JPH1018809A - Starting/stopping method for combined power plant - Google Patents

Starting/stopping method for combined power plant

Info

Publication number
JPH1018809A
JPH1018809A JP18895196A JP18895196A JPH1018809A JP H1018809 A JPH1018809 A JP H1018809A JP 18895196 A JP18895196 A JP 18895196A JP 18895196 A JP18895196 A JP 18895196A JP H1018809 A JPH1018809 A JP H1018809A
Authority
JP
Japan
Prior art keywords
cooling
steam
temperature
cooling air
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18895196A
Other languages
Japanese (ja)
Other versions
JP3177767B2 (en
Inventor
Shinichi Higuchi
眞一 樋口
Takashi Ikeguchi
隆 池口
Masami Noda
雅美 野田
Shinya Marushima
信也 圓島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18895196A priority Critical patent/JP3177767B2/en
Publication of JPH1018809A publication Critical patent/JPH1018809A/en
Application granted granted Critical
Publication of JP3177767B2 publication Critical patent/JP3177767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To provide a starting/stopping method for a combined power plant which can secure reliability of the entire plant without deteriorating total power generation efficiency of the plant. SOLUTION: In this starting/stopping method for a combined power plant, a high temperature part of a gas turbine 14 is cooled by the use of cooling steam generated by cooling air extracted from a compressor 12 and an exhaust heat recovery boiler 31 at the time of starting and stopping the plant. A cooling means 71 is arranged for controlling the temperature of the cooling air. The temperature difference between the cooling air and the cooling steam is eliminated or suppressed within an allowable range at the time of changeover therebetween.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンバインド発電
プラントの起動/停止方法に係わり、特に、起動/停止
行程時に冷却媒体を切り替えてガスタービン設備の高温
部を冷却するコンバインド発電プラントの起動/停止方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a start / stop method for a combined power plant, and more particularly, to a start / stop method for a combined power plant that switches a cooling medium during a start / stop process to cool a high-temperature portion of gas turbine equipment. About the method.

【0002】[0002]

【従来の技術】近年、ガスタービン設備の熱効率向上の
ため、作動ガスの高温、高圧化が進められている。高温
ガスタービン設備においては、信頼性を確保するために
タービン翼の冷却が不可欠である。従来、タービン翼の
冷却には、ガスタービン設備を構成している圧縮機より
抽出した空気が使用されている。タービン翼の内部には
冷却空気経路が設けられており、圧縮機より抽出された
空気は、該経路に導かれ、タービン翼を冷却する。冷却
後は、翼外表面のフィルム冷却用空気として、翼外表面
上に設けられたフィルム冷却孔より作動ガス中に排出さ
れる。しかしながら、作動ガス温度が1400℃を越え
る高温ガスタービン設備においては、従来のタービン翼
を空気で冷却する方法では、冷却に必要な空気量の増加
による主流ガス量の減少、該冷却空気と作動ガスとの混
合による作動ガス温度の低下及び混合損失の増大などが
生じ、作動ガスの高温化による熱サイクル上のメリット
が損なわれる傾向にある。この問題の解決策として、冷
却媒体に空気よりも熱伝達率の大きい蒸気を用いること
が提案されている。タービン翼を蒸気により冷却する蒸
気冷却式ガスタービンを有効に活用するためには、例え
ば、文献エイ・エス・エム・イー/アイ・イー・イー・
イー パワー ゼネレーション コンファレンス(J
t. ASME/IEEE Power Genera
tion Conference)の論文集87−JP
GC−GT−1(1987)に記載されているように、
冷却に使用した蒸気を主流ガス中に排出することなく、
回収することが必要である。冷却に使用した蒸気を回収
する冷媒回収型蒸気冷却式ガスタービンの例として、特
開平4−124414号公報が挙げられる。この公報に
示される冷媒回収型蒸気冷却式ガスタービンは、蒸気タ
ービン設備及びガスタービン設備から排気される排気ガ
スを熱源として、蒸気タービンの作動蒸気を生成する排
熱回収ボイラ設備とを組み合わせたガスタービン/蒸気
タービンコンバインドサイクル発電プラントにおいて活
用されている。この場合、ガスタービン翼の冷却に使用
される蒸気は蒸気タービンの作動蒸気の一部が使用され
る。
2. Description of the Related Art In recent years, working gas has been increased in temperature and pressure to improve the thermal efficiency of gas turbine equipment. In high-temperature gas turbine equipment, cooling of turbine blades is indispensable to ensure reliability. Conventionally, air extracted from a compressor constituting gas turbine equipment is used for cooling turbine blades. A cooling air path is provided inside the turbine blade, and air extracted from the compressor is guided to the path to cool the turbine blade. After cooling, the air is discharged into the working gas through film cooling holes provided on the outer surface of the blade as air for cooling the film on the outer surface of the blade. However, in a high-temperature gas turbine facility having a working gas temperature exceeding 1400 ° C., the conventional method of cooling turbine blades with air reduces the amount of mainstream gas due to an increase in the amount of air required for cooling, and reduces the amount of cooling air and working gas. The temperature of the working gas decreases, the mixing loss increases, and the like due to the mixing of the working gas, and the merit in the heat cycle due to the high temperature of the working gas tends to be impaired. As a solution to this problem, it has been proposed to use steam having a higher heat transfer coefficient than air as the cooling medium. In order to make effective use of a steam-cooled gas turbine that cools turbine blades with steam, for example, literatures ASM / IEE
E-Power Generation Conference (J
t. ASME / IEEE Power Genera
87-JP
As described in GC-GT-1 (1987),
Without discharging the steam used for cooling into the mainstream gas,
It is necessary to collect it. JP-A-4-124414 is an example of a refrigerant recovery type steam-cooled gas turbine that recovers steam used for cooling. The refrigerant recovery type steam-cooled gas turbine disclosed in this publication is a gas that combines a steam turbine facility and an exhaust heat recovery boiler facility that generates working steam for the steam turbine using exhaust gas exhausted from the gas turbine facility as a heat source. Used in turbine / steam turbine combined cycle power plants. In this case, a part of the working steam of the steam turbine is used as the steam used for cooling the gas turbine blades.

