JPH10188341A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH10188341A
JPH10188341A JP8338199A JP33819996A JPH10188341A JP H10188341 A JPH10188341 A JP H10188341A JP 8338199 A JP8338199 A JP 8338199A JP 33819996 A JP33819996 A JP 33819996A JP H10188341 A JPH10188341 A JP H10188341A
Authority
JP
Japan
Prior art keywords
less
groove
recording
weight loss
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8338199A
Other languages
Japanese (ja)
Other versions
JP3666152B2 (en
Inventor
Yuuki Suzuki
夕起 鈴木
Yuko Okamoto
祐子 岡本
Michikazu Horie
通和 堀江
Yutaka Kurose
裕 黒瀬
Shuichi Maeda
修一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP33819996A priority Critical patent/JP3666152B2/en
Priority to EP97122322A priority patent/EP0849727B1/en
Priority to DE69735460T priority patent/DE69735460T2/en
Priority to US08/992,899 priority patent/US6232036B1/en
Publication of JPH10188341A publication Critical patent/JPH10188341A/en
Application granted granted Critical
Publication of JP3666152B2 publication Critical patent/JP3666152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-capacity optical recording medium which is adequate for short wavelength recording and has high reflectivity. SOLUTION: This recording medium is constituted by laminating a recording layer contg. org. dyestuff which is substantially free from loss at a temp. lower than a main loss initiation temp., is of >=2%/ deg.C in the inclination of the loss in the main loss process and is of >=30% in total loss %, a metallic reflection layer and a protective layer in this order on a specific transparent substrate. In such a case, the recording layer satisfies the conditions of the following (1) or (2): (1) The magnitude of the peak of heat generation in a differential thermal analysis be >=-10 to <=10μV/mg and the peak width be below 20 deg.C. (2) The recording layer consisting of the org. dyestuff of >=10 to <=30μV/mg in the magnitude of the peak of the heat generation in the differential thermal analysis have the metallic reflection layer of >=0.20 to <=0.30/μΩcm in the inverse number of the specific electric resistance value near room temp., >=0.1 to <=0.2 in the refractive index at reproducing light ±5nm and >=3 to <=5 attenuation coefft. thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光記録媒体に関し、
レーザー光により記録できる光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium,
The present invention relates to an optical recording medium on which recording can be performed by laser light.

【0002】[0002]

【従来の技術】近年、高密度記録のため、レーザー光の
発振波長の短波長化が注目され、780nm、830n
mよりも短波長のレーザー光で記録再生可能な光記録媒
体が求められている。かかる状況においては、さまざま
な記録媒体があるが、その中で、有機色素系光記録媒体
は安価でプロセス上容易であるという特長を有する。こ
のような短波長用途の有機色素媒体の色素としては、シ
アニン等が提案されており、特開平6−336086号
公報、特開平7−161068号公報、特開平7−26
2604号公報、特開平7−125441号公報、特開
平7−266705号公報等がある。記録部では、78
0nmでのCD−Rと同様に、色素の熱分解による光学
定数と膜厚の減少と基板の軟化による変形等が生じてい
ると考えられる。
2. Description of the Related Art In recent years, attention has been paid to shortening the oscillation wavelength of laser light for high-density recording.
There is a demand for an optical recording medium capable of recording and reproducing with a laser beam having a wavelength shorter than m. In such a situation, there are various recording media, and among them, the organic dye-based optical recording media has a feature that it is inexpensive and easy in process. As such a dye of an organic dye medium for short wavelength use, cyanine and the like have been proposed, and are disclosed in JP-A-6-336086, JP-A-7-161068, and JP-A-7-26.
2604, JP-A-7-125441 and JP-A-7-266705. In the recording unit, 78
Like the CD-R at 0 nm, it is considered that the optical constant and the film thickness are reduced by the thermal decomposition of the dye, and the deformation and the like are caused by the softening of the substrate.

【0003】[0003]

【発明が解決しようとする課題】上記の従来技術におい
ては、記録時に、色素の分解のみか、基板の変形の両方
により記録変調度を得ているが、記録部の変形が大き
く、溝上記録の場合には隣接の溝間部に及ぶ大きなビッ
トが形成されるため、クロストークが問題となる。これ
を解決すべく本発明者らは、特願平7ー213501号
等において、減量が急峻で大きい色素を主成分あるいは
添加することにより、記録部分の光学的変化領域を十分
小さくし、かつ、記録変調度が十分大きく、反射率が高
く大きな記録信号強度を得ること、及び、そのような要
件を満たす色素の骨格について提案した。しかし、より
トラックピッチを狭くし、溝幅を狭くして片面約5ギガ
バイト以上の高容量化を目的とする場合にはクロストー
クが十分小さくならない場合が生じることがあった。
In the above-mentioned prior art, the recording modulation degree is obtained by only the decomposition of the dye or the deformation of the substrate at the time of recording. In such a case, a large bit extending to the adjacent inter-groove portion is formed, so that crosstalk becomes a problem. In order to solve this problem, the present inventors have disclosed in Japanese Patent Application No. 7-213501 or the like that the optically variable area of the recording portion is sufficiently reduced by adding a large amount of a steep and large dye as a main component or adding a dye. It was proposed to obtain a sufficiently large recording signal intensity with a sufficiently high recording modulation degree and a high reflectance, and to propose a dye skeleton satisfying such requirements. However, when the track pitch is narrowed and the groove width is narrowed to increase the capacity of about 5 gigabytes or more on one side, crosstalk may not be sufficiently reduced in some cases.

【0004】[0004]

【課題を解決するための手段】本発明者らは、高密度記
録を実現するために良好なクロストークの小さい微小記
録部を形成し、かつ、高い変調度、高い反射率を可能と
する媒体を鋭意検討した結果、本発明に到達した。すな
わち本発明の要旨は、透明基板上に、少なくとも、熱重
量分析で、主減量開始温度よりも低い温度における減量
が実質的になく、かつ、主減量開始温度での減量の傾き
が2%/℃以上で、その総減量%が30%以上である有
機色素を含有する記録層、金属反射層、保護層の順に積
層した500nm以上、700nm以下で記録再生する
光記録媒体が下記の(1)もしくは(2)の条件を満た
すことである。
Means for Solving the Problems The inventors of the present invention have formed a medium capable of forming a fine recording portion with small crosstalk and realizing a high degree of modulation and a high reflectance in order to realize high density recording. As a result of intensive studies, the present invention has been achieved. That is, the gist of the present invention is that, on a transparent substrate, at least, by thermogravimetric analysis, there is substantially no weight loss at a temperature lower than the main weight loss start temperature, and the slope of the weight loss at the main weight loss start temperature is 2% / An optical recording medium which records and reproduces at 500 nm or more and 700 nm or less, in which a recording layer containing an organic dye whose total weight loss is 30% or more, a metal reflective layer, and a protective layer at 30 ° C. or more, is 30% or more. Alternatively, the condition (2) must be satisfied.

【0005】(1)示差熱分析での発熱のピークの大き
さがー10μV/mg以上、10μV/mg以下であ
り、ピーク幅が20℃以下であること。 (2)示唆熱分析での発熱のピークの大きさが10μV
/mg以上30μV/mg以下である有機色素から成る
記録層の上に、室温近傍での比電気抵抗値の逆数が0.
20/μΩcm以上、0.30/μΩcm以下であり、
再生光波長±5nmでの屈折率が0.1以上、0.2以
下で、消衰係数が3以上、5以下である金属反射層を有
すること。
(1) The peak of the exothermic peak in the differential thermal analysis is -10 μV / mg or more and 10 μV / mg or less, and the peak width is 20 ° C. or less. (2) Exothermic peak size is 10 μV in the suggestive thermal analysis
The reciprocal of the specific electrical resistance at around room temperature is 0. 0 / mg to 30 μV / mg on the recording layer made of an organic dye.
20 / μΩcm or more and 0.30 / μΩcm or less,
A metal reflective layer having a refractive index at the reproduction light wavelength ± 5 nm of 0.1 or more and 0.2 or less and an extinction coefficient of 3 or more and 5 or less.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明における記録層は、記録用のレーザ
ー光を吸収することによる昇温で減量し膜厚が減少し、
光学特性が変化することにより戻り光の位相が変化し、
反射率が変化したところを記録部とするものである。
Embodiments of the present invention will be described below. The recording layer in the present invention, the thickness is reduced by increasing the temperature by absorbing the recording laser light, the film thickness is reduced,
The phase of the return light changes due to the change in the optical characteristics,
The portion where the reflectance changes is used as a recording portion.

