JPS59173527A - Gas turbine exhaust frame cooling air system - Google Patents

Gas turbine exhaust frame cooling air system

Info

Publication number
JPS59173527A
JPS59173527A JP4600083A JP4600083A JPS59173527A JP S59173527 A JPS59173527 A JP S59173527A JP 4600083 A JP4600083 A JP 4600083A JP 4600083 A JP4600083 A JP 4600083A JP S59173527 A JPS59173527 A JP S59173527A
Authority
JP
Japan
Prior art keywords
gas turbine
cooling
cooling air
air
air system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4600083A
Other languages
Japanese (ja)
Other versions
JPH0114408B2 (en
Inventor
Seisaku Takihana
瀧花 清作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4600083A priority Critical patent/JPS59173527A/en
Publication of JPS59173527A publication Critical patent/JPS59173527A/en
Publication of JPH0114408B2 publication Critical patent/JPH0114408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To increase output and improve efficiency by constructing so that the high pressure air bled from a compressor can be supplied to a cooling air system at the time of starting and stopping a gas turbine and cooling the stationary members of said gas turbine which is in a transient condition. CONSTITUTION:In a gas turbine, a compressor 1, a turbine 2, and a combustor 3 are provided and, as a cooling air system, two blowers 9 which are driven by an electric motor 10 and to which a suction silencer 11 is connected respectively, and an exhaust frame cooling pipe 14 which is connected to check valves 8 and to a turbine shell 4, are provided. A bleed air line 24 connects the bleed port AE-5 of the compressor 1 to the confluent point B of the flow-out ports of the two check valves 8. And, a shut-off valve 12 and an orifice 13 are provided midway in the line 24, carrying out the cooling of the stationary members of the gas turbine effectively, by supplying high-pressure air bled from the compressor 1 to the cooling air system at the time of starting and stopping the gas turbine.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンの排気フレーム冷却用の冷気系統
に係シ、特に、外部電源喪失時にも起動し得る機能を備
えた(いわゆるブラックスタート機能を有する)ガスタ
ービン発電設備に好適なように改良した排気フレーム冷
却空気系統に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cold air system for cooling the exhaust frame of a gas turbine. This invention relates to an improved exhaust frame cooling air system suitable for gas turbine power generation equipment.

〔従来技術〕[Prior art]

ガスタービンは高温ガスを作動流体として用いるため、
作動流体に接触する講成部材を耐熱性の材料にすると共
に、冷却手段を講じなければならない。
Because gas turbines use high-temperature gas as the working fluid,
The course members that come into contact with the working fluid must be made of heat-resistant materials, and cooling means must be provided.

ガスタービンの静止体の中で冷却を必要とする部材バタ
ービンシェルおよび排気フレームでアル。
The parts that require cooling in the stationary body of a gas turbine are the butter turbine shell and exhaust frame.

第1図にガスタービン部分断面図の代表例を示す。FIG. 1 shows a typical example of a partial cross-sectional view of a gas turbine.

第1図に於いて排気フレーム冷却管より矢印Aのごとく
導入された空気は、タービンシェル4内に円周状に配置
され、その長さ方向に【aつて該壁部分を貫通して延び
ている複数の冷却孔15を通過し、タービンシェルを内
部冷却し、排気フレーム16とアラ〉ディフューザ19
とに囲まれた排気フレーム上部隔室17へ導入される。
Air introduced from the exhaust frame cooling pipe as shown by arrow A in FIG. It passes through a plurality of cooling holes 15 to internally cool the turbine shell, and connects the exhaust frame 16 and diffuser 19.
The air is introduced into the upper compartment 17 of the exhaust frame surrounded by.

