JP3731244B2 - Optical recording medium and manufacturing method thereof - Google Patents

Optical recording medium and manufacturing method thereof Download PDF

Info

Publication number
JP3731244B2
JP3731244B2 JP08139896A JP8139896A JP3731244B2 JP 3731244 B2 JP3731244 B2 JP 3731244B2 JP 08139896 A JP08139896 A JP 08139896A JP 8139896 A JP8139896 A JP 8139896A JP 3731244 B2 JP3731244 B2 JP 3731244B2
Authority
JP
Japan
Prior art keywords
recording
recording medium
optical recording
layer
weight loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08139896A
Other languages
Japanese (ja)
Other versions
JPH09274732A (en
Inventor
夕起 鈴木
祐子 岡本
通和 堀江
裕 黒瀬
修一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP08139896A priority Critical patent/JP3731244B2/en
Publication of JPH09274732A publication Critical patent/JPH09274732A/en
Priority to US09/033,654 priority patent/US6214519B1/en
Application granted granted Critical
Publication of JP3731244B2 publication Critical patent/JP3731244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光記録媒体に関し、詳しくはレーザー光により記録できる光記録媒体に関する。
【0002】
【従来の技術】
近年、780nmよりも短波長、例えば640nm等、のレーザー光で記録再生可能な光記録媒体が、高密度記録媒体として注目されている。かかる状況では、波長依存性の小さい相変化媒体等、様々な記録媒体があるが、その中で、有機色素系記録媒体は、安価でプロセス上容易であるという特長を有する。
【0003】
このような短波長用途の有機色素系媒体の色素としては、シアニン色素等が提案されており、特開平6ー336086号公報、特開平7ー76169号公報、特開平7ー125441号公報、特開平7ー262604号公報等がある。記録部では、780nmでのCD−Rと同様に、色素の熱分解による光学定数吸と膜厚の減少と基板の軟化による変形等が生じていると考えられる。
【0004】
【発明が解決しようとする課題】
上記の従来技術においては、記録時に色素の分解と基板の変形の両方により大きな記録変調度を得ているが、記録部の変形が大きすぎるため、クロストークが大きな問題となる。また、CD−Rの波長より短い波長で、しかも、高密度化のためにレーザー集束用レンズの開口数(NA)の大きいレンズをもちいて再生するため、レーザーのビーム径が、780nmーNA0.5にくらべ、640nmーNA0.6では、再生ビーム径が1.46倍集光の度合いが増す。その結果、再生光照射による温度上昇、光強度が短波長評価機(ドライブ)使用の方が大きくなるため、耐再生光劣化の色素が特に必要とされる。
【0005】
【課題を解決するための手段】
本発明者らは、高密度記録を実現されるために良好な記録部を形成し、かつ、再生劣化の小さい媒体を鋭意検討した結果、本発明に到達した。
本発明の要旨は、透明基板上に、有機色素を含有する記録層、金属反射層、保護層の順に積層した600nm〜700nm用の光記録媒体において、記録層が1層のみであり、記録層が下記一般式1で表される色素を含み(但し、シアニン系色素を含むことはない)、透明基板上の膜の状態での記録再生光波長に最も近い吸収極大が、記録再生光波長よりも40〜80nm単波長側にある光学記録媒体の製造方法において、下記一般式で示される色素の1種以上を、沸点が110℃〜150℃であるフッ化アルコールに溶解して得られた溶液を塗布することにより記録層を形成することを特徴とする光記録媒体の製造法、に存する。
【0006】
【化3】

Figure 0003731244
【0008】
(式中、Xはジアゾ基と共役可能な電子吸引基からなる置換基を示し、Yはドロキシル基、カルボキシル基よりなる置換基を示し、R、Rは炭素数1〜6のアルキル基を示し、M2+はニッケル、コバルト又は銅の2価のイオンを示す。)
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
本発明における記録層は、記録用のレーザー光を吸収することによる昇温で減量し、膜厚が減少し、光学特性が変化することにより、戻り光の位相が変化し、反射率が変化したところを記録部とするものである。
【0010】
本発明において、透明基板としてはポリカーボネート、ポリメタクリレート、非晶質ポリオレフィン等の樹脂やガラス等の公知のものが用いられ、サーボ用の案内溝を有している。その溝は、深さは、通常100〜200nm、好ましくは、140〜200nmで、溝幅は、通常0.3〜0.4μm、トラックピッチは、通常0.7〜1.0μmであり、溝形状はU字型溝が好ましい。溝の深さは、100nm未満の場合には記録時に十分な変化がおきず、十分な記録変調度が得られない場合がある。200nmを越えると、溝部と溝間部の反射率差が大きすぎるため、溝上記録の場合には反射率が低くなりすぎるので好ましくはない。溝幅は、0.3μm未満には十分なトラッキングエラー信号強度を得ることが困難となる恐れがある。また、0.4μmを越える溝幅の場合には、記録した時に記録部が横に広がりやすくなるので好ましくない。トラックピッチは、高容量化の用途には、0.7〜1.0μmが好ましい。なお、溝形状は、1μmピッチの場合はHeーCdレーザーによる光学測定で求め、それよりもトラックピッチが狭い場合には、STMやAFMでプロファイルを測定して求めることができる。なお、後述の実施例においては、STMで求めた。
【0011】