【0003】[0003]

【発明が解決しようとする課題】蒸気タービンの作動蒸
気の一部をガスタービン高温部の冷却蒸気として使用す
るガスタービン/蒸気タービンコンバインド発電プラン
トにおいて、蒸気タービンの作動蒸気を生成する排熱回
収ボイラは、ガスタービンの排気ガスを熱源としている
ため、ガスタービン起動行程時あるいはガスタービン停
止行程時には蒸気タービンを駆動する蒸気はもちろんの
こと、ガスタービン冷却蒸気をも生成することができな
い。起動/停止行程時のようにガスタービンの冷却蒸気
が生成できないときは、別途冷却媒体を供給する必要が
ある。この起動/停止行程時に別途必要な冷却媒体を確
保するために、起動/停止行程時のみ運転する冷却空気
生成用圧縮機や冷却蒸気生成用ボイラを付加する、ある
いは、プラントの外部から冷却媒体を供給する設備を付
加するなどの手段が考えられるが、これらの付加設備の
運転動力を考慮した総合的な発電効率や設備面積等の増
大を考えると、好ましくない。そこで、ガスタービン/
蒸気タービンコンバインドサイクル発電プラントの起動
/停止行程時には、ガスタービンを構成している圧縮機
より抽気した空気を冷却媒体として用いるようにする手
段が一般的である。なお、この手段を用いると、必然的
に冷却空気系統と冷却蒸気系統の切り替えが必要とな
る。この切り替え行程においては、冷却空気と冷却蒸気
の温度差が問題となる。ガスタービン翼に設けられた冷
却媒体経路のように、起動/停止行程時は空気が、負荷
運転時には蒸気が流れる冷却媒体経路を有するガスター
ビンにおいては、冷却空気と冷却蒸気の温度差が大きい
と、空気/蒸気の切り替えを行った際、冷却媒体経路
は、大きな温度変化を受けることになり、すなわち、熱
衝撃を受けることになり、冷却媒体経路あるいはこの経
路を含む構成部品の信頼性、ひいてはプラント全体の信
頼性を損なうことになる。
SUMMARY OF THE INVENTION In a gas turbine / steam turbine combined power generation plant in which a part of the working steam of a steam turbine is used as cooling steam for a high temperature portion of a gas turbine, an exhaust heat recovery boiler that generates working steam for the steam turbine. Since the exhaust gas of the gas turbine is used as a heat source, it is not possible to generate not only steam for driving the steam turbine but also gas turbine cooling steam during the gas turbine start-up process or the gas turbine stop process. When the cooling steam for the gas turbine cannot be generated as in the start / stop process, it is necessary to separately supply a cooling medium. In order to secure the necessary cooling medium separately during the start / stop process, a compressor for generating cooling air or a boiler for generating cooling steam that is operated only during the start / stop process is added, or the cooling medium is supplied from outside the plant. Means such as adding equipment to be supplied are conceivable, but this is not preferable in view of an increase in overall power generation efficiency and equipment area in consideration of the operation power of these additional equipment. Therefore, gas turbine /
In a start / stop process of a steam turbine combined cycle power plant, a means for using air extracted from a compressor constituting a gas turbine as a cooling medium is generally used. If this means is used, it is necessary to switch between the cooling air system and the cooling steam system. In this switching process, a temperature difference between the cooling air and the cooling steam becomes a problem. In a gas turbine having a cooling medium path through which air flows during a start / stop process and a steam flow during a load operation, such as a cooling medium path provided in a gas turbine blade, if the temperature difference between cooling air and cooling steam is large. When the air / steam switch is performed, the cooling medium path experiences a large temperature change, that is, receives a thermal shock, and the reliability of the cooling medium path or the components including this path, and consequently, This will reduce the reliability of the whole plant.

【0004】本発明の課題は、上記事情に鑑み、コンバ
インド発電プラントの総合的な発電効率の低下を伴うこ
となく、プラント全体の信頼性を確保し得るコンバイン
ド発電プラントの起動/停止方法を提供することにあ
る。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a method of starting / stopping a combined power plant that can ensure the reliability of the entire plant without lowering the overall power generation efficiency of the combined power plant. It is in.

【0005】[0005]

【課題を解決するための手段】上記課題は、起動/停止
行程時に、圧縮機から抽気した冷却空気および排熱回収
ボイラによって生成される冷却蒸気を用いてガスタービ
ンの高温部を冷却するコンバインド発電プラントの起動
/停止方法であって、冷却空気から冷却蒸気または冷却
蒸気から冷却空気に切り替えるにあたって、冷却空気と
冷却蒸気の温度差をなくするように、あるいは、許容範
囲に制御することによって、解決される。ここで、冷却
空気と冷却蒸気の温度差の制御は、圧縮機から抽気した
冷却空気をガスタービンの高温部に供給する経路に設け
た冷却手段によって、冷却空気の温度を制御することに
より、または、圧縮機の可変静翼をコントロールして圧
縮機吸い込み空気流量を調整し、冷却空気の温度を下げ
ることにより、または、蒸気タービンの蒸気ドラム内の
圧力をコントロールし、冷却蒸気の温度を上げることに
より行う。
SUMMARY OF THE INVENTION The object of the present invention is to provide a combined power generation system for cooling a high-temperature portion of a gas turbine by using cooling air extracted from a compressor and cooling steam generated by an exhaust heat recovery boiler during a start / stop process. A method for starting / stopping a plant, which is achieved by switching from cooling air to cooling steam or from cooling steam to cooling air by eliminating the temperature difference between the cooling air and the cooling steam or by controlling the temperature to an allowable range. Is done. Here, the control of the temperature difference between the cooling air and the cooling steam is performed by controlling the temperature of the cooling air by cooling means provided in a path for supplying the cooling air extracted from the compressor to the high-temperature portion of the gas turbine, or Control the compressor variable vanes, adjust the compressor suction air flow rate, lower the cooling air temperature, or control the pressure in the steam drum of the steam turbine to raise the temperature of the cooling steam. Performed by