【0007】本発明において、透明基板としては、厚さ
0.6±0.03mmで、ポリカーボネート、ポリメタ
クリレート、非晶質ポリオレフィン等の樹脂やガラス等
の公知のが用いられ、サーボ用の案内溝を有している。
その溝は、深さは、通常100nm以上、200nm以
下、好ましくは、140nm以上、180nm以下で、
溝幅は、通常0.2μm以上、0.4μm以下、トラッ
クピッチは、通常0.7μm以上、1μm以下であり、
溝形状はU字溝が好ましい。溝の深さは、100nm未
満の場合には、記録時に十分な変化がおきず、十分な記
録変調度が得られない場合がある。200nmを越える
と、溝部と溝間部の反射率差が大きすぎるため、溝上記
録の場合には反射率が低くなりすぎるので良くない。溝
幅は、0.2μm未満では十分なトラッキングエラー信
号振幅を得ることが困難となる恐れがある上に、基板の
溝転写率が低くなるため好ましくない。また、0.4μ
mを越える溝幅の場合には、記録した時に記録部が横に
広がりやすくなるので好ましくない。さらに、溝幅は狭
いほど高い記録変調度を得るには有利である。しかし、
前述のように、クロストークが大きくなる傾向がある。
本発明では0.2〜0.3μmの狭い溝幅の溝上で記録
する場合に特に効果的である。トラックピッチは、高容
量化の用途には、0.7μm以上、1μm以下が好まし
い。なお、溝形状は、1μm以上のピッチの場合には、
He−Cdレーザーによる光学測定により求め、それよ
りもトラックピッチが狭い場合には、STMやAFMで
プロファイルを測定して求める。なお本件に関しては、
STMとAFMで求めた。
In the present invention, as the transparent substrate, a resin such as polycarbonate, polymethacrylate, amorphous polyolefin or the like, glass or the like is used, and a guide groove for servo is used. have.
The groove has a depth of usually 100 nm or more and 200 nm or less, preferably 140 nm or more and 180 nm or less.
The groove width is usually 0.2 μm or more and 0.4 μm or less, the track pitch is usually 0.7 μm or more and 1 μm or less,
The groove shape is preferably a U-shaped groove. When the depth of the groove is less than 100 nm, a sufficient change does not occur during recording, and a sufficient recording modulation degree may not be obtained. If the thickness exceeds 200 nm, the reflectance difference between the groove and the groove is too large, and in the case of recording on the groove, the reflectance is too low, which is not good. If the groove width is less than 0.2 μm, it may be difficult to obtain a sufficient tracking error signal amplitude, and the groove transfer rate of the substrate may be low, which is not preferable. Also, 0.4μ
If the groove width exceeds m, it is not preferable because the recording portion tends to spread laterally when recording is performed. Further, the narrower the groove width is, the more advantageous it is to obtain a higher recording modulation degree. But,
As described above, the crosstalk tends to increase.
The present invention is particularly effective when recording on a groove having a narrow groove width of 0.2 to 0.3 μm. The track pitch is preferably 0.7 μm or more and 1 μm or less for high capacity applications. In addition, when the groove shape has a pitch of 1 μm or more,
It is determined by optical measurement using a He-Cd laser, and when the track pitch is narrower than that, the profile is measured by STM or AFM. In this case,
Determined by STM and AFM.

【0008】記録層は、通常、有機色素等をエタノー
ル、3−ヒドロキシ−3−メチル−2−ブタノン、ジア
セトンアルコール、フッ素系アルコール等の溶媒に溶か
した溶液をスピンコートして得られる。この溶媒として
は、沸点が100℃以上、150℃である溶媒で炭素数
が3以上のフッ素系アルコール、すなわち、1H,1
H,3H−テトラフルオロプロパノール、1H,1H,
5H−オクタフルオロペンタノール、1H,1H,3H
−ヘキサフルオロブタノール等が好ましく用いられる。
沸点が100℃未満の場合には、スピンコート時に溶媒
が速く気化するため、ディスクの半径40mmより外周
側に塗布液がゆきつかず、半径方向の膜厚分布が極めて
大きくなり、良好な特性が得られないことがあるので好
ましくない。また、沸点が150℃を越える場合には、
蒸発に時間がかかる上に、膜中に溶媒が残留しやすく、
この様な場合には、良好な記録ジッターが得られないこ
とが多いので好ましくない。膜厚は溝間部で50nm以
上、100nm以下程度が好ましく、溝部で90nm以
上、180nm以下が好ましい。溝間部、溝部の記録層
膜厚がこの範囲よりも薄い場合には膜厚が薄すぎて十分
な記録変調度が得られない恐れがある。また、この範囲
を越えると、膜厚が厚すぎて記録部がトラック方向、ラ
ンド方向に広がりやすく、ジッターやクロストークが大
きくなる恐れがある。実際には溝部膜厚と溝間部の膜厚
を正確に知ることは困難であり、一般的には溝間部の膜
厚で代用されることが多いが(例えば特開平4ー109
441号公報、特開平4ー182944号公報等)、溝
部の膜厚と溝間部の膜厚比は、塗布溶媒、スピンコート
回転数、風速、温度、溶液濃度、溶液粘度等の成膜の条
件と、溝深さ、溝幅などにより変わるため、溝部と溝間
部の平均膜厚や、溝間部の膜厚と塗布膜の溝深さのみで
溝部膜厚を知ることは困難である。それに対し、塗布膜
の溝深さと基板の溝深さの比と溝間部の膜厚、そして基
板の溝深さがわかれば、溝部の膜厚が得られるわけであ
る。この塗布膜の溝深さは基板の溝深さの50%以上、
80%以下であることが好ましい。この範囲未満では溝
部膜厚が厚すぎるため反射率が低くなり、トッラキング
エラー信号も十分とれない恐れがある。また、80%を
越えると溝部膜厚が薄すぎて十分な記録変調度が得られ
ない恐れがある。なお、この基板の溝深さと塗布膜の溝
深さの比はそれぞれをAFM(あるいはSTM)で同じ
測定条件で測定して得た深さから求められる。また、溝
間部の膜厚は鏡面基板上に成膜し、塗布開始部分を反射
層成膜後に3次元表面粗さ計で測定し、溝間部の膜厚を
求めることが出来る。本発明における膜厚(溝部)の範
囲は、図1に示すように、反射率の1つ目の山の領域を
カバーするものであり、例えば、特開平4ー10944
1号公報のnabs・d/λ(dを記録層の膜厚)であらわ
すと、図1のごとくになる。この記録層の溝部膜厚の範
囲は、従来、CD−Rにおいて溝間部の膜厚で代表され
る”膜厚”に相当する範囲であり、本発明はCD−Rよ
りも一山浅い範囲であり、これが500nm以上、70
0nm以下であるが記録再生用高反射率高容量記録媒体
の満たすべき好ましい条件である。なお、図1(a)、
(b)、(c)は、波長640nmでの屈折率nが2.
4、消衰係数kが0.05とn=2.3、k=0.05、
n=2.6、k=0.08の場合について波長640nm
でのディスク反射率(金属反射層をn=0.166、k
=3.15、膜厚100nmとした)の計算を示す。ま
た、図2には、反射率が60%以上となるnabs・d/λ
(dを記録層膜厚)と消衰係数kの範囲を示した。これ
らの反射率は、溝の形状を含めない反射率なので、実際
の溝上での反射率はこの値の8割程度とみなせる。な
お、このような光学特性を満たす色素の単層膜は、その
再生波長に最も近接する短波長側の吸収極大、あるい
は、吸収の肩を、再生波長よりも40nm〜60nm短
波長側に有する。
The recording layer is usually obtained by spin-coating a solution of an organic dye or the like in a solvent such as ethanol, 3-hydroxy-3-methyl-2-butanone, diacetone alcohol or fluorinated alcohol. Examples of the solvent include a fluorinated alcohol having a boiling point of 100 ° C. or higher and 150 ° C. and having 3 or more carbon atoms, that is, 1H, 1
H, 3H-tetrafluoropropanol, 1H, 1H,
5H-octafluoropentanol, 1H, 1H, 3H
-Hexafluorobutanol and the like are preferably used.
When the boiling point is less than 100 ° C., the solvent evaporates quickly during spin coating, so that the coating liquid does not spread to the outer peripheral side from the radius of 40 mm of the disk, the thickness distribution in the radial direction becomes extremely large, and good characteristics are obtained. It is not preferable because it may not be obtained. When the boiling point exceeds 150 ° C.,
It takes time to evaporate, and the solvent tends to remain in the film,
Such a case is not preferable because good recording jitter is often not obtained. The film thickness at the inter-groove portion is preferably about 50 nm or more and 100 nm or less, and is preferably 90 nm or more and 180 nm or less at the groove portion. When the thickness of the recording layer in the inter-groove portion and the groove portion is smaller than this range, there is a possibility that a sufficient recording modulation degree cannot be obtained because the film thickness is too small. On the other hand, if the thickness exceeds this range, the film thickness is too large and the recording portion tends to spread in the track direction and the land direction, which may increase jitter and crosstalk. Actually, it is difficult to accurately know the thickness of the groove portion and the thickness of the inter-groove portion. In general, the film thickness of the inter-groove portion is often used instead (for example, see Japanese Patent Laid-Open No. 4-109).
No. 441, Japanese Patent Application Laid-Open No. 4-182944), the ratio of the film thickness of the groove to the film thickness of the inter-groove portion depends on the coating solvent, spin coating speed, wind speed, temperature, solution concentration, solution viscosity, etc. Since it varies depending on conditions, groove depth, groove width, and the like, it is difficult to know the average film thickness of the groove and the groove, or the groove film thickness only from the film thickness of the groove and the groove depth of the coating film. . On the other hand, if the ratio of the groove depth of the coating film to the groove depth of the substrate, the film thickness of the inter-groove portion, and the groove depth of the substrate are known, the film thickness of the groove portion can be obtained. The groove depth of this coating film is 50% or more of the groove depth of the substrate,
It is preferably 80% or less. When the thickness is less than this range, the reflectance is low because the groove portion is too thick, and there is a possibility that a tracking error signal cannot be sufficiently obtained. On the other hand, if it exceeds 80%, the groove thickness may be too thin and a sufficient recording modulation degree may not be obtained. Note that the ratio between the groove depth of the substrate and the groove depth of the coating film can be obtained from the depth obtained by measuring each under the same measurement conditions using AFM (or STM). Further, the film thickness of the groove portion can be obtained by forming a film on the mirror surface substrate and measuring the coating start portion with a three-dimensional surface roughness meter after forming the reflective layer. As shown in FIG. 1, the range of the film thickness (groove portion) in the present invention covers the first peak region of the reflectance.
FIG. 1 shows n abs · d / λ (d is the film thickness of the recording layer) of Japanese Patent Publication No. Conventionally, the range of the groove thickness of the recording layer is a range corresponding to the “film thickness” typified by the thickness of the inter-groove portion in the CD-R, and the present invention is a range that is one mountain shallower than the CD-R. Which is greater than 500 nm and 70
Although it is 0 nm or less, it is a preferable condition to be satisfied by the high-reflectance, high-capacity recording medium for recording and reproduction. In addition, FIG.
(B) and (c) show that the refractive index n at a wavelength of 640 nm is 2.
4, the extinction coefficient k is 0.05 and n = 2.3, k = 0.05,
Wavelength 640 nm for the case of n = 2.6 and k = 0.08
Reflectance (n = 0.166, k
= 3.15, film thickness 100 nm). FIG. 2 shows n abs · d / λ at which the reflectance is 60% or more.
(d is the thickness of the recording layer) and the extinction coefficient k. Since these reflectivities do not include the shape of the groove, the reflectivity on the actual groove can be regarded as about 80% of this value. In addition, the monolayer film of the dye satisfying such optical characteristics has an absorption maximum or a shoulder of absorption on the short wavelength side closest to the reproduction wavelength, on the 40 nm to 60 nm shorter wavelength side than the reproduction wavelength.

【0009】光学記録に用いられる有機色素としては、
フタロシアニン系色素、シアニン色素、含金属アゾ系色
素や、ジベンゾフラノン系、含金属インドアニリン等が
提案されているが、記録層を構成する有機色素の熱的特
性は記録特性に大きく影響する。短波長用途として充分
な特性を得るためには、熱重量分析における、主減量過
程での減量が、温度に対してシャープであることが必要
である。なぜならば、主減量過程の反応により、有機色
素膜は分解し、膜厚の減少と光学定数の変化をおこす。
その結果、光学的な意味でのビット(記録部)が形成さ
れる。この時、色素の再生光波長での屈折率が2.2以
上、2.8以下、好ましくは2.4以上、2.8以下、消
衰係数kが0.03以上、0.09以下、好ましくは、
0.03以上、0.06以下の範囲のものであると、ディ
スクの反射率が大いため、記録前後の反射率コントラス
トの大きいものが得られるため好ましい。また、多くの
場合、記録ビットの下の基板が記録時の色素層の熱吸収
による昇温で変形し、図3のごとくに溝幅が広がる。本
発明ではその変形の大きさ(記録部の溝幅)が未記録部
の溝幅の1.0〜1.5、すなわち、W1/W0=1以上、
1.5以下である。1.5を越える場合にはトラックピッ
チを0.8μm以下まで狭くするとクロストークが大き
くなりジッターを劣化させるので好ましくない。また、
記録層である色素層が光を吸収してビットが形成される
ので、主減量が温度に対して緩慢である場合、すなわ
ち、広い温度範囲にわたって減量が起こる場合には、記
録層の光学変化と膜厚の変化が広い領域にわたって形成
されることになる。高密度対応のビット長記録の場合に
はビット同志が重なりあうためジッター、ビットの分解
能が悪くなり、極めて不利である。それ故、温度に対し
て、急峻な減量を起こす色素が求められるのである。本
発明においては、減量の過程が2段階になっている色素
を用いた場合、すなはち、主減量開始温度よりも低い温
度領域で減量がある色素を用いた場合も、同様な理由で
不利である。本発明では、主減量過程での減量の傾きが
2%/℃以上であり、その過程での総減量%が30%以
上、好ましくは、減量の傾きは10%/℃以上であり、
総減量%は35%以上である。減量の傾きが上記範囲未
満では、十分小さく、ランド方向に広がらない細い記録
部が形成できなくなり、ジッター、ビットの分解能が悪
くなり、高密度対応の短ビット長記録が困難である。ま
た、総減量%が30%未満の場合には記録前後の十分な
反射率コントラストが得られず、記録変調度が小さいた
めに十分な短ビット特性が得られない。さらに、狭いト
ラックピッチでのクロストークが十分小さい記録媒体を
得るためには、色素の主減量過程での発熱ピークの大き
さが−10μV/mg以上、10μV/mg以下、好ま
しくは−5μV/mg以上、5μV/mg以下である。
この範囲を越える場合には、溝幅を0.3μm以下に狭
めた場合のクロストークが50%を越えてしまい、良好
なジッター特性が得られない。この範囲未満の場合、吸
熱性が大きすぎて記録感度が悪くなる。さらに、この発
熱、吸熱のピーク幅が20℃以下であることが好まし
い。この範囲を越えると、エッジが急峻な良好な記録マ
ークが形成されにくい。また、色素の主減量開始温度は
150℃以上、340℃以下、好ましくは、150℃以
上、200℃以下である。
Organic dyes used for optical recording include:
Phthalocyanine dyes, cyanine dyes, metal-containing azo dyes, dibenzofuranone-based, metal-containing indoanilines, and the like have been proposed, but the thermal characteristics of the organic dyes constituting the recording layer greatly affect the recording characteristics. In order to obtain sufficient properties for short wavelength applications, it is necessary that the weight loss in the main weight loss process in thermogravimetric analysis be sharp with temperature. This is because the organic dye film is decomposed by the reaction in the main weight loss process, causing a decrease in the film thickness and a change in the optical constant.
As a result, a bit (recording portion) in an optical sense is formed. At this time, the dye has a refractive index of 2.2 or more and 2.8 or less at a reproduction light wavelength, preferably 2.4 or more and 2.8 or less, and an extinction coefficient k of 0.03 or more and 0.09 or less. Preferably,
A value in the range of 0.03 or more and 0.06 or less is preferable because the reflectance of the disc is large and a large reflectance contrast before and after recording can be obtained. In many cases, the substrate below the recording bit is deformed by the temperature rise due to heat absorption of the dye layer during recording, and the groove width is widened as shown in FIG. In the present invention, the magnitude of the deformation (the groove width of the recorded portion) is 1.0 to 1.5 of the groove width of the unrecorded portion, that is, W 1 / W 0 = 1 or more,
1.5 or less. If it exceeds 1.5, it is not preferable to reduce the track pitch to 0.8 μm or less, because crosstalk increases and jitter is deteriorated. Also,
Since the dye layer, which is the recording layer, absorbs light to form a bit, if the main weight loss is slow with respect to temperature, that is, if weight loss occurs over a wide temperature range, optical change of the recording layer and The change in the film thickness is formed over a wide area. In the case of high-density bit length recording, bits overlap with each other, resulting in poor jitter and bit resolution, which is extremely disadvantageous. Therefore, there is a need for a dye that causes a sharp decrease in weight with respect to temperature. In the present invention, for the same reason, when a dye whose weight loss process is performed in two stages is used, that is, when a dye whose weight is reduced in a temperature region lower than the main weight loss start temperature is used. It is. In the present invention, the slope of weight loss in the main weight loss process is 2% / ° C or more, and the total weight loss% in the process is 30% or more, preferably, the slope of weight loss is 10% / ° C or more,
The total weight loss% is 35% or more. If the slope of the weight loss is less than the above range, a thin recording portion which is not sufficiently small and does not spread in the land direction cannot be formed, jitter and bit resolution deteriorate, and it is difficult to perform short bit length recording corresponding to high density. On the other hand, if the total weight loss is less than 30%, sufficient reflectance contrast before and after recording cannot be obtained, and sufficient short bit characteristics cannot be obtained because the recording modulation degree is small. Further, in order to obtain a recording medium with sufficiently small crosstalk at a narrow track pitch, the magnitude of the heat generation peak in the main weight loss process of the dye is in the range of −10 μV / mg to 10 μV / mg, preferably −5 μV / mg. More than 5 μV / mg.
If it exceeds this range, the crosstalk when the groove width is reduced to 0.3 μm or less exceeds 50%, and good jitter characteristics cannot be obtained. If it is less than this range, the heat absorption becomes too large, and the recording sensitivity deteriorates. Further, the peak width of the heat generation and heat absorption is preferably 20 ° C. or less. Exceeding this range makes it difficult to form good recording marks with sharp edges. The temperature at which the dye starts to lose weight is from 150 ° C. to 340 ° C., preferably from 150 ° C. to 200 ° C.

【0010】本発明において、減量の傾きは、以下の如
くして求める。(図3を参照。)質量M0の有機色素を
窒素中で10℃/分で昇温する。昇温に従って、質量は
当初微量ずつ減少し、ほぼ直線a−bの減量線を描き、
ついで急激に減量し始め、15%以上の減量をほぼ直線
1 −d2 に沿って減量する。これが主減量過程であ
り、主減量開始温度は、T1 のことである。その後、ほ
ぼ直線c−cで示される減量過程におちつく。直線d1
−d2 と直線c−cとの交点における温度をT2 、重量
をm2 とし、初期重量をm1 とすれば、ここでいう減量
の傾きとは、
In the present invention, the slope of the weight loss is obtained as follows. (See FIG. 3.) The organic dye of mass M 0 is heated at 10 ° C./min in nitrogen. As the temperature rises, the mass initially decreases by a small amount, and draws a substantially linear ab weight loss line,
Then, the weight starts to decrease rapidly, and the weight loss of 15% or more is reduced substantially along the straight line d 1 -d 2 . This is the main reduction process, the main weight reduction initiation temperature is that of the T 1. After that, the weight loss process is substantially indicated by a straight line cc. Straight line d 1
If the temperature at the intersection of −d 2 and the line cc is T 2 , the weight is m 2 , and the initial weight is m 1 , the slope of the weight loss here is:

【0011】[0011]

【数1】(m1 −m2 )(%)/(T2 −T1 )(℃) で示される値で、総重量に対する減量%(総減量%)
は、
## EQU1 ## A value represented by (m 1 −m 2 ) (%) / (T 2 −T 1 ) (° C.), and the weight loss% based on the total weight (total weight loss%)
Is

【0012】[0012]

【数2】(m1 −m2 )(%) で示される値である。なお、図4に示されるような場合
には、主減量過程の減量の傾きは
## EQU2 ## This is a value represented by (m 1 −m 2 ) (%). In the case shown in FIG. 4, the slope of the weight loss in the main weight loss process is

【0013】[0013]

【数3】(m1 −m2 )(%)/(T2 −T1 )(℃) とし、総重量に対する減量%(総減量%)は、(M 1 −m 2 ) (%) / (T 2 −T 1 ) (° C.), and the weight loss% (total weight loss%) based on the total weight is

【0014】[0014]

【数4】(m1 −m3 )(%) で示される値とする。## EQU4 ## (m 1 −m 3 ) (%)

【0015】また、本発明における発熱量は以下のよう
にして求める。上記減量曲線とともに、図5のような示
差熱曲線(DTA曲線)が得られる。なお、サンプルの
リファレンスはサンプルの入っていないアルミ容器であ
り、流量200mL/分の窒素中で毎分10℃の昇温速
度で加熱する。ここで、本測定で用いるアルミ容器は直
径5mmφ、高さ2.5mmの容器であり、サンプルは
その容器に粉末状態で入れる。サンプル量はアルミ容器
の高さの80%を越えない量を目安とする。データサン
プリング間隔は1秒毎とした。
Further, the calorific value in the present invention is obtained as follows. A differential heat curve (DTA curve) as shown in FIG. 5 is obtained together with the weight loss curve. The sample reference is an aluminum container containing no sample, and is heated at a rate of 10 ° C./min in nitrogen at a flow rate of 200 mL / min. Here, the aluminum container used in this measurement is a container having a diameter of 5 mmφ and a height of 2.5 mm, and the sample is put in the container in a powder state. The sample volume should not exceed 80% of the height of the aluminum container. The data sampling interval was 1 second.

【0016】図に示すように、TG曲線の急峻な減量に
対応する時間の近傍に、DTAでは発熱あるいは、吸熱
のピークが生じる。発熱(吸熱)のピーク値は図中のC
Hをさし、本件ではリファレンスとサンプルのアルミ容
器の底のまん中で測定した白金ロジウム熱電対(白金:
ロジウム=87:13)の起電圧差を温度差の表示と
し、そのピーク値を測定サンプルの重さで割った値を求
めた。なお、ピークが2つに分かれている場合には大き
い方の値をとった。ピーク幅は図中B’とD’の時間差
(分)に昇温速度の10℃をかけて”ピーク幅(℃)”
を求めた。以上の条件を満たす色素としては
As shown in the figure, in the vicinity of the time corresponding to the steep decrease in the TG curve, the DTA generates heat or an endothermic peak. The peak value of heat generation (endotherm) is C in the figure.
H, and in this case, a platinum-rhodium thermocouple (platinum:
The electromotive voltage difference of rhodium (87:13) was indicated as a temperature difference, and a value obtained by dividing the peak value by the weight of the measurement sample was obtained. In addition, when the peak was divided into two, the larger value was taken. The peak width was calculated by multiplying the time difference (minutes) between B 'and D' in the figure by 10 ° C at the heating rate, and "peak width (° C)".
I asked. As a dye satisfying the above conditions,

【0017】[0017]

【化2】 Embedded image

【0018】(式中、R1は水素原子、炭素数1〜6の
直鎖または分岐アルキル基、または炭素数3〜6の環状
アルキル基を表し、R2、R3は炭素数1〜6の直鎖また
は分岐のアルキル基、またはメトキシエチル基、エトキ
シエチル基を表す。Y1はヒドロキシル基、カルボキシ
ル基を表し、Y2は炭素数1〜6の直鎖または分岐のハ
ロゲン原子で置換されていても良いアルキル基、XとZ
はシアノ基、カルボン酸誘導体基などの電子吸引基を表
す。M2+はニッケル、コバルト、銅等の2価のイオンを
表す。)が特に好ましい。例えば、
(Wherein R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms, and R 2 and R 3 represent 1 to 6 carbon atoms) Represents a straight-chain or branched alkyl group, or a methoxyethyl group or an ethoxyethyl group, Y 1 represents a hydroxyl group or a carboxyl group, and Y 2 is substituted by a straight-chain or branched halogen atom having 1 to 6 carbon atoms. An optionally substituted alkyl group, X and Z
Represents an electron withdrawing group such as a cyano group or a carboxylic acid derivative group. M 2+ represents a divalent ion such as nickel, cobalt, and copper. Is particularly preferred. For example,

【0019】[0019]

【化3】 Embedded image

【0020】[0020]

【化4】 Embedded image

【0021】[0021]

【化5】 Embedded image

【0022】[0022]

【化6】 Embedded image

【0023】等が挙げられる。しかしながら、有機色素
は、発熱量が10μV/mg以下の色素で記録層として
良好な特性を示す色素ばかりではない。従って、発熱量
が10μV/mgを超え、30μV/mg以下の有機色
素の場合には、その色素層の上の金属反射層を、室温近
傍での比電気抵抗値の逆数が0.20/μΩcm以上、
0.30/μΩcm以下であるものとすることにより得
られる”記録層の記録時の熱の急冷効果”を利用する。
すなはち、ウィーデマンーフランツ則により示されるよ
うに、電気伝導度と熱伝導度との間には比例関係がある
ため、薄膜の熱伝導度の大小を電気伝導度から推測でき
る。本件では、スライドガラス上に約100nmの金属
膜をスパッタしたものを四端子法で表面抵抗Rを測定
し、比電気抵抗の逆数(電気伝導度)=(π/ln2)
・R・t (ここで、tは膜厚)より比電気抵抗の逆
数、すなわち、電気伝導度を決定した。本件の範囲は金
よりも熱伝導度の大きいものであり、それは、比電気抵
抗値の逆数が0.20/μΩcm以上、0.30/μΩ
cm以下である。さらに、金属反射層として、ディスク
の反射率を充分高いものとする必要があるため、再生光
波長±5nmでの屈折率、消衰係数がそれぞれ、0.1
以上、0.2以下、3以上、5以下である。具体的には
銀とその合金が挙げられる。この組み合わせにより、急
冷現象がおきて記録ビットが隣接トラックの方向に広が
るのを抑制でき、その結果、クロストークを低減でき
る。尚、本件では、比電気抵抗値の逆数は、金と銀とで
それぞれ、0.15/μΩcmと0.27/μΩcmで
あった。
And the like. However, organic dyes are not limited to dyes having a calorific value of 10 μV / mg or less and exhibiting good characteristics as a recording layer. Therefore, in the case of an organic dye having a calorific value of more than 10 μV / mg and not more than 30 μV / mg, the metal reflective layer on the dye layer has a reciprocal of specific electric resistance near room temperature of 0.20 / μΩcm. that's all,
The “heat quenching effect at the time of recording on the recording layer” obtained by setting the density to 0.30 / μΩcm or less is used.
That is, as indicated by the Wiedemann-Franz law, there is a proportional relationship between the electrical conductivity and the thermal conductivity, so that the magnitude of the thermal conductivity of the thin film can be estimated from the electrical conductivity. In this case, the surface resistance R of a sputtered metal film of about 100 nm on a slide glass was measured by the four-terminal method, and the reciprocal of the specific electric resistance (electric conductivity) = (π / ln2)
Rt (where t is the film thickness) determined the reciprocal of the specific electrical resistance, that is, the electrical conductivity. In the present case, the thermal conductivity is larger than that of gold, because the reciprocal of the specific electric resistance value is 0.20 / μΩcm or more and 0.30 / μΩ.
cm or less. Further, since it is necessary that the reflectivity of the disk is sufficiently high as the metal reflection layer, the refractive index and the extinction coefficient at the reproduction light wavelength ± 5 nm are each 0.1%.
Not less than 0.2, not less than 3, not less than 5, and not more than 5. Specifically, silver and its alloys are mentioned. With this combination, it is possible to suppress the recording bit from spreading in the direction of the adjacent track due to the rapid cooling phenomenon, and as a result, it is possible to reduce the crosstalk. In this case, the reciprocals of the specific electric resistance values were 0.15 / μΩcm and 0.27 / μΩcm for gold and silver, respectively.

【0024】金属反射層は、記録層を透過したレーザー
光を効率良く反射する金属膜であり、500nm以上、
700nm以下で反射率が低下しないために、記録再生
波長±5nmの波長領域の光の屈折率が0.1以上、
0.2以下、消衰係数kが3以上、5以下であるものが
好ましい。好ましい金属反射膜として、特に銀を主成分
とした金属反射膜が好ましい。なぜならば、銀は金属で
もとくに熱伝導度が大きいため、記録層の記録時の昇温
を急激に冷却する効果があり、そのために基板の変形が
溝間部に大きく広がることを抑制し、クロストークが小
さくなる。また銀は、金、アルミ合金などに比べると反
射率が大きいため、短ビット記録をした時により大きな
信号振幅が得られ、これを反射層とした場合には短ビッ
ト特性が良好となる。対候性の向上のために、また、熱
伝導度の微調整のために、銀に、Ti、Rh、Cu、T
a、Pd、Ni、V、Co、Cr、Si、C、B、S
n、P、Zn、Sb、Moの添加元素を3原子%以下の
範囲で加えることが好ましい。。金属反射層の膜厚は、
好ましくは80nm以上で、記録層の変形を抑制しすぎ
たり、記録感度を悪化させすぎない程度の膜厚が好まし
い。
The metal reflection layer is a metal film that efficiently reflects the laser beam transmitted through the recording layer, and has a thickness of 500 nm or more.
Since the reflectance does not decrease at 700 nm or less, the refractive index of light in the wavelength region of recording / reproducing wavelength ± 5 nm is 0.1 or more,
Preferably, the extinction coefficient k is 3 or more and 5 or less. As a preferable metal reflection film, a metal reflection film containing silver as a main component is particularly preferable. This is because silver, which is a metal having a particularly high thermal conductivity, has the effect of rapidly cooling the temperature rise during recording of the recording layer, thereby suppressing the substrate from being greatly deformed in the inter-groove portion. Talk becomes smaller. Further, silver has a higher reflectivity than gold, an aluminum alloy, or the like, so that a larger signal amplitude can be obtained when short-bit recording is performed. When this is used as a reflective layer, short-bit characteristics are improved. In order to improve weatherability and fine-tune the thermal conductivity, silver, Ti, Rh, Cu, T
a, Pd, Ni, V, Co, Cr, Si, C, B, S
It is preferable to add additional elements of n, P, Zn, Sb, and Mo in a range of 3 atomic% or less. . The thickness of the metal reflection layer is
Preferably, the film thickness is 80 nm or more, which does not excessively suppress the deformation of the recording layer and does not excessively deteriorate the recording sensitivity.

【0025】本発明の光学記録媒体においては、反射層
の上に保護層を積層し、記録部の金属反射層の穴の発生
を防止したり、変形の非対称性を抑制する効果を有して
いる。保護層としては紫外線硬化接続が好ましい。ま
た、通常は、1μm以上、好ましくは3μm以上の膜厚
にして、酸素による硬化抑制等がおこらないようにす
る。さらにその上にホットメルトや紫外線硬化の接着剤
を10〜20μm設けて2枚の貼り合わせをしてもよ
い。以下本発明を実施例を用いてより詳細に説明する
が、本発明はその要旨を超えない限り、実施例に限定さ
れるものではない。
In the optical recording medium of the present invention, a protective layer is laminated on the reflective layer, which has the effect of preventing the formation of holes in the metal reflective layer of the recording portion and suppressing the asymmetry of deformation. I have. An ultraviolet curing connection is preferred as the protective layer. Further, the thickness is usually set to 1 μm or more, preferably 3 μm or more so that the suppression of curing by oxygen or the like does not occur. Further, a hot-melt or ultraviolet-curing adhesive may be provided thereon to 10 to 20 μm, and the two sheets may be bonded to each other. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist.

【0026】[0026]

【実施例】【Example】

実施例1 溝深さ150nm、溝幅(溝の半値幅)0.25μm
(0.80μmピッチ)(以上、AFMでの測定結果)
のU字型案内溝を有する厚さ0.6mmのポリカーボネ
ート基板上に下記構造式〔IV〕
Example 1 Groove depth 150 nm, groove width (half width of groove) 0.25 μm
(0.80 μm pitch) (above, measurement results with AFM)
On a 0.6 mm thick polycarbonate substrate having a U-shaped guide groove of the following structural formula [IV]

【0027】[0027]

【化7】 Embedded image

【0028】で示される含金属アゾ色素0.06gをオ
クタフルオロペンタノール(OFP)5gに溶解し、8
00rpmでスピンコートし、80℃のオーブンで1時
間アニール処理し、記録層とした。この色素の減量特性
は図2に示されるタイプであり、主減量過程での減量が
47.0%で、温度差が7.1℃で、減量の傾きは6.
6%/℃(主減量開始温度は313℃)、総減量%は5
9.7%、発熱ピーク値は+3.4μV/mg、ピーク幅
は14.7℃であった。熱重量分析、示差熱分析ははセ
イコー電子工業製の示差熱天秤(「SSC5200H」
シリーズ「TG−DTA−320」)を用いて測定し
た。この色素単層の640nmでの屈折率nと消衰係数
kはそれぞれ2.2と0.06であり、吸収の肩は577
nmであった。
0.06 g of the metal-containing azo dye represented by the formula is dissolved in 5 g of octafluoropentanol (OFP),
This was spin-coated at 00 rpm and annealed in an oven at 80 ° C. for 1 hour to form a recording layer. The weight loss characteristics of this dye are of the type shown in FIG. 2, the weight loss during the main weight loss process is 47.0%, the temperature difference is 7.1 ° C., and the slope of the weight loss is 6.
6% / ° C (primary weight loss starting temperature is 313 ° C), total weight loss is 5%
9.7%, the exothermic peak value was +3.4 μV / mg, and the peak width was 14.7 ° C. The thermogravimetric analysis and the differential thermal analysis are performed using a differential thermal balance (“SSC5200H”) manufactured by Seiko Instruments Inc.
Series "TG-DTA-320"). The refractive index n and the extinction coefficient k at 640 nm of this dye monolayer are 2.2 and 0.06, respectively, and the absorption shoulder is 577.
nm.

【0029】この記録層の上に金を100nmの厚さだ
けスパッタし、その状態で塗布膜の溝深さをAFMで測
定したところ、基板の溝深さの55%であった。なお、
記録層の溝間部膜厚は80nmであった(従って、溝部
膜厚は140nm)。この金属層の上にUV硬化樹脂
(大日本インキ製「SD−318」)を約3μmスピン
コートして紫外線ランプで硬化してディスクを作製し
た。同じ様にして作製したディスクどうしをホットメル
ト方式で接着した。この貼り合わせディスクを640n
mの半導体レーザー評価機(開口数NA=0.6)で、
CD−Rの4倍速対応EFM信号(nー1)Tを線速度
2.7m/sで記録したところ、7.4mWでアイの中心
が11T波形の中心に位置する良好なアイパターンが得
られた。この記録条件でItop=50%、I11/Itop
68%で、3Tジッターは9nsであった。この条件で
記録した溝部に隣接する溝間部(ランド上)で再生した
ところ、信号振幅は溝部での再生振幅の38%であり、
両側のトラックの記録によるジッターの劣化は1nsと
十分小さなクロストーク特性を示した。このディスクの
貼り合わせ面をはがし、両面テープで反射膜を剥離し、
エタノールで色素を洗い流して記録部下の基板の変形を
AFMで観察したところ、20nm程度の凸部が形成さ
れ、溝幅の変形は未記録部の溝幅の1.1倍と、十分ス
マートな記録マークが形成されていた。
Gold was sputtered on this recording layer to a thickness of 100 nm, and the groove depth of the coating film measured by AFM in this state was 55% of the groove depth of the substrate. In addition,
The inter-groove film thickness of the recording layer was 80 nm (accordingly, the groove film thickness was 140 nm). A UV curable resin (“SD-318” manufactured by Dainippon Ink) was spin-coated on the metal layer at about 3 μm and cured with an ultraviolet lamp to produce a disk. The disks produced in the same manner were bonded together by a hot melt method. This bonded disk is 640n
m semiconductor laser evaluation machine (numerical aperture NA = 0.6)
When a quadruple-speed EFM signal (n-1) T of a CD-R was recorded at a linear velocity of 2.7 m / s, a good eye pattern was obtained at 7.4 mW with the center of the eye located at the center of the 11T waveform. Was. Itop = 50% In this recording conditions, I 11 / I top =
At 68%, the 3T jitter was 9 ns. When the signal was reproduced in the groove (land) adjacent to the groove recorded under this condition, the signal amplitude was 38% of the reproduction amplitude in the groove.
Deterioration of jitter due to recording of tracks on both sides showed a sufficiently small crosstalk characteristic of 1 ns. Peel the bonded surface of this disk, peel off the reflective film with double-sided tape,
When the dye was washed away with ethanol and the deformation of the substrate under the recording portion was observed by AFM, a protrusion of about 20 nm was formed, and the deformation of the groove width was 1.1 times the groove width of the unrecorded portion. A mark was formed.

【0030】実施例2〜5、比較例1〜3 以下の実施例、比較例で用いた基板、UV硬化樹脂層は
すべて実施例1と同様であり、実施例5を除いては反射
層が金100nmであり(実施例5は、銀100n
m)、色素は下記構造式のものに変え、記録条件はすべ
ての例で全く同様とした。特性は表−1に示すとおりで
あり、表中でクロストークと示しているのは、両側の溝
上に記録した時の、溝間部での再生信号振幅/溝上再生
信号振幅(%)の値である。いずれも、溝間部の膜厚は
80nm〜90nmであり、塗布膜の溝深さは基板のそ
れの55%〜60%で、結局溝部の膜厚は130nm〜
140nmであった。なお、いずれも記録は、アイの中
心が11T波形の中心に位置するアイパターンが得られ
る記録パワーで行った。なお、DTAによる発熱量の測
定に用いた試料量は、各図7〜14のチャート上部に示
す。
Examples 2 to 5 and Comparative Examples 1 to 3 Substrates and UV curable resin layers used in the following Examples and Comparative Examples are all the same as those in Example 1. 100 nm of gold (Example 5 is 100 nm of silver
m), the dye was changed to that of the following structural formula, and the recording conditions were exactly the same in all examples. The characteristics are as shown in Table 1. In the table, "crosstalk" indicates the value of the reproduction signal amplitude at the inter-groove portion / the reproduction signal amplitude on the groove (%) when recording on the grooves on both sides. It is. In any case, the film thickness of the inter-groove portion is 80 nm to 90 nm, the groove depth of the coating film is 55% to 60% of that of the substrate, and eventually the film thickness of the groove portion is 130 nm to 90 nm.
140 nm. In each case, recording was performed with a recording power capable of obtaining an eye pattern in which the center of the eye was located at the center of the 11T waveform. The amount of the sample used for measuring the calorific value by DTA is shown in the upper part of the chart in each of FIGS.

【0031】[0031]

【化8】 Embedded image

【0032】[0032]

【化9】 Embedded image

【0033】[0033]

【表1】 [Table 1]

【0034】尚、記録パワーは実施例1〜6でそれぞれ
7.4、6.6、8.6、6.4、6.5、6.5mW
であり、比較例1〜3でそれぞれ7.2、7.0、7.
2mWであった。 比較例4 基板の溝幅を0.35μmに変えた他は実施例6と同様
にしてディスクを作成した。このディスクを実施例6と
同様に記録したところ、I11/Itopは54%しか得ら
れず、実施例6に比べはるかに小さいものであった。こ
のことから、溝幅が狭いほど大きい記録変調度が得られ
ることがわかる。
The recording power was 7.4, 6.6, 8.6, 6.4, 6.5, and 6.5 mW in Examples 1 to 6, respectively.
And 7.2, 7.0, and 7. in Comparative Examples 1 to 3, respectively.
It was 2 mW. Comparative Example 4 A disk was prepared in the same manner as in Example 6, except that the groove width of the substrate was changed to 0.35 μm. Was the disc is recorded in the same manner as in Example 6, I 11 / I top is obtained only 54% was much smaller than in Example 6. This indicates that the smaller the groove width, the higher the recording modulation degree can be obtained.

【0035】[0035]

【発明の効果】トラックピッチ、溝幅が十分小さくても
クロストークが小さい、良好な短ビットを形成し短波長
記録に好適な、高反射率の高容量光記録媒体を得ること
ができる。
According to the present invention, it is possible to obtain a high-capacity optical recording medium having a high reflectivity, which is suitable for short-wavelength recording, has a small crosstalk even if the track pitch and the groove width are sufficiently small, and is suitable for short-wavelength recording.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本件でのnabs・d/λの範囲と反射率を示す計
算結果の説明図。
FIG. 1 is an explanatory diagram of a calculation result showing a range of n abs · d / λ and a reflectance in the present case.

【図2】反射率60%以上となる、本件でのnabs・d/
λと消衰係数kの範囲を示す説明図。
FIG. 2 n abs · d / in the present case that the reflectance is 60% or more
Explanatory drawing which shows the range of (lambda) and the extinction coefficient k.

【図3】記録部と未記録部の基板の溝幅を示す説明図。FIG. 3 is an explanatory diagram showing groove widths of a substrate in a recorded portion and an unrecorded portion.

【図4】有機色素の主減量過程、主減量過程の総減量、
減量の傾きを求める方法を説明するための示差熱天秤の
チャートの説明図。
FIG. 4 shows the main weight loss process of the organic dye, the total weight loss of the main weight loss process,
FIG. 5 is an explanatory diagram of a chart of a differential thermal balance for explaining a method of obtaining a slope of weight loss.

【図5】図4と異なる、有機色素の主減量過程、主減量
過程の総減量、減量の傾きを求める方法を説明するため
の示唆熱天秤のチャートの説明図。
FIG. 5 is an explanatory diagram of a chart of a suggestive thermobalance for explaining a main weight loss process of an organic dye, a total weight loss in the main weight loss process, and a method of obtaining a slope of the weight loss, which are different from FIG.

【図6】示差熱分析での発熱(吸熱)ピーク値、ピーク
幅を求める方法を説明するための示差熱天秤のチャート
の説明図。
FIG. 6 is an explanatory diagram of a chart of a differential thermal balance for explaining a method of obtaining a heat generation (endothermic) peak value and a peak width in differential thermal analysis.

【図7】実施例1の色素の示差熱天秤のチャート図。FIG. 7 is a chart of a differential thermal balance of the dye of Example 1.

【図8】実施例2の色素の示差熱天秤のチャート図。FIG. 8 is a chart of a differential thermal balance of the dye of Example 2.

【図9】実施例3の色素の示差熱天秤のチャート図。FIG. 9 is a chart of a differential thermal balance of a dye of Example 3.

【図10】実施例4の色素の示差熱天秤のチャート図。FIG. 10 is a chart of a differential thermal balance of a dye of Example 4.

【図11】実施例5の色素の示差熱天秤のチャート図。FIG. 11 is a chart of a differential thermal balance of a dye of Example 5.

【図12】実施例6及び比較例4の色素の示差熱天秤の
チャート図。
FIG. 12 is a chart of a differential thermal balance of the dyes of Example 6 and Comparative Example 4.

【図13】比較例1の色素の示差熱天秤のチャート図。FIG. 13 is a chart of a differential thermal balance of the dye of Comparative Example 1.

【図14】比較例2の色素の示差熱天秤のチャート図。FIG. 14 is a chart of a differential thermal balance of the dye of Comparative Example 2.

【図15】比較例3の色素の示差熱天秤のチャート図。FIG. 15 is a chart of a differential thermal balance of a dye of Comparative Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒瀬 裕 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 前田 修一 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Kurose 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Chemical Research Laboratory (72) Inventor Shuichi Maeda 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Research Institute Yokohama Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】トラックピッチが0.7μm以上1.0μ
m以下で、深さが100nm以上、200nm以下であ
り、幅(溝深さが半分になるところの溝幅)が0.2〜
0.4μmの記録再生光案内用の溝が形成された透明基
板上に、少なくとも、熱分析で、主減量開始温度よりも
低い温度における減量が実質的になく、かつ、主減量過
程での減量の傾きが2%/℃以上で、その総減量%が3
0%以上である有機色素を含有する記録層、金属反射
層、保護層の順に積層した光記録媒体において、記録層
が下記の(1)もしくは(2)の条件を満たすことを特
徴とする、波長500nm以上、700nm以下で記録
再生する光記録媒体。 (1)示差熱分析での発熱のピークの大きさがー10μ
V/mg以上、10μV/mg以下であり、ピーク幅が
20℃以下であること。 (2)示差熱分析での発熱ピークの大きさが10μV/
mg以上30μV/mg以下である有機色素からなる記
録層の上に、室温近傍での比電気抵抗値の逆数が0.2
0/μΩcm以上、0.30/μΩcm以下であり、再
生光±5nmでの屈折率が0.1以上、0.2以下で、
消衰係数が3以上、5以下である金属反射層を有するこ
と。
1. A track pitch of 0.7 μm or more and 1.0 μm or more.
m, the depth is 100 nm or more and 200 nm or less, and the width (the groove width where the groove depth is halved) is 0.2 to
On a transparent substrate on which a recording / reproducing light guide groove of 0.4 μm is formed, at least thermal analysis shows that there is substantially no weight loss at a temperature lower than the main weight loss start temperature, and weight loss in the main weight loss process. Is more than 2% / ℃, and the total weight loss is 3%
In an optical recording medium in which a recording layer containing an organic dye of 0% or more, a metal reflective layer, and a protective layer are laminated in this order, the recording layer satisfies the following condition (1) or (2): An optical recording medium for recording and reproducing at a wavelength of 500 nm or more and 700 nm or less. (1) Exothermic peak size in differential thermal analysis is -10μ
V / mg or more and 10 μV / mg or less and peak width of 20 ° C. or less. (2) The magnitude of the exothermic peak in the differential thermal analysis is 10 μV /
The reciprocal of the specific electrical resistance near room temperature is 0.2 g on the recording layer made of an organic dye having a concentration of 30 μV / mg or less
0 / μΩcm or more and 0.30 / μΩcm or less, and the refractive index at ± 5 nm of reproduction light is 0.1 or more and 0.2 or less,
A metal reflection layer having an extinction coefficient of 3 or more and 5 or less.
【請求項2】記録を溝上で行い、記録部下の基板の溝幅
(W1)が、未記録部の溝幅(W0)に対して1倍以上、
1.5倍以下である請求項1記載の光記録媒体。
2. The recording is performed on a groove, and the groove width (W 1 ) of the substrate below the recording portion is at least one time greater than the groove width (W 0 ) of the unrecorded portion.
2. The optical recording medium according to claim 1, wherein the ratio is 1.5 times or less.
【請求項3】記録層単層の再生光波長±5nmでの屈折
率nが2.2以上、2.8以下であり、消衰係数が0.0
3以上、0.09以下である請求項1または2に記載の
光記録媒体。
3. The single-layered recording layer has a refractive index n of 2.2 to 2.8 at a reproduction light wavelength of ± 5 nm and an extinction coefficient of 0.0.
The optical recording medium according to claim 1, wherein the number is 3 or more and 0.09 or less.
【請求項4】記録層の溝間上の膜厚が50nm以上、1
00nm以下であり、記録層塗布膜の溝深さが、透明基
板の溝深さの50%以上、80%以下であることを特徴
とする請求項1乃至3のいずれか1項に記載の光記録媒
体。
4. A recording layer having a thickness of 50 nm or more above a groove of a recording layer.
4. The light according to claim 1, wherein the groove depth of the recording layer coating film is 50% or more and 80% or less of the groove depth of the transparent substrate. 5. recoding media.
【請求項5】記録層を構成する色素が下記の構造式
[I]〜[III]のいずれかで表される化合物である請
求項1乃至4のいずれか1項に記載の光記録媒体。 【化1】 (式中、R1は水素原子、炭素数1〜6の直鎖または分
岐アルキル基、または、炭素数3〜6の環状アルキル基
を表し、R2、R3は炭素数1〜6の直鎖または、分岐の
アルキル基、またはメトキシエチル基、エトキシエチル
基を表す。Y1はヒドロキシル基、カルボキシル基を表
し、Y2は炭素数1〜6の直鎖または分岐のハロゲン原
子で置換されていても良いアルキル基を表し、X、Zは
シアノ基、カルボン酸エステル基、または炭素数1〜6
の直鎖または分岐のアルキル基を表す。M2+はニッケ
ル、コバルト、銅の2価のイオンを表す。)
5. The optical recording medium according to claim 1, wherein the dye constituting the recording layer is a compound represented by any one of the following structural formulas [I] to [III]. Embedded image (In the formula, R 1 represents a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, or a cyclic alkyl group having 3 to 6 carbon atoms, and R 2 and R 3 represent a straight-chain alkyl group having 1 to 6 carbon atoms. A chain or branched alkyl group, or a methoxyethyl group or an ethoxyethyl group, Y 1 represents a hydroxyl group or a carboxyl group, and Y 2 is substituted with a linear or branched halogen atom having 1 to 6 carbon atoms. X and Z represent a cyano group, a carboxylate group, or a C1-6 group;
Represents a linear or branched alkyl group. M 2+ represents a divalent ion of nickel, cobalt, or copper. )
【請求項6】該金属反射層がTi,Rh,Cu,Ta,
Pd,Ni,V,Co,Cr,Si,C,B,Su,
P,Zn,Moからなる群より選ばれる添加元素を0〜
3原子%含有する銀である請求項1乃至5のいずれか1
項に記載の光記録媒体。
6. The method according to claim 1, wherein the metal reflection layer is made of Ti, Rh, Cu, Ta,
Pd, Ni, V, Co, Cr, Si, C, B, Su,
The additive element selected from the group consisting of P, Zn, and Mo
6. Silver according to claim 1, wherein the silver is 3 atomic%.
The optical recording medium according to item 1.
【請求項7】該基板の厚さが0.6mm±0.03mmで
あり、基板の案内溝のトラックピッチが0.7μm以
上、1.0μm以下であり、溝深さが100nm以上、
200nm以下で、溝幅(溝深さが半分になるところの
溝幅)が0.2μm以上、0.3μm以下である請求項
1乃至6のいずれか1項に記載の光記録媒体。
7. The substrate has a thickness of 0.6 mm ± 0.03 mm, a track pitch of a guide groove of the substrate is 0.7 μm or more and 1.0 μm or less, a groove depth of 100 nm or more,
The optical recording medium according to any one of claims 1 to 6, wherein the groove width (groove width at which the groove depth is halved) is 0.2 µm or more and 0.3 µm or less at 200 nm or less.
【請求項8】該保護層が主として紫外線硬化樹脂からな
る請求項1乃至7のいずれか1項に記載の光記録媒体。
8. The optical recording medium according to claim 1, wherein said protective layer mainly comprises an ultraviolet curable resin.
JP33819996A 1996-12-18 1996-12-18 Optical recording medium Expired - Lifetime JP3666152B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP33819996A JP3666152B2 (en) 1996-12-18 1996-12-18 Optical recording medium
EP97122322A EP0849727B1 (en) 1996-12-18 1997-12-17 Optical recording disk
DE69735460T DE69735460T2 (en) 1996-12-18 1997-12-17 Optical recording disk
US08/992,899 US6232036B1 (en) 1996-12-18 1997-12-18 Optical recording disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33819996A JP3666152B2 (en) 1996-12-18 1996-12-18 Optical recording medium

Publications (2)

Publication Number Publication Date
JPH10188341A true JPH10188341A (en) 1998-07-21
JP3666152B2 JP3666152B2 (en) 2005-06-29

Family

ID=18315870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33819996A Expired - Lifetime JP3666152B2 (en) 1996-12-18 1996-12-18 Optical recording medium

Country Status (1)

Country Link
JP (1) JP3666152B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163799A (en) * 1998-11-20 2000-06-16 Ricoh Co Ltd Optical information recording medium
WO2002017314A1 (en) * 2000-08-25 2002-02-28 Mitsubishi Chemical Corporation Optical recording medium
JP2006099890A (en) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd Optical information recording medium
US7332261B2 (en) 2002-02-15 2008-02-19 Ciba Specialty Chemicals Corporation Phthalocyanine compound, process for preparing the same, and optical recording medium containing the same
JP2008091001A (en) * 2006-09-06 2008-04-17 Ricoh Co Ltd Optical recording medium
US7964260B2 (en) 2004-11-10 2011-06-21 Ricoh Company, Ltd. Optical recording medium, recording and reproducing method thereof, and optical recording and reproducing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163799A (en) * 1998-11-20 2000-06-16 Ricoh Co Ltd Optical information recording medium
WO2002017314A1 (en) * 2000-08-25 2002-02-28 Mitsubishi Chemical Corporation Optical recording medium
US7332261B2 (en) 2002-02-15 2008-02-19 Ciba Specialty Chemicals Corporation Phthalocyanine compound, process for preparing the same, and optical recording medium containing the same
JP2006099890A (en) * 2004-09-30 2006-04-13 Taiyo Yuden Co Ltd Optical information recording medium
US7964260B2 (en) 2004-11-10 2011-06-21 Ricoh Company, Ltd. Optical recording medium, recording and reproducing method thereof, and optical recording and reproducing apparatus
JP2008091001A (en) * 2006-09-06 2008-04-17 Ricoh Co Ltd Optical recording medium

Also Published As

Publication number Publication date
JP3666152B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US6232036B1 (en) Optical recording disk
KR100401282B1 (en) Optical recording media
JP3685368B2 (en) Optical recording medium
US5391461A (en) Optical recording medium and recording method
US6214519B1 (en) Optical recording medium
JP3666152B2 (en) Optical recording medium
JP3731244B2 (en) Optical recording medium and manufacturing method thereof
JP3499724B2 (en) Optical recording medium
JP3649062B2 (en) Optical recording medium and optical recording method
JP3543464B2 (en) Optical recording medium and information recording method
JPH10208303A (en) Optical recording medium
JPH106644A (en) Optical recording medium
JP3280044B2 (en) Optical recording medium
JPH0447909B2 (en)
JP2001067732A (en) Optical recording medium
JP2001076343A (en) Optical recording medium and optical recording system
JP4438397B2 (en) Azo-substituted quinoline compound, chelate compound and optical recording medium using the same
JP3682759B2 (en) Optical recording medium
US20030161987A1 (en) Optical recording medium
JP2005170045A (en) Method for manufacturing optical recording medium
JPH0567352A (en) Optical recording medium
JP2005305835A (en) Optical recording material and optical recording medium
JP2767871B2 (en) Optical recording medium
JPH05147356A (en) Optical recording medium
JPH11134708A (en) Optical recording medium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

EXPY Cancellation because of completion of term