記録層は、例えば、有機色素等をエタノール、3ーヒドロキシー3ーメチルー2ーブタノン、ジアセトンアルコール、フッ化アルコール等の溶媒に溶かした溶液をスピンコートして得られる。特に、この溶媒としては、沸点が110〜150℃のフッ化アルコールが好ましく用いられる。沸点が100℃未満の場合は、スピンコート時に溶媒が気化するため、ディスクの半径40mmより外周側に塗布液がゆきつかず、半径方向の膜厚分布が極めて大きくなり、良好な特性が得られないことがあるので好ましくない。また、170℃を越える場合には、蒸発に時間がかかる上に、膜中に溶媒が残留しやすく、その様な場合には、良好な記録感度が得られないことが多い。フッ化アルコール以外のよく使用される溶媒、たとえば、ジアセトンアルコールやエチルセロソルブ等は、基板のポリカーボネートとの接触角が30度以上であるのに対し、上記フッ化アルコールは10度以下であり、フッ化アルコールのこの様な濡れ性の良さの故に、狭トラックピッチレプリカの溝内に十分塗布液が入り込めるため、良好な記録特性を示す膜を形成することが可能となる。また、ケトン系あるいは、その他の極性溶媒は、基板のポリカーボネートを溶かすため、基板上に誘電体膜をスパッタしたり、高価なポリオレフィンやガラスにする必要が生じ、有機系記録媒体の安価性、プロセスの容易性というメリットが失われてしまうため好ましくない。
【0012】
膜厚は溝部で60〜180nm程度が好ましい。60nm未満では薄すぎて良好な記録特性が得られにくい恐れがある。また、180nmを越えると、記録部の横方向、スキャン方向への変形が大きくなるため、クロストークやジッターが大きくなるため好ましくない。また、塗布膜の溝深さが50〜180nmであり、U字型であることが好ましい。この溝深さが50nm未満であると、トラッキングエラー信号振幅が十分に得られなくなり、また、180nmを越える場合には溝部の膜厚が薄すぎるため、十分な記録変調度が得られない恐れがある。
【0013】
有機色素としては、シアニン色素、含金属アゾ系色素や、ジベンゾフラノン系、含金属インドアニリン等があるが、本発明では、前記一般式[1]で表される含金属アゾ系色素が特に好ましい。前記式中のXとしてはBr、Cl、CF3等が例示できる。また、R1、R2は炭素数1〜6の直鎖アルキル基でも炭素数3〜6の分岐アルキル基でもよい。たと
えば、次のような色素が例示できる。
【0014】
【化5】
Figure 0003731244
【0015】
【化6】
Figure 0003731244
【0016】
特にこの系統の色素に関しては、広くは特公平5ー67438号公報等に記載されているが、その中で、高密度記録用途に限定する場合には、熱特性、膜としてのモル吸光係数等の要請から、上記の例示のような特定の色素に限定されることがわかり、本発明に到達した。
前記化合物は、ジアゾ基と共役可能な位置に電子吸引性基の置換をすることにより、ジアゾ結合が不安定化すると考えられ、その結果、分解時の減量が急峻になるため、高密度記録用に優れた特性を示すものと考えられる。
【0017】
記録層を構成する有機色素の熱的特性は記録特性に大きく影響する。短波長用途として充分な特性を得るためには、熱重量分析における、主減量過程での減量が、温度に対してシャープであることが必要であり、10℃/分の昇温速度で測定した場合の主減量過程での減量の傾きが10%/℃となる有機色素を用いることが好ましい。なお、本発明では、いくつかの減量過程のうちで減量が18%以上の過程を主減量過程と呼ぶ。
【0018】
本発明において、減量の傾きは、以下の如くして求める。(図1を参照。)
質量M0の有機色素を窒素中で10℃/分の速度で昇温する。昇温に従って、質量は当初微量ずつ減少し、ほぼ直線aーbの減量線を描き、ついで急激に減量し始め、18%以上の減量をほぼ直線d1ーd2に沿って減量する。これが主減量過程であり、主減量開始温度は、T1のことである。その後、ほぼ直線c−cで示される減量過程におちつく。直線d1ーd2と直線c−cとの交点における温度をT2、重量をm2とし、初期重量をm1とすれば、ここでいう減量の傾きとは、
【0019】
【数1】
(m1-m2)(%)/(T2ーT1)(℃)
【0020】
で示される値である。この傾きが10%/℃未満である有機色素を用いると、記録部の横方向の広がりが大きくなり、また、短ビットの形成が困難となるため、高容量化を目的とする短波長用途に向かない。さらに、この主減量過程での総減量は当初質量M0の好ましくは、30%以上である。30%未満であると、良好な記録変調度、記録感度が得られない恐れがある。なお、主減量開始温度は240℃〜340℃が好ましい。
【0021】
また、記録再生波長±5nmの波長領域の光に対する記録層単層の屈折率nが2〜3であり、消衰係数kが0.03から0.15であるものが好ましい。また、透明基板上の膜の状態での記録再生波長に最も近い吸収極大が、記録再生波長よりも40〜80nm短波長側にあることが好ましい。溶液での吸収極大が、基板上のスピンコート膜の状態では長波長シフトすることが多いので、透明基板上での吸収極大で判断することが必要である。屈折率nが2よりも小さい場合には、十分な光学的変化が得られにくいため、記録変調度が低くなるので好ましくない。また、消衰係数kが0.03未満では記録感度が悪くなる。消衰係数kが0.15を越えると、50%以上の反射率を得ることが困難となるので好ましくない。波長についても、上記範囲をはずれる場合には、十分な記録変調度と感度を得にくくなる。吸収極大についても、上記範囲をはずれると、記録再生波長近傍での屈折率や消衰係数が適切でないために、十分な記録変調度が得られなくなる。
【0022】
金属反射層は、記録層を透過したレーザー光を効率良く反射する金属膜であり、600nm〜700nmで反射率が低下しないために、記録再生波長±5nmの波長領域の光の屈折率nが0.1〜0.2、消衰係数kが3〜5であるものが好ましい。好ましい金属反射膜として、金を主成分とした金属反射膜や、銀を主成分とした金属反射膜が例示できる。特に銀を主成分とした金属反射膜が好ましい。また、対候性の向上のために、銀に、ロジウム、パラジウム、白金、チタン、モリブデン、ジルコニウム、タンタル、タングステン、バナジウム等の添加元素を5原子%以下の範囲で加えてもよい。金属反射層の膜厚は、好ましくは100nm以上で、記録層の変形を抑制しすぎたり、記録感度を悪化させすぎない程度の膜厚が好ましい。
【0023】
反射層の上に、保護層を積層し、記録部の金属反射層の穴の発生や、変形の非対称性を抑制する。保護層としては紫外線硬化樹脂が好ましい。また、通常は、1μm以上、好ましくは3μm以上の膜厚にして、酸素による硬化抑制等がおこらないようにする。
【0024】
【実施例】
実施例1
溝深さ180nm、溝幅(溝の半値幅)0.37μm(0.9μmピッチ)のU字案内溝を有するポリカーボネート基板上に下記構造式[3]
【0025】
【化7】
Figure 0003731244
【0026】
で示される含金属アゾ色素0.036gをオクタフルオロペンタノール(OFP(沸点140℃))3gに溶解し、800rpmでスピンコートし、80℃のオーブンで45分アニール処理し、記録層とした。この色素の減量特性は主減量過程での総減量が39.8%(主減量開始温度は317℃)で、温度差が2.5℃で、減量の傾きは15.9%/℃であった。なお、熱重量分析はセイコー電子工業製の示差熱天秤(「SSC5200H」シリーズ「TG−DTA−320」)を用いて測定した。
【0027】
この記録層の上に銀を100nmの厚さだけスパッタし、その上にUV硬化樹脂(大日本インキ製「EXー318」)を約3μmスピンコートして紫外線ランプで硬化してディスクを作製した。このディスクを640nm又は680nmの半導体レーザー評価機(NA=0.6)で、線速3m/sで溝上に記録したところ、再生パワー0.7mW、記録周波数を1.5MHzから3.8MHz、duty比30%で変化させ、3.8MHzの記録時にマークジッターが最小となる記録パワー記録で記録し、マークジッターが10nsをきる最小ビット長を求めて、その記録膜の高密度記録可能性を評価した(以下、ジッター特性という)。この色素の場合、この記録パワー14mWで、ジッター特性は0.4μmであった。
さらに、この記録パワーで、CD−Rの4倍速EFM信号(nー1)Tを入力し、4.8m/s、3.8m/s、3m/s、(以下、EFM信号特性と示す)、2.8m/sでもジッターがTの30%以下で良好な短ビット特性を示した。なお、記録部の膜厚は120nmであり、塗布膜の溝深さはSTMで140nmのU字型であった。この記録層の膜としての吸収極大は600nmであった。このディスクの記録部の反射率が0.7mWで60%と十分高かったので、0.7mWで100万回連続再生したところ、劣化はみられなかった。
【0028】
この色素の濃度を1wt%(対溶媒重量)にした以外は上記と全く同じようにして評価した結果を表−1の実施例1の欄に示す。この場合、溝部の膜厚は約100nmであり、塗布膜の溝深さは147nmであった。また、この記録層単層を、キセノンフェードメータで暴露40時間試験したところ、シアニン系色素は吸収極大の吸光度が0%まで退色したのに対し、この色素は90%と、良好な耐光性を示した。
【0029】
実施例2〜、比較例1〜
以下に色素の構造をかえて、実施例1と同様にしてディスクを作製し同じ実験をした例を表−1にまとめて示す。各ディスクの溝部の膜厚、塗布膜の溝深さはいずれも、実施例1のそれぞれの値に10〜20nm増減する程度であった。
【0030】
【表1】
Figure 0003731244
【0031】
色素の一般式中のMとしてはいずれもNiを用いた。
いずれもR1とR2とが同じものを用いた。
分解温度は示差熱天秤で測定された主減量過程の開始温度を示す。
ジッター特性は10ns以下になるビット長を示す。
EFM解像度はCD−Rの4倍速用のEFM信号(n−1)Tを入力し、線速4.8m/s、3.8m/s、3.0m/sと変えて記録した時、3.0m/sでジッターがTの30%以上の場合に×印とした。
*は下記構造式の化合物を示す。
【0032】
【化8】
Figure 0003731244
【0033】
**は単膜の吸光度が小さすぎて測定不能であった。
***はどのビット長でもジッター20ns以上であった。
【0034】
実施例
実施例1の色素の溶媒をテトラフルオロプロパノール(沸点110℃)に変えた以外は全く同様にしてディスクを作製した。色素濃度は溶媒重量に対し1wt%としたところ、溝部の膜厚は125nmであり、塗布膜の溝深さは145nmであった。
このディスクのジッター特性は0.4μmであり、EFM特性は実施例1と同じであった。
【0035】
比較例
実施例1の溶媒をジアセトンアルコール(沸点166℃)に変えた以外は全く同様にして記録層を形成したところ、記録パワー14mWでも十分な記録変調度が得られなかった。
【0036】
【発明の効果】
本発明により、短ビット特性が良好で耐光性に優れた、波長600〜700nmの短波長記録に好適な光記録媒体を得ることができる。
【図面の簡単な説明】
【図1】有機色素の主減量過程、主減量過程の総減量、減量の傾きを求める方法を説明するための示差熱天秤のチャート図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical recording medium, and more particularly to an optical recording medium capable of recording with a laser beam.
[0002]
[Prior art]
In recent years, an optical recording medium capable of recording / reproducing with a laser beam having a wavelength shorter than 780 nm, for example, 640 nm, has attracted attention as a high-density recording medium. In such a situation, there are various recording media such as a phase change medium having a small wavelength dependency. Among them, an organic dye-based recording medium has a feature that it is inexpensive and easy to process.
[0003]
Cyanine dyes and the like have been proposed as dyes for organic dye-based media for such short wavelength applications, such as JP-A-6-336086, JP-A-7-76169, and JP-A-7-125441. Japanese Laid-Open Patent Publication No. 7-262604. In the recording portion, it is considered that the optical constant absorption and the film thickness decrease due to the thermal decomposition of the dye, the deformation due to the softening of the substrate, and the like are generated as in the CD-R at 780 nm.
[0004]
[Problems to be solved by the invention]
In the above prior art, a large recording modulation degree is obtained by both the decomposition of the dye and the deformation of the substrate during recording. However, since the deformation of the recording portion is too large, crosstalk becomes a big problem. In addition, since the reproduction is performed using a lens having a shorter numerical aperture (NA) of the laser focusing lens in order to increase the density, the laser beam diameter is 780 nm-NA0. Compared to 5, in the case of 640 nm-NA 0.6, the reproduction beam diameter is 1.46 times as high as the degree of condensing. As a result, the temperature rise and the light intensity due to reproduction light irradiation become larger when a short wavelength evaluator (drive) is used, so that a dye that is resistant to reproduction light is particularly required.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have arrived at the present invention as a result of diligently studying a medium that forms a good recording portion in order to realize high-density recording and has little reproduction deterioration.
The gist of the present invention is an optical recording medium for 600 nm to 700 nm in which an organic dye-containing recording layer, a metal reflection layer, and a protective layer are laminated in this order on a transparent substrate, and the recording layer is only one layer. Includes a dye represented by the following general formula 1 (but does not contain a cyanine dye), and the absorption maximum closest to the recording / reproducing light wavelength in the state of the film on the transparent substrate is greater than the recording / reproducing light wavelength. In the method for producing an optical recording medium on the single wavelength side of 40 to 80 nm, a solution obtained by dissolving one or more dyes represented by the following general formula in a fluorinated alcohol having a boiling point of 110 ° C. to 150 ° C. The present invention resides in a method for producing an optical recording medium, characterized in that a recording layer is formed by applying a coating.
[0006]
[Chemical 3]
Figure 0003731244
[0008]
(Wherein, X represents a substituent comprising a diazo group and a conjugate capable electron withdrawing group, Y represents a human Dorokishiru group, a substituted group consisting of carboxyl group, R 1, R 2 is alkyl of 1 to 6 carbon atoms And M 2+ represents a divalent ion of nickel, cobalt, or copper.)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
The recording layer in the present invention is reduced in temperature by absorbing the laser beam for recording, the film thickness is reduced, and the optical characteristics are changed, thereby changing the phase of the return light and changing the reflectance. This is the recording section.