次に排気フレーム16内にその半径方向に配置された複
数個のストラット18とエアホイル20によって囲まれ
たストラット隔室21内を流れ、該ストラット18を表
面冷却し、次に、排気フレーム16及びインナーディフ
ューザ22によって囲まれた排気フレーム下部隔室23
へ導入され、その一部は、ガスタービン軸方向に沿って
タービン下流側へ、又一部は、上流側へ流れて第3段タ
ービン後側ホイールスペース内へ流れる。本冷却空気は
上述の各部を冷却する7ビけでなく、アクタディフュー
ザとインナーディフューザを流れる高温作動ガスの冷却
系統内への洩れを防止する作用も兼オコるため、高温作
動ガス圧とバランスするに必要な空気圧力を維持してい
る。上述した様に年々作動流体温度は上昇しておシ、又
、公害対策として排気ガス系統に脱硝装置が、さらに、
省エネ対策として排年回収ボイラが設置され、本排気フ
ード内の作動流体圧力も上昇している。従って本排気フ
レーム冷却空気系統に要求される空気流量ならびに圧力
も、増加しており、ガスタービン全体性能を最適化する
冷却空気系統を選択する必要がある。
It then flows through a strut compartment 21 surrounded by a plurality of struts 18 and airfoils 20 disposed radially within the exhaust frame 16 to surface cool the struts 18, and then to the exhaust frame 16 and the inner Exhaust frame lower compartment 23 surrounded by diffuser 22
A portion of the gas flows toward the downstream side of the turbine along the axial direction of the gas turbine, and a portion of it flows upstream into the rear wheel space of the third stage turbine. This cooling air not only cools the above-mentioned parts, but also prevents the high-temperature working gas flowing through the acta diffuser and inner diffuser from leaking into the cooling system, so it balances with the high-temperature working gas pressure. maintains the air pressure necessary for As mentioned above, the temperature of the working fluid is rising year by year, and denitrification devices are being installed in the exhaust gas system as a pollution control measure.
An annual recovery boiler has been installed as an energy-saving measure, and the working fluid pressure inside the main exhaust hood has also increased. Accordingly, the air flow rate and pressure required for the present exhaust frame cooling air system are also increasing, and it is necessary to select a cooling air system that optimizes the overall performance of the gas turbine.

以前においてはガスタービンのタービンシェル及び排気
フレームはガスタービン圧縮機の抽気で冷却されていた
が、排気圧損増加ならびに燃焼温度増加に伴ない、冷却
空気圧力及び流散増加が顕著となり、従米通り圧縮機抽
気を1吏用するとガスタービン性能に少なからず影#を
及ぼすようになった。即ち、圧縮機抽気でタービンシェ
ル及び排気フレームを冷却しようとすると、その抽気部
は圧縮機空′A破の約0.7%に達する。抽気量が増加
すると、タービン通過ガス量の低下を招き、ガスタービ
ンの出力低下が発生する。
In the past, the turbine shell and exhaust frame of gas turbines were cooled by the extracted air from the gas turbine compressor, but as the exhaust pressure drop and combustion temperature increased, the cooling air pressure and dissipation increased significantly. Using just one bleed air has started to have a considerable effect on the performance of the gas turbine. That is, when attempting to cool the turbine shell and exhaust frame with compressor bleed air, the bleed portion reaches approximately 0.7% of the compressor air failure. When the amount of extracted air increases, the amount of gas passing through the turbine decreases, resulting in a decrease in the output of the gas turbine.

こうした不具合を解消するンtめ、最近は、電動機で、
不動される#Aフ゛ロワを用いて刀スタービンの静止部
材を冷却する冷却空気系統が設けられる。
In order to solve these problems, recently electric motors have been
A cooling air system is provided that uses stationary #A followers to cool the stationary components of the sword turbine.

ブロワによる込風は圧縮機の油気に比して低温で冷却効
率が良い。第2図は従来の排執フレーム冷却空気系統を
示す。1は圧縮機、2はタービン、3は燃m器、4はタ
ービンシェル、5は排気フード、6は第1軸受、7は第
2軸受、8は逆止弁、9はブロワ、10は電動機、11
は吸気サイレンサである。ま/ζ、’ A E  sは
上記の圧縮機lの5段油気口、AE−11は同じく11
段抽気口である。前記の冷却用ブロワ9は2台設置され
、1台はランニングスペアである。従って、1台故障時
も安全に運転継続できる。大気よシ吸い込まれた冷却空
気は当該ブロワで必要圧力に加圧され、マニホルドを通
った後、タービンシェル内へ導入され、前述した通シ、
タービンシェル及び排、2(7レームを冷却する。上記
ブロワ9は電動機駆動の為、父流戒源を必要とするが、
ブラックスタート機能が必要な場合、ガスタービンは外
部交流電源の供給を受けずに起動する必要がある。とこ
ろがガスタービン発電設備においては、原動機であるガ
スタービンが起動した後の過渡的状態を過ぎて定格状態
になるまでの間、発電が正常に行われないので、ブロワ
9を駆動する電動機10の運転ができない。
The air generated by the blower is lower in temperature and has better cooling efficiency than the oil from the compressor. FIG. 2 shows a conventional exclusive frame cooling air system. 1 is a compressor, 2 is a turbine, 3 is a combustor, 4 is a turbine shell, 5 is an exhaust hood, 6 is a first bearing, 7 is a second bearing, 8 is a check valve, 9 is a blower, 10 is an electric motor , 11
is an intake silencer. M/ζ,' A E s is the 5th stage oil port of the above compressor l, and AE-11 is also the 11
It is a stage bleed port. Two cooling blowers 9 are installed, one of which is a running spare. Therefore, even if one unit fails, operation can be continued safely. Cooling air sucked in from the atmosphere is pressurized to the required pressure by the blower, passes through the manifold, and is introduced into the turbine shell, and is then
Cools the turbine shell and exhaust gas, 2 (7 rams).The blower 9 is driven by an electric motor, so it requires a father flow source.
If a black start function is required, the gas turbine must be started without external AC power supply. However, in gas turbine power generation equipment, power generation does not occur normally until the rated state is reached after the gas turbine, which is the prime mover, passes through a transient state after starting, so the operation of the electric motor 10 that drives the blower 9 is interrupted. I can't.

一方、排気フレームの冷却はガスタービンの起動と同時
に開始しなければならない。
On the other hand, cooling of the exhaust frame must begin at the same time as the gas turbine is started.

従来技術においてこの問題を解消して、定格運転状態に
謹する以前にブロワ9のg動電動機を運転しようとする
と、低周波低電圧供給装置などを設置する必要がある。
In the prior art, if this problem is solved and the g-dynamic motor of the blower 9 is operated before the rated operating state is reached, it is necessary to install a low frequency, low voltage supply device or the like.

又、試運転時等に、クランキング速度(20%速度)又
は、無負荷連続運転する場合など、従来技術では、電動
機吏用に制約が発生する。
Further, in the conventional technology, there are restrictions on the electric motor when cranking speed (20% speed) or continuous no-load operation is performed during trial operation.

〔ネ明の目的〕[Purpose of Nemei]

本発明は上述の$情に鑑みて為され、ブロワを駆動する
ための狩殊な電気機器類を設ける必要無く、ガスタービ
ンの起動操作における過渡的状態、並びにガスタービン
の停止操作にお・ける過渡的枦態で当該ガスタービンの
空気作動を行うことカニでき、しかも当該ガスタービン
発電設備の定常運転における出力や効率に悪影響を及ば
ず虞れの無いガスタービン排気フレーム冷却空気系統を
提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is capable of handling transient conditions during gas turbine startup operations and gas turbine shutdown operations without requiring special electrical equipment for driving the blower. To provide a gas turbine exhaust frame cooling air system capable of air-operating the gas turbine in a transient state and without causing any risk of adversely affecting the output or efficiency during steady operation of the gas turbine power generation equipment. With the goal.

〔発明の概要〕 上記の目的を達成するため、本発明は、外部電源喪失時
に起動し得る機能を備えたガスタービン発電設備におい
て、電動機1駆動のブロワを有する冷却空気系統に、ガ
スタービン用圧縮機の抽気部を空気源とする抽出空気ラ
インを接続すると共に、上記の抽出空気ライン中に空気
流量制御手段を設け、当該ガスタービンの起動操作時お
よび停止操作時に圧縮機油気を冷却空気系統に供給し得
べく、かつ、定常運転時に圧縮機抽気と冷却空気系統と
を遮断し得べくなしたることを特徴とする。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention provides a gas turbine compressor for a cooling air system having a blower driven by an electric motor 1 in a gas turbine power generation facility equipped with a function that can be activated when an external power source is lost. In addition to connecting an extracted air line that uses the air bleed section of the turbine as an air source, an air flow control means is installed in the extracted air line to control compressor oil and air to the cooling air system when starting and stopping the gas turbine. The compressor bleed air and the cooling air system can be shut off during steady operation.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例を43図について説明する。 Next, one embodiment of the present invention will be described with reference to FIG.

この実施例は、第2図に示した従来のガスタービンの排
気フレーム冷却空気系統に本発明を適用して改良したも
ので、第2図と同一の図面参照番号を附した圧m機1.
タービン2.燃焼器3.タービンシェル4.排気フード
5.41q’+H受6.第2軸受7.逆止弁8.プロワ
9,1JIJJ機10.及び吸気サイレンサ11は従来
装置にkけると同様乃至は類似の構成部材である。前述
の理由によりプロワ9を2基設置し、それぞれ逆止弁8
.電動機10.及び吸気サイレンサ11を備えている。
This embodiment is an improved version of the conventional gas turbine exhaust frame cooling air system shown in FIG. 2 by applying the present invention.
Turbine 2. Combustor 3. Turbine shell 4. Exhaust hood 5.41q'+H receiver 6. Second bearing7. Check valve8. Prowa 9,1JIJJ machine 10. The intake silencer 11 is the same or similar component to the conventional device. For the reasons mentioned above, two blowers 9 were installed, each with a check valve 8.
.. Electric motor 10. and an intake silencer 11.

上記2個の逆止弁8の流出口の合流点Bはタービンシェ
ル4に連辿する排気フレーム冷却管14に接続しである
A confluence point B of the outlet ports of the two check valves 8 is connected to an exhaust frame cooling pipe 14 that continues to the turbine shell 4.

当該ガスタービンの圧縮機1の抽気口AE−5と、前記
の合流点Bとの間を抽出空気ライン24で接続し、この
抽出空気ライン24 V(、シャットオフ弁12とオリ
フィス13とを設けて抽出空気ライン24日の生気流は
をnlJ婢し得るように1我する。
The extraction air line 24 connects the extraction port AE-5 of the compressor 1 of the gas turbine and the above-mentioned confluence B, and the extraction air line 24V (which is provided with a shutoff valve 12 and an orifice 13) The extraction air line is 24 days old so that the fresh air flow can be increased.

不発明全実施する場合、上記の空気流績を側脚する手段
ifま、上記夷惰例のごとくシャットオフ弁とオリフィ
スとの併用に限ら)Lるものではなく、適宜の空気機器
を任意に選定して用い得るが、抽出空気ライン24の締
切シが0T目ヒなように構成する。
If the invention is fully implemented, the means for controlling the air flow as described above is not limited to the combination of a shut-off valve and an orifice as in the above example, but any suitable air equipment may be used. Although it can be used selectively, the extraction air line 24 is configured so that the cut-off point is 0T.

以上のように構成した排気7ンーム[相]却臣気系af
c設けたガスタービン発醒設備に、j・・いては、ガス
タービンの始動後、定格運転に移行するまでの過渡的期
間においてはシャットオフ弁12を開き、圧縮機1の抽
気を抽気空気ライン24.排気フレーム冷却管14を介
してタービンシェル4に供給して空気冷却を行わせる。
Exhaust 7-meter [phase] air system af configured as above
In the gas turbine start-up equipment equipped with c..., the shutoff valve 12 is opened during the transition period after the gas turbine starts and before the transition to rated operation, and the bleed air of the compressor 1 is diverted to the bleed air line. 24. Air is supplied to the turbine shell 4 through an exhaust frame cooling pipe 14 for air cooling.

ガスタービンに発電負荷を掛けるまでの間の排気ガス温
度は、例えば約300Cというように比較的低温である
ため、圧縮機の抽気で充分に冷却し得る。
Since the temperature of the exhaust gas until the power generation load is applied to the gas turbine is relatively low, for example, about 300 C, it can be sufficiently cooled by the bleed air of the compressor.

ガスタービンが定格、:!に転に移行して発電機を、駆
動し、定格電圧、定格周波数の発電が開始されると、シ
ャットオフ弁12を全閉にする。これによシ圧縮機1の
抽気口AE−5は排気フレーム冷却管14と遮断される
ので、圧縮機1に別設の悪影響を及ぼす!4れが無くな
る。そして、ガスタービンによる発電が開始された後、
定常運転中は発電電力の1部によシ准動4−71)10
を運転してプロワ9を駆動し、空気冷却を行わせる。
Gas turbines are rated:! When the power generator is shifted to the next stage and the generator is driven, and power generation at the rated voltage and frequency is started, the shutoff valve 12 is fully closed. As a result, the air bleed port AE-5 of the compressor 1 is cut off from the exhaust frame cooling pipe 14, which has a separate adverse effect on the compressor 1! 4. After the gas turbine starts generating electricity,
During steady operation, a part of the generated power is used as a sub-activation 4-71) 10
is operated to drive the blower 9 and perform air cooling.

発電機の負荷を遮断してガスタービンの停止操作を行う
場合も、シャットオフ弁12を用いて圧縮機1の抽気に
よυ空気冷却を行う。
Even when the gas turbine is stopped by cutting off the load on the generator, the shutoff valve 12 is used to perform υ air cooling by extracting air from the compressor 1.

本実施例におけるプロワ駆動用電動機出力は45kWで
、発電機定格出力の約0.2%に相当する。
The blower drive electric motor output in this example is 45 kW, which corresponds to about 0.2% of the generator rated output.

一方、圧縮機1の抽気によってガスタービン定格運転時
の空気冷却を行う場合について試算すると、圧縮空気量
の0.7%を抽気する必要があシ、これによってガスタ
ービン出力が約500kWli下し、発電機定格出力の
約2%低下を招く。
On the other hand, when calculating the case where air is cooled during rated operation of the gas turbine by extracting air from the compressor 1, it is necessary to extract 0.7% of the compressed air amount, which reduces the gas turbine output by about 500kWli. This results in a decrease of approximately 2% in the generator's rated output.

従って、本発明の適用により、空気冷却のだめの損失が
500kWから45kWにI軽減され、冷却空気損が従
来装置に比して45 kW/ 500kW= 0.09
(9%)に軽減される。
Therefore, by applying the present invention, the loss of the air cooling tank is reduced from 500 kW to 45 kW, and the cooling air loss is 45 kW/500 kW = 0.09 compared to the conventional device.
(9%).

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明は、外部1源喪失時に起動
し得る機能を備えたガスタービン発電設備において、電
動機駆動のプロワを竹する冷却空気系統に、ガスタービ
ン用圧縮機の抽気部を空気源とする抽出2 ”Aライン
を接続すると共に、上記の抽出空気ライン中に空気流量
制御手段を設け、当該ガスタービンの起動操作時および
停止操作時に圧縮機抽気を冷却空気系統に供給し得べく
、かつ、定常運転時に圧縮機抽気と冷却空気系統とを遮
断し得べく為すことにより、当該ガスタービンに冷却空
気を供給するプロワを、駆動するだめの特殊な電気機器
類を設ける必要無く、ガスタービンの起動操作における
過渡的状態、並びにガスタービンの停止操作における過
渡的状態で当該ガスタービン静止部材の空気冷却を行う
ことができ、しかも当該ガスタービン発電設備の定常運
転における出力や効率に悪影響を及ぼす虞れが無いとい
う優れた実用的効果を奏し、ガスタービン発電設備の効
率向上および出力増加に貢献するところ多大である。
As described in detail above, the present invention provides a gas turbine power generation facility that includes a bleed section of a gas turbine compressor in a cooling air system that connects an electric motor-driven blower in a gas turbine power generation facility that is equipped with a function that can be activated when one external source is lost. Extraction 2 as an air source In addition to connecting the A line, an air flow rate control means can be provided in the above extraction air line to supply compressor bleed air to the cooling air system during startup and shutdown operations of the gas turbine. By making it possible to cut off the compressor bleed air and the cooling air system during steady operation, there is no need to install special electrical equipment to drive the blower that supplies cooling air to the gas turbine. Air cooling of the gas turbine stationary components can be performed in a transient state during a gas turbine startup operation and a transient state during a gas turbine shutdown operation, and it does not have an adverse effect on the output or efficiency during steady operation of the gas turbine power generation equipment. It has an excellent practical effect in that there is no risk of causing damage, and it greatly contributes to improving the efficiency and increasing the output of gas turbine power generation equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガスタービンの空気冷却経路を示すだめの縦断
面図、第2図は従来の排気フレーム冷却空気系統を付記
したカスタービンの縦断面図、第3図は本発明の排ズ(
フレーム冷却空気系統の1実施例を・浦えたガスタービ
ンの縦断面図である。 1・・・圧縮d、’2・・・タービン、4・・・タービ
ンシェル、5・・・排気フード、8・・・逆止弁、9・
・・プロワ、10・・・嵯動14.11・・・吸気サイ
レンサ、12・・・シャットオフ弁、13・・・オリフ
ィス、14・・・排気フレーム冷却管、15・・・ター
ビンシェル冷却孔、16・・・排気フレーム、24・・
・抽出空気ライン。 代壊Δ−弁理士 −秋塞玉区
Fig. 1 is a vertical cross-sectional view of a gas turbine showing the air cooling path, Fig. 2 is a longitudinal cross-sectional view of a gas turbine with a conventional exhaust frame cooling air system added, and Fig. 3 is a longitudinal cross-sectional view of the gas turbine according to the present invention.
1 is a longitudinal cross-sectional view of a gas turbine showing one embodiment of a frame cooling air system. 1... Compression d, '2... Turbine, 4... Turbine shell, 5... Exhaust hood, 8... Check valve, 9...
...Prower, 10...Driving 14.11...Intake silencer, 12...Shutoff valve, 13...Orifice, 14...Exhaust frame cooling pipe, 15...Turbine shell cooling hole , 16...exhaust frame, 24...
-Extraction air line. Substitute Δ - Patent Attorney - Qiu Seiyu District

Claims (1)

【特許請求の範囲】[Claims] 1、外部’it源喪失時に起動し得る機能を備えたガス
タービン発電設備において、電動機駆動のブロワ分有す
る冷却空気系統に、ガスタービン用圧縮機の抽気部を空
気源とする抽出空気ラインを接続すると共に、上記の抽
出空気ライン中に空気流量制御手段を設け、当該ガスタ
ービンの起動操作時および停止操作時に圧縮機抽気を冷
却空気系統に供給し得べく、かつ、定常運転時に圧縮機
油気と冷却空気系統とを遮断し得べくなしたることを特
徴とするガスタービン排気フレーム冷却空気系統。
1. In gas turbine power generation equipment equipped with a function that can be activated when an external power source is lost, an extraction air line whose air source is the extraction part of the gas turbine compressor is connected to the cooling air system that includes a motor-driven blower. At the same time, an air flow rate control means is provided in the above-mentioned extraction air line to supply compressor bleed air to the cooling air system during startup and shutdown operations of the gas turbine, and to supply compressor oil and gas during steady operation. A gas turbine exhaust frame cooling air system characterized in that the cooling air system is isolated from the cooling air system as much as possible.
JP4600083A 1983-03-22 1983-03-22 Gas turbine exhaust frame cooling air system Granted JPS59173527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4600083A JPS59173527A (en) 1983-03-22 1983-03-22 Gas turbine exhaust frame cooling air system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4600083A JPS59173527A (en) 1983-03-22 1983-03-22 Gas turbine exhaust frame cooling air system

Publications (2)

Publication Number Publication Date
JPS59173527A true JPS59173527A (en) 1984-10-01
JPH0114408B2 JPH0114408B2 (en) 1989-03-10

Family

ID=12734813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4600083A Granted JPS59173527A (en) 1983-03-22 1983-03-22 Gas turbine exhaust frame cooling air system

Country Status (1)

Country Link
JP (1) JPS59173527A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303971A (en) * 2000-04-19 2001-10-31 General Electric Co <Ge> Device for supplying coolant to combustion turbine and method relative thereto
JP2002054458A (en) * 2000-08-08 2002-02-20 General Electric Co <Ge> Control of tongue and groove joint load and air/oil seal temperature of turbine
JP2007138930A (en) * 2005-11-15 2007-06-07 General Electric Co <Ge> Integrated turbine sealing air and active clearance control system and method
EP1914392A2 (en) * 2006-10-12 2008-04-23 General Electric Company Turbine case impingement cooling for heavy duty gas turbines
US7373773B2 (en) 2003-09-04 2008-05-20 Hitachi, Ltd. Gas turbine installation, cooling air supplying method and method of modifying a gas turbine installation
JP2008115757A (en) * 2006-11-02 2008-05-22 Ebara Yoshikura Hydro-Tech Co Ltd Exhaust equipment of gas-turbine
JP2008180220A (en) * 2007-01-24 2008-08-07 General Electric Co <Ge> Predictive model type control system for high horsepower gas turbine
CN101978138A (en) * 2008-03-28 2011-02-16 三菱重工业株式会社 Gas turbine
US7918008B2 (en) 2004-10-29 2011-04-05 Yamazaki Mazak Corporation Method of manufacturing column and bed of machine tool
EP2330274A1 (en) * 2009-12-03 2011-06-08 Siemens Aktiengesellschaft Turbine and method for operating the same
EP2336524A3 (en) * 2009-12-15 2011-10-05 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine engine with cooling arrangement
JP2012067767A (en) * 2008-06-30 2012-04-05 Mitsubishi Heavy Ind Ltd Gas turbine and operating method thereof
JP2012072708A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Gas turbine and method for cooling gas turbine
JP2013083250A (en) * 2011-09-29 2013-05-09 Hitachi Ltd Gas turbine
EP2194237A3 (en) * 2008-12-03 2015-05-27 General Electric Company A cooling system for a turbomachine
JP2017048725A (en) * 2015-09-02 2017-03-09 三菱日立パワーシステムズ株式会社 Gas turbine and operation method for gas turbine
JP2017129107A (en) * 2016-01-22 2017-07-27 三菱日立パワーシステムズ株式会社 Exhaust frame
JP2017522484A (en) * 2014-06-10 2017-08-10 シーメンス エナジー インコーポレイテッド Gas turbine engine with a rotor centering cooling system in the exhaust diffuser
EP3904643A1 (en) * 2020-04-08 2021-11-03 General Electric Company System for cooling turbine shaft coupling
CN114810236A (en) * 2022-06-30 2022-07-29 成都中科翼能科技有限公司 Exhaust casing structure of gas turbine core machine
US12025023B2 (en) 2022-10-18 2024-07-02 Ge Infrastructure Technology Llc System for cooling turbine shaft coupling

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303971A (en) * 2000-04-19 2001-10-31 General Electric Co <Ge> Device for supplying coolant to combustion turbine and method relative thereto
JP2002054458A (en) * 2000-08-08 2002-02-20 General Electric Co <Ge> Control of tongue and groove joint load and air/oil seal temperature of turbine
EP1512844A3 (en) * 2003-09-04 2012-03-28 Hitachi, Ltd. Gas turbine installation, cooling air supplying method and method of modifying a gas turbine installation
US7373773B2 (en) 2003-09-04 2008-05-20 Hitachi, Ltd. Gas turbine installation, cooling air supplying method and method of modifying a gas turbine installation
US7918008B2 (en) 2004-10-29 2011-04-05 Yamazaki Mazak Corporation Method of manufacturing column and bed of machine tool
JP2007138930A (en) * 2005-11-15 2007-06-07 General Electric Co <Ge> Integrated turbine sealing air and active clearance control system and method
EP1914392A2 (en) * 2006-10-12 2008-04-23 General Electric Company Turbine case impingement cooling for heavy duty gas turbines
US8801370B2 (en) 2006-10-12 2014-08-12 General Electric Company Turbine case impingement cooling for heavy duty gas turbines
JP2008095687A (en) * 2006-10-12 2008-04-24 General Electric Co <Ge> Turbine case impingement cooling for heavy duty gas turbine
EP1914392A3 (en) * 2006-10-12 2013-01-02 General Electric Company Turbine case impingement cooling for heavy duty gas turbines
JP2008115757A (en) * 2006-11-02 2008-05-22 Ebara Yoshikura Hydro-Tech Co Ltd Exhaust equipment of gas-turbine
JP2008180220A (en) * 2007-01-24 2008-08-07 General Electric Co <Ge> Predictive model type control system for high horsepower gas turbine
CN101978138A (en) * 2008-03-28 2011-02-16 三菱重工业株式会社 Gas turbine
US8616835B2 (en) 2008-03-28 2013-12-31 Mitsubishi Heavy Industries, Ltd. Gas turbine
JP2012067765A (en) * 2008-06-30 2012-04-05 Mitsubishi Heavy Ind Ltd Gas turbine
JP2012067766A (en) * 2008-06-30 2012-04-05 Mitsubishi Heavy Ind Ltd Gas turbine
JP2012067767A (en) * 2008-06-30 2012-04-05 Mitsubishi Heavy Ind Ltd Gas turbine and operating method thereof
EP2309109A4 (en) * 2008-06-30 2015-05-20 Mitsubishi Heavy Ind Ltd Gas turbine and method of operating gas turbine
EP2194237A3 (en) * 2008-12-03 2015-05-27 General Electric Company A cooling system for a turbomachine
EP2330274A1 (en) * 2009-12-03 2011-06-08 Siemens Aktiengesellschaft Turbine and method for operating the same
EP2336524A3 (en) * 2009-12-15 2011-10-05 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine engine with cooling arrangement
US8893509B2 (en) 2009-12-15 2014-11-25 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine engine with cooling arrangement
JP2012072708A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Gas turbine and method for cooling gas turbine
JP2013083250A (en) * 2011-09-29 2013-05-09 Hitachi Ltd Gas turbine
JP2017522484A (en) * 2014-06-10 2017-08-10 シーメンス エナジー インコーポレイテッド Gas turbine engine with a rotor centering cooling system in the exhaust diffuser
JP2017048725A (en) * 2015-09-02 2017-03-09 三菱日立パワーシステムズ株式会社 Gas turbine and operation method for gas turbine
WO2017038371A1 (en) * 2015-09-02 2017-03-09 三菱日立パワーシステムズ株式会社 Gas turbine and method of operating gas turbine
KR20180022914A (en) * 2015-09-02 2018-03-06 미츠비시 히타치 파워 시스템즈 가부시키가이샤 How gas turbines and gas turbines operate
CN107849942A (en) * 2015-09-02 2018-03-27 三菱日立电力系统株式会社 The method of operation of gas turbine and gas turbine
CN107849942B (en) * 2015-09-02 2019-11-01 三菱日立电力系统株式会社 The method of operation of gas turbine and gas turbine
US11085324B2 (en) 2015-09-02 2021-08-10 Mitsubishi Power, Ltd. Gas turbine and gas turbine operating method
JP2017129107A (en) * 2016-01-22 2017-07-27 三菱日立パワーシステムズ株式会社 Exhaust frame
EP3904643A1 (en) * 2020-04-08 2021-11-03 General Electric Company System for cooling turbine shaft coupling
US11578621B2 (en) 2020-04-08 2023-02-14 General Electric Company System for cooling turbine shaft coupling
CN114810236A (en) * 2022-06-30 2022-07-29 成都中科翼能科技有限公司 Exhaust casing structure of gas turbine core machine
US12025023B2 (en) 2022-10-18 2024-07-02 Ge Infrastructure Technology Llc System for cooling turbine shaft coupling

Also Published As

Publication number Publication date
JPH0114408B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
JPS59173527A (en) Gas turbine exhaust frame cooling air system
JP4897993B2 (en) Turbine sidewall cavity pressure modulation system and method
US4459802A (en) Bleedoff of gas diffusers in fluid flow machines
US11067007B2 (en) Gas turbine and method for operating gas turbine
US3696612A (en) Fuel pump system for gas turbines
US20180128176A1 (en) Intercooled cooled cooling integrated air cycle machine
US20090196736A1 (en) Apparatus and related methods for turbine cooling
CN107567533A (en) Reequip the apparatus and method of combined cycle generation equipment
JP2016176476A (en) Power generation system having compressor creating excess air flow and turbo-expander for supplemental generator
CN100543276C (en) The method of brake turbine engine rotor and a kind of whirligig that is used to drive the turbogenerator rotor
JPH07189740A (en) Gas turbine cooling system
US6568203B1 (en) Aircraft ground support air conditioning unit with cooling turbine bypass
JPS6339774B2 (en)
US10858996B2 (en) Gas turbine startup method and device
US11078838B2 (en) Gas turbine engine compressor control method
JP4163131B2 (en) Two-shaft gas turbine power generation system and its stopping method
JP3177767B2 (en) Starting / Stopping Combined Power Plant
JPH0941905A (en) Gland steam control equipment
JP4104992B2 (en) Gas turbine power generation system
JP3165619B2 (en) Thermal stress reduction operation method of steam turbine in single shaft combined cycle
JP2000104698A (en) Compressor
CN114704383B (en) Gas turbine multi-mode secondary air system with external compressor
JP3019678B2 (en) Bleed mixed pressure steam turbine
JPH02153232A (en) Heating device for gas turbine casing
JP4473464B2 (en) Operation method of combined cycle power plant