【0005】本発明によれば、コンバインド発電プラン
トの起動/停止行程時に、冷却空気と冷却蒸気の温度差
を最小限度に抑えることができ、冷却媒体切り替え時に
冷却媒体経路に発生する熱応力を抑制することが可能に
なり、プラント全体の信頼性を確保することができる。
さらに、圧縮機吸い込み空気流量または蒸気ドラムの圧
力をコントロールし、冷却空気の温度または冷却蒸気の
温度を制御することによって、冷却設備の容量を小さく
することかできる。
According to the present invention, the temperature difference between the cooling air and the cooling steam can be minimized during the start / stop process of the combined power generation plant, and the thermal stress generated in the cooling medium path when the cooling medium is switched is suppressed. And the reliability of the entire plant can be ensured.
Further, by controlling the compressor suction air flow rate or the steam drum pressure and controlling the temperature of the cooling air or the temperature of the cooling steam, the capacity of the cooling facility can be reduced.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明に基づくガスタービン
/蒸気タービンコンバインド発電プラントの一実施形態
を示す。ガスタービン/蒸気タービンコンバインド発電
プラントは、大別してガスタービン設備11、蒸気ター
ビン21、排熱回収ボイラ31および発電機1から構成
され、ガスタービン設備11、蒸気タービン設備21お
よび発電機1は共通軸で連結される。ガスタービン設備
11は、主として圧縮機12、燃焼器13およびガスタ
ービン14により構成される。蒸気タービン設備21の
作動蒸気は、ガスタービン設備11の下流に配置される
排熱回収ボイラ設備31において、ガスタービン設備1
1が排出する排気ガスを熱源として生成される。また、
蒸気タービンの作動蒸気の一部がガスタービン14の高
温部に冷却蒸気として供給される。ただし、ガスタービ
ン起動/停止行程時は、熱源である排気ガスの温度ある
いは流量が不十分であり、蒸気タービンを駆動するのに
必要な作動蒸気はもちろんのこと、ガスタービン14を
冷却するのに必要な蒸気をも生成することができない。
そこで、起動/停止行程時には別途ガスタービン14の
冷却媒体が必要であるが、本実施形態では、ガスタービ
ン設備11を構成する圧縮機12から一部空気を抽気
し、これを冷却媒体として供給するようする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a gas turbine / steam turbine combined power plant according to the present invention. The gas turbine / steam turbine combined power plant is roughly divided into a gas turbine facility 11, a steam turbine 21, an exhaust heat recovery boiler 31 and a generator 1, and the gas turbine facility 11, the steam turbine facility 21 and the generator 1 have a common shaft. Are linked by The gas turbine facility 11 mainly includes a compressor 12, a combustor 13, and a gas turbine 14. The working steam of the steam turbine facility 21 is supplied to the gas turbine facility 1 at an exhaust heat recovery boiler facility 31 disposed downstream of the gas turbine facility 11.
1 is generated using the exhaust gas discharged from the heat source as a heat source. Also,
A part of the working steam of the steam turbine is supplied to the high temperature part of the gas turbine 14 as cooling steam. However, during the start / stop process of the gas turbine, the temperature or the flow rate of the exhaust gas as a heat source is insufficient, so that not only the working steam necessary for driving the steam turbine but also the gas turbine 14 is cooled. Neither can the required steam be produced.
Therefore, a separate cooling medium for the gas turbine 14 is required during the start / stop process. In the present embodiment, a part of air is extracted from the compressor 12 constituting the gas turbine equipment 11 and supplied as a cooling medium. To do.

【0007】以下、起動行程、負荷運転および停止行程
の順に本実施形態に示す発電プラントの動作について説
明する。まず、起動行程について説明する。発電プラン
トの起動は、ガスタービン設備11の起動から始まる。
ガスタービン14の起動を回転軸に連結された発動機
(図示せず)により行う。同時に、発動機により回転し
始めた圧縮機12は、大気15を吸い込み、圧縮する。
圧縮された空気は燃焼器13に導かれる。徐々に回転数
を増していき、所定の回転数になったところで燃料16
を供給し、着火する。生成した燃焼ガスの圧力および温
度は、発電機1に設計定格量の負荷が接続された運転時
(以下、定格負荷運転時と表現する。)に比べると、か
なり低いが、生成した燃焼ガスは、ガスタービン14に
導かれ、静翼41n,42n,43nと動翼41b,4
2b,43とを具備する3つの段落構造の翼列を膨張し
ながら通過し、軸動力を発生させる。起動行程では発電
機1に負荷は接続されず、発生した軸動力により回転数
が増していく。ガスタービン14が圧縮機12の要する
動力を発生するようになると、発動機が切り離され、ガ
スタービン設備11は自立運転を始める。さらに、燃料
16を加えていくと、ガスタービン14に発生する軸動
力はさらに増大し、やがて定格回転数に達する。本実施
形態では、圧縮機吸い込み空気流量が定格負荷運転時の
約60パーセントになるように、圧縮機12の入口可変
静翼(図示せず)を制御する。
Hereinafter, the operation of the power plant according to the present embodiment will be described in the order of the start-up process, the load operation, and the stop process. First, the startup process will be described. The start of the power plant starts with the start of the gas turbine equipment 11.
The gas turbine 14 is started by a motor (not shown) connected to the rotating shaft. At the same time, the compressor 12 which has started to rotate by the prime mover sucks in and compresses the atmosphere 15.
The compressed air is led to the combustor 13. The rotation speed is gradually increased, and when a predetermined rotation speed is reached, the fuel 16
Supply and ignite. The pressure and temperature of the generated combustion gas are considerably lower than those during operation in which the generator 1 is connected to a design rated load (hereinafter, referred to as rated load operation). Are guided to the gas turbine 14, and the stationary blades 41n, 42n, 43n and the moving blades 41b, 4
2b and 43, the cascade of the three-stage structure including the blades 2b and 43 expands and generates axial power. In the startup stroke, no load is connected to the generator 1, and the rotation speed increases due to the generated shaft power. When the gas turbine 14 generates the power required by the compressor 12, the motor is disconnected, and the gas turbine equipment 11 starts an independent operation. Further, as the fuel 16 is added, the shaft power generated in the gas turbine 14 further increases, and eventually reaches the rated speed. In the present embodiment, the variable inlet vanes (not shown) of the compressor 12 are controlled so that the compressor suction air flow rate becomes about 60% of the rated load operation.

【0008】前述したように起動行程時は、ガスタービ
ン14の冷却には圧縮機12より抽気した空気を使用す
る。この場合、冷却媒体経路に設けられた開閉バルブ5
1,52,53および54を閉じ、冷却媒体経路に設け
られた開閉バルブ61,62,63および64を開け、
圧縮機12から抽出した空気を冷却媒体としてガスター
ビン14に供給する。圧縮機12より抽出した空気の一
部は、冷却器71を経て、冷却媒体としてガスタービン
14の高温部、例えばタービン翼に供給される。本実施
形態では、後述するように、冷却空気の温度が冷却蒸気
の温度差と同じになる(あるいは、許容温度差に収ま
る)ように制御する。各タービン翼の内部には冷却媒体
経路が形成されており、冷却媒体がこの経路を通過する
際に翼本体から熱を吸収し、翼本体を冷却する。この冷
却媒体経路は、従来の空気冷却式のタービン翼とは異な
り、翼表面にフィルム冷却用空気孔等は存在せず、供給
した冷却媒体は、主流ガス中に放出されることなく、全
て回収される。回収された冷却空気は、開閉バルブ6
2,63および64を経て大気に開放される。本実施形
態においては、この段階でガスタービン設備11は約4
20℃の排気ガス17を排出する。排熱回収ボイラ設備
31は、この排気ガス17の持つ熱エネルギーを利用し
て蒸気を生成する。ここで、排熱回収ボイラ設備31
は、複圧力式のボイラ設備であり、排気ガス17の流れ
に沿って上流から第1蒸気ドラム32a、第2蒸気ドラ
ム32bおよび第3蒸気ドラム32cを有し、各蒸気ド
ラム内にそれぞれ112ata、36ataおよび10
ata程度の圧力の蒸気を生成する。ここでは、圧力1
00以上150ata未満の蒸気を高圧蒸気、20以上
40ata未満の蒸気を中圧蒸気および5以上15at
a未満の蒸気を低圧蒸気と定義し、第1蒸気ドラム32
a、第2蒸気ドラム32bおよび第3蒸気ドラム32c
をそれぞれ高圧蒸気ドラム32a、中圧蒸気ドラム32
bおよび低圧蒸気ドラム32cと定義する。起動行程時
では、排気ガス17の温度は定格負荷運転時と比べて約
180℃低く、流量は約40パーセント少ないが、中圧
蒸気ドラム32b内にタービン翼の冷却蒸気を生成させ
るには十分な熱源である。時間の経過に伴い、この中圧
蒸気ドラム32bに冷却蒸気が生成されると、開閉バル
ブ51を開け、排熱回収ボイラ設備31の中圧過熱器を
経てガスタービン14の第1段静翼41n、第2段静翼
42nおよび第3段静翼43n、第1段動翼41b、第
2段動翼42bおよび第3段動翼43bに冷却蒸気とし
て供給する。このときの冷却蒸気の温度は、約280℃
であり、定格負荷運転時の温度と同じである。通常、排
熱回収ボイラ設備31は、熱源であるガスタービン設備
11の排気ガスの温度または流量が変化しても各蒸気ド
ラムに生成される蒸気の温度が一定になるように制御さ
れる。この段階では、ガスタービン14に設けられた冷
却媒体経路には冷却空気と冷却蒸気が混ざって流れるこ
とになる。次段階で開閉バルブ61を閉じ、圧縮機12
からの冷却空気の供給を停止する。完全に冷却媒体が蒸
気のみになったのを確認して、開閉バルブ52,53お
よび54を開け、開閉バルブ62,63および64を閉
じ、この冷却蒸気を蒸気タービン設備21に回収する。
以上で起動行程における冷却媒体の空気から蒸気への切
り替えが完了し、徐々に発電機1に負荷を接続して負荷
運転を行う。負荷量に応じて圧縮機12の吸い込み空気
流量および燃料流量等が制御され、同時に、排気ガスの
温度が上昇および流量が増大し、排熱回収ボイラ設備3
1の熱源も増大する。それにより、生成される蒸気量も
増大し、蒸気タービン22a,22b,22cの負荷運
転が可能となる。
As described above, during the start-up stroke, air extracted from the compressor 12 is used for cooling the gas turbine 14. In this case, the open / close valve 5 provided in the cooling medium path
1, 52, 53 and 54 are closed, and open / close valves 61, 62, 63 and 64 provided in the cooling medium path are opened,
The air extracted from the compressor 12 is supplied to the gas turbine 14 as a cooling medium. A part of the air extracted from the compressor 12 passes through a cooler 71 and is supplied as a cooling medium to a high-temperature portion of the gas turbine 14, for example, a turbine blade. In the present embodiment, as described later, control is performed so that the temperature of the cooling air becomes the same as the temperature difference of the cooling steam (or falls within the allowable temperature difference). A cooling medium path is formed inside each turbine blade, and when the cooling medium passes through this path, it absorbs heat from the blade body and cools the blade body. Unlike the conventional air-cooled turbine blades, this cooling medium path has no film cooling air holes on the blade surface, and all the supplied cooling medium is collected without being released into the mainstream gas. Is done. The collected cooling air is supplied to the open / close valve 6
It is opened to the atmosphere via 2, 63 and 64. In the present embodiment, at this stage, the gas turbine
Exhaust gas 17 at 20 ° C. is exhausted. The exhaust heat recovery boiler facility 31 generates steam using the thermal energy of the exhaust gas 17. Here, the exhaust heat recovery boiler facility 31
Is a double-pressure boiler facility, which has a first steam drum 32a, a second steam drum 32b, and a third steam drum 32c from upstream along the flow of the exhaust gas 17, and 112at, 36ata and 10
It produces steam at a pressure of about ata. Here, pressure 1
High pressure steam is used for steam of 00 to less than 150 ata, medium pressure steam is used for steam of 20 to less than 40 ata and 5 to 15 at
a is defined as low-pressure steam, and the first steam drum 32
a, the second steam drum 32b and the third steam drum 32c
To the high-pressure steam drum 32a and the medium-pressure steam drum 32, respectively.
b and the low-pressure steam drum 32c. During the start-up stroke, the temperature of the exhaust gas 17 is about 180 ° C. lower than at the time of rated load operation, and the flow rate is about 40% less, but sufficient for generating turbine blade cooling steam in the medium-pressure steam drum 32b. It is a heat source. When the cooling steam is generated in the intermediate-pressure steam drum 32b with the passage of time, the on-off valve 51 is opened, the first-stage stationary blade 41n of the gas turbine 14 passes through the intermediate-pressure superheater of the exhaust heat recovery boiler facility 31, and the The cooling steam is supplied to the second-stage stationary blades 42n and the third-stage stationary blades 43n, the first-stage moving blades 41b, the second-stage moving blades 42b, and the third-stage moving blades 43b. The temperature of the cooling steam at this time is about 280 ° C.
Which is the same as the temperature during rated load operation. Normally, the exhaust heat recovery boiler equipment 31 is controlled such that the temperature of steam generated in each steam drum is constant even if the temperature or flow rate of exhaust gas of the gas turbine equipment 11 as a heat source changes. At this stage, the cooling air and the cooling steam are mixed and flow in the cooling medium path provided in the gas turbine 14. In the next stage, the on-off valve 61 is closed and the compressor 12
Supply of cooling air from is stopped. After confirming that the cooling medium is completely steam only, the opening and closing valves 52, 53 and 54 are opened, the opening and closing valves 62, 63 and 64 are closed, and this cooling steam is collected in the steam turbine equipment 21.
As described above, the switching of the cooling medium from the air to the steam in the startup process is completed, and the load is gradually connected to the generator 1 to perform the load operation. The suction air flow rate and the fuel flow rate of the compressor 12 are controlled according to the load amount, and at the same time, the temperature of the exhaust gas rises and the flow rate increases, and the exhaust heat recovery boiler equipment 3
One heat source also increases. Thereby, the amount of generated steam also increases, and load operation of the steam turbines 22a, 22b, and 22c becomes possible.

【0009】図2、図3を用いて、冷却空気と冷却蒸気
の温度差が同じになる(あるいは、冷却空気と冷却蒸気
の温度差が許容範囲に収まる)ように制御する方法を説
明する。その1の方法は、冷却器71によって冷却空気
の温度を下げる制御である。図2において、冷却器71
の出口に冷却温度を検出する温度センサー71Tと、開
閉バルブ51の入口に冷却温度を検出する温度センサー
51Tを設ける。起動行程時に、冷却空気から冷却蒸気
に切り替えるにあたって、圧縮機12より抽出した空気
の一部の温度と排熱回収ボイラ設備31より抽出した冷
却蒸気の温度を比較し、温度センサー71Tによって計
測した温度が温度センサー51Tによって計測した温度
と同じになる(あるいは、許容温度差に収まる)よう
に、冷却器71を制御し、冷却空気の温度を下げる。そ
の2の方法は、圧縮機12の吸込み空気流量を調整(I
GVモジュレーシヨン)することによって冷却空気の温
度を下げる制御である。図2において、圧縮機12の吐
出空気温度を検出する温度センサー12Tを設ける。圧
縮機12の吸込み空気流量は、圧縮機可変静翼12IG
Vをコントロールすることによって調整することができ
る。ここでは、起動行程時に、冷却空気から冷却蒸気に
切り替えるにあたって、定格負荷運転時より少ない空気
流量になるように圧縮機可変静翼12IGVをコントロ
ールすると、圧縮機12の吐出空気温度が低下する。そ
こで、温度センサー12Tによって計測した温度が温度
センサー51Tによって計測した温度と同じになる(あ
るいは、許容温度差に収まる)ように、圧縮機可変静翼
12IGVをコントロールし、冷却空気の温度を下げ
る。その3の方法は、蒸気ドラムの圧力によって冷却蒸
気の温度を上げる制御である。図3において、中圧蒸気
ドラム32bにドラム内の圧力を検出する圧力センサー
32bPを設ける。生成する冷却蒸気の温度は、ドラム
内の圧力をコントロールすることによって調整すること
ができる。ここでは、起動行程時に、冷却空気から冷却
蒸気に切り替えるにあたって、中圧蒸気ドラム32b内
の圧力を高くし、冷却蒸気の温度を上げ、温度センサー
51Tにより冷却蒸気の温度を計測する。そこで、温度
センサー51Tの温度が温度センサー71Tの温度と同
じになる(あるいは、許容温度差に収まる)ように、中
圧蒸気ドラム32b内の圧力をコントロールし、冷却蒸
気の温度を上げる。
A method for controlling the temperature difference between the cooling air and the cooling steam to be the same (or the temperature difference between the cooling air and the cooling steam within an allowable range) will be described with reference to FIGS. The first method is control for lowering the temperature of the cooling air by the cooler 71. In FIG. 2, the cooler 71
A temperature sensor 71T for detecting a cooling temperature is provided at an outlet of the valve, and a temperature sensor 51T for detecting a cooling temperature is provided at an inlet of the on-off valve 51. When switching from the cooling air to the cooling steam during the start-up process, the temperature of a part of the air extracted from the compressor 12 is compared with the temperature of the cooling steam extracted from the exhaust heat recovery boiler facility 31, and the temperature measured by the temperature sensor 71T. Is controlled so as to become equal to the temperature measured by the temperature sensor 51T (or within the allowable temperature difference), and the temperature of the cooling air is reduced. The second method is to adjust the suction air flow rate of the compressor 12 (I
This is a control for lowering the temperature of the cooling air by performing GV modulation. In FIG. 2, a temperature sensor 12T for detecting a discharge air temperature of the compressor 12 is provided. The suction air flow rate of the compressor 12 is controlled by the compressor variable stationary blade 12IG.
It can be adjusted by controlling V. Here, when switching from the cooling air to the cooling steam during the startup process, if the compressor variable vane 12IGV is controlled so that the air flow rate becomes smaller than that during the rated load operation, the discharge air temperature of the compressor 12 decreases. Therefore, the compressor variable vane 12IGV is controlled so that the temperature of the cooling air is reduced so that the temperature measured by the temperature sensor 12T becomes the same as the temperature measured by the temperature sensor 51T (or falls within the allowable temperature difference). The third method is control for increasing the temperature of the cooling steam by the pressure of the steam drum. In FIG. 3, a pressure sensor 32bP for detecting a pressure in the medium-pressure steam drum 32b is provided. The temperature of the generated cooling steam can be adjusted by controlling the pressure in the drum. Here, when switching from the cooling air to the cooling steam during the startup process, the pressure in the medium-pressure steam drum 32b is increased, the temperature of the cooling steam is increased, and the temperature of the cooling steam is measured by the temperature sensor 51T. Therefore, the pressure in the medium-pressure steam drum 32b is controlled so that the temperature of the cooling steam is increased so that the temperature of the temperature sensor 51T becomes the same as the temperature of the temperature sensor 71T (or falls within the allowable temperature difference).

【0010】ここで、通常、冷却媒体切り替え時におけ
る圧縮機吐出空気温度すなわち冷却空気温度は、圧縮機
吸い込み空気流量を定格時の60パーセントに絞った場
合には約380℃、定格負荷運転時と同じ吸い込み空気
流量である場合には約420℃である。図1において
は、冷却蒸気温度は約280℃であるから、冷却空気を
従来技術のように温度制御せず、そのままの温度の冷却
空気を用いたとき、圧縮機吸い込み流量を絞った場合で
約100℃、絞らない場合で約140℃の温度差が生じ
ることになり、冷却媒体を切り替えた際に冷却媒体経路
にはこの温度差に相当する熱応力が発生することにな
る。熱応力は、材料の強度、寿命を損なわせ、ガスター
ビン設備11全体の信頼性を低下させることになる。こ
れに対し、本実施形態では、冷却器71によって冷却空
気の温度が冷却蒸気温度と同じになる(あるいは、許容
温度差に収まる)ように制御するので、冷却媒体を切り
替えても冷却媒体経路は一切温度変化を受けることがな
く、その結果、熱応力の発生等の熱衝撃を受けることが
ない。このことは、冷却媒体経路ひいてはガスタービン
設備11全体の信頼性確保につながる。さらに、本実施
形態では、圧縮機吸い込み空気流量を絞り、圧縮機吐出
空気温度すなわち冷却空気温度を低下させた場合、また
は、蒸気ドラムの圧力によって冷却蒸気の温度を上げた
場合、いずれも冷却蒸気との温度差が小さくなり、この
結果、冷却器71の容量を小さくできるという利点が生
じる。
Here, normally, the compressor discharge air temperature, ie, the cooling air temperature at the time of switching the cooling medium, is about 380 ° C. when the compressor suction air flow rate is reduced to 60% of the rated time, and is equal to that during the rated load operation. It is about 420 ° C. for the same suction air flow rate. In FIG. 1, since the cooling steam temperature is about 280 ° C., the cooling air is not temperature-controlled as in the prior art. A temperature difference of about 100 ° C. and about 140 ° C. if not throttled will cause a thermal stress corresponding to this temperature difference in the cooling medium path when the cooling medium is switched. The thermal stress impairs the strength and life of the material, and lowers the reliability of the gas turbine equipment 11 as a whole. On the other hand, in the present embodiment, since the temperature of the cooling air is controlled by the cooler 71 to be the same as the cooling steam temperature (or within the allowable temperature difference), the cooling medium path is changed even if the cooling medium is switched. There is no temperature change, and as a result, there is no thermal shock such as generation of thermal stress. This leads to ensuring the reliability of the cooling medium path, and hence the gas turbine equipment 11 as a whole. Further, in the present embodiment, when the compressor suction air flow rate is reduced to reduce the compressor discharge air temperature, that is, the cooling air temperature, or when the temperature of the cooling steam is increased by the pressure of the steam drum, And the temperature difference between the cooling device 71 and the cooling device 71 can be reduced.

【0011】次に、負荷運転について説明する。本実施
形態に示す発電プラントにおいて、負荷運転時には、排
熱回収ボイラ31によって生成された高圧蒸気、中圧蒸
気および低圧蒸気は、それぞれの蒸気圧力に対応して第
1蒸気タービン22a、第2蒸気タービン22bおよび
第3蒸気タービン22c導かれ、各蒸気タービンを駆動
し、軸動力を発生させる。発生した軸動力は、発電機1
により電力に変換される。高圧蒸気タービン22aに導
かれた高圧蒸気は、この蒸気タービン22aにおいて膨
張仕事をして圧力が低下するが、この圧力は中圧蒸気タ
ービン22bを駆動するのに十分な圧力であるために、
中圧蒸気タービン22bに導かれる。中圧蒸気タービン
22bに導かれた中圧蒸気は、この蒸気タービン22b
において膨張仕事をして圧力が低下するが、この圧力は
低圧蒸気タービン22cを駆動するのに十分な圧力であ
るために、低圧蒸気タービン22cに導かれる。低圧蒸
気タービン22cに導かれた低圧蒸気は、この蒸気ター
ビン22cにおいて膨張仕事をした後、復水器33に導
かれ、水にされた後、水ポンプ34で排熱回収ボイラ3
1に戻される。高圧蒸気タービン22aの作動蒸気は、
中圧蒸気タービン22bおよび低圧タービン22cにお
いても仕事をする。
Next, load operation will be described. In the power plant according to the present embodiment, during load operation, high-pressure steam, medium-pressure steam, and low-pressure steam generated by the exhaust heat recovery boiler 31 correspond to the first steam turbine 22a and the second steam The turbine 22b and the third steam turbine 22c are guided, drive each steam turbine, and generate shaft power. The generated shaft power is generated by the generator 1
Is converted to electric power. The high-pressure steam guided to the high-pressure steam turbine 22a performs expansion work in the steam turbine 22a, and its pressure is reduced. However, since this pressure is sufficient to drive the medium-pressure steam turbine 22b,
It is led to the medium-pressure steam turbine 22b. The medium-pressure steam guided to the medium-pressure steam turbine 22b is
In this case, the pressure decreases due to the expansion work, but the pressure is sufficient to drive the low-pressure steam turbine 22c, and is guided to the low-pressure steam turbine 22c. The low-pressure steam guided to the low-pressure steam turbine 22c performs expansion work in the steam turbine 22c, is then guided to a condenser 33, is converted into water, and is then converted into water by a water pump 34.
Returned to 1. The working steam of the high-pressure steam turbine 22a is:
It also works in the medium-pressure steam turbine 22b and the low-pressure turbine 22c.

【0012】ここで、ガスタービン設備11のタービン
翼を冷却するのに使用される蒸気の経路について説明す
る。前記したように、ガスタービン翼の冷却には排熱回
収ボイラ31によって生成された蒸気が使用される。中
圧蒸気ドラム32bに生成された中圧蒸気は、中圧過熱
器を経てガスタービン14の第1段静翼41n、第2段
静翼42nおよび第3段静翼43n、第1段動翼41
b、第2段動翼42bおよび第3段動翼43bに冷却蒸
気として供給されタービン翼を冷却する。第1段静翼4
1nを冷却した蒸気は、低圧蒸気タービン22cに回収
される。第2段静翼42nを冷却した蒸気は、第3段静
翼43nに導かれ、この静翼を冷却する。第3段静翼4
3nを冷却した蒸気は、中圧蒸気タービン22bに回収
される。第1段動翼41b、第2段動翼42bおよび第
3段動翼43bを冷却した蒸気は、中圧蒸気タービン2
2bに回収される。
Here, the path of steam used to cool the turbine blades of the gas turbine facility 11 will be described. As described above, the steam generated by the exhaust heat recovery boiler 31 is used for cooling the gas turbine blades. The intermediate-pressure steam generated in the intermediate-pressure steam drum 32b passes through the intermediate-pressure superheater, and the first-stage stationary blades 41n, the second-stage stationary blades 42n, the third-stage stationary blades 43n, and the first-stage moving blades 41n of the gas turbine 14 are provided.
b, supplied as cooling steam to the second stage rotor blades 42b and the third stage rotor blades 43b to cool the turbine blades. First stage stationary blade 4
The steam that has cooled 1n is collected by the low-pressure steam turbine 22c. The steam that has cooled the second-stage stationary blades 42n is guided to the third-stage stationary blades 43n, and cools the stationary blades. Third stage stationary blade 4
The steam having cooled 3n is recovered by the medium-pressure steam turbine 22b. The steam that has cooled the first-stage moving blade 41b, the second-stage moving blade 42b, and the third-stage moving blade 43b is supplied to the intermediate-pressure steam turbine 2
2b.

【0013】最後に、停止行程について説明する。発電
プラントを停止するにあたり、まず、蒸気タービン設備
21の負荷を徐々に小さくして無負荷運転状態にする。
次に、ガスタービン設備11の負荷を徐々に小さくして
無負荷運転状態にする。この段階ではガスタービン設備
11の冷却媒体は蒸気である。ここで、開閉バルブ6
2,63および64を開け、開閉バルブ52,53およ
び54を閉じる。この状態では、回収された冷却蒸気は
大気中に開放されている。さらに、開閉バルブ61を開
け、起動行程時と同じように、冷却空気の温度が冷却蒸
気の温度差と同じになる(あるいは、許容温度差に収ま
る)ように制御された冷却空気を供給する。その後、開
閉バルブ51を閉じれば、ガスタービン設備11に冷却
蒸気が供給されなくなり、燃料16を減らすことによっ
てガスタービン設備11が停止する。本実施形態では、
停止行程においても、起動行程時と同様に、冷却蒸気と
冷却空気とを切り替えた際に、冷却媒体経路は温度変化
を受けることがなく、すなわち、熱応力が生じることが
ないので、ガスタービン設備11の信頼性が確保でき
る。
Finally, the stop process will be described. In stopping the power plant, first, the load on the steam turbine facility 21 is gradually reduced to bring the steam turbine facility 21 into a no-load operation state.
Next, the load on the gas turbine equipment 11 is gradually reduced to bring the apparatus into a no-load operation state. At this stage, the cooling medium of the gas turbine equipment 11 is steam. Here, the open / close valve 6
2, 63 and 64 are opened, and the on-off valves 52, 53 and 54 are closed. In this state, the collected cooling steam is released to the atmosphere. Further, the opening / closing valve 61 is opened, and the cooling air is controlled so that the temperature of the cooling air becomes the same as the temperature difference of the cooling steam (or falls within the allowable temperature difference) as in the start-up process. Thereafter, when the on-off valve 51 is closed, the cooling steam is not supplied to the gas turbine equipment 11, and the gas turbine equipment 11 is stopped by reducing the fuel 16. In this embodiment,
In the stop stroke, similarly to the start stroke, when the cooling steam and the cooling air are switched, the cooling medium path does not receive a temperature change, that is, no thermal stress is generated. 11 can be ensured.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
コンバインド発電プラントの起動/停止行程時におい
て、ガスタービン高温部の冷却媒体の切り替えにあた
り、冷却空気の温度または冷却蒸気の温度を制御するこ
とによって、冷却空気と冷却蒸気の温度差を最小限度に
抑えることができ、冷却媒体切り替え時に冷却媒体経路
に発生する熱応力を抑制することが可能になり、プラン
ト全体の信頼性を確保することができる。さらに、圧縮
機吸い込み空気流量または蒸気ドラムの圧力をコントロ
ールし、冷却空気の温度または冷却蒸気の温度を制御す
ることによって、冷却設備の容量を小さくすることかで
きる。
As described above, according to the present invention,
Controlling the temperature of the cooling air or the temperature of the cooling steam during the switching of the cooling medium in the high-temperature portion of the gas turbine during the start / stop process of the combined power plant minimizes the temperature difference between the cooling air and the cooling steam. Therefore, it is possible to suppress the thermal stress generated in the cooling medium path when the cooling medium is switched, and it is possible to secure the reliability of the entire plant. Further, by controlling the compressor suction air flow rate or the steam drum pressure and controlling the temperature of the cooling air or the temperature of the cooling steam, the capacity of the cooling facility can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すガスタービン/蒸気
タービンコンバインド発電プラントの構成図
FIG. 1 is a configuration diagram of a gas turbine / steam turbine combined power generation plant showing an embodiment of the present invention.

【図2】本発明の冷却空気と冷却蒸気の温度差を制御す
る方法を説明する図
FIG. 2 is a diagram illustrating a method for controlling a temperature difference between cooling air and cooling steam according to the present invention.

【図3】本発明の冷却空気と冷却蒸気の温度差を制御す
る方法を説明する図
FIG. 3 is a diagram illustrating a method for controlling a temperature difference between cooling air and cooling steam according to the present invention.

【符号の説明】[Explanation of symbols]

1 発電機 11 ガスタービン設備 12 圧縮機 12T 温度センサー 12IGV 圧縮機可変静翼 14 ガスタービン 21 蒸気タービン設備 22a,22b,22c 蒸気タービン 31 排熱回収ボイラ設備 32a,32b,32c 蒸気ドラム 32bP 圧力センサー 51T 温度センサー 71 冷却器 71T 温度センサー DESCRIPTION OF SYMBOLS 1 Generator 11 Gas turbine equipment 12 Compressor 12T Temperature sensor 12IGV Compressor variable stationary vane 14 Gas turbine 21 Steam turbine equipment 22a, 22b, 22c Steam turbine 31 Exhaust heat recovery boiler equipment 32a, 32b, 32c Steam drum 32bP Pressure sensor 51T Temperature sensor 71 Cooler 71T Temperature sensor

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F22B 1/18 F22B 1/18 D (72)発明者 圓島 信也 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発本部内Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display F22B 1/18 F22B 1/18 D (72) Inventor Shinya Enjima 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture No.Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 起動/停止行程時に、圧縮機から抽気し
た冷却空気および排熱回収ボイラによって生成される冷
却蒸気を用いてガスタービンの高温部を冷却するコンバ
インド発電プラントの起動/停止方法であって、前記冷
却空気から前記冷却蒸気または前記冷却蒸気から前記冷
却空気に切り替えるにあたって、前記冷却空気と前記冷
却蒸気の温度差をなくするように、あるいは、許容範囲
に制御することを特徴とするコンバインド発電プラント
の起動/停止方法。
1. A method for starting / stopping a combined power plant that cools a high-temperature portion of a gas turbine by using cooling air extracted from a compressor and cooling steam generated by an exhaust heat recovery boiler during a start / stop process. In switching the cooling air from the cooling air to the cooling steam or from the cooling steam to the cooling air, control is performed so as to eliminate a temperature difference between the cooling air and the cooling steam or within an allowable range. How to start / stop the power plant.
【請求項2】 起動/停止行程時には圧縮機から抽気し
た冷却空気を用いて、また、負荷運転時には後記排熱回
収ボイラによって生成される冷却蒸気を用いてその高温
部を冷却するガスタービンと、前記ガスタービンから排
気された燃焼ガスによって蒸気を生成する排熱回収ボイ
ラと、該蒸気により駆動される蒸気タービンからなるコ
ンバインド発電プラントの起動/停止方法において、前
記プラントの起動/停止行程時に、前記冷却空気から前
記冷却蒸気または前記冷却蒸気から前記冷却空気に切り
替え、このとき前記冷却空気と前記冷却蒸気の温度差を
なくするように、あるいは、許容範囲に制御することを
特徴とするコンバインド発電プラントの起動/停止方
法。
2. A gas turbine for cooling a high-temperature portion using cooling air extracted from a compressor during a start / stop stroke and cooling steam generated by a waste heat recovery boiler during a load operation. In a method for starting / stopping a combined power generation plant including a waste heat recovery boiler that generates steam by using a combustion gas exhausted from the gas turbine and a steam turbine driven by the steam, the method includes the steps of: A combined power generation plant that switches from the cooling air to the cooling steam or from the cooling steam to the cooling air, and at this time, eliminates the temperature difference between the cooling air and the cooling steam, or controls the temperature to an allowable range. Start / stop method.
【請求項3】 請求項1または請求項2において、前記
圧縮機から抽気した冷却空気を前記ガスタービンの高温
部に供給する経路に冷却手段を設け、前記冷却空気の温
度を制御することを特徴とするコンバインド発電プラン
トの起動/停止方法。
3. The cooling device according to claim 1, wherein cooling means is provided in a path for supplying cooling air extracted from the compressor to a high-temperature portion of the gas turbine, and controls a temperature of the cooling air. Start / stop method of the combined power plant.
【請求項4】 請求項1、請求項2または請求項3にお
いて、前記冷却空気と前記冷却蒸気の温度差の制御は、
前記圧縮機の可変静翼をコントロールして圧縮機吸い込
み空気流量を調整し、前記冷却空気の温度を下げること
を特徴とするコンバインド発電プラントの起動/停止方
法。
4. The control of a temperature difference between the cooling air and the cooling steam according to claim 1, 2 or 3,
A method for starting / stopping a combined power generation plant, comprising controlling a variable stator vane of the compressor to adjust a compressor suction air flow rate to lower a temperature of the cooling air.
【請求項5】 請求項1、請求項2または請求項3にお
いて、前記冷却空気と前記冷却蒸気の温度差の制御は、
前記蒸気タービンの蒸気ドラム内の圧力をコントロール
し、前記冷却蒸気の温度を上げることを特徴とするコン
バインド発電プラントの起動/停止方法。
5. The control of the temperature difference between the cooling air and the cooling steam according to claim 1, 2 or 3,
A method for starting / stopping a combined power generation plant, wherein a pressure in a steam drum of the steam turbine is controlled to increase a temperature of the cooling steam.
JP18895196A 1996-06-28 1996-06-28 Starting / Stopping Combined Power Plant Expired - Lifetime JP3177767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18895196A JP3177767B2 (en) 1996-06-28 1996-06-28 Starting / Stopping Combined Power Plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18895196A JP3177767B2 (en) 1996-06-28 1996-06-28 Starting / Stopping Combined Power Plant

Publications (2)

Publication Number Publication Date
JPH1018809A true JPH1018809A (en) 1998-01-20
JP3177767B2 JP3177767B2 (en) 2001-06-18

Family

ID=16232781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18895196A Expired - Lifetime JP3177767B2 (en) 1996-06-28 1996-06-28 Starting / Stopping Combined Power Plant

Country Status (1)

Country Link
JP (1) JP3177767B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698182B2 (en) 2001-04-10 2004-03-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
US6978623B2 (en) 2001-09-13 2005-12-27 Mitsubishi Heavy Industries, Ltd Gas turbine, driving method thereof and gas turbine combined electric power generation plant
EP2392787A3 (en) * 2009-03-31 2012-05-23 General Electric Company Combined Cycle Power Plant Including a Heat Recovery Steam Generator
EP2584157A1 (en) * 2011-10-19 2013-04-24 General Electric Company Heat recovery steam generator and methods of coupling same to a combined cycle power plant
JP2014163382A (en) * 2013-02-26 2014-09-08 General Electric Co <Ge> Systems and methods to control combustion dynamic frequencies
US9903231B2 (en) 2011-12-14 2018-02-27 General Electric Company System and method for warming up a steam turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698182B2 (en) 2001-04-10 2004-03-02 Mitsubishi Heavy Industries, Ltd. Gas turbine combined plant
US6978623B2 (en) 2001-09-13 2005-12-27 Mitsubishi Heavy Industries, Ltd Gas turbine, driving method thereof and gas turbine combined electric power generation plant
EP2392787A3 (en) * 2009-03-31 2012-05-23 General Electric Company Combined Cycle Power Plant Including a Heat Recovery Steam Generator
EP2584157A1 (en) * 2011-10-19 2013-04-24 General Electric Company Heat recovery steam generator and methods of coupling same to a combined cycle power plant
US9903231B2 (en) 2011-12-14 2018-02-27 General Electric Company System and method for warming up a steam turbine
JP2014163382A (en) * 2013-02-26 2014-09-08 General Electric Co <Ge> Systems and methods to control combustion dynamic frequencies

Also Published As

Publication number Publication date
JP3177767B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP2002349286A (en) Pressurizing system for turbine, turbine system and method
KR101933585B1 (en) A gas turbine apparatus
JP3977909B2 (en) Recoverable steam cooled gas turbine
JP2001214759A (en) Gas turbine combined cycle
US6212873B1 (en) Gas turbine combined cycle
JPH05163960A (en) Combined cycle power generation plant
CA2402932A1 (en) Gas turbine, driving method thereof and gas turbine combined electric power generation plant
JPS59173527A (en) Gas turbine exhaust frame cooling air system
JP2003206701A (en) Turbine rotor for gas turbine, and gas turbine
JP3431435B2 (en) Combined power plant and closed air-cooled gas turbine system
JPH1181904A (en) Recoverable steam cooled gas turbine
JP3177767B2 (en) Starting / Stopping Combined Power Plant
JP3919966B2 (en) Operation method of combined cycle power plant
US8534038B2 (en) Combined power plant
JPH07332109A (en) Compressed air storage type power generating plant
JP4028070B2 (en) Combined cycle power plant
US11859548B2 (en) Gas turbine and control method thereof, and combined cycle plant
JP3675880B2 (en) Method and apparatus for controlling single-shaft combined cycle power generation facility
JP3614949B2 (en) Combined power plant
JPH08270459A (en) Gas turbine installation and operating method thereof
JPH09189236A (en) Combined power generating plant and operation method thereof
JPH0988519A (en) Starting method of steam cooling type composite power generating plant
JP3446185B2 (en) Operating method of steam-cooled gas turbine
JP4473464B2 (en) Operation method of combined cycle power plant
JP2003148166A (en) Combined power plant, and closed air cooling gas turbine system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term