[0010]
In the present invention, a known substrate such as a resin such as polycarbonate, polymethacrylate, amorphous polyolefin, or glass is used as the transparent substrate, and it has a servo guide groove. The groove has a depth of usually 100 to 200 nm, preferably 140 to 200 nm, a groove width of usually 0.3 to 0.4 μm, and a track pitch of usually 0.7 to 1.0 μm. The shape is preferably a U-shaped groove. When the depth of the groove is less than 100 nm, there is a case where sufficient change does not occur at the time of recording and a sufficient degree of recording modulation may not be obtained. If the thickness exceeds 200 nm, the difference in reflectance between the groove and the groove is too large, and in the case of on-groove recording, the reflectance becomes too low, which is not preferable. If the groove width is less than 0.3 μm, it may be difficult to obtain a sufficient tracking error signal intensity. Further, when the groove width exceeds 0.4 μm, the recording portion tends to spread laterally when recording is not preferable. The track pitch is preferably 0.7 to 1.0 μm for the purpose of increasing the capacity. The groove shape can be obtained by optical measurement with a He-Cd laser when the pitch is 1 μm, and can be obtained by measuring the profile with STM or AFM when the track pitch is narrower than that. In Examples described later, it was obtained by STM.
[0011]
The recording layer is obtained, for example, by spin-coating a solution obtained by dissolving an organic dye or the like in a solvent such as ethanol, 3-hydroxy-3-methyl-2-butanone, diacetone alcohol, or fluorinated alcohol. In particular, as the solvent, a fluorinated alcohol having a boiling point of 110 to 150 ° C. is preferably used. When the boiling point is less than 100 ° C., the solvent evaporates at the time of spin coating, so that the coating solution does not move to the outer peripheral side from the radius 40 mm of the disk, the radial thickness distribution becomes extremely large, and good characteristics are obtained. This is not preferable because it may not be present. When the temperature exceeds 170 ° C., it takes time to evaporate and the solvent tends to remain in the film. In such a case, good recording sensitivity is often not obtained. Commonly used solvents other than fluorinated alcohols, such as diacetone alcohol and ethyl cellosolve, have a contact angle with the polycarbonate of the substrate of 30 degrees or more, whereas the fluorinated alcohol is 10 degrees or less, Because of the good wettability of the fluorinated alcohol, the coating solution can sufficiently enter the groove of the narrow track pitch replica, so that a film having good recording characteristics can be formed. In addition, ketone-based or other polar solvents dissolve the polycarbonate of the substrate, so it is necessary to sputter a dielectric film on the substrate or to make expensive polyolefin or glass. This is not preferable because the merit of ease is lost.
[0012]
The film thickness is preferably about 60 to 180 nm at the groove. If it is less than 60 nm, it may be too thin to obtain good recording characteristics. On the other hand, if the thickness exceeds 180 nm, the deformation of the recording portion in the lateral direction and the scanning direction becomes large, so that crosstalk and jitter increase. Moreover, the groove depth of a coating film is 50-180 nm, and it is preferable that it is U-shaped. If the groove depth is less than 50 nm, the tracking error signal amplitude cannot be obtained sufficiently. If the groove depth exceeds 180 nm, the film thickness of the groove is too thin, so that a sufficient recording modulation degree may not be obtained. is there.
[0013]
Examples of organic dyes include cyanine dyes, metal-containing azo dyes, dibenzofuranone, metal-containing indoanilines, and the like. In the present invention, metal-containing azo dyes represented by the general formula [1 ] are particularly preferable. . Examples of X in the above formula include Br, Cl, CF 3 and the like. R 1 and R 2 may be a linear alkyl group having 1 to 6 carbon atoms or a branched alkyl group having 3 to 6 carbon atoms. For example, the following pigments can be exemplified.
[0014]
[Chemical formula 5]
Figure 0003731244
[0015]
[Chemical 6]
Figure 0003731244
[0016]
In particular, this type of dye is widely described in Japanese Patent Publication No. 5-67438, etc., and in that case, when limited to high density recording applications, thermal characteristics, molar extinction coefficient as a film, etc. From this request, it is understood that the present invention is limited to specific dyes as exemplified above, and the present invention has been achieved.
The compound is considered to destabilize the diazo bond by substituting an electron-withdrawing group at a position capable of conjugating with the diazo group, and as a result, the weight loss upon decomposition becomes steep. It is considered that it exhibits excellent characteristics.
[0017]
The thermal characteristics of the organic dye constituting the recording layer greatly affect the recording characteristics. In order to obtain sufficient characteristics for short wavelength applications, the weight loss in the main weight loss process in thermogravimetric analysis needs to be sharp with respect to temperature, and was measured at a heating rate of 10 ° C./min. In this case, it is preferable to use an organic dye having a weight loss gradient of 10% / ° C. in the main weight loss process. In the present invention, a process in which weight loss is 18% or more among several weight loss processes is referred to as a main weight loss process.
