computer perform motor drive control and readable by computer
JP2008066306A (en) * 2003-10-21 2008-03-21 Shin Kobe Electric Mach Co Ltd Vehicular control system using battery module having lithium battery
JP2007143290A (en) * 2005-11-18 2007-06-07 Hitachi Ltd Hybrid vehicle
US8140205B2 (en) 2006-01-13 2012-03-20 Nissan Motor Co., Ltd. Driving system for hybrid vehicle
US8111026B2 (en) 2006-02-06 2012-02-07 Toyota Jidosha Kabushiki Kaisha Electric motor drive apparatus, hybrid vehicle with the same and stop control method of electric power converting device
JP2007311290A (en) * 2006-05-22 2007-11-29 Toyota Motor Corp Power supply
US7924562B2 (en) 2006-05-22 2011-04-12 Toyota Jidosha Kabushiki Kaisha Power supply unit
JP4644722B2 (en) * 2008-03-31 2011-03-02 日立建機株式会社 Electric drive vehicle
JP2009241684A (en) * 2008-03-31 2009-10-22 Hitachi Constr Mach Co Ltd Electric drive vehicle
JP2010130877A (en) * 2008-12-01 2010-06-10 Hitachi Automotive Systems Ltd Vehicle battery controller, vehicle battery system and method for controlling vehicle battery
CN102064725A (en) * 2009-11-18 2011-05-18 通用汽车环球科技运作公司 Dual voltage-source inverter system and method
JP2011122485A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Vehicle drive control system
JP2012005279A (en) * 2010-06-18 2012-01-05 Fuji Electric Co Ltd Power converter
US8593101B2 (en) 2010-06-18 2013-11-26 Fuji Electric Co., Ltd. Power converting device with reduced switching loss
JP2012205495A (en) * 2011-03-23 2012-10-22 General Electric Co <Ge> System for supplying propulsion energy from auxiliary driving part and production method thereof
JP2013049324A (en) * 2011-08-30 2013-03-14 Honda Motor Co Ltd Control device of hybrid vehicle and control method
KR20140134649A (en) * 2012-02-21 2014-11-24 르노 에스.아.에스. Method and device for saving the operation of a vehicle
JP2015510075A (en) * 2012-02-21 2015-04-02 ルノー エス.ア.エス. Apparatus and method for saving vehicle operation
JP2018096379A (en) * 2012-02-21 2018-06-21 ルノー エス.ア.エス. Method and device for saving operation of vehicle
JP2018027713A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Vehicle system
CN109996712A (en) * 2016-11-22 2019-07-09 株式会社电装 Controller of vehicle, control method for vehicle and the storage medium for being stored with vehicle control program
CN109996712B (en) * 2016-11-22 2022-06-03 株式会社电装 Vehicle control device, vehicle control method, and storage medium storing vehicle control program
WO2021024780A1 (en) * 2019-08-02 2021-02-11 日立建機株式会社 Work vehicle and vehicle control device for use in same
JP2021024382A (en) * 2019-08-02 2021-02-22 日立建機株式会社 Work vehicle and vehicle control device used therefor
JP2021059265A (en) * 2019-10-09 2021-04-15 日産自動車株式会社 Charge control method for hybrid vehicle and charge control device for hybrid vehicle

Also Published As

Publication number Publication date
JP3333814B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
JP3333814B2 (en) Hybrid vehicle control device
JP4735000B2 (en) Motor drive device
JP3736300B2 (en) Automobile and power supply device thereof
US6861767B2 (en) Power supply equipment for motor vehicle with battery and capacitor
JP3566252B2 (en) Hybrid vehicle and control method thereof
US6930460B2 (en) Load driver with power storage unit
US8020650B2 (en) Control of a starter-alternator during a high-voltage battery fault condition
JP4236870B2 (en) Control device and control method for rotating electrical machine for vehicle
JP2008149897A (en) Control device for power supply circuit
JP4048787B2 (en) Load drive device
JP2010162996A (en) Power supply system for hybrid vehicle
JP2006304390A (en) Power unit for hybrid vehicle
JP3642319B2 (en) Control device for vehicle power supply
KR100611178B1 (en) Control device for motor-driven 4wd vehicle and related control method
JP3892528B2 (en) Auxiliary power supply battery charge control device for hybrid electric vehicle
JP4143267B2 (en) Vehicle power supply device
JP3170969B2 (en) Hybrid vehicle motor voltage controller
KR101646419B1 (en) Method for emergency driving of hybrid electric vehicle
JP2007089264A (en) Motor driver
JP2004312926A (en) Controller for vehicle and control method
JP4104940B2 (en) Drive control apparatus for hybrid vehicle
JP7236341B2 (en) vehicle power supply
JP4122918B2 (en) Power supply control device for idle stop vehicle
JP4285638B2 (en) Vehicle charging control device
TWI769477B (en) Driving porwer generation system of multi-voltage energy storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees