JP3028520B2 - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JP3028520B2
JP3028520B2 JP63318435A JP31843588A JP3028520B2 JP 3028520 B2 JP3028520 B2 JP 3028520B2 JP 63318435 A JP63318435 A JP 63318435A JP 31843588 A JP31843588 A JP 31843588A JP 3028520 B2 JP3028520 B2 JP 3028520B2
Authority
JP
Japan
Prior art keywords
optical information
information recording
recording medium
organic dye
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63318435A
Other languages
Japanese (ja)
Other versions
JPH02164586A (en
Inventor
清一 荒川
眞一郎 田村
伸利 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63318435A priority Critical patent/JP3028520B2/en
Publication of JPH02164586A publication Critical patent/JPH02164586A/en
Application granted granted Critical
Publication of JP3028520B2 publication Critical patent/JP3028520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機色素を記録材料とする光学情報記録媒
体に関し、特にその反射率の向上に関する。
Description: TECHNICAL FIELD The present invention relates to an optical information recording medium using an organic dye as a recording material, and more particularly to an improvement in the reflectance thereof.

〔発明の概要〕[Summary of the Invention]

本発明は、基板上に有機色素層と金属反射率が順次形
成されてなる光学情報記録媒体において、上記有機色素
層に含有される有機色素としてメタノール溶液中で660
−690nmの波長領域に吸収極大を有するシアニン色素を
選び、上記金属反射層を備えることにより、使用される
半導体レーザー波長領域において高い反射率を有し、ま
た記録感度にも優れる光学記録媒体の提供を図るもので
ある。
The present invention relates to an optical information recording medium in which an organic dye layer and a metal reflectivity are sequentially formed on a substrate.
By providing a cyanine dye having an absorption maximum in a wavelength region of -690 nm and providing the above-mentioned metal reflective layer, it is possible to provide an optical recording medium having a high reflectance in a semiconductor laser wavelength region to be used and also having excellent recording sensitivity. It is intended.

〔従来の技術〕[Conventional technology]

近年、情報記録の分野においては光学情報記録方式に
関する研究が各所で進められている。この光学情報記録
方式は、非接触で記録・再生が行えること、磁気記録媒
体に比べて一桁以上も高い記録密度が達成できること、
再生専用型,追記型,書換え可能型のそれぞれのメモリ
ー形態に対応できること等の数々の利点を有し、安価な
大容量ファイルの実現を可能とする方式として産業用か
ら民生用まで幅広い用途が考えられているものである。
2. Description of the Related Art In recent years, in the field of information recording, researches on optical information recording methods have been advanced in various places. This optical information recording system can perform recording and reproduction without contact, and can achieve a recording density that is at least an order of magnitude higher than magnetic recording media,
It has many advantages, such as being compatible with the read-only type, write-once type, and rewritable type memory types, and is expected to be used in a wide range of applications from industrial use to consumer use as a method that enables the realization of inexpensive large-capacity files. It is what is being done.

上述のメモリー形態のうち追記型は、エンドユーザー
において記録と再生とが行えるものであり、消去ができ
ないことから、主にデータの長期保存用ファイルとして
使用される。記録に際しては、記録材料が光エネルギー
を吸収して熱エネルギーに変換することにより生ずる記
録層の局部的な非可逆物理変化を利用している。この非
可逆的物理変化としては、記録層の形状変化(ピットの
形成)、表面性変化、結晶状態変化等が知られている。
Of the above-mentioned memory forms, the write-once type is one in which recording and reproduction can be performed by an end user and cannot be erased, so that it is mainly used as a long-term data storage file. At the time of recording, a local irreversible physical change of the recording layer caused by the absorption of light energy by the recording material and conversion into heat energy is used. Known irreversible physical changes include a change in the shape of the recording layer (formation of pits), a change in surface properties, a change in the crystal state, and the like.

現在実用化されている追記型光学情報記録媒体は、そ
のほとんどがテルル合金またはテルル化合物を記録材料
とするものである。しかし近年、媒体の量産性や経済性
をより向上させる観点から、これらテルル系材料に代わ
って有機色素が注目されている。上記有機色素は、記録
再生に使用される半導体レーザーの近赤外領域において
大きな吸収を示すことが必要であり、これまでにメチン
系色素,ベンゼンジチオールニッケル錯体,金属フタロ
シアニン色素,ナフトキノン系色素等が知られている。
Most of write-once optical information recording media currently in practical use use a tellurium alloy or tellurium compound as a recording material. However, in recent years, organic dyes have attracted attention in place of these tellurium-based materials from the viewpoint of further improving mass productivity and economic efficiency of media. The above organic dyes need to show large absorption in the near-infrared region of semiconductor lasers used for recording / reproducing. Are known.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、光学情報記録媒体において望ましい記録・
再生特性を達成するためには、記録材料の物性として以
下のような条件を満たすことが必要である。まず高い記
録感度を得るためには、光吸収率が高いこと、熱容量が
小さいこと、熱伝導率が低いこと、記録のための熱変化
が比較的低温で起こること等が必要である。一方、高い
再生感度を得るためには、記録前後の反射率変化が大き
いこと、形成されるピットの形状が滑らかであること、
ノイズ発生が少ないこと等が必要である。以上、望まし
い条件は種々あるが、光学的な特性としては高吸収率と
高反射率が最も基本的な特性である。
By the way, desirable recording and
In order to achieve reproduction characteristics, it is necessary to satisfy the following conditions as physical properties of the recording material. First, in order to obtain high recording sensitivity, it is necessary that the light absorption rate is high, the heat capacity is low, the thermal conductivity is low, and the thermal change for recording occurs at a relatively low temperature. On the other hand, in order to obtain high reproduction sensitivity, the reflectance change before and after recording is large, the shape of the formed pit is smooth,
It is necessary that noise generation is small. As described above, although there are various desirable conditions, high absorption and high reflectance are the most basic optical characteristics.

しかしながら、従来知られている有機色素は、成膜さ
れた場合の反射率がせいぜい30〜40%と低く、十分な再
生感度が達成できない。有機色素を記録材料とする光学
情報記録媒体をたとえばピットを形成した基板上にアル
ミ反射膜を設けたディスク(いわゆるコンパクト・ディ
スク)を再生する再生装置で再生することを考える場
合、少なくとも反射率は現行のコンパクト・ディスクの
値(780nmにおいて70%以上)と同等に高くする必要が
ある。しかし、追記型の光学情報記録媒体には、再生専
用型のコンパクト・ディスク等とは異なり、反射率の高
さのみを追求すると記録感度が損なわれてしまうという
問題がある。つまる、ある波長において高い反射率を達
成しようとすればその波長における光吸収率は低くなけ
ればならないが、光吸収率が低くなれば効果的に非可逆
的物理変化を生じさせることができなくなるからであ
る。この問題を解決するには、吸収した光エネルギーが
わずかであっても効率的にこれを熱エネルギーに変換
し、非可逆的物理変化を生じさせるような有機色素を探
索しなければならない。
However, conventionally known organic dyes have a low reflectance of at most 30 to 40% when formed into a film, and cannot achieve a sufficient reproduction sensitivity. When considering that an optical information recording medium using an organic dye as a recording material is reproduced by a reproducing apparatus for reproducing a disk (a so-called compact disk) provided with an aluminum reflecting film on a substrate having pits formed thereon, at least the reflectance is considered. Must be as high as the current compact disc value (more than 70% at 780nm). However, unlike a read-only compact disc or the like, a write-once type optical information recording medium has a problem that recording sensitivity is impaired if only a high reflectance is pursued. In other words, in order to achieve high reflectance at a certain wavelength, the light absorption at that wavelength must be low, but if the light absorption is low, irreversible physical changes cannot be effectively generated. It is. In order to solve this problem, it is necessary to search for an organic dye that efficiently converts even a small amount of absorbed light energy into heat energy and causes irreversible physical change.

そこで本発明は、記録特性・再生特性共に優れる光学
情報記録媒体を提供することを目的とする。
Therefore, an object of the present invention is to provide an optical information recording medium having excellent recording characteristics and reproducing characteristics.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上述の目的を達成するために鋭意検討
を重ねた結果、記録材料としてメタノール溶液中で660
〜690nmの波長領域に吸収極大を有するシアニン色素を
使用し、金属反射層を備えることにより上述の目的が達
成されることを見出し、本発明を完成するに至ったもの
である。
The present inventors have conducted intensive studies in order to achieve the above-mentioned object, and as a result, 660 in a methanol solution as a recording material.
The inventors have found that the above object can be achieved by using a cyanine dye having an absorption maximum in a wavelength region of up to 690 nm and providing a metal reflective layer, thereby completing the present invention.

すなわち、本発明にかかる光学情報記録媒体は、基板
上に有機色素層と金属反射層が順次形成されてなり、波
長780nmのレーザ光により記録再生が行われる光学情報
記録媒体において、上記有機色素層がメタノール溶液中
で660〜690nmの波長領域に吸収極大を有するシアニン色
素を含有し、波長780nmのレーザ光に対する反射率が70
%以上であることを特徴とするものである。
That is, the optical information recording medium according to the present invention is an optical information recording medium in which an organic dye layer and a metal reflection layer are sequentially formed on a substrate, and recording and reproduction are performed by a laser beam having a wavelength of 780 nm. Contains a cyanine dye having an absorption maximum in a wavelength range of 660 to 690 nm in a methanol solution, and has a reflectance of 70 for a laser beam having a wavelength of 780 nm.
% Or more.

まず、本発明の光学情報記録媒体の構成は第1図に示
すように、必要に応じてプリグループ(案内溝)を形成
した透明な基板(1)の上に、半導体レーザー光を吸収
して光熱変換を行う有機色素層(2)と、反射率を増大
させるための金属反射層(3)が順次積層されたもので
ある。上記金属反射層(3)の上には、さらに必要に応
じて紫外線硬化樹脂や熱硬化樹脂等からなる保護膜
(4)を設けても良い。
First, as shown in FIG. 1, the configuration of the optical information recording medium of the present invention is such that a semiconductor laser beam is absorbed on a transparent substrate (1) on which a pre-group (guide groove) is formed as necessary. An organic dye layer (2) for performing light-to-heat conversion and a metal reflection layer (3) for increasing the reflectance are sequentially laminated. A protective film (4) made of an ultraviolet curable resin, a thermosetting resin, or the like may be further provided on the metal reflective layer (3) as needed.

上記シアニン色素は複素環がメチン鎖で結合された化
合物である。上記複素環としてはたとえばベンゾインド
リン環,ベンゾチアゾリン環,ナフトチアゾリン環等が
あり、またメチン鎖は炭素数が5のペンタメチン鎖とす
る。以下に、本発明で使用される有機色素の3種類の代
表的な一般式を順次示す。
The cyanine dye is a compound in which a heterocyclic ring is linked by a methine chain. The heterocycle includes, for example, a benzoindoline ring, a benzothiazoline ring, a naphthothiazoline ring and the like, and the methine chain is a pentamethine chain having 5 carbon atoms. Hereinafter, three typical general formulas of the organic dye used in the present invention are shown in order.

まずベンゾインドリン環を有するシアニン色素は以下
の一般式(I) で表される。
First, a cyanine dye having a benzoindoline ring is represented by the following general formula (I) It is represented by

ここで式中R1は炭素数1〜20のアルキル基、R4は水素
原子,ハロゲン原子,アルキル基,アルコキシ基のいず
れかひとつを表す。R1とR2は互いに同じであっても異な
っていても良い。またXはI-,Br-,Cl-等のハロゲンイオ
ン,ClO4 -,あるいは置換ベンゼンスルホン酸イオンのい
ずれかひとつを表し、Meはメチル基を表す。
In the formula, R 1 represents an alkyl group having 1 to 20 carbon atoms, and R 4 represents any one of a hydrogen atom, a halogen atom, an alkyl group, and an alkoxy group. R 1 and R 2 may be the same or different. The X is I -, Br -, Cl - halogen ion such as, ClO 4 -, or represents any one of the substituted benzenesulfonic acid ion, Me represents a methyl group.

次に、ベンゾチアゾリン環を有するシアニン色素は以
下の一般式(II) で表され、さらにナトフチアゾリン環を有するシアニン
色素は以下の一般式(III) で表される。
Next, a cyanine dye having a benzothiazoline ring is represented by the following general formula (II) The cyanine dye having a naphthothiazoline ring is represented by the following general formula (III) It is represented by

ここで式中R2は炭素数1〜20のアルキル基、R3は水素
原子,ハロゲン原子,アルキル基,アルコキシ基のいず
れかひとつを表す。R1とR2は互いに同じであっても異な
っていても良い。
Here, in the formula, R 2 represents an alkyl group having 1 to 20 carbon atoms, and R 3 represents any one of a hydrogen atom, a halogen atom, an alkyl group, and an alkoxy group. R 1 and R 2 may be the same or different.

これらのシアニン色素の複素環は、たとえば特公昭59
−122577号公報あるいは特公昭60−177089号公報に開示
されている合成法により合成することができ、いずれも
メタノール溶液中で測定した場合の吸収極大を660〜690
nmの波長領域に有するものである。上記の波長領域は記
録特性と再生特性とを共に最適化する観点から設定され
たものである。もし吸収極大が660nmより短波長の領域
に存在すると、シアニン色素が780nmの記録光のエネル
ギーを効果的に吸収することができなくなるので記録不
能あるいは記録感度の低下が生じ、一方690nmより長波
長の領域に存在すると780nmの再生光を効果的に反射す
ることができなくなり、780nmにおいて70%以上という
高反射率が得られない虞れがある。
The heterocycle of these cyanine dyes is described in, for example,
-122577 or Japanese Patent Publication No. Sho 60-177089 can be synthesized, and the absorption maximum when measured in a methanol solution is 660 to 690.
It has in the wavelength region of nm. The above-mentioned wavelength range is set from the viewpoint of optimizing both the recording characteristics and the reproduction characteristics. If the absorption maximum exists in a region having a wavelength shorter than 660 nm, the cyanine dye cannot effectively absorb the energy of the recording light of 780 nm, so that the recording becomes impossible or the recording sensitivity is reduced, while a wavelength longer than 690 nm is used. If it exists in the region, the 780 nm reproduction light cannot be effectively reflected, and a high reflectance of 70% or more at 780 nm may not be obtained.

上述のようなシアニン色素を含有する有機色素層は、
一般には適当な有機溶媒に溶解したものを塗布すること
により基板の上に形成される。その層厚は600〜2500Å
に選ばれる。層厚が上記範囲外となると、記録再生感
度、生産性、経済性等が劣化する。すなわち、層厚が上
記範囲よりも薄いと有機色素層のレーザ熱による変化量
が少なく、十分なS/Nが得られない。また層厚が上記範
囲よりも厚いと吸収が増え、その結果780nmにおいて70
%以上という高反射率が得られにくくなり好ましくな
い。また上記有機溶媒としては、有機色素を溶解させる
ことができ、かつ基板に損傷を与えないものを適宜選択
して使用する。
The organic dye layer containing a cyanine dye as described above,
Generally, it is formed on a substrate by applying a solution dissolved in an appropriate organic solvent. Its layer thickness is 600 ~ 2500Å
Is chosen. If the layer thickness is outside the above range, the recording / reproducing sensitivity, productivity, economy, etc. will be degraded. That is, if the layer thickness is smaller than the above range, the amount of change in the organic dye layer due to laser heat is small, and sufficient S / N cannot be obtained. When the layer thickness is larger than the above range, absorption increases, and as a result, at 780 nm, the absorption increases.
% Is not preferable because it is difficult to obtain a high reflectance of at least 100%. As the organic solvent, those that can dissolve the organic dye and do not damage the substrate are appropriately selected and used.

上記基板は、通常の光学情報記録媒体に使用されてい
るものであれば特に限定されず、たとえばポリカーボネ
ート,アクリル等のプラスチック類やガラス等が好適で
ある。
The substrate is not particularly limited as long as it is used for a usual optical information recording medium, and for example, plastics such as polycarbonate and acrylic, glass, and the like are suitable.

上記有機色素層の上に設けられる金属反射層は、780n
mにおける反射率の高い金属を真空蒸着,スパッタリン
グ等の真空薄膜形成技術により被着させたものである。
上記金属としては、Au,Cu,Al,Ag等が挙げられる。金属
反射層の層厚は300〜2000Å程度に選ばれる。層厚が300
Å未満では光学情報記録媒体の反射率を増大させる効果
が不足し、波長780nmでの反射率70%以上を達成するこ
とができない。また2000Åを越えると、有機色素層で吸
収したレーザ熱が熱伝導率の高い金属反射層へ散逸し、
また有機色素層の熱変化も抑制されるため、記録感度が
低下する。
The metal reflective layer provided on the organic dye layer, 780n
A metal having a high reflectivity at m is applied by a vacuum thin film forming technique such as vacuum evaporation and sputtering.
Examples of the metal include Au, Cu, Al, and Ag. The thickness of the metal reflection layer is selected to be about 300 to 2000 mm. 300 layer thickness
If it is less than Å, the effect of increasing the reflectance of the optical information recording medium is insufficient, and the reflectance of 70% or more at a wavelength of 780 nm cannot be achieved. When the temperature exceeds 2000 mm, the laser heat absorbed by the organic dye layer is dissipated to the metal reflective layer with high thermal conductivity,
Further, since the thermal change of the organic dye layer is also suppressed, the recording sensitivity is reduced.

以上のように構成された本発明の光学情報記録媒体
は、全体の厚さを現行のコンパクト・ディスク等と同じ
く1.5mm以下とすることが可能である。従来、たとえば
有機色素層の上に保護膜を形成した光学情報記録媒体で
は、ピットの形成が物理的に抑制されることを防ぐため
に、該有機色素層と保護膜との間に空隙部を設けること
が提案されていた。しかし、これでは媒体が全体として
厚くなりすぎて現行のコンパクト・ディスクやCD−ROM
等の再生装置によっては再生不可能であり、再生装置の
媒体互換性を狭める結果となっていた。これに対し本発
明では、第1図に示すような構成によっても、使用され
るシアニン色素自体の優れた特性により良好な記録・再
生を行うことができる。
The overall thickness of the optical information recording medium of the present invention configured as described above can be set to 1.5 mm or less as in the case of a current compact disk or the like. Conventionally, for example, in an optical information recording medium in which a protective film is formed on an organic dye layer, a gap is provided between the organic dye layer and the protective film in order to prevent pit formation from being physically suppressed. That had been proposed. However, this would make the media too thick overall and would cause the current compact disc or CD-ROM
It is impossible to reproduce with some reproducing apparatuses, and the medium compatibility of the reproducing apparatus is narrowed. On the other hand, according to the present invention, good recording / reproduction can be performed even with the configuration shown in FIG. 1 due to the excellent characteristics of the cyanine dye used.

〔作用〕[Action]

本発明において光情報記録媒体の記録材料として使用
されるシアニン色素は、メタノール溶液中で測定したと
きの吸収極大を660〜690nmの波長領域に有している。一
般に色素のスペクトルにはある程度幅広い吸収帯が現れ
るものであるが、吸収極大が上述の範囲にあるシアニン
色素の場合、代表的な半導体レーザーの波長である780n
m付近は吸収帯の端部に相当し、吸収率は低い。しか
し、このシアニン色素はその優れた光熱変換機能によ
り、少ない光エネルギーによっても効果的に発熱して蒸
発,昇華,凝集等の物理現象を誘起し、この際に基板に
及ぼされる背圧、あるいは金属反射層に及ぼされる順方
向圧力によって熱変形が生ぜしめる。したがって、高い
記録感度を達成することが可能となる。
The cyanine dye used as a recording material of the optical information recording medium in the present invention has an absorption maximum measured in a methanol solution in a wavelength region of 660 to 690 nm. Generally, the spectrum of the dye shows a broad absorption band to some extent, but in the case of the cyanine dye whose absorption maximum is within the above range, the wavelength of a typical semiconductor laser is 780n.
The vicinity of m corresponds to the end of the absorption band, and the absorption rate is low. However, due to its excellent light-to-heat conversion function, this cyanine dye effectively generates heat even with a small amount of light energy, and induces physical phenomena such as evaporation, sublimation, and aggregation. Thermal deformation is caused by the forward pressure exerted on the reflective layer. Therefore, high recording sensitivity can be achieved.

一方、780nmにおける吸収率が低いということは換言
すればこの波長における反射率が高いということであ
り、さらに金属反射層を設けて反射率を補うことにより
高感度な再生が可能となる。
On the other hand, a low absorptance at 780 nm means a high reflectivity at this wavelength, and by providing a metal reflective layer to supplement the reflectivity, high-sensitivity reproduction is possible.

〔実施例〕〔Example〕

以下、本発明の好適な実施例について図面を参照しな
がら説明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

まず、シアニン色素を合成した。本発明者らは、以下
の第1表に示すようなシアニン色素(化合物Aないし化
合物C)を合成した。ここでは、詳しい合成法について
は省略する。第1表にこれら化合物A〜化合物Cのλ
maxも併記した。
First, a cyanine dye was synthesized. The present inventors have synthesized cyanine dyes (compounds A to C) as shown in Table 1 below. Here, a detailed synthesis method is omitted. Table 1 shows λ of Compounds A to C.
max is also shown.

これらの化合物を使用して、実際に光学情報記録媒体
を作成した。
Using these compounds, an optical information recording medium was actually produced.

実施例1 上述の化合物A4重量部をジアセトンアルコール100重
量部に溶解し、このシアニン色素溶液を孔径0.3μmの
フィルターで濾過後、直径130mm,厚さ1.2mmのポリカー
ボネート基板上にスピンコート法により塗布し、有機色
素層を形成英した。この有機色素層の乾燥後の層厚は10
00Åであった。
Example 1 4 parts by weight of the above compound A was dissolved in 100 parts by weight of diacetone alcohol, and this cyanine dye solution was filtered through a filter having a pore diameter of 0.3 μm, and then spin-coated on a polycarbonate substrate having a diameter of 130 mm and a thickness of 1.2 mm. It was applied to form an organic dye layer. The layer thickness of this organic dye layer after drying is 10
It was 00Å.

次に、上記有機色素層の上に、真空蒸着法によりAuを
600Åの層厚に形成し、金属反射層を形成した。さら
に、上記金属反射層の上に紫外線硬化樹脂(大日本イン
キ社製,商品名SD−17)の溶液を塗布した後、紫外線の
照射により完全に硬化させて保護膜を形成し、光学情報
記録媒体を完成した。
Next, on the organic dye layer, Au was deposited by a vacuum evaporation method.
A metal reflective layer was formed to a thickness of 600 mm. Further, after applying a solution of an ultraviolet curing resin (trade name: SD-17, manufactured by Dainippon Ink and Chemicals Co., Ltd.) on the metal reflective layer, the coating is completely cured by irradiation with ultraviolet light to form a protective film, and optical information recording is performed. Completed the medium.

実施例2〜実施例3 上述の化合物Aに代えて化合物Bあるいは化合物Cを
使用して後述の第2表に示す層厚の有機色素層を形成し
た他は、実施例1に記載した方法にしたがって光学情報
記録媒体を作成した。
Examples 2 and 3 The method described in Example 1 was followed except that an organic dye layer having a layer thickness shown in Table 2 below was formed using Compound B or Compound C instead of Compound A described above. Therefore, an optical information recording medium was created.

これら各光学情報記録媒体について、有機色素層のλ
maxおよび780nmにおける反射率を測定した。
For each of these optical information recording media, the λ
The reflectance at max and 780 nm was measured.

以下の第2表には、上述の実施例1ないし実施例3に
おいて作成された光学情報記録媒体についての測定結果
をまとめて示す。
Table 2 below summarizes the measurement results for the optical information recording media prepared in Examples 1 to 3 described above.

一般にこの種の有機色素が有機色素層のような固体薄
膜として形成された場合には、凝集や会合等により溶液
状態で測定した場合よりもλmaxが長波長側にシフトす
る現象がみられる。しかし、記録再生に使用される半導
体レーザーの波長である780nmからは依然としてずれて
おり、記録特性と再生特性を両立させることができる。
これらの光学情報記録媒体は、いずれも70%以上の高い
反射率を示した。
In general, when this type of organic dye is formed as a solid thin film such as an organic dye layer, a phenomenon in which λ max shifts to longer wavelengths than when measured in a solution state due to aggregation or association is observed. However, the wavelength still deviates from 780 nm, which is the wavelength of a semiconductor laser used for recording and reproduction, and both recording characteristics and reproduction characteristics can be achieved.
Each of these optical information recording media showed a high reflectance of 70% or more.

次に、実施例において作成された光学情報記録媒体に
ついて記録再生特性を調べたところ、これらの光学情報
記録媒体は少ない光エネルギーを効率的に熱エネルギー
に変換して熱変形を生ぜしめたことがわかった。しか
し、このように光エネルギーが少なくて済むとは言え、
レーザーパワーが6mW以下の場合には満足な記録が行わ
れず、記録には明瞭な閾値が存在することが明らかとな
った。これは、読出しの際にレーザー光が繰り返し照射
されても基板あるいは金属反射層の熱変形が容易には変
化しないことを意味し、記録の安定性および光学情報記
録媒体の耐久性を向上させる観点からは極めて有利な性
質である。
Next, when the recording / reproducing characteristics of the optical information recording media created in the examples were examined, it was found that these optical information recording media efficiently converted small light energy into heat energy and caused thermal deformation. all right. However, although light energy is low like this,
When the laser power was 6 mW or less, satisfactory recording was not performed, and it became clear that there was a clear threshold in the recording. This means that the thermal deformation of the substrate or the metal reflective layer does not easily change even if the laser beam is repeatedly irradiated at the time of reading, and from the viewpoint of improving the recording stability and the durability of the optical information recording medium. Is an extremely advantageous property.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明を適用すれ
ば、吸収した光エネルギーが少なくても有機色素がこれ
を効率的に熱エネルギーに変換し、露光部と非露光部と
の間に十分な大きさの反射率差をもたらすような変形を
基板または金属反射層に生ぜしめる。しかも、光学情報
記録媒体の反射率は十分に大きく維持されているため、
記録感度と再生感度の向上がどちらか片方を犠牲にする
ことなく同時に達成され、高速記録,高密度記録に適し
た信頼性の高い追記型の光学情報記録媒体が提供され
る。
As is clear from the above description, when the present invention is applied, even if the absorbed light energy is small, the organic dye can efficiently convert it to heat energy, and the sufficient amount of light is absorbed between the exposed part and the non-exposed part. The substrate or the metal reflective layer is deformed so as to cause a large difference in reflectance. Moreover, since the reflectance of the optical information recording medium is maintained sufficiently large,
Improvements in recording sensitivity and reproduction sensitivity are achieved at the same time without sacrificing either one, and a highly reliable write-once optical information recording medium suitable for high-speed recording and high-density recording is provided.

さらに、有機色素層の上に金属反射層を直接積層して
も良好な記録再生特性が得られることから、光学情報記
録媒体の厚さを現行のコンパクト・ディスクやCD−ROM
等と同等にすることができ、これらと共通の再生装置に
て再生することも可能となる。
Furthermore, good recording / reproducing characteristics can be obtained even if a metal reflective layer is directly laminated on the organic dye layer, so that the thickness of the optical information recording medium can be reduced to the current compact disc or CD-ROM.
, Etc., and it is also possible to play back with a common playback device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明にかかる光学情報記録媒体の構成例を示
す要部拡大断面図である。 1……基板 2……有機色素層 3……金属反射層 4……保護膜
FIG. 1 is an enlarged sectional view of a main part showing a configuration example of an optical information recording medium according to the present invention. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Organic dye layer 3 ... Metal reflective layer 4 ... Protective film

フロントページの続き (56)参考文献 特開 昭64−40388(JP,A) 特開 平2−147286(JP,A) 特開 昭58−105442(JP,A) 特開 平2−134290(JP,A) 特開 平1−232287(JP,A) 特開 昭62−262238(JP,A) (58)調査した分野(Int.Cl.7,DB名) B41M 5/26 Continuation of front page (56) References JP-A-64-40388 (JP, A) JP-A-2-147286 (JP, A) JP-A-58-105442 (JP, A) JP-A-2-134290 (JP, A) , A) JP-A-1-232287 (JP, A) JP-A-62-262238 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B41M 5/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に有機色素層と金属反射層が順次形
成されてなり、波長780nmのレーザ光により記録再生が
行われる光学情報記録媒体において、 上記有機色素層がメタノール溶液中で660〜690nmの波長
領域に吸収極大を有し下記一般式(I)〜(III)のい
ずれかで表されるシアニン色素を含有し、 波長780nmのレーザ光に対する反射率が70%以上である
ことを特徴とする光学情報記録媒体。 (ただし、式中R1およびR2はそれぞれ炭素数1〜20のア
ルキル基、R3およびR4は水素原子,ハロゲン原子,アル
キル基,アルコキシ基のいずれかひとつを表す。R1とR2
は互いに同じであっても異なっていても良い。またXは
ハロゲンイオン、ClO4 -,あるいは置換ベンゼンスルホン
酸イオンのいずれかひとつを表し、Meはメチル基を表
す。)
An optical information recording medium in which an organic dye layer and a metal reflective layer are sequentially formed on a substrate, and recording and reproduction are performed with a laser beam having a wavelength of 780 nm, wherein the organic dye layer is 660 to 660 nm in a methanol solution. It has a maximum absorption in the wavelength region of 690 nm, contains a cyanine dye represented by any of the following formulas (I) to (III), and has a reflectance of 70% or more to a laser beam having a wavelength of 780 nm. Optical information recording medium. (Wherein, R 1 and R 2 each represent an alkyl group having 1 to 20 carbon atoms, and R 3 and R 4 represent any one of a hydrogen atom, a halogen atom, an alkyl group, and an alkoxy group. R 1 and R 2
May be the same or different. X represents one of a halogen ion, ClO 4 , and a substituted benzenesulfonic acid ion, and Me represents a methyl group. )
【請求項2】上記有機色素層の膜厚が600〜2500Åであ
り、上記金属反射層の膜厚が300〜2000Åであることを
特徴とする特許請求の範囲第1項記載の光学情報記録媒
体。
2. The optical information recording medium according to claim 1, wherein said organic dye layer has a thickness of 600 to 2500 ° and said metal reflective layer has a thickness of 300 to 2000 °. .
JP63318435A 1988-12-19 1988-12-19 Optical information recording medium Expired - Fee Related JP3028520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63318435A JP3028520B2 (en) 1988-12-19 1988-12-19 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63318435A JP3028520B2 (en) 1988-12-19 1988-12-19 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH02164586A JPH02164586A (en) 1990-06-25
JP3028520B2 true JP3028520B2 (en) 2000-04-04

Family

ID=18099118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318435A Expired - Fee Related JP3028520B2 (en) 1988-12-19 1988-12-19 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP3028520B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710060B1 (en) * 1993-09-17 1995-11-17 Rech Biolog Et Process for the preparation of substituted benz [e] indoles of high purity and their alkaline salts.
JP3705520B2 (en) * 1997-07-31 2005-10-12 富士写真フイルム株式会社 Optical information recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074975B2 (en) * 1987-08-05 1995-01-25 太陽誘電株式会社 Optical information recording medium
JPH074982B2 (en) * 1987-08-06 1995-01-25 太陽誘電株式会社 Optical information recording medium
JP2940674B2 (en) * 1988-09-27 1999-08-25 富士写真フイルム株式会社 Information recording medium and method of manufacturing the same

Also Published As

Publication number Publication date
JPH02164586A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
JP3026358B2 (en) Optical recording medium
KR100278408B1 (en) Optical information recording medium
US5955168A (en) Optical recording medium
KR100316772B1 (en) Optical recording medium
JP3028520B2 (en) Optical information recording medium
JPH097226A (en) Optical information recording medium
JP2004001375A (en) Write once photorecording medium and recording agent for the medium
JPH10172178A (en) Optical recording element
JP3543464B2 (en) Optical recording medium and information recording method
JP2969638B2 (en) Optical recording medium
JP3649062B2 (en) Optical recording medium and optical recording method
JPH04358331A (en) Optical information recording medium
JPH07309069A (en) Optical recording medium and information recording and regenerating method
JP3043907B2 (en) Manufacturing method of optical recording disk
JP3088501B2 (en) Information recording medium
JP2001148122A (en) Optical information recording method
JPH0442199B2 (en)
JP2767871B2 (en) Optical recording medium
JPH09147413A (en) Optical information recording medium and recording/ reproducing method
JPH05109116A (en) Optical information recording medium
KR20030027523A (en) optical recording medium using hemicianine dye
JP2002140836A (en) Optical recording medium
JPH04358333A (en) Optical information recording medium
JPH08273192A (en) Optical recording medium
JPH06131697A (en) Optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees