JPH10190196A - Insulating film and its formation - Google Patents

Insulating film and its formation

Info

Publication number
JPH10190196A
JPH10190196A JP34792896A JP34792896A JPH10190196A JP H10190196 A JPH10190196 A JP H10190196A JP 34792896 A JP34792896 A JP 34792896A JP 34792896 A JP34792896 A JP 34792896A JP H10190196 A JPH10190196 A JP H10190196A
Authority
JP
Japan
Prior art keywords
insulating
insulating film
particles
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34792896A
Other languages
Japanese (ja)
Inventor
Masako Midorikawa
理子 緑川
Nagato Osano
永人 小佐野
Naoki Kobayashi
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34792896A priority Critical patent/JPH10190196A/en
Publication of JPH10190196A publication Critical patent/JPH10190196A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily form an insulating film having a desired thickness, a high resistance, and an excellent insulating property on a substrate by forming the insulating film by applying an insulating material solution containing dispersed insulating particles to the substrate and baking the substrate. SOLUTION: In an applying process, such a case that insulating particles 3 settle immediately after the particles 3 are mixed in a liquid and the liquid is stirred depending upon the grain size of the particles 3 or the component of the liquid. For such a case, it is preferable to stir the solution mechanically or by using ultrasonic waves. In a baking process, preliminary baking is performed before proper baking as necessary after the insulating material solution containing the particles 3 is applied to the substrate. In applying the solution to the substrate, any generally used coating method, such as the spin coating method, dip coating method, spray coating method, coating method using roll bar, etc., can be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回路基板等に設け
られる絶縁膜及びその形成方法に関する。
The present invention relates to an insulating film provided on a circuit board or the like and a method for forming the same.

【0002】[0002]

【従来の技術】従来、回路基板上に絶縁膜を形成する場
合、ガラスペーストを用いたスクリーン印刷法、CVD
法、LPD法、ゾルゲル法を用いた各種コーティング法
等によって行っていた。
2. Description of the Related Art Conventionally, when an insulating film is formed on a circuit board, a screen printing method using a glass paste, a CVD method,
, An LPD method, various coating methods using a sol-gel method, and the like.

【0003】印刷法は、例えば、市販のガラスペースト
(例:ノリタケカンパニーリミテッド製のもの)をスク
リーン印刷法等の手法により基板上に塗布し、600℃
前後で焼成することにより成膜する。形成された絶縁膜
は、膜厚が20〜50μm程度、比誘電率が10〜30
程度となる。
[0003] In the printing method, for example, a commercially available glass paste (for example, one manufactured by Noritake Co., Ltd.) is applied onto a substrate by a method such as a screen printing method and the like.
A film is formed by firing before and after. The formed insulating film has a thickness of about 20 to 50 μm and a relative dielectric constant of 10 to 30.
About.

【0004】CVD法では、例えば、高減圧下に基板を
置き、シラン系ガスの蒸着、またはアルゴン、ヘリウ
ム、酸素等のキャリアガスによるシリコンの酸化によ
り、膜厚1μm程度までのSiO2膜を形成する。
In the CVD method, for example, a substrate is placed under a high pressure and an SiO 2 film having a thickness of about 1 μm is formed by vapor deposition of a silane-based gas or oxidation of silicon by a carrier gas such as argon, helium, or oxygen. I do.

【0005】LPD法では、例えば、ケイフッ化水素酸
水溶液に低温でSiO2を溶かして過飽和溶液とし、基
板を該溶液に浸せきした状態で30〜40℃程度に暖
め、基板上にSiO2を析出させる(温度法)か、アル
ミニウム・水・ほう酸を加えることにより化学平衡をず
らし、基板上にSiO2を析出させて成膜する。
In the LPD method, for example, SiO 2 is dissolved in an aqueous solution of hydrofluoric acid at a low temperature to form a supersaturated solution, and the substrate is immersed in the solution and heated to about 30 to 40 ° C. to deposit SiO 2 on the substrate. (Temperature method) or by adding aluminum, water, and boric acid to shift the chemical equilibrium, to deposit SiO 2 on the substrate to form a film.

【0006】ゾルゲル法では、例えば、エチルトリエト
キシシラン・エチルトリエトキシシラン重合体等のシリ
コーン化合物のエタノール・トルエン・酢酸エチル等の
溶液、市販のゾルゲル液(例:日本曹達(株)製のアト
ロン、東芝シリコーン(株)製のトスガード)、あるい
はテトラエトキシシラン等のシラン化合物をエタノール
等の適当な溶剤に溶かした調製品等を、ディップ、スプ
レー又はスピンコーティング等の手法を用いて基板上に
塗布し、300〜500℃程度で焼成することにより成
膜する。形成された絶縁膜は、膜厚が厚いもので数μm
程度まで、比誘電率は3〜15程度となる。
In the sol-gel method, for example, a solution of a silicone compound such as ethyltriethoxysilane / ethyltriethoxysilane polymer in ethanol / toluene / ethyl acetate, or a commercially available sol-gel solution (eg, Atron manufactured by Nippon Soda Co., Ltd.) Or Tosgard, manufactured by Toshiba Silicone Co., Ltd.) or a preparation prepared by dissolving a silane compound such as tetraethoxysilane in an appropriate solvent such as ethanol, and applied to the substrate using a technique such as dip, spray or spin coating. Then, the film is formed by firing at about 300 to 500 ° C. The formed insulating film has a thickness of several μm.
To this extent, the relative dielectric constant is about 3 to 15.

【0007】一方、このような絶縁膜を形成した回路基
板の用途として、表面伝導型電子放出素子を用いた画像
形成装置がある。以下、表面伝導型電子放出素子につい
て説明する。
On the other hand, as an application of a circuit board on which such an insulating film is formed, there is an image forming apparatus using a surface conduction electron-emitting device. Hereinafter, the surface conduction electron-emitting device will be described.

【0008】電子放出素子には、大別して熱電子放出素
子と冷陰極電子放出素子を用いた2種類が知られてい
る。冷陰極電子放出素子には電界放出型(以下「FE
型」という。)、金属/絶縁層/金属型(以下「MIM
型」という。)、表面伝導型電子放出素子などがある。
表面伝導型電子放出素子は、基板上に形成された小面積
の薄膜に、膜面に平行に電流を流すことにより、電子放
出が生ずる現象を利用するものである。この表面伝導型
電子放出素子としては、M.I.Elinson等によるSnO2
膜を用いたもの、Au薄膜によるもの(G.Dittmer,Thin
Solid Films,9,317(1972))、In23/SnO2薄膜
によるもの(M.Hartwell and C.G.Fonstad,IEEE Trans.
ED conf.,519(1975))、カーボン薄膜によるもの(荒木
久 他、真空、第26巻、第1号、22頁(198
3))等が報告されている。
[0008] As the electron-emitting devices, there are roughly classified two types using a thermionic electron-emitting device and a cold cathode electron-emitting device. Field emission type (hereinafter referred to as "FE")
Type ". ), Metal / insulating layer / metal type (hereinafter “MIM”)
Type ". ), Surface conduction electron-emitting devices, and the like.
The surface conduction electron-emitting device utilizes the phenomenon that electron emission occurs when a current flows in a small-area thin film formed on a substrate in parallel with the film surface. Examples of the surface conduction electron-emitting device include a device using a SnO 2 thin film by MIElinson and the like and a device using an Au thin film (G. Dittmer, Thin
Solid Films, 9,317 (1972)), using an In 2 O 3 / SnO 2 thin film (M. Hartwell and CGFonstad, IEEE Trans.
ED conf., 519 (1975)), using a carbon thin film (Hisashi Araki et al., Vacuum, Vol. 26, No. 1, p. 22 (198
3)) etc. have been reported.

【0009】これらの表面伝導型電子放出素子の典型的
な素子構成として、前述のハートウェル(M.Hartwell)
らの素子構成を図5に模式的に示す。同図において50
1は基板である。504は導電性薄膜で、H型形状のパ
ターンにスパッタで形成された金属酸化物薄膜等からな
り、通電フォーミングと呼ばれる通電処理等により電子
放出部505が形成される。なお、図中の素子電極(5
02、503)の間隔Lは0.5〜1mm、またWは
0.1mm程度に設定されている。
[0009] A typical device configuration of these surface conduction electron-emitting devices is described in the above-mentioned M. Hartwell.
FIG. 5 schematically shows these element configurations. In the figure, 50
1 is a substrate. Reference numeral 504 denotes a conductive thin film made of a metal oxide thin film or the like formed by sputtering in an H-shaped pattern, and the electron emission portion 505 is formed by an energization process called energization forming. The device electrodes (5
02, 503) is set to 0.5 to 1 mm, and W is set to about 0.1 mm.

【0010】従来、これらの表面伝導型電子放出素子に
おいては、電子放出を行う前に導電性薄膜4をあらかじ
め通電フォーミングと呼ばれる通電処理によって電子放
出部5を形成するのがー般的であった。すなわち、通電
フォーミングとは前記導電性薄膜4の両端に直流電圧あ
るいは非常にゆっくりとした昇電圧、例えば1V/分程
度を印加通電し、導電性薄膜を局所的に破壊、変形もし
くは変質せしめ、電気的に高抵抗な状態にした電子放出
部5を形成することである。なお、電子放出部5は導電
性薄膜4のー部に亀裂が発生しその亀裂付近から電子放
出が行われる。前記通電フォーミング処理をした表面伝
導型電子放出素子は、上述導電性薄膜4に電圧を印加
し、素子に電流を流すことにより、上述の電子放出部5
より電子を放出せしめるものである。
Heretofore, in these surface conduction electron-emitting devices, it has been common practice to form the electron-emitting portion 5 on the conductive thin film 4 by an energization process called energization forming before electron emission. . That is, energization forming means applying a DC voltage or a very slowly increasing voltage, for example, about 1 V / min, to both ends of the conductive thin film 4 and energizing the conductive thin film 4 to locally destroy, deform or alter the conductive thin film. The purpose is to form the electron-emitting portion 5 in a state of high resistance. In the electron emitting portion 5, a crack is generated in a portion of the conductive thin film 4, and electrons are emitted from the vicinity of the crack. The surface conduction type electron-emitting device that has been subjected to the energization forming process applies the voltage to the conductive thin film 4 and causes a current to flow through the device, thereby forming the electron-emitting portion 5.
It causes more electrons to be emitted.

【0011】上述の表面伝導型電子放出素子は構造が単
純で製造も容易であることから、大面積にわたり多数の
素子を配列形成できる利点がある。そこでこの特徴を活
かして、荷電ビーム源、表示装置等の応用研究がなされ
ている。
The above-described surface conduction electron-emitting device has a simple structure and is easy to manufacture, and thus has an advantage that a large number of devices can be arranged and formed over a large area. Therefore, utilizing this feature, applied researches on charged beam sources, display devices, and the like have been made.

【0012】表面伝導型電子放出素子を用いた画像形成
装置としては、例えば、特開平2−299136号公報
に開示されたものが挙げられる。
An image forming apparatus using a surface conduction electron-emitting device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-299136.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記従
来の絶縁膜の形成方法には、それぞれ以下に記すような
問題を有している。
However, each of the above-mentioned conventional methods for forming an insulating film has the following problems.

【0014】すなわち、印刷法では、ガラスペーストを
用いるため、膜厚が数十μm以上の厚いものしか形成さ
れず、またPdO等の成分が多いために比誘電率が大き
くなり、絶縁特性が悪くなるという欠点があった。
That is, in the printing method, since a glass paste is used, only a thick film having a film thickness of several tens of μm or more is formed, and since there are many components such as PdO, the relative dielectric constant is increased, and the insulating properties are deteriorated. There was a disadvantage of becoming.

【0015】また、CVD法では、高真空を必要とする
ため、基板の大面積化が難しく、スループットが長い、
という欠点があった。
Further, the CVD method requires a high vacuum, so that it is difficult to increase the area of the substrate, and the throughput is long.
There was a disadvantage.

【0016】また、LPD法では、成膜スピードが非常
に遅く、膜の厚みに比例してスループットが長くなると
いう欠点があった。また、SiO2上にしか絶縁層を形
成できないという欠点もあった。
Further, the LPD method has a drawback that the film forming speed is very slow and the throughput becomes longer in proportion to the film thickness. There is also a disadvantage that an insulating layer can be formed only on SiO 2 .

【0017】また、ゾルゲル法では、厚膜化が必要な際
にも、数百nmからせいぜい数μmまでしか厚くできな
いという欠点があった。
In addition, the sol-gel method has a drawback that, even when a thick film is required, the thickness can be increased only from several hundred nm to at most several μm.

【0018】さらに、従来の方法では基板と形成しよう
とする絶縁層とが異種材料である場合、熱膨張率の違い
から、基板と絶縁層の間に応力が発生し、冷却後にひび
割れ、剥れ、反り等が生じるという欠点があった。
Further, in the conventional method, when the substrate and the insulating layer to be formed are made of different materials, stress is generated between the substrate and the insulating layer due to a difference in coefficient of thermal expansion, and cracks and peeling after cooling. There is a disadvantage that warping and the like occur.

【0019】そこで本発明の目的は、基板上に、所望の
膜厚を有し且つ高抵抗で絶縁性の良好な絶縁膜を容易に
形成できる方法を提供することにある。また本発明の目
的は、層間割れや、ひび割れ、反り、剥離等が無く、絶
縁性が良好で所望の膜厚を有する絶縁膜を提供すること
にある。
An object of the present invention is to provide a method for easily forming an insulating film having a desired thickness, high resistance and good insulating properties on a substrate. Another object of the present invention is to provide an insulating film which has no insulation cracks, cracks, warpage, peeling, etc., has good insulation properties, and has a desired film thickness.

【0020】[0020]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために種々の検討を重ねた結果、本発明を
完成した。上記目的は、以下の本発明によって達成され
る。
Means for Solving the Problems The present inventors have conducted various studies to achieve the above object, and as a result, completed the present invention. The above object is achieved by the present invention described below.

【0021】第1の発明は、基板上に絶縁膜を形成する
方法であって、(1)絶縁材塗布液に絶縁性粒子を分散
する工程、(2)絶縁性粒子を含む絶縁材塗布液を基板
上に塗布する工程、(3)該基板を焼成し絶縁膜を形成
する工程からなることを特徴とする絶縁膜の形成方法に
関する。
The first invention is a method for forming an insulating film on a substrate, comprising: (1) a step of dispersing insulating particles in an insulating material coating solution; and (2) an insulating material coating solution containing insulating particles. And (3) baking the substrate to form an insulating film.

【0022】第2の発明は、塗布後の基板の焼成におい
て、仮焼成を行った後に仮焼成温度より高い温度で本焼
成を行う第1の発明の絶縁膜の形成方法に関する。
The second invention relates to the method of forming an insulating film according to the first invention, wherein in the firing of the substrate after the application, the preliminary firing is performed, and then the main firing is performed at a temperature higher than the temporary firing temperature.

【0023】第3の発明は、絶縁性粒子の線膨張係数が
基板のそれとほぼ等しい第1の発明の絶縁膜の形成方法
に関する。
The third invention relates to the method of forming an insulating film according to the first invention, wherein the coefficient of linear expansion of the insulating particles is substantially equal to that of the substrate.

【0024】第4の発明は、絶縁性粒子の粒径が10n
m〜10μmである第1、第2又は第3の発明の絶縁膜
の形成方法に関する。
According to a fourth aspect of the present invention, the particle size of the insulating particles is 10n.
The present invention relates to a method for forming an insulating film according to the first, second or third aspect of the present invention, which has a thickness of 10 to 10 μm.

【0025】第5の発明は、絶縁性粒子が、前記絶縁性
粒子含有絶縁材塗布液に対して、10〜70重量%の範
囲で添加されている第1〜第4のいずれかの発明の絶縁
膜の形成方法に関する。
According to a fifth aspect of the present invention, there is provided the method according to any one of the first to fourth aspects, wherein the insulating particles are added in the range of 10 to 70% by weight based on the insulating material coating liquid containing the insulating particles. The present invention relates to a method for forming an insulating film.

【0026】第6の発明は、絶縁膜を形成した後、該絶
縁膜に生じた微小間隙を埋めることができるように、該
絶縁膜上に、絶縁性粒子を含まない或いは該微小間隙よ
り小さい絶縁性粒子を含む絶縁材塗布液を塗布し焼成を
行う第1の発明の絶縁膜の形成方法に関する。
According to a sixth aspect of the present invention, after the insulating film is formed, the insulating film does not contain insulating particles or is smaller than the minute gap so that the minute gap generated in the insulating film can be filled. The present invention relates to a method for forming an insulating film according to a first aspect of the present invention, in which an insulating material coating solution containing insulating particles is applied and baked.

【0027】第7の発明は、絶縁性粒子の融点あるいは
軟化点が基板の軟化点より十分に低く、且つ、最終的な
焼成を絶縁性粒子の融点あるいは軟化点以上の温度で行
う第1の発明の絶縁膜の形成方法に関する。
According to a seventh aspect of the present invention, the insulating particles have a melting point or softening point sufficiently lower than the softening point of the substrate, and the final baking is performed at a temperature higher than the melting point or softening point of the insulating particles. The invention relates to a method for forming an insulating film.

【0028】第8の発明は、絶縁性粒子を含む絶縁材塗
布液を、基板をコーテイングする直前まで機械的に攪拌
して塗布する第1〜第7のいずれかの発明の絶縁膜の形
成方法に関する。
According to an eighth aspect of the present invention, there is provided a method for forming an insulating film according to any one of the first to seventh aspects, wherein an insulating material coating solution containing insulating particles is mechanically stirred and applied until immediately before coating the substrate. About.

【0029】第9の発明は、絶縁性粒子を含む絶縁材塗
布液を、基板をコーテイングする直前まで超音波を用い
て攪拌して塗布する第1〜第8のいずれかの発明の絶縁
膜の形成方法に関する。
A ninth aspect of the present invention is directed to the insulating film according to any one of the first to eighth aspects, wherein an insulating material coating solution containing insulating particles is applied by stirring using an ultrasonic wave until immediately before coating the substrate. It relates to a forming method.

【0030】第10の発明は、表面伝導型電子放出素子
および該素子を用いた画像形成装置の製造方法において
層間絶縁層として形成する第1〜第9のいずれかの発明
に記載の絶縁膜の形成方法に関する。
According to a tenth aspect of the present invention, there is provided the insulating film according to any one of the first to ninth aspects, which is formed as an interlayer insulating layer in a method of manufacturing a surface conduction electron-emitting device and an image forming apparatus using the device. It relates to a forming method.

【0031】第11の発明は、絶縁性粒子を含む絶縁材
塗布液を基板上に塗布し、焼成してなる絶縁膜に関す
る。
The eleventh invention relates to an insulating film formed by applying an insulating material coating solution containing insulating particles on a substrate and firing the applied solution.

【0032】第12の発明は、絶縁性粒子の線膨張係数
が基板のそれとほぼ等しい第11の発明の絶縁膜に関す
る。
The twelfth invention relates to the insulating film of the eleventh invention, wherein the coefficient of linear expansion of the insulating particles is substantially equal to that of the substrate.

【0033】第13の発明は、絶縁性粒子の粒径が10
nm〜10μmである第11又は第12の発明の絶縁膜
に関する。
According to a thirteenth aspect, the insulating particles have a particle size of 10
The present invention relates to an insulating film according to an eleventh or twelfth invention having a thickness of 10 nm to 10 μm.

【0034】第14の発明は、絶縁性粒子が、前記絶縁
性粒子含有絶縁材塗布液に対して、10〜70重量%の
範囲で添加されている第11、第12又は第13の発明
の絶縁膜に関する。
A fourteenth invention is directed to the eleventh, twelfth, or thirteenth invention, wherein the insulating particles are added in an amount of 10 to 70% by weight based on the insulating particle-containing insulating material coating solution. It relates to an insulating film.

【0035】第15の発明は、絶縁性粒子を含む絶縁材
塗布液を基板上に塗布し焼成してなる絶縁膜上に、該絶
縁膜に生じた微小間隙を埋めることができるように、該
基板上に、絶縁性粒子を含まない或いは該微小間隙より
小さい絶縁性粒子を含む絶縁材塗布液を塗布し焼成して
なる絶縁膜に関する。
According to a fifteenth aspect, an insulating material coating solution containing insulating particles is applied to a substrate and baked so that a minute gap generated in the insulating film can be filled in the insulating film. The present invention relates to an insulating film formed by applying and baking an insulating material coating solution containing no insulating particles or containing insulating particles smaller than the minute gap on a substrate.

【0036】第16の発明は、絶縁性粒子の融点あるい
は軟化点が基板の軟化点より十分に低い第11の発明の
絶縁膜に関する。
The sixteenth invention relates to the insulating film according to the eleventh invention, wherein the melting point or softening point of the insulating particles is sufficiently lower than the softening point of the substrate.

【0037】[0037]

【発明の実施の形態】以下、本発明の実施の形態を挙げ
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0038】図1は、本発明の方法により基板上に形成
された絶縁膜の断面図を示す。図1において、1は基
板、2は絶縁層、3は絶縁性粒子、4は絶縁材料からな
るマトリクス部を表す。
FIG. 1 shows a sectional view of an insulating film formed on a substrate by the method of the present invention. In FIG. 1, 1 is a substrate, 2 is an insulating layer, 3 is insulating particles, and 4 is a matrix portion made of an insulating material.

【0039】本発明に用いる基板1は、例えば、ケイ酸
ガラス、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラ
ス等のガラス基板、アルミナ等のセラミックス基板、金
属、あるいはシリコン等から適宜選択される。
The substrate 1 used in the present invention is appropriately selected from, for example, glass substrates such as silicate glass, soda-lime glass, lead glass and borosilicate glass, ceramic substrates such as alumina, metal, and silicon.

【0040】本発明に用いる絶縁性粒子3の材質は、例
えば、ホウケイ酸ガラス、アルミノケイ酸ガラス、ソー
ダ石灰ガラス、鉛ガラス、石英ガラス等のガラス、ある
いは金属やセラミックス等が挙げられる。例えば、東芝
バロテーニ社製、ガラスビーズMB−10(平均粒径5
μm、粒径2〜10μm)等のガラスが好ましく用いら
れる。
The material of the insulating particles 3 used in the present invention includes, for example, borosilicate glass, aluminosilicate glass, soda-lime glass, lead glass, quartz glass, and other metals, and metals and ceramics. For example, glass beads MB-10 (average particle size 5
Glass having a particle size of 2 to 10 μm) is preferably used.

【0041】また、これらの絶縁性粒子は、絶縁膜を形
成しようとする基板の線膨張係数と同程度の膨張係数を
持つ材質からなることが望ましい。絶縁性粒子の材質の
線膨張係数が基板のものと大きく外れる場合には、焼成
時に、それぞれの熱膨張率の違いにより応力が発生し、
割れ、反り、はがれ等の原因となる虞がある。
It is desirable that these insulating particles are made of a material having a coefficient of expansion approximately equal to the coefficient of linear expansion of the substrate on which the insulating film is to be formed. If the coefficient of linear expansion of the material of the insulating particles deviates significantly from that of the substrate, during firing, stress is generated due to the difference in the coefficient of thermal expansion,
There is a risk of causing cracks, warpage, peeling, and the like.

【0042】また、上記絶縁性粒子は粒径10nm〜1
0μm程度の大きさであることが望ましい。10nmよ
り小さい粒径のものを用いると、塗布液に粒子を均ーに
分散させにくく、調製に時間がかかる。また、10μm
より大きいものを用いると、粒子が液中ですぐに沈降し
てしまい、ディッピング等の手法では塗布しにくくな
る。粒径は、粒子混合後の含粒子絶縁材塗布液の安定性
や、成膜後の膜質等を考慮すると、1μm以下であれば
更に望ましい。
The insulating particles have a particle size of 10 nm to 1 nm.
Desirably, the size is about 0 μm. When a particle having a particle diameter smaller than 10 nm is used, it is difficult to uniformly disperse the particles in the coating solution, and it takes time to prepare. Also, 10 μm
If a larger one is used, the particles will settle out immediately in the liquid, making it difficult to apply by a technique such as dipping. The particle size is more preferably 1 μm or less in consideration of the stability of the particle-containing insulating material coating liquid after mixing the particles, the film quality after film formation, and the like.

【0043】また、上記絶縁性粒子は装置全体の軽量化
や電気特性上の理由等から中空のものを用いてもよい。
The insulating particles may be hollow for reasons such as weight reduction of the whole device and electric characteristics.

【0044】また、マトリクス部4を形成する液状絶縁
材料に対する絶縁性粒子3の量は、70重量%を超える
と、塗布液全体がダンゴ状になって通常の方法では塗布
できなくなってしまい、一方10重量%未満であると膜
厚に対する効果が低いため、10〜70重量%の範囲で
必要な膜厚に則した量を添加することが好ましい。
If the amount of the insulating particles 3 with respect to the liquid insulating material forming the matrix portion 4 exceeds 70% by weight, the whole coating liquid becomes dango-shaped and cannot be coated by a normal method. If the content is less than 10% by weight, the effect on the film thickness is low. Therefore, it is preferable to add an amount in the range of 10 to 70% by weight according to the required film thickness.

【0045】本発明に用いる液状絶縁材料は、テトラエ
トキシシラン等のシラン化合物をエタノール等の適当な
溶剤に溶かした調製品、または市販のゾルゲル液(例:
日本曹達(株)製のアトロン、東芝シリコーン(株)製
のトスガード)等の何れを用いてもよい。また、アルミ
ニウムのキレート塩、有機アルカリ金属塩または有機ア
ルカり土類金属塩等を含有する組成物で、焼成すると無
機酸化物のみになるように調合したものでもよい(例:
東レダウコーニング(株)製のAY49−208)。す
なわち、焼成によって絶縁膜を形成するような液状の組
成物が好ましく使用される。
The liquid insulating material used in the present invention may be a preparation prepared by dissolving a silane compound such as tetraethoxysilane in a suitable solvent such as ethanol, or a commercially available sol-gel solution (eg:
Any of Atron manufactured by Nippon Soda Co., Ltd. and Tosgard manufactured by Toshiba Silicone Co., Ltd.) may be used. Further, a composition containing a chelate salt of aluminum, an organic alkali metal salt, an organic alkaline earth metal salt, or the like, may be prepared so as to become only an inorganic oxide when calcined (eg:
AY49-208 manufactured by Toray Dow Corning Co., Ltd.). That is, a liquid composition that forms an insulating film by firing is preferably used.

【0046】また、該組成物(液状絶縁材料)が、ある
程度の粘度を有していても構わない。
The composition (liquid insulating material) may have a certain degree of viscosity.

【0047】また、該液状絶縁材料の極性は小さくても
使用できるが、一般的には10(cal1/2/cm3/2
以上であるほうが絶縁性粒子が沈降しにくくなってよ
い。15(cal1/2/cm3/2)以上であれば更に好ま
しい。また市販の分散安定剤等を添加してもよい。
Although the polarity of the liquid insulating material can be used even if it is small, it is generally 10 (cal 1/2 / cm 3/2 ).
The above may make the insulating particles less likely to settle. It is more preferable that it be 15 (cal 1/2 / cm 3/2 ) or more. Further, a commercially available dispersion stabilizer or the like may be added.

【0048】次に、本発明の絶縁膜の形成方法について
説明する。
Next, a method for forming an insulating film according to the present invention will be described.

【0049】上記の含粒子絶縁材塗布液の基板への塗布
方法は、一般に知られているスピンコート法・ディップ
コート法・スプレーコート法・ロールバーによるコート
法などのいずれを用いてもよい。
As a method for applying the above-mentioned coating solution containing particle-containing insulating material to the substrate, any of generally known methods such as spin coating, dip coating, spray coating, and roll bar coating may be used.

【0050】さらに、成膜の際、塗布工程は1回のみで
ある必要はなく、塗布中の気泡、むら等が原因となって
発生するピンホール、ボイド等を防止するために2回以
上塗布を行ってもよい。
In addition, the coating process need not be performed only once at the time of film formation, and is performed twice or more in order to prevent pinholes, voids, and the like generated due to bubbles and unevenness during coating. May be performed.

【0051】また、塗布工程において、該絶縁性粒子の
粒径や液の成分によっては、液中に絶縁性粒子を攪拌混
合した後すぐに該絶縁性粒子の沈降が起こってしまう場
合がある。このような場合においては、基板に塗布する
直前まで、該含粒子絶縁材塗布液を機械的に攪拌するこ
と、或いは超音波を用いて攪拌することが好ましい。
In addition, in the coating step, depending on the particle size of the insulating particles and the components of the liquid, the insulating particles may be precipitated immediately after stirring and mixing the insulating particles in the liquid. In such a case, it is preferable to mechanically stir the particle-containing insulating material coating liquid or to stir using an ultrasonic wave until immediately before coating on the substrate.

【0052】焼成工程では、上記の含粒子絶縁材塗布液
を塗布した後に、必要に応じて仮焼成を行い、本焼成を
行う。
In the sintering step, after the above-mentioned coating solution of the particle-containing insulating material is applied, temporary sintering is performed if necessary, and then main sintering is performed.

【0053】該含粒子絶縁材塗布液を基板に塗布した後
に仮焼成を行う場合は、通常、該絶縁材塗布液中の有効
成分、例えばシリコ−ン化合物等の沸点以下、およそ6
0〜200℃、より好ましくは60〜100℃の温度で
行えば、有効成分の揮発等が無く、好ましい。
When calcination is carried out after applying the particle-containing insulating material coating liquid to the substrate, usually, the effective component in the insulating material coating liquid, for example, the boiling point of the silicon compound or the like is lower than about 6%.
It is preferable to carry out at a temperature of 0 to 200 ° C., more preferably 60 to 100 ° C., since there is no volatilization of the active ingredient.

【0054】また本焼成は、シリコーン化合物のアルコ
キシ基が脱離し、脱水反応が十分に進行する温度が望ま
しく、通常200℃以上、より好ましくは350℃以上
で行う。
The firing is preferably carried out at a temperature at which the alkoxy group of the silicone compound is eliminated and the dehydration reaction sufficiently proceeds, usually at 200 ° C. or higher, more preferably at 350 ° C. or higher.

【0055】本発明の形成方法は、重ね塗りを行った後
に本焼成を行ってもよい。図2(a)は、含粒子絶縁材
塗布液を塗布して仮焼成または本焼成した後、絶縁性粒
子3と液状絶縁材料からなるマトリクス部4との界面に
微小間隙5が生じた状態を示す。図2(b)は、絶縁性
粒子を含まない粒子絶縁材塗布液(液状絶縁材料)ある
いは含粒子絶縁材塗布液を、微小間隙5を埋めるように
再び塗布し焼成を行い、再塗布層6を形成した状態を示
す。
In the formation method of the present invention, the main baking may be performed after the overcoating is performed. FIG. 2A shows a state in which a minute gap 5 is formed at the interface between the insulating particles 3 and the matrix portion 4 made of the liquid insulating material after the particle-containing insulating material coating liquid is applied and pre-baked or main-baked. Show. FIG. 2 (b) shows that a particle insulating material coating liquid containing no insulating particles (liquid insulating material) or a particle insulating material coating liquid is applied again so as to fill the minute gap 5, baked, and re-coated layer 6 is formed. Shows a state in which is formed.

【0056】塗布液中の絶縁性粒子の含有量が多い場
合、成膜後の絶縁膜は、マトリクス部4を形成する液状
絶縁材料が、焼成される際にその溶剤が揮発し、その有
効成分も焼き締まって収縮するためマトリクス部の容量
が小さくなり、見かけ上、絶縁性粒子3が多数並んだ微
小間隙5の多い状態になる(図2(a))。
When the content of the insulating particles in the coating solution is large, the solvent is volatilized when the liquid insulating material forming the matrix portion 4 is baked, and the effective component thereof is formed. Since the matrix also shrinks and shrinks, the capacity of the matrix portion is reduced, and apparently there is a large number of minute gaps 5 in which a large number of insulating particles 3 are arranged (FIG. 2A).

【0057】この微小間隙5は、絶縁性粒子を含まない
或いは該微小間隙より小さい絶縁性粒子を含む絶縁材塗
布液を用いて埋めることが望ましい(図2(b))。そ
の方法としては、微小間隙の多い絶縁膜上に液状絶縁材
料または含粒子絶縁材塗布液を滴下浸透させた後、余分
な液を吹き飛ばすスピンコート法や、金属等のバーによ
り余分な液を除くロールバーコート、あるいは霧で微小
間隙に浸透させるスプレーコート等の方法により液状絶
縁材料等の塗布を行い焼成する方法が挙げられる。
It is desirable that the minute gaps 5 be filled with an insulating material coating solution containing no insulating particles or containing insulating particles smaller than the minute gaps (FIG. 2B). As a method, a liquid insulating material or a particle-containing insulating material coating liquid is dripped and infiltrated on an insulating film having many minute gaps, and then a spin coating method of blowing off an excess liquid or removing excess liquid by a bar of metal or the like is used. A method in which a liquid insulating material or the like is applied by a method such as a roll bar coat or a spray coat in which the fine gap is penetrated with fog and baked is used.

【0058】または、液状絶縁材料または含粒子絶縁材
塗布液中に浸せきし、十分浸透させた上で引き上げて塗
布するディップコート法で、液への浸せき時間を特に長
くしてから引きあげる方法によって行ってもよい。この
ときの引き上げ速度は、含粒子液状絶縁材塗布液の塗布
時より遅い速度で行うほうが最表層の絶縁性粒子上に塗
布されにくいため好ましい。速い速度で行うと最表層の
絶縁性粒子上に絶縁材料が厚く塗布されてしまい、焼成
時にこの部分が細かい割れを生じて剥れを起こす虞があ
る。
Alternatively, a dip coating method of immersing in a liquid insulating material or a particle-containing insulating material coating liquid, sufficiently penetrating the liquid, and then pulling up the liquid to apply the liquid is used. May go. The lifting speed at this time is preferably lower than that at the time of applying the liquid insulating coating material containing particles, since it is difficult to coat the insulating particles on the outermost layer. If the operation is performed at a high speed, the insulating material is applied thickly on the insulating particles in the outermost layer, and this portion may be finely cracked and peeled off during firing.

【0059】また、ディップコートで浸せき中に超音波
をかけるか又はディップコート処理そのものを減圧下に
て行えば、粒子間の細かい隙間にまで液が侵入するた
め、好ましい。
It is preferable to apply ultrasonic waves during the dip coating or to perform the dip coating treatment under reduced pressure, since the liquid penetrates into fine gaps between particles.

【0060】ここで、絶縁性粒子を含んでいない絶縁材
塗布液を用いる場合は、焼成後の膜厚が0.1〜5μm
程度の厚みになる液状絶縁材料を使用することが好まし
い。単膜に塗布した時の厚みが著しく薄いものを用いる
と、粒子間の微小間隙を埋めるために多数回コートしな
ければならないし、単膜の厚みが著しく厚いものを用い
ると、粒子間の微小間隙が十分に埋まらず、絶縁性粒子
の最表層にコートされるだけとなってしまう。
Here, when using an insulating material coating solution containing no insulating particles, the film thickness after firing is 0.1 to 5 μm.
It is preferable to use a liquid insulating material having a thickness of the order. If the thickness of a single film is extremely small, it must be coated many times to fill the minute gaps between the particles. The gap is not sufficiently filled, and only the outermost layer of the insulating particles is coated.

【0061】一方、絶縁性粒子を混合した液状絶縁材料
(含粒子絶縁材塗布液)を用いる場合は、該絶縁性粒子
の大きさが微小間隙5の大きさより充分に小さいものを
用いることが望ましい。
On the other hand, when a liquid insulating material mixed with insulating particles (coating solution containing particle insulating material) is used, it is desirable that the size of the insulating particles is sufficiently smaller than the size of the minute gap 5. .

【0062】本発明の絶縁膜に用いる絶縁性粒子は、基
板の軟化点と比べて、融点または軟化点が充分低いもの
を使用し、最終的な焼成あるいは本焼成を絶縁性粒子の
融点または熱軟化点以上の温度で行うことが望ましい。
材質として好ましいものは、例えば、PbO−B23
PbO−ZnO−B23等の組成系の低融点ガラスが挙
げられる。基板との組合せとしては、例えば、基板がソ
ーダ石灰ガラスのとき、PbO−B23組成系のガラス
(日本電気硝子(株)製LS−3081(250メッシ
ュ)等)を用いることが好ましい。
As the insulating particles used in the insulating film of the present invention, those having a melting point or softening point sufficiently lower than the softening point of the substrate are used. It is desirable to carry out at a temperature higher than the softening point.
As a preferable material, a low-melting glass having a composition such as PbO—B 2 O 3 or PbO—ZnO—B 2 O 3 is used. The combination of the substrate, for example, when the substrate is soda lime glass, it is preferable to use a PbO-B 2 O 3 composition system glass (Nippon Electric Glass Co., Ltd. LS-3081 (250 mesh) and the like).

【0063】図3は、本焼成中に、絶縁性粒子が融解ま
たは軟化して液状絶縁材料と混和し、空孔、ピンホール
等の少ない、より均質な絶縁膜が形成された状態を示
す。
FIG. 3 shows a state in which the insulating particles are melted or softened and mixed with the liquid insulating material during the main firing to form a more uniform insulating film having few holes, pinholes and the like.

【0064】本発明の絶縁膜を、表面伝導型電子放出素
子を用いた画像形成装置の層間絶縁膜に用いた場合、絶
縁性粒子の材質や含有量を適切に選ぶことによって、割
れ、剥がれ等が無い、緻密な層間絶縁膜を、少ない塗布
回数で形成することができる。
When the insulating film of the present invention is used as an interlayer insulating film of an image forming apparatus using a surface conduction electron-emitting device, cracking, peeling, etc. can be achieved by appropriately selecting the material and content of the insulating particles. , A dense interlayer insulating film can be formed with a small number of application times.

【0065】[0065]

【実施例】以下、本発明を実施例によりさらに説明する
が、本発明はこれらに限定するものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0066】実施例1 焼成後の膜厚が5μmとなるように調製されているゾル
ゲル剤アトロン(日本曹達(株)製)に、東芝バロテー
ニ社製ガラスビーズMB−10(平均粒径5μm、粒径
範囲2〜10μm)を60重量%加え、均一に分散する
まで機械的攪拌および超音波攪拌を行った。
Example 1 A sol-gel agent Atron (manufactured by Nippon Soda Co., Ltd.) prepared so that the film thickness after firing was 5 μm was added to glass beads MB-10 (average particle size: 5 μm, average particle size: 5 μm, manufactured by Toshiba Baroteni). (A diameter range of 2 to 10 μm) was added by 60% by weight, and mechanical stirring and ultrasonic stirring were performed until the mixture was uniformly dispersed.

【0067】この含粒子絶縁材塗布液は、塗布する直前
まで機械的攪拌によリガラスビーズの分散を行い、A4
版2mm厚のソーダ石灰ガラス基板をこの含粒子絶縁材
塗布液に10秒間浸せきし、引き上げ速度600mm/
分で引き上げた。
This particle-containing insulating material coating liquid is subjected to dispersion of glass beads by mechanical stirring until immediately before coating, and A4
A 2 mm thick soda-lime glass substrate is immersed in the particle-containing insulating material coating solution for 10 seconds, and a lifting speed of 600 mm /
Raised in minutes.

【0068】液のたれ落ちがなくなるまで充分に待った
後、140℃で15分間仮焼成した。さらに、450℃
で1時間本焼成を行った。
After sufficiently waiting for the liquid to no longer drip, calcined at 140 ° C. for 15 minutes. In addition, 450 ° C
For one hour.

【0069】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚が34μmとなっており、また膜の表面には粒
径2〜10μmの粒子が観察された。また、この絶縁層
の見かけ上の比誘電率は4.5であった。
When the coated product was observed with an electron microscope, the thickness was 34 μm, and particles having a particle size of 2 to 10 μm were observed on the surface of the film. The apparent relative dielectric constant of this insulating layer was 4.5.

【0070】実施例2 上記実施例1において仮焼成工程終了後、焼成後膜厚が
1μmとなるように調製されているゾルゲル剤アトロン
(日本曹達(株)製)中に超音波をかけながら10秒間
浸せきし、引き上げ速度80mm/分で引き上げた。液
だれがなくなるまで十分に待った後、この基板を140
℃で15分間仮焼成した。再度、同様に浸漬、引き上
げ、仮焼成を繰り返し、最後に450℃で1時間本焼成
した。
Example 2 After the calcination step was completed in Example 1 described above, the sol-gel agent Atron (manufactured by Nippon Soda Co., Ltd.) was prepared so that the film thickness after calcination was 1 μm. It was immersed for 2 seconds and pulled up at a pulling speed of 80 mm / min. After waiting for the liquid to drain completely, remove the substrate
Preliminary calcination at 15 ° C. for 15 minutes. Again, immersion, pulling up, and temporary baking were repeated in the same manner, and finally baking was performed at 450 ° C. for 1 hour.

【0071】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚は35μmとなっていた。また、膜の表面に観
察された粒子の微小間隙は、今回のゾルゲル剤ディッピ
ング作業により充填され、平坦化していることがわかっ
た。さらに、この絶縁層の見かけ上の比誘電率は、4.
2であった。
When the coated product was observed with an electron microscope, the thickness was 35 μm. It was also found that the fine gaps of the particles observed on the surface of the film were filled and flattened by the sol-gel dipping operation this time. Further, the apparent relative permittivity of this insulating layer is 4.
It was 2.

【0072】実施例3 上記実施例2において間隙充填作業を行う際、超音波を
使用せず、代わりにディップ槽全体を30Torrに減
圧した。その他の操作は、すべて同一の操作で行った。
Example 3 In performing the gap filling operation in Example 2 above, ultrasonic waves were not used, and instead the entire dip tank was depressurized to 30 Torr. All other operations were performed by the same operation.

【0073】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚は35μmであった。また、膜の表面に観察さ
れた粒子の微小間隙は、今回のゾルゲル剤ディッピング
作業により充填され、平坦化していることがわかった。
When the coated product was observed with an electron microscope, the film thickness was 35 μm. It was also found that the fine gaps of the particles observed on the surface of the film were filled and flattened by the sol-gel dipping operation this time.

【0074】実施例4 A4版サイズのソーダ石灰ガラスに、長手方向で230
μmおきに厚さ1μm、幅100μmで銀ペーストを配
線した。続いて、図4(a)に示すように、ネガ型レジ
ストBMRC−1000(東京応化工業(株))をスピ
ンコーティング(600rpm、25秒)により30μ
m厚で塗布し、80℃で30分間焼成した。
Example 4 A4 size soda-lime glass was immersed in the longitudinal direction by 230
The silver paste was wired with a thickness of 1 μm and a width of 100 μm every μm. Subsequently, as shown in FIG. 4 (a), a negative resist BMRC-1000 (Tokyo Ohka Kogyo Co., Ltd.) was applied by spin coating (600 rpm, 25 seconds) to 30 μm.
m and baked at 80 ° C. for 30 minutes.

【0075】次に、図4(b)に示すように、400μ
mおきに線幅320μmのパタ−ンを持つマスクを用い
て露光後、現像して余分なレジストを除いた後、140
℃で30分間焼き締めを行った。
Next, as shown in FIG.
After exposing using a mask having a pattern with a line width of 320 μm every m and developing to remove the excess resist, 140
C. for 30 minutes.

【0076】ゾルゲル溶液トスガードK510溶液(東
芝シリコーン(株))に55重量%の東芝バロティーニ
(株)製MB−10(平均粒径5μm、粒径範囲2〜1
0μm)を超音波と機械的攪拌により十分に分散させた
含粒子絶縁材塗布液に、レジストパターンニングしたガ
ラスを10秒間、超音波をかけながら浸せきし600m
m/分で引き上げた後、表面が乾かない内にレジストの
上およびレジストよりも厚く塗布されている部分をスキ
ージし、絶縁膜のパターンを形成した。(図4
(c))。
Sol-gel solution Tosgard K510 solution (Toshiba Silicone Co., Ltd.) was added to 55% by weight of Toshiba Barotini's MB-10 (average particle size 5 μm, particle size range 2-1).
0 μm) was immersed for 10 seconds in a particle-containing insulating material coating solution in which ultrasonic waves and mechanical stirring were sufficiently dispersed, while applying ultrasonic waves to 600 m.
After lifting at a rate of m / min, a squeegee was applied to the resist and a portion coated thicker than the resist while the surface was not dried to form a pattern of an insulating film. (FIG. 4
(C)).

【0077】140℃で15分間仮焼成した後、ゾルゲ
ル溶液トスガードK510に1分間超音波をかけながら
浸せきし、引き上げ速度80mm/分で引き上げて、絶
縁膜の微小間隙を充填し、140℃で15分間仮焼成し
た後、450℃で1時間本焼成した。これにより、図4
(d)に示すように、空気中の酸素でレジストが燃焼
し、さらにレジスト部の温度膨張により、その上に付着
していた絶縁材料層が破壊されてレジストパターンの部
分が焼け抜けた。
After calcination at 140 ° C. for 15 minutes, the film is immersed in a sol-gel solution Tosgard K510 for 1 minute while applying ultrasonic waves, and pulled up at a pulling rate of 80 mm / min to fill the minute gaps of the insulating film. After calcining for 1 minute, the body was calcined at 450 ° C. for 1 hour. As a result, FIG.
As shown in (d), the resist was burned by oxygen in the air, and furthermore, the thermal expansion of the resist portion destroyed the insulating material layer adhered thereon, and the resist pattern portion was burned out.

【0078】最後に、少し残っている絶縁膜の残渣を4
kg/cm2のエアーブロー及び水洗いによって除去し
た。
Finally, the residue of the insulating film slightly remaining is removed
It was removed by air blowing with kg / cm 2 and washing with water.

【0079】でき上がった絶縁膜を測定したところ、膜
厚が30μm、400μm幅、スペース320μmピッ
チにパターンニングされた絶縁膜が形成されていた。
When the completed insulating film was measured, it was found that an insulating film having a thickness of 30 μm, a width of 400 μm, and a pitch of 320 μm was formed.

【0080】実施例5 上記実施例4における微小間隙を充填するための塗布
を、ディップコーティングによる方法からスプレーコー
ティングによる方法へ置き換えて、他は全く同じ条件で
行った。でき上がり後の絶縁膜を測定したところ、膜厚
約30μmで400μm幅の絶縁膜が形成されていた。
Example 5 The application for filling the minute gaps in Example 4 was carried out under exactly the same conditions except that the method of dip coating was replaced by the method of spray coating. When the completed insulating film was measured, an insulating film having a thickness of about 30 μm and a width of 400 μm was formed.

【0081】実施例6 上記実施例4で以下の条件のみを変更して行った。Example 6 Example 4 was performed by changing only the following conditions.

【0082】レジストを1回スピンコーティング後、8
0℃で10分間焼成し、冷却後さらにBMRC−100
0を1回目と同一の条件でスピンコーティングし、80
℃で30分間焼成した。露光パターンは同一のものを用
い、露光時間は2倍にした。含粒子絶縁材塗布液はトス
ガードK510溶液(東芝シリリコーン(株))に65
重量%の東芝パロティーニ(株)製MB−10A(平均
粒径5μm、粒径幅2〜10μm、重量比1ppmのア
ミノ系シランカップリング剤を処理したもの)を超音波
と機械的捜拌により十分に分散させた溶液を使用した。
以上の点以外は実施例4と同一の操作を行った。
After spin-coating the resist once, 8
Baking at 0 ° C for 10 minutes, and after cooling, further BMRC-100
0 was spin-coated under the same conditions as the first time,
Baking at 30 ° C. for 30 minutes. The same exposure pattern was used, and the exposure time was doubled. The particle-containing insulating material coating solution was applied to Tosgard K510 solution (Toshiba Silylicone Co., Ltd.).
% By weight of MB-10A manufactured by Toshiba Parotini Co., Ltd. (treated with an amino-based silane coupling agent having an average particle size of 5 μm, a particle size width of 2 to 10 μm, and a weight ratio of 1 ppm) was sufficiently subjected to ultrasonic wave and mechanical stirring. Was used.
Except for the above points, the same operation as in Example 4 was performed.

【0083】でき上がった絶縁膜を測定したところ、膜
厚60μmで400μm幅、スペース320μmピッチ
となっていた。
When the completed insulating film was measured, it had a thickness of 60 μm, a width of 400 μm, and a pitch of 320 μm.

【0084】実施例7 上記実施例4で以下の条件のみを変更して行った。Example 7 Example 4 was carried out by changing only the following conditions.

【0085】基板は3mm厚のアルミニウム板を用い
た。レジストを1回スピンコーティング後、80℃で1
0分間焼成し、冷却後、さらにBMRC−1000を1
回目と同一の条件でスピンコーティングし、80℃で3
0分間焼成した。露光パタ−ンは同一のものを用い、露
光時間は2倍にした。含粒子絶縁材塗布液は、日本曹達
(株)製アトロン(焼成後膜厚5μm)に65重量%の
アルミニウム粉末(平均粒径6μm、粒径幅3〜10μ
m)を超音波と機械的攪拌により十分に分散させた溶液
を使用した。以上の点以外は実施例4と同一の操作を行
った。
The substrate used was a 3 mm thick aluminum plate. After spin coating the resist once,
Baking for 0 minutes, cooling, and then adding 1 more BMRC-1000
Spin-coat under the same conditions as the first time,
Bake for 0 minutes. The same exposure pattern was used, and the exposure time was doubled. The particle-containing insulating material coating solution was coated on a 65% by weight aluminum powder (average particle size: 6 μm, particle size width: 3 to 10 μm) in Nippon Soda Co., Ltd. Atron (film thickness after firing: 5 μm).
A solution in which m) was sufficiently dispersed by ultrasonic waves and mechanical stirring was used. Except for the above points, the same operation as in Example 4 was performed.

【0086】でき上がった絶縁膜を測定したところ、膜
厚60μmで400μm幅、スペ−ス320μmピッチ
となっていた。
When the completed insulating film was measured, it was found that the film had a thickness of 60 μm, a width of 400 μm, and a pitch of 320 μm.

【0087】実施例8 上記実施例4で以下の条件のみを変更して行った。Example 8 Example 4 was carried out by changing only the following conditions.

【0088】含粒子絶縁材塗布液は、日本曹達(株)製
アトロン(焼成後膜厚5μm)にフリットガラス粉末
(日本電気硝子(株)製LS−3081(250メッシ
ュ))を70重量%になるように、超音波と機械的攪拌
により十分に分散させた溶液を使用した。また、間隙充
填操作は行わず、塗布後140℃、30分間仮焼成後、
450℃、1時間本焼成を行った。使用したフリットガ
ラス粉末の軟化点は362℃である。以上の点以外は実
施例4と同一の操作を行った。
The particle-containing insulating material coating solution was prepared by adding 70% by weight of frit glass powder (LS-3081 (250 mesh) manufactured by Nippon Electric Glass Co., Ltd.) to Atron manufactured by Nippon Soda Co., Ltd. (film thickness after firing is 5 μm). A solution that was sufficiently dispersed by ultrasonic waves and mechanical stirring was used. Also, without performing a gap filling operation, after pre-baking at 140 ° C. for 30 minutes after application,
The main baking was performed at 450 ° C. for one hour. The softening point of the frit glass powder used is 362 ° C. Except for the above points, the same operation as in Example 4 was performed.

【0089】でき上がった絶縁膜を測定したところ、膜
厚30μm、400μm幅、スペース320μmピッチ
となっていた。また、この絶縁膜を顕微鏡で詳細に観察
すると、フリットガラスが溶融して粒子形状は観察され
ず均一な膜になっていた。
When the completed insulating film was measured, it was found that the film thickness was 30 μm, the width was 400 μm, and the pitch was 320 μm. Further, when this insulating film was observed in detail with a microscope, the frit glass was melted and the particle shape was not observed, and the film was uniform.

【0090】実施例9 焼成後の膜厚が5μmとなるように調製されているゾル
ゲル剤アトロン(日本曹達(株)製)に、(株)アドマ
テックス製ガラスビーズアドファインSO−C2(平均
粒径0.5μm、粒径範囲0.1〜1μm)を60重量
%加え、均一に分散するまで機械的攪拌および超音波攪
拌を行った。
Example 9 Glass beads Adfine SO-C2 (average particle size, manufactured by Admatex Co., Ltd.) were added to Atoron (manufactured by Nippon Soda Co., Ltd.), a sol-gel agent prepared so that the film thickness after firing was 5 μm. (A diameter of 0.5 μm, a particle size range of 0.1 to 1 μm) was added by 60% by weight, and mechanical stirring and ultrasonic stirring were performed until the particles were uniformly dispersed.

【0091】この含粒子絶縁材塗布液は、塗布する直前
まで機械的攪拌によリガラスビーズの分散を行い、A4
版2mm厚の石英ガラス基板をこの含粒子絶縁材塗布液
に10秒間浸せきし、引き上げ速度600mm/分で引
き上げた。
[0091] The glass-containing insulating material coating liquid is subjected to dispersion of glass beads by mechanical stirring until just before coating.
A 2 mm-thick quartz glass substrate was immersed in the particle-containing insulating material coating solution for 10 seconds, and pulled up at a pulling rate of 600 mm / min.

【0092】液のたれ落ちがなくなるまで充分に待った
後、140℃で15分間仮焼成した。さらに、450℃
で1時間本焼成を行った。
After sufficiently waiting until the liquid no longer dripped off, it was calcined at 140 ° C. for 15 minutes. In addition, 450 ° C
For one hour.

【0093】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚が34μmとなっており、また膜の表面には粒
子が観察された。また周辺部での剥がれはほとんど観察
されなかった。
When the coated product was observed with an electron microscope, the film thickness was 34 μm, and particles were observed on the surface of the film. Also, almost no peeling at the periphery was observed.

【0094】実施例10 上記実施例9において仮焼成工程終了後、焼成後膜厚が
1μmとなるように調製されているゾルゲル剤アトロン
(日本曹達(株)製)中に超音波をかけながら1分間浸
せきし、引き上げ速度80mm/分で引き上げた。液だ
れがなくなるまで十分に待った後、この基板を140℃
で15分間仮焼成した。再度、同様に浸漬、引き上げ、
仮焼成を繰り返し、最後に450℃で1時間本焼成し
た。
Example 10 After completion of the preliminary firing step in Example 9 above, the ultrasonic wave was applied to a sol-gel agent Atron (manufactured by Nippon Soda Co., Ltd.) prepared so that the film thickness after firing was 1 μm. And immersed for 80 minutes at a lifting speed of 80 mm / min. After waiting enough for the liquid to disappear, the substrate is heated to 140 ° C.
For 15 minutes. Again, immerse, pull up,
Preliminary firing was repeated, and finally final firing was performed at 450 ° C. for 1 hour.

【0095】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚は35μmとなっていた。また、膜の表面に観
察された粒子の微小間隙は、今回のゾルゲル剤ディッピ
ング作業により充填され、平坦化していることがわかっ
た。
When the coated product was observed with an electron microscope, the thickness was 35 μm. It was also found that the fine gaps of the particles observed on the surface of the film were filled and flattened by the sol-gel dipping operation this time.

【0096】実施例11 上記実施例10において間隙充填作業を行う際、超音波
を使用せず、代わりにディップ槽全体を30Torrに
減圧した。その他の操作は、すべて同一の操作で行っ
た。
Example 11 When performing the gap filling operation in Example 10 described above, ultrasonic waves were not used, and instead the entire dip tank was depressurized to 30 Torr. All other operations were performed by the same operation.

【0097】この塗布物を電子顕微鏡で観察したとこ
ろ、膜厚は35μmであった。また、膜の表面に観察さ
れた粒子の微小間隙は、今回のゾルゲル剤ディッピング
作業により充填され、平坦化していることがわかった。
When the coated product was observed with an electron microscope, the film thickness was 35 μm. It was also found that the fine gaps of the particles observed on the surface of the film were filled and flattened by the sol-gel dipping operation this time.

【0098】実施例12 A4版サイズの石英ガラスに、長手方向で230μmお
きに厚さ1μm、幅100μmで銀ペーストを配線し
た。続いて、図4(a)に示すように、ネガ型レジスト
BMRC−1000(東京応化工業(株))をスピンコ
ーティング(600rpm、25秒)により30μm厚
で塗布し、80℃で30分間焼成した。
Example 12 Silver paste was applied to an A4 size quartz glass with a thickness of 1 μm and a width of 100 μm every 230 μm in the longitudinal direction. Subsequently, as shown in FIG. 4A, a negative resist BMRC-1000 (Tokyo Ohka Kogyo Co., Ltd.) was applied by spin coating (600 rpm, 25 seconds) to a thickness of 30 μm and baked at 80 ° C. for 30 minutes. .

【0099】次に、図4(b)に示すように、400μ
mおきに線幅320μmのパタ−ンを持つマスクを用い
て露光後、現像して余分なレジストを除いた後、140
℃で30分間焼き締めを行った。
Next, as shown in FIG.
After exposing using a mask having a pattern with a line width of 320 μm every m and developing to remove the excess resist, 140
C. for 30 minutes.

【0100】ゾルゲル溶液トスガードK510溶液(東
芝シリコーン(株))に55重量%の(株)アドマテッ
クス製ガラスビーズアドファインSO−C2(平均粒径
0.5μm、粒径範囲0.1〜1μm)を超音波と機械
的攪拌により十分に分散させた含粒子絶縁材塗布液に、
レジストパターンニングしたガラスを10秒間、超音波
をかけながら浸せきし600mm/分で引き上げた後、
表面が乾かない内にレジストの上およびレジストよりも
厚く塗布されている部分をスキージし、絶縁膜のパター
ンを形成した(図4(c))。
Sol-gel solution Tosgard K510 solution (Toshiba Silicone Co., Ltd.) was added 55% by weight of glass beads Adfine SO-C2 manufactured by Admatechs Co., Ltd. (average particle size 0.5 μm, particle size range 0.1-1 μm). Into the particle-containing insulating material coating liquid sufficiently dispersed by ultrasonic and mechanical stirring,
After immersing the resist-patterned glass for 10 seconds while applying ultrasonic waves and pulling it up at 600 mm / min,
The squeegee was applied to the portion of the resist and the portion of the resist that was thicker than the resist while the surface was not dried to form a pattern of an insulating film (FIG. 4C).

【0101】140℃で15分間仮焼成した後、ゾルゲ
ル溶液トスガードK510に1分間超音波をかけながら
浸せきし、引き上げ速度80mm/分で引き上げて、絶
縁膜の微小間隙を充填し、140℃で15分間仮焼成し
た後、450℃で1時間本焼成した。これにより、図4
(d)に示すように、空気中の酸素でレジストが燃焼
し、さらにレジスト部の温度膨張により、その上に付着
していた絶縁材料層が破壊されてレジストパターンの部
分が焼け抜けた。
After calcination at 140 ° C. for 15 minutes, the sol-gel solution was immersed in Tosgard K510 for 1 minute while applying ultrasonic waves, and pulled up at a pulling rate of 80 mm / minute to fill the minute gaps of the insulating film. After calcining for 1 minute, the body was calcined at 450 ° C. for 1 hour. As a result, FIG.
As shown in (d), the resist was burned by oxygen in the air, and furthermore, the thermal expansion of the resist portion destroyed the insulating material layer adhered thereon, and the resist pattern portion was burned out.

【0102】最後に、少し残っている絶縁膜の残渣を4
kg/cm2のエアーブローで除去した。
Lastly, a little residue of the insulating film is removed by 4
It was removed with an air blow of kg / cm 2 .

【0103】でき上がった絶縁膜を測定したところ、膜
厚が30μm、400μm幅、スペース320μmピッ
チにパターンニングされた絶縁膜が形成されていた。
When the completed insulating film was measured, an insulating film having a thickness of 30 μm, a width of 400 μm, and a pattern having a pitch of 320 μm was formed.

【0104】実施例13 上記実施例12における微小間隙を充填するための塗布
を、ディップコーティングによる方法からスプレーコー
ティングによる方法へ置き換えて、他は全く同じ条件で
行った。でき上がり後の絶縁膜を測定したところ、膜厚
約30μmで400μm幅の絶縁膜が形成されていた。
Example 13 The method for filling the micro gaps in Example 12 was replaced by the method of dip coating to the method of spray coating, and the other conditions were exactly the same. When the completed insulating film was measured, an insulating film having a thickness of about 30 μm and a width of 400 μm was formed.

【0105】実施例14 上記実施例12で以下の条件のみを変更して行った。Example 14 Example 14 was performed by changing only the following conditions.

【0106】レジストを1回スピンコーディング後、8
0℃で10分間焼成し、冷却後さらにBMRC−100
0を1回目と同一の条件でスピンコーティングし、80
℃で30分間焼成した。露光パターンは同一ーのものを
用い、露光時間は2倍にした。含ビーズ絶縁材料液はト
スガードK510溶液(東芝シリリコーン(株))に6
5重量%の(株)アドマテックス製ガラスビーズアドフ
ァインSO−C2(平均粒径0.5μm、粒径範囲0.
1〜1μm)を超音波と機械的捜拌により十分に分散さ
せた溶液を使用した。以上の点以外は実施例12と同一
の操作を行った。
After spin-coding the resist once, 8
Baking at 0 ° C for 10 minutes, and after cooling, further BMRC-100
0 was spin-coated under the same conditions as the first time,
Baking at 30 ° C. for 30 minutes. The same exposure pattern was used, and the exposure time was doubled. The bead-containing insulating material solution was applied to Tosgard K510 solution (Toshiba Silylicone Corporation).
5% by weight of glass beads Adfine SO-C2 manufactured by Admatechs Co., Ltd. (average particle size 0.5 μm, particle size range 0.
(1 to 1 μm) was sufficiently dispersed by ultrasonic waves and mechanical stirring. Except for the above, the same operation as in Example 12 was performed.

【0107】でき上がった絶縁膜を測定したところ、膜
厚60μmで400μm幅、スペース320μmピッチ
となっていた。
When the completed insulating film was measured, it had a thickness of 60 μm, a width of 400 μm, and a pitch of 320 μm.

【0108】比較例1 A4版サイズのソーダ石灰ガラスをディップコーテイン
グ(引き上げ速度500mm/分)により、ゾルゲル溶
液日本曹達(株)アトロン(本焼成後膜厚5μm)を塗
布し、190℃で1時間焼成した。
Comparative Example 1 A4 size soda-lime glass was coated with a sol-gel solution Nippon Soda Co., Ltd. Atron (5 μm thick after sintering) by dip coating (pulling speed 500 mm / min), followed by 1 hour at 190 ° C. Fired.

【0109】できた膜を観察すると、膜厚は、ほぼ5μ
mであった。また、膜質が柔らかく、密着力も弱かっ
た。そのため、比誘電率は測定不能であった。
Observation of the formed film shows that the film thickness is approximately 5 μm.
m. Further, the film quality was soft and the adhesion was weak. Therefore, the relative dielectric constant could not be measured.

【0110】比較例2 A4版サイズのソーダ石灰ガラスに、ノリタケカンパニ
ーリミテッド製ガラスペースト(7723B)をスクリ
ーン印刷により塗布し、次いで500℃で1時間焼成し
た。
Comparative Example 2 A4 size soda lime glass was coated with a glass paste (7723B) manufactured by Noritake Co., Ltd. by screen printing, and then fired at 500 ° C. for 1 hour.

【0111】この絶縁膜を観察すると、膜厚は約21μ
mで、表面に凹凸やポアが非常に多く観察された。ま
た、非誘電率は17であった。
When this insulating film was observed, the film thickness was about 21 μm.
m, very many irregularities and pores were observed on the surface. The non-dielectric constant was 17.

【0112】比較例3 A4版サイズのソーダ石灰ガラスをディップコーティン
グ(引き上げ速度500mm/分)の手法を用いて、ゾ
ルゲル溶液日本曹達(株)製アトロン(焼成後膜厚5μ
m)を塗布し、140℃で15分間仮焼成した。続い
て、膜厚を厚くするためにもう一度同じゾルゲル液を塗
布し、15分間仮焼成した後、450℃で1時間本焼成
した。
Comparative Example 3 A4 size soda-lime glass was subjected to dip coating (pulling speed 500 mm / min) using a sol-gel solution Atron manufactured by Nippon Soda Co., Ltd. (film thickness of 5 μm after firing).
m) was applied and calcined at 140 ° C. for 15 minutes. Subsequently, the same sol-gel solution was applied once again to increase the film thickness, temporarily baked for 15 minutes, and then baked at 450 ° C. for 1 hour.

【0113】焼成後の膜表面を観察したところ、膜厚は
ほぼ10μmであり、また、外周部では膜は完全にはが
れており、全面では第1層および第2層の膜共に細かい
ひび割れが観察された。また、第1層と第2層の膜は接
着不良で所々に層間剥離が観察された。そのため、比誘
電率は測定不能であった。
Observation of the film surface after baking revealed that the film thickness was approximately 10 μm, the film was completely peeled off on the outer peripheral portion, and fine cracks were observed on the entire surface of both the first and second layers. Was done. In addition, delamination was observed in some places due to poor adhesion between the first layer and the second layer. Therefore, the relative dielectric constant could not be measured.

【0114】比較例4 A4版サイズの石英ガラスをディップコーティング(引
き上げ速度500mm/分)の手法を用いて、ゾルゲル
溶液日本曹達(株)製アトロン(焼成後膜厚5μm)を
塗布し、140℃で15分間仮焼成した。続いて、膜厚
を厚くするためにもう一度同じゾルゲル液を塗布し、1
5分間仮焼成した後、450℃で1時間本焼成した。
Comparative Example 4 A4 size quartz glass was applied with a sol-gel solution Atron manufactured by Nippon Soda Co., Ltd. (film thickness after firing: 5 μm) by dip coating (pulling speed: 500 mm / min), and 140 ° C. For 15 minutes. Subsequently, the same sol-gel solution was applied again to increase the film thickness, and 1
After calcination for 5 minutes, main calcination was performed at 450 ° C. for 1 hour.

【0115】焼成後の膜表面を観察したところ、膜厚は
ほぼ10μmであり、また、外周部では膜は完全にはが
れており、全面では第1層・第2層の膜共に細かいひぴ
割れが観察された。また、第1層と第2層の膜は接着不
良で所々に層間剥離が観察された。そのため、比誘電率
は測定不能であった。
Observation of the film surface after baking revealed that the film thickness was approximately 10 μm, the film was completely peeled off at the outer peripheral portion, and the first and second layers were finely cracked over the entire surface. Was observed. In addition, delamination was observed in some places due to poor adhesion between the first layer and the second layer. Therefore, the relative dielectric constant could not be measured.

【0116】以上の実施例1〜8及び比較例1〜3を表
1にまとめた。表1中の項目は以下のとおりである。
Table 1 summarizes the above Examples 1 to 8 and Comparative Examples 1 to 3. The items in Table 1 are as follows.

【0117】膜厚および膜質 電子顕微鏡(日立製作所(株)製、FE−SEM(S−
4000))を用いて観察した。
Film thickness and film quality Electron microscope (manufactured by Hitachi, Ltd., FE-SEM (S-
4000)).

【0118】膜厚自由度 成膜する際に、スピン速度、引き上げ速度、粒子径、粒
子含有量などの要素を変化させることによって、広範囲
に膜厚を制御できる場合を○、制御できる範囲が狭い場
合を×とした。
Degree of Freeness of Film Thickness When the film thickness can be controlled over a wide range by changing factors such as spin speed, pulling speed, particle diameter, and particle content during film formation, 、 indicates that the controllable range is narrow. The case was evaluated as x.

【0119】絶縁特性 成膜しようとする基板に予め10mm幅にアルミを蒸着
しておき、該基板に絶縁膜を形成後、下配線に直行する
ように上配線としてアルミを蒸着した。LFインピーダ
ンス・アナライザ(ヒューレット・パッカード製、HP
4192)を用いてインピーダンスを求め、計算によ
って容量、誘電率等を求めた。なお、実施例のうち、パ
ターンニングを行ったものについては、同様の組成、同
様の膜厚を持ったベタ塗の膜について評価し、括弧内に
示した。
Insulation Characteristics Aluminum was vapor-deposited in advance on a substrate to be formed into a film having a width of 10 mm. After an insulating film was formed on the substrate, aluminum was vapor-deposited as an upper wiring so as to be perpendicular to the lower wiring. LF impedance analyzer (Hewlett-Packard, HP
4192), the capacitance, the dielectric constant, and the like were calculated. Among the examples, the solid-coated films having the same composition and the same thickness were evaluated for those subjected to patterning, and the results are shown in parentheses.

【0120】[0120]

【表1】 [Table 1]

【0121】[0121]

【発明の効果】以上の説明から明らかなように本発明に
よれば、各種液状絶縁材料に絶縁性粒子を混合分散した
含粒子絶縁材料液を絶縁材塗布液として用いることによ
り、数μm〜数十μmの所望の膜厚を有し、高抵抗で絶
縁性の良好な絶縁膜を、各種基板に容易に形成できる。
As is apparent from the above description, according to the present invention, by using a particle-containing insulating material liquid in which insulating particles are mixed and dispersed in various liquid insulating materials as an insulating material coating liquid, several μm to several μm can be obtained. An insulating film having a desired film thickness of 10 μm, high resistance and good insulation can be easily formed on various substrates.

【0122】また本発明によれば、含粒子絶縁材料液の
塗布後、再度、絶縁性粒子を含有しない或いは微小間隙
より小さい粒子を含有する液状絶縁材料を塗布すること
によって、ひび割れ、反り、層間剥離などが無い絶縁膜
を、簡便に作製することができる。
Further, according to the present invention, after the application of the particle-containing insulating material liquid, the liquid insulating material containing no insulating particles or containing particles smaller than the fine gaps is applied again, so that cracks, warpage, interlayer damage can be caused. An insulating film without separation or the like can be easily manufactured.

【0123】さらに本発明によれば、絶縁性粒子の材質
の融点あるいは軟化点と、焼成温度とを適宜選択・設定
することによって、絶縁性に必要な均一性を有した絶縁
膜を形成することができる。
Further, according to the present invention, by appropriately selecting and setting the melting point or softening point of the material of the insulating particles and the firing temperature, it is possible to form an insulating film having uniformity required for insulating properties. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の絶縁層の説明図(断面図)である。FIG. 1 is an explanatory view (cross-sectional view) of an insulating layer of the present invention.

【図2】本発明の絶縁層の説明図(断面図)である。FIG. 2 is an explanatory view (cross-sectional view) of an insulating layer of the present invention.

【図3】本発明の絶縁層の説明図(断面図)である。FIG. 3 is an explanatory view (cross-sectional view) of an insulating layer of the present invention.

【図4】本発明の絶縁層の製造工程図である。FIG. 4 is a manufacturing process diagram of the insulating layer of the present invention.

【図5】表面伝導型電子放出素子の平面図である。FIG. 5 is a plan view of the surface conduction electron-emitting device.

【符号の説明】[Explanation of symbols]

1 基板 2 絶縁膜 3 絶縁性粒子 4 マトリクス部 5 微小間隙 6 再塗布層 7 銀ペースト層 8 レジスト 501 基板 502、503 素子電極 504 導電性薄膜 505 電子放出部 DESCRIPTION OF SYMBOLS 1 Substrate 2 Insulating film 3 Insulating particle 4 Matrix part 5 Micro gap 6 Recoating layer 7 Silver paste layer 8 Resist 501 Substrate 502, 503 Device electrode 504 Conductive thin film 505 Electron emission part

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 基板上に絶縁膜を形成する方法であっ
て、(1)絶縁材塗布液に絶縁性粒子を分散する工程、
(2)絶縁性粒子を含む絶縁材塗布液を基板上に塗布す
る工程、(3)該基板を焼成し絶縁膜を形成する工程か
らなることを特徴とする絶縁膜の形成方法。
1. A method for forming an insulating film on a substrate, comprising: (1) dispersing insulating particles in an insulating material coating solution;
(2) A method of forming an insulating film, comprising: a step of applying an insulating material coating solution containing insulating particles on a substrate; and (3) a step of baking the substrate to form an insulating film.
【請求項2】 塗布後の基板の焼成において、仮焼成を
行った後に仮焼成温度より高い温度で本焼成を行う請求
項1記載の絶縁膜の形成方法。
2. The method for forming an insulating film according to claim 1, wherein in the firing of the substrate after the application, after the preliminary firing, the final firing is performed at a temperature higher than the temporary firing temperature.
【請求項3】 絶縁性粒子の線膨張係数が基板のそれと
ほぼ等しい請求項1記載の絶縁膜の形成方法。
3. The method according to claim 1, wherein the coefficient of linear expansion of the insulating particles is substantially equal to that of the substrate.
【請求項4】 絶縁性粒子の粒径が10nm〜10μm
である請求項1、2又は3記載の絶縁膜の形成方法。
4. The insulating particles having a particle size of 10 nm to 10 μm.
The method for forming an insulating film according to claim 1, 2, or 3.
【請求項5】 絶縁性粒子が、前記絶縁性粒子含有絶縁
材塗布液に対して、10〜70重量%の範囲で添加され
ている請求項1〜4のいずれか1項に記載の絶縁膜の形
成方法。
5. The insulating film according to claim 1, wherein the insulating particles are added in a range of 10 to 70% by weight based on the insulating particle-containing insulating material coating liquid. Formation method.
【請求項6】 絶縁膜を形成した後、該絶縁膜に生じた
微小間隙を埋めることができるように、該絶縁膜上に、
絶縁性粒子を含まない或いは該微小間隙より小さい絶縁
性粒子を含む絶縁材塗布液を塗布し焼成を行う請求項1
記載の絶縁膜の形成方法。
6. After forming the insulating film, the insulating film is formed on the insulating film so as to be able to fill a minute gap formed in the insulating film.
An insulating material coating liquid containing no insulating particles or containing insulating particles smaller than the minute gap is applied and baked.
The method for forming an insulating film according to the above.
【請求項7】 絶縁性粒子の融点あるいは軟化点が基板
の軟化点より十分に低く、且つ、最終的な焼成を絶縁性
粒子の融点あるいは軟化点以上の温度で行う請求項1記
載の絶縁膜の形成方法。
7. The insulating film according to claim 1, wherein the melting point or softening point of the insulating particles is sufficiently lower than the softening point of the substrate, and the final baking is performed at a temperature higher than the melting point or softening point of the insulating particles. Formation method.
【請求項8】 絶縁性粒子を含む絶縁材塗布液を、基板
をコーテイングする直前まで機械的に攪拌して塗布する
請求項1〜7のいずれか1項に記載の絶縁膜の形成方
法。
8. The method for forming an insulating film according to claim 1, wherein an insulating material coating solution containing insulating particles is applied by mechanical stirring until just before coating the substrate.
【請求項9】 絶縁性粒子を含む絶縁材塗布液を、基板
をコーテイングする直前まで超音波を用いて攪拌して塗
布する請求項1〜8のいずれか1項に記載の絶縁層の形
成方法。
9. The method for forming an insulating layer according to claim 1, wherein the insulating material coating liquid containing the insulating particles is applied by stirring using an ultrasonic wave until immediately before coating the substrate. .
【請求項10】 表面伝導型電子放出素子および該素子
を用いた画像形成装置の製造方法において層間絶縁層と
して形成する請求項1〜9のいずれか1項に記載の絶縁
膜の形成方法。
10. The method of forming an insulating film according to claim 1, wherein said insulating film is formed as an interlayer insulating layer in a method of manufacturing a surface conduction electron-emitting device and an image forming apparatus using said device.
【請求項11】 絶縁性粒子を含む絶縁材塗布液を基板
上に塗布し、焼成してなる絶縁膜。
11. An insulating film obtained by applying an insulating material coating solution containing insulating particles on a substrate and baking it.
【請求項12】 絶縁性粒子の線膨張係数が基板のそれ
とほぼ等しい請求項11記載の絶縁膜。
12. The insulating film according to claim 11, wherein the coefficient of linear expansion of the insulating particles is substantially equal to that of the substrate.
【請求項13】 絶縁性粒子の粒径が10nm〜10μ
mである請求項11又は12記載の絶縁膜。
13. The insulating particles having a particle size of 10 nm to 10 μm.
The insulating film according to claim 11, wherein m is m.
【請求項14】 絶縁性粒子が、前記絶縁性粒子含有絶
縁材塗布液に対して、10〜70重量%の範囲で添加さ
れている請求項11、12又は13記載の絶縁膜。
14. The insulating film according to claim 11, wherein the insulating particles are added in an amount of 10 to 70% by weight based on the insulating particle-containing insulating material coating liquid.
【請求項15】 絶縁性粒子を含む絶縁材塗布液を基板
上に塗布し焼成してなる絶縁膜上に、該絶縁膜に生じた
微小間隙を埋めることができるように、該基板上に、絶
縁性粒子を含まない或いは該微小間隙より小さい絶縁性
粒子を含む絶縁材塗布液を塗布し焼成してなる絶縁膜。
15. An insulating material coating solution containing insulating particles is applied to a substrate and baked on an insulating film so that minute gaps generated in the insulating film can be filled. An insulating film formed by applying and baking an insulating material coating solution containing no insulating particles or containing insulating particles smaller than the minute gap.
【請求項16】 絶縁性粒子の融点あるいは軟化点が基
板の軟化点より十分に低い請求項11記載の絶縁膜。
16. The insulating film according to claim 11, wherein the melting point or softening point of the insulating particles is sufficiently lower than the softening point of the substrate.
JP34792896A 1996-12-26 1996-12-26 Insulating film and its formation Pending JPH10190196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34792896A JPH10190196A (en) 1996-12-26 1996-12-26 Insulating film and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34792896A JPH10190196A (en) 1996-12-26 1996-12-26 Insulating film and its formation

Publications (1)

Publication Number Publication Date
JPH10190196A true JPH10190196A (en) 1998-07-21

Family

ID=18393565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34792896A Pending JPH10190196A (en) 1996-12-26 1996-12-26 Insulating film and its formation

Country Status (1)

Country Link
JP (1) JPH10190196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088696A1 (en) * 2004-02-11 2005-09-22 Infineon Technologies Ag Semiconductor package with contact support layer and method to produce the package
JP2016092142A (en) * 2014-10-31 2016-05-23 シチズンホールディングス株式会社 Wiring board and method for manufacturing light-emitting device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088696A1 (en) * 2004-02-11 2005-09-22 Infineon Technologies Ag Semiconductor package with contact support layer and method to produce the package
US7452747B2 (en) 2004-02-11 2008-11-18 Infineon Technologies Ag Semiconductor package with contact support layer and method to produce the package
JP2016092142A (en) * 2014-10-31 2016-05-23 シチズンホールディングス株式会社 Wiring board and method for manufacturing light-emitting device using the same

Similar Documents

Publication Publication Date Title
KR100375279B1 (en) Production processes of printed substrate, electron-emitting element, electron source and image-forming apparatus
US4954744A (en) Electron-emitting device and electron-beam generator making use
JP3624041B2 (en) Image display device using conductive frit
JPH11500856A (en) Spacer structure for flat panel display and manufacturing method thereof
JP3135118B2 (en) Substrate for forming electron source, electron source, image forming apparatus, and manufacturing method thereof
KR19990029846A (en) Electron source manufacturing method, image forming apparatus manufacturing method, and electron source manufacturing apparatus
JP2000311585A (en) Electron emitting element, electron source using the element and image forming device using the source
JP3323852B2 (en) Electron emitting element, electron source using the same, and image forming apparatus using the same
JP3323848B2 (en) Electron emitting element, electron source using the same, and image forming apparatus using the same
JP3323850B2 (en) Electron emitting element, electron source using the same, and image forming apparatus using the same
JP2000133649A (en) Formation of insulating film on element circuit substrate
JPH10190196A (en) Insulating film and its formation
KR20080106939A (en) Carbon nanotube deposition with a stencil
JP3323849B2 (en) Electron emitting element, electron source using the same, and image forming apparatus using the same
JP3397569B2 (en) Surface conduction electron-emitting device, method of manufacturing the same, electron source equipped with the electron-emitting device, and image forming apparatus
JP3260592B2 (en) Method of manufacturing image forming apparatus and image forming apparatus manufactured by this method
JPH11329221A (en) Coating method of paste material and image display device using same
JP2000021241A (en) Manufacture of insulating film, electron source and image forming device
JP3840164B2 (en) Manufacturing method of electron source
JP2002313223A (en) Ink jet device, manufacturing method of electron emitting element, electron source, and imaging device using the same
JP2000082334A (en) Insulation film, electron source and manufacture of image forming device
JPH1012136A (en) Manufacture of electron emission element, electron emission element, electron source using the element, display panel, and image forming device
JPH10273341A (en) Formation of ceramic rib
JP2003246677A (en) Green sheet precursor, method of preparing slurry for green sheet, method of producing green sheet and method of producing spacer for planar display device
JP2003109490A (en) Electron emission element, its manufacturing method, electron source, and image forming device