[0018]
In the present invention, the slope of weight loss is obtained as follows. (See Figure 1)
The organic dye having a mass M 0 is heated in nitrogen at a rate of 10 ° C./min. As the temperature rises, the mass initially decreases by a small amount, draws a weight loss line of approximately a straight line ab, then starts to decrease rapidly, and the weight loss of 18% or more is reduced substantially along the straight line d 1 -d 2 . This is the main weight loss process, and the main weight loss starting temperature is T 1 . After that, the weight loss process indicated by the straight line cc is almost stopped. If the temperature at the intersection of the straight line d 1 -d 2 and the straight line cc is T 2 , the weight is m 2 , and the initial weight is m 1 , the slope of weight loss here is:
[0019]
[Expression 1]
(M 1 -m 2 ) (%) / (T 2 −T 1 ) (℃)
[0020]
This is the value indicated by. If an organic dye having an inclination of less than 10% / ° C. is used, the lateral spread of the recording part becomes large and it becomes difficult to form a short bit. Not suitable. Furthermore, the total weight loss in this main weight loss process is preferably 30% or more of the initial mass M0. If it is less than 30%, a good recording modulation degree and recording sensitivity may not be obtained. The main weight loss starting temperature is preferably 240 ° C to 340 ° C.
[0021]
Further, it is preferable that the recording layer single layer has a refractive index n of 2 to 3 and an extinction coefficient k of 0.03 to 0.15 with respect to light in the wavelength range of the recording / reproducing wavelength ± 5 nm. The absorption maximum closest to the recording / reproducing wavelength in the state of the film on the transparent substrate is preferably 40 to 80 nm shorter than the recording / reproducing wavelength. Since the absorption maximum in the solution often shifts by a long wavelength in the state of the spin coat film on the substrate, it is necessary to judge by the absorption maximum on the transparent substrate. When the refractive index n is less than 2, it is not preferable because a sufficient optical change is difficult to obtain, and the recording modulation degree becomes low. Further, when the extinction coefficient k is less than 0.03, the recording sensitivity is deteriorated. When the extinction coefficient k exceeds 0.15, it is difficult to obtain a reflectance of 50% or more, which is not preferable. When the wavelength is out of the above range, it is difficult to obtain a sufficient recording modulation degree and sensitivity. If the absorption maximum is out of the above range, the refractive index and extinction coefficient in the vicinity of the recording / reproducing wavelength are not appropriate, so that a sufficient recording modulation degree cannot be obtained.
[0022]
The metal reflection layer is a metal film that efficiently reflects the laser light that has passed through the recording layer. Since the reflectance does not decrease between 600 nm and 700 nm, the refractive index n of light in the wavelength region of the recording / reproducing wavelength ± 5 nm is 0. Those having 0.1 to 0.2 and an extinction coefficient k of 3 to 5 are preferable. As a preferable metal reflection film, a metal reflection film mainly composed of gold and a metal reflection film mainly composed of silver can be exemplified. In particular, a metal reflective film mainly composed of silver is preferable. In order to improve weather resistance, an additive element such as rhodium, palladium, platinum, titanium, molybdenum, zirconium, tantalum, tungsten, or vanadium may be added to silver in a range of 5 atomic% or less. The thickness of the metal reflective layer is preferably 100 nm or more, and is preferably such that the deformation of the recording layer is not suppressed excessively or the recording sensitivity is not deteriorated excessively.
[0023]
A protective layer is laminated on the reflective layer to suppress the formation of holes in the metal reflective layer of the recording unit and deformation asymmetry. As the protective layer, an ultraviolet curable resin is preferable. In general, the film thickness is set to 1 μm or more, preferably 3 μm or more so as not to suppress curing by oxygen.
[0024]
【Example】
Example 1
The following structural formula [3] is formed on a polycarbonate substrate having a U-shaped guide groove having a groove depth of 180 nm and a groove width (half-width of the groove) of 0.37 μm (0.9 μm pitch).
[0025]
[Chemical 7]
Figure 0003731244
[0026]
0.036 g of a metal-containing azo dye represented by the formula (1) was dissolved in 3 g of octafluoropentanol (OFP (boiling point 140 ° C.)), spin-coated at 800 rpm, and annealed in an oven at 80 ° C. for 45 minutes to obtain a recording layer. The weight loss characteristics of this dye were 39.8% total weight loss during the main weight loss process (primary weight loss starting temperature was 317 ° C), the temperature difference was 2.5 ° C, and the slope of weight loss was 15.9% / ° C. It was. The thermogravimetric analysis was performed using a differential thermobalance (“SSC5200H” series “TG-DTA-320”) manufactured by Seiko Denshi Kogyo.
[0027]
On this recording layer, silver was sputtered to a thickness of 100 nm, and a UV curable resin (“EX-318” manufactured by Dainippon Ink, Inc.) was spin-coated on the recording layer by about 3 μm and cured with an ultraviolet lamp to produce a disk. . When this disk was recorded on a groove at a linear velocity of 3 m / s with a 640 nm or 680 nm semiconductor laser evaluator (NA = 0.6), the reproduction power was 0.7 mW, the recording frequency was 1.5 MHz to 3.8 MHz, duty. The ratio is changed at 30%, recording is performed with a recording power recording that minimizes the mark jitter at the time of recording at 3.8 MHz, and the minimum bit length with the mark jitter exceeding 10 ns is obtained, and the high density recording possibility of the recording film is evaluated. (Hereinafter referred to as jitter characteristics). In the case of this dye, the recording power was 14 mW and the jitter characteristic was 0.4 μm.
Furthermore, a CD-R quadruple speed EFM signal (n-1) T is inputted at this recording power, and 4.8 m / s, 3.8 m / s, 3 m / s, (hereinafter referred to as EFM signal characteristics). Even at 2.8 m / s, the jitter was 30% or less of T, and good short bit characteristics were exhibited. Note that the film thickness of the recording portion was 120 nm, and the groove depth of the coating film was a U-shaped 140 nm STM. The absorption maximum as a film of this recording layer was 600 nm. Since the reflectivity of the recording part of this disk was sufficiently high at 60 m at 0.7 mW, no deterioration was observed when it was reproduced continuously 1 million times at 0.7 mW.
[0028]
The results of evaluation in exactly the same manner as described above except that the concentration of this dye was 1 wt% (weight to solvent) are shown in the column of Example 1 in Table-1. In this case, the film thickness of the groove was about 100 nm, and the groove depth of the coating film was 147 nm. In addition, when the recording layer single layer was exposed to a xenon fade meter for 40 hours, the cyanine dye was discolored to a maximum absorbance of 0%, whereas this dye had a good light fastness of 90%. Indicated.
[0029]
Examples 2 to 3 and Comparative Examples 1 to 6
Table 1 summarizes examples in which the same experiment was performed by changing the structure of the dye and producing a disk in the same manner as in Example 1. The film thickness of the groove portion of each disk and the groove depth of the coating film were both increased or decreased by 10 to 20 nm from the respective values in Example 1.
[0030]
[Table 1]
Figure 0003731244
[0031]
Ni was used as M in the general formula of the dye.
In either case, the same R1 and R2 were used.
The decomposition temperature indicates the starting temperature of the main weight loss process measured with a differential thermobalance.
The jitter characteristic indicates a bit length of 10 ns or less.
The EFM resolution is 4 × CD-R EFM signal (n−1) T input, and the linear velocity is changed to 4.8 m / s, 3.8 m / s, and 3.0 m / s. X was marked when the jitter was 30% or more of T at 0.0 m / s.
* Represents a compound having the following structural formula.
[0032]
[Chemical 8]
Figure 0003731244
[0033]
** cannot be measured because the absorbance of the single membrane was too small.
*** has a jitter of 20 ns or more at any bit length.
[0034]
Example 4
A disk was produced in exactly the same manner except that the solvent of the dye of Example 1 was changed to tetrafluoropropanol (boiling point 110 ° C.). When the dye concentration was 1 wt% with respect to the solvent weight, the groove thickness was 125 nm and the groove depth of the coating film was 145 nm.
The jitter characteristic of this disk was 0.4 μm, and the EFM characteristic was the same as in Example 1.
[0035]
Comparative Example 7
When a recording layer was formed in the same manner except that the solvent of Example 1 was changed to diacetone alcohol (boiling point 166 ° C.), sufficient recording modulation could not be obtained even at a recording power of 14 mW.
[0036]
【The invention's effect】
According to the present invention, it is possible to obtain an optical recording medium having good short bit characteristics and excellent light resistance and suitable for short wavelength recording with a wavelength of 600 to 700 nm.
[Brief description of the drawings]
FIG. 1 is a chart of a differential thermal balance for explaining a method for obtaining a main weight loss process of an organic dye, a total weight loss of the main weight loss process, and a slope of the weight loss.

Claims (6)

透明基板上に、有機色素を含有する記録層、金属反射層、保護層の順に積層した600nm〜700nm用の光記録媒体において、記録層が1層のみであり、記録層が下記一般式1で表される色素を含み(但し、シアニン系色素を含むことはない)、透明基板上の膜の状態での記録再生光波長に最も近い吸収極大が、記録再生光波長よりも40〜80nm単波長側にある光学記録媒体の製造方法において、下記一般式で示される色素の1種以上を、沸点が110℃〜150℃であるフッ化アルコールに溶解して得られた溶液を塗布することにより記録層を形成することを特徴とする光記録媒体の製造法。
Figure 0003731244
(式中、Xはジアゾ基と共役可能な電子吸引基からなる置換基を示し、Yはヒドロキシル基、カルボキシル基より成る置換基を示し、R、Rは炭素数1〜6のアルキル基を示し、M 2+はニッケル、コバルト又は銅の2価のイオンを示す。)
In an optical recording medium for 600 nm to 700 nm in which an organic dye-containing recording layer, a metal reflective layer, and a protective layer are laminated in this order on a transparent substrate , there is only one recording layer, and the recording layer is represented by the following general formula 1. The absorption maximum closest to the recording / reproducing light wavelength in the state of the film on the transparent substrate is 40 to 80 nm single wavelength than the recording / reproducing light wavelength. In the method for producing an optical recording medium on the side, recording is performed by applying a solution obtained by dissolving one or more dyes represented by the following general formula in a fluorinated alcohol having a boiling point of 110 ° C to 150 ° C. A method for producing an optical recording medium, comprising forming a layer.
Figure 0003731244
(In the formula, X represents a substituent composed of an electron-withdrawing group that can be conjugated with a diazo group, Y represents a substituent composed of a hydroxyl group and a carboxyl group, and R 1 and R 2 are alkyl groups having 1 to 6 carbon atoms. M 2+ represents a divalent ion of nickel, cobalt or copper.)
記録層を形成する色素の熱重量分析で、主減量過程での温度に対する減量の傾きが10%/℃以上であり、主減量過程での総減量が30%以上である請求項1に記載の光記録媒体の製造法。  2. The thermogravimetric analysis of the dye forming the recording layer, wherein the slope of weight loss with respect to temperature in the main weight loss process is 10% / ° C. or more, and the total weight loss in the main weight loss process is 30% or more. Manufacturing method of optical recording medium. 記録層の溝部膜厚が60nm〜180nm、塗布膜の溝深さが50nm〜200nmであり、かつU字型溝であることを特徴とする請求項1又は2に記載の光記録媒体の製造法。  3. The method of manufacturing an optical recording medium according to claim 1, wherein the groove thickness of the recording layer is 60 nm to 180 nm, the groove depth of the coating film is 50 nm to 200 nm, and the groove is a U-shaped groove. . 基板の案内溝が0.7〜1μmトラックピッチであり、溝幅の半値幅が0.3〜0.4μmあることを特徴とする請求項1〜3のいずれか1項に記載の光記録媒体の製造法。  4. The optical recording medium according to claim 1, wherein the guide groove of the substrate has a track pitch of 0.7 to 1 [mu] m, and the half width of the groove width is 0.3 to 0.4 [mu] m. Manufacturing method. 金属反射層が銀を主成分であることを請求項1〜4のいずれか1項に記載の光記録媒体の製造法。  The method for producing an optical recording medium according to any one of claims 1 to 4, wherein the metal reflective layer is mainly composed of silver. 保護層が紫外線硬化樹脂である請求項1〜5のいずれか1項に記載の光記録媒体の製造法。  The method for producing an optical recording medium according to claim 1, wherein the protective layer is an ultraviolet curable resin.
JP08139896A 1995-08-22 1996-04-03 Optical recording medium and manufacturing method thereof Expired - Fee Related JP3731244B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08139896A JP3731244B2 (en) 1996-04-03 1996-04-03 Optical recording medium and manufacturing method thereof
US09/033,654 US6214519B1 (en) 1995-08-22 1998-03-03 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08139896A JP3731244B2 (en) 1996-04-03 1996-04-03 Optical recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09274732A JPH09274732A (en) 1997-10-21
JP3731244B2 true JP3731244B2 (en) 2006-01-05

Family

ID=13745210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08139896A Expired - Fee Related JP3731244B2 (en) 1995-08-22 1996-04-03 Optical recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3731244B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69735460T2 (en) * 1996-12-18 2006-11-16 Mitsubishi Kagaku Media Co. Ltd. Optical recording disk
US6162520A (en) 1997-09-17 2000-12-19 Mitsui Chemicals, Inc. Optical recording medium and dipyrromethene metal chelate compound for use therein
US6531261B1 (en) * 1999-05-26 2003-03-11 Fuji Photo Film Co., Ltd. Preparation of optical information recording disc and dye solution
US6737143B2 (en) 2001-06-14 2004-05-18 Ricoh Company Ltd. Optical recording medium, optical recording method and optical recording device
TWI292150B (en) * 2001-09-20 2008-01-01 Hayashibara Biochem Lab
JP4137691B2 (en) 2003-04-30 2008-08-20 株式会社リコー Optical recording medium

Also Published As

Publication number Publication date
JPH09274732A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
US6232036B1 (en) Optical recording disk
US6214519B1 (en) Optical recording medium
JP3731244B2 (en) Optical recording medium and manufacturing method thereof
US5955168A (en) Optical recording medium
JP3648823B2 (en) Optical recording medium and information recording method
EP0161809B1 (en) Overcoated recording elements having amorphous dye and binder optical recording layers
JPH0958123A (en) Optical recording medium
JP3666152B2 (en) Optical recording medium
US5441848A (en) Optical recording/reproducing method
JP3543464B2 (en) Optical recording medium and information recording method
JP3783722B2 (en) Manufacturing method of optical recording medium
JPH07161069A (en) Optical recording medium
JP3649062B2 (en) Optical recording medium and optical recording method
JPH106644A (en) Optical recording medium
JP3373626B2 (en) Optical recording medium
KR940008406B1 (en) Optical recording medium & process for producing the same
JPH06150385A (en) Optical recording medium
JP3099276B2 (en) Optical information recording medium and recording method thereof
JPH04358331A (en) Optical information recording medium
JP3280044B2 (en) Optical recording medium
JPH10208303A (en) Optical recording medium
JP3028520B2 (en) Optical information recording medium
JPH0569673A (en) Optical data recording medium and production thereof
JP3016610B2 (en) Optical recording medium
JP3088501B2 (en) Information recording medium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees