JPH1018769A - Propulsion construction method - Google Patents

Propulsion construction method

Info

Publication number
JPH1018769A
JPH1018769A JP8173190A JP17319096A JPH1018769A JP H1018769 A JPH1018769 A JP H1018769A JP 8173190 A JP8173190 A JP 8173190A JP 17319096 A JP17319096 A JP 17319096A JP H1018769 A JPH1018769 A JP H1018769A
Authority
JP
Japan
Prior art keywords
propulsion
point
conductor
pressure receiving
guide body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8173190A
Other languages
Japanese (ja)
Inventor
Teruo Kabeuchi
輝夫 壁内
Masaya Hattori
正也 服部
Takashi Sogawa
孝志 十川
Yukishige Yamada
幸重 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8173190A priority Critical patent/JPH1018769A/en
Priority to US08/886,220 priority patent/US5878825A/en
Priority to DE69725053T priority patent/DE69725053T2/en
Priority to EP97111234A priority patent/EP0816627B1/en
Publication of JPH1018769A publication Critical patent/JPH1018769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate target excavating position confirmation to the ground surface by making the steering characteristic of a guide body learned by the learning from the measured result of dislocation at the time of propulsion- excavating laterally in the specified attitude state of an excavating inclined pressure receiving face of a guide body. SOLUTION: In a crossing process, excavation is performed with an inclined pressure receiving face 65 of a guide body 6 turned downward for horizontal propulsion from a spot A1 to a spot A2, and then a second propulsion pipe 4 is gripped to turn the inclined pressure receiving face 65 upward for excavation and propulsion. The learning of a vertical steering characteristic of the guide body 6 is judged from the measured result of a dislocation degree at the time of excavating by the fixed distance. A surfacing path C can thereby be predicted on the basis of the learning result so as to be able to calculate the position of the spot A2 more appropriately, In a surfacing process, the guide body 6 can accurately come out to the spot A3 if the surfacing path C described by a dotted line can be predicted by accurately grasping soil quality.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス管等を地中に
引き込んで埋設するため等の目的で、地中に推進管を推
進させる推進工法に関し、より具体的には、一軸芯回り
で互いに揺動可能に連設された複数の推進管と、前記複
数の推進管の先頭部に設けられた、上向き姿勢と下向き
姿勢の間で切り換え操作可能な傾斜受圧面を持った先導
体とを備えた推進体を用い、前記先導体を、地中の第1
地点から地表面に沿って離間した第2地点まで進ませる
横断工程と、第2地点から地表面の予め設定された第3
地点に向かう浮上工程とを備えた推進工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propulsion method in which a propulsion pipe is propelled underground for the purpose of drawing a gas pipe or the like into the ground and burying the same. A plurality of propulsion pipes connected to each other so as to be swingable with each other, and a leading conductor having an inclined pressure receiving surface which is provided at the leading end of the plurality of propulsion pipes and can be switched between an upward position and a downward position. Using a propelling body equipped with
A traversing step of proceeding from the point to a second point separated along the ground surface, and a third presetting of the ground surface from the second point
The present invention relates to a propulsion method including a levitation step toward a point.

【0002】[0002]

【従来の技術】従来例に見られるこの種の推進工法にお
いては、横断工程から浮上工程に移る第2地点の位置を
決定するに当たっては、推進工法を適用しようとする区
域の地表面下の土質を、その上方の地表面の状態や周辺
の地形といった、外観から得られる情報のみから言わば
漠然と想定し、この想定された土質を基準にした先導体
の上下ステアリング特性を推理して、この推理した上下
ステアリング特性に基づいて先導体の浮上工程における
推進経路を予測して前記第2地点の位置を決定してい
た。
2. Description of the Related Art In this type of propulsion method, which is found in the prior art, when determining the position of a second point where the crossing process is shifted to the levitation process, the soil under the ground surface in the area to which the propulsion method is applied is determined. Assuming vaguely from only the information obtained from the external appearance, such as the state of the ground surface above it and the surrounding terrain, this was inferred by inferring the vertical steering characteristics of the leading conductor based on this assumed soil quality. The position of the second point has been determined by predicting a propulsion path in the floating process of the leading conductor based on the vertical steering characteristics.

【0003】[0003]

【発明が解決しようとする課題】したがって、上述した
従来例における推進工法では、土地や地表面の外観から
得られる漠然とした情報のみに頼って土質、及び先導体
の上下ステアリング特性を推理していたので、実際の地
表面下の土質が土地や地表面の外観から想定される典型
的な土質とは食い違っている場合等には、先導体の浮上
工程における推進経路の予測も不正確になって、結果と
して、第2地点の位置の判断を誤り、先導体が目標の第
3地点から大きく外れた位置で表出する場合がしばしば
見られ、改善の余地があった。本発明の目的は、上に例
示した従来技術に見られる上記欠点に鑑み、先導体がよ
り正確に目標地点付近で表出する推進工法を提供するこ
とにある。
Therefore, in the above-described propulsion method in the conventional example, the soil properties and the vertical steering characteristics of the leading conductor are deduced only by vague information obtained from the appearance of the land and the ground surface. Therefore, when the actual soil quality under the ground surface is different from the typical soil texture assumed from the land and the appearance of the ground surface, the prediction of the propulsion route in the levitation process of the leading conductor becomes inaccurate. As a result, the position of the second point is erroneously determined, and the leading conductor often appears at a position greatly deviating from the target third point, leaving room for improvement. SUMMARY OF THE INVENTION It is an object of the present invention to provide a propulsion method in which a tip conductor is more accurately exposed near a target point in view of the above-mentioned drawbacks found in the prior art exemplified above.

【0004】[0004]

【課題を解決するための手段】前記横断工程の間で、土
質に対する前記先導体の上下ステアリング特性を、前記
傾斜受圧面を一定姿勢にした状態で推進させた時の前記
先導体の位置のずれ度の計測結果から学習し、前記学習
結果に基づいて前記浮上工程における推進経路を予測し
て前記第2地点の位置を決定する推進工法。
During the traversing step, the vertical steering characteristics of the front conductor with respect to the soil are adjusted by shifting the position of the front conductor when the inclined pressure receiving surface is propelled in a fixed posture. A propulsion method that learns from a degree measurement result, predicts a propulsion path in the ascent process based on the learning result, and determines the position of the second point.

【0005】〔発明の効果〕上記の特徴構成のために、
本発明に係る推進工法では、土質に対する前記先導体の
上下ステアリング特性を、(土地や地表面の外観から得
られる漠然とした情報のみに頼るのではなく)「先導体
の傾斜受圧面を一定姿勢にした状態で推進させた時の先
導体の位置のずれ度」という具体的な値の計測結果から
学習し、その学習結果に基づいて土質と、その土質に対
応した先導体の上下ステアリング特性とを予測すること
が出来るので、実際の地表面下の土質が土地や地表面の
外観から想定される典型的な土質と食い違うことが少な
く、先導体の浮上工程における推進経路の予測もより正
確になって、結果として、第2地点の位置の判断がより
正しくなって、先導体がより正確に目標地点(第3地
点)付近で表出するという特有の効果が生じる。
[Effects of the Invention] Due to the above-mentioned features,
In the propulsion method according to the present invention, the vertical steering characteristics of the leading conductor with respect to the soil properties are determined (instead of relying only on vague information obtained from the appearance of the land and the ground surface) by setting the inclined pressure receiving surface of the leading conductor to a constant posture. From the measurement result of the specific value of `` the degree of displacement of the position of the tip conductor when propelled in this state, '' and based on the learning result, the soil properties and the vertical steering characteristics of the tip conductor corresponding to the soil property are determined. Prediction is possible, so that the actual soil quality under the ground surface does not differ from the typical soil texture assumed from the land and the appearance of the ground surface, and the prediction of the propulsion route in the levitation process of the leading conductor is more accurate As a result, the determination of the position of the second point is more accurate, and a specific effect is produced in that the leading conductor is more accurately displayed near the target point (the third point).

【0006】[0006]

【発明の実施の形態】図1に、本発明に係る推進工法を
実施可能な設備の一例を、同推進工法を適用しようとす
る地形の断面の例と共に、概略的に示す。図1で、推進
装置Bは、複数の推進管4,...、複数の推進管
4,...の先頭に設けられた先導体6からなる推進体
1と、推進機8と、推進管巻き取り機構10とを備えて
おり、複数の推進管4,...同士、及び複数の推進管
4,...の先頭部分と先導体6との間の連結方法は、
互いに隣接する部材同士が、例えば水平軸芯と垂直軸芯
など、互いに直角に交わる2本の軸芯回りで揺動可能な
自由度の高い方法にするのではなく、本発明の性質上、
自由度を故意に減らして部材同士の揺動軸芯を1本に制
限した状態で実施する、或いはそのように制限された構
造の推進装置を用いる方が後述する「ステアリング特性
の学習」をより正確に行うことが出来て本発明の長所を
より効果的に引き出すことができる。そして、ここでは
発明の理解を容易にするために、明細書の全体を通し
て、複数の推進管4,...同士、及び複数の推進管
4,...の先頭部分と先導体6との間は、いずれも横
向きの、言い換えれば地表に対して平行な軸芯回りでの
み揺動するように連結された状態での工法を前提に説明
する。推進機8は、地表から掘削形成された作業用ピッ
ト100内の底面に設置されており、先導体6や推進管
4を把持しては油圧で押し出すことによって、作業用ピ
ット100内の垂直壁面の下方に位置する地点A1(地
中の第1地点の一例)から横向きに、先導体6、そして
複数の推進管4,..の順で推進体1を地中に推進させ
ることが出来る。この推進作業の際、先導体6の推進方
向は、先導体6の先端に先導体6の長手方向に沿った軸
芯に対して傾斜して設けられた傾斜受圧面65の向きに
よって制御可能となっている。すなわち、先導体6は、
先頭に在る推進管4に対して一軸芯回りで揺動可能に連
結された本体60と、傾斜受圧面65を一体形成された
回動部62とを備えており、遠隔操作で回動部62を本
体60に対して本体60の長手方向に沿った軸芯回りで
回転操作可能となっている。そして、傾斜受圧面65が
上向き姿勢の状態で後方から押し出されると先導体6は
下向きに推進し、下向き姿勢に切り換えれば上向きに推
進し始める。また、各複数の推進管4,...同士も、
横向きの軸芯回りで互いに揺動可能に連設されている。
図1は、推進体1をピット100内の地点A1から推進
させ、地表の地点A3に先導体6の先端を表出させよう
とする作業工程の途中経過を示しており、ここでは最も
一般的な手法に従って、前記作業工程を、先導体6を地
中の地点A1から出発させて、地点A1から地表面に沿
って離間した地点A2(第2地点の一例)まで推進させ
る横断工程と、次に、地点A2から地表面の予め設定さ
れた地点A3(第3地点の一例)に向かう浮上工程とで
構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an example of equipment capable of implementing a propulsion method according to the present invention, together with an example of a cross section of a terrain to which the propulsion method is applied. In FIG. 1, the propulsion device B includes a plurality of propulsion tubes 4,. . . , A plurality of propulsion tubes 4,. . . , A propulsion body 1 comprising a leading conductor 6 provided at the head of the propulsion unit, a propulsion device 8, and a propulsion tube winding mechanism 10. . . Each other and a plurality of propulsion tubes 4,. . . The connection method between the leading portion of the wire and the tip conductor 6 is as follows.
The members adjacent to each other, for example, a horizontal axis and a vertical axis, such as two axes that intersect at right angles to each other, rather than using a method with a high degree of freedom that can swing around, on the nature of the present invention,
It is better to use the propulsion device with the structure in which the degree of freedom is intentionally reduced and the members are limited to one rocking axis, or to use the propulsion device with such a limited structure. It can be performed accurately, and the advantages of the present invention can be brought out more effectively. Here, in order to facilitate understanding of the invention, a plurality of propulsion tubes 4,. . . Each other and a plurality of propulsion tubes 4,. . . The description will be made on the premise that a construction method is adopted in which the head portion and the leading conductor 6 are connected in such a manner as to swing only around an axis parallel to the ground surface, in other words, only parallel to the ground surface. The propulsion device 8 is installed on the bottom surface of the working pit 100 excavated and formed from the surface of the ground, and grips the tip conductor 6 and the propulsion pipe 4 and extrudes it with hydraulic pressure. From the point A1 (an example of the first point in the ground) located laterally below the front conductor 6, and the plurality of propulsion tubes 4,. . , The propulsion body 1 can be propelled underground. In this propulsion operation, the propulsion direction of the leading conductor 6 can be controlled by the direction of the inclined pressure receiving surface 65 provided at the tip of the leading conductor 6 so as to be inclined with respect to the axis along the longitudinal direction of the leading conductor 6. Has become. That is, the leading conductor 6 is
A main body 60 is connected to the propulsion pipe 4 at the head so as to be swingable about a single axis, and a turning part 62 integrally formed with an inclined pressure receiving surface 65 is provided. 62 can be rotated with respect to the main body 60 around an axis along the longitudinal direction of the main body 60. Then, when the inclined pressure receiving surface 65 is pushed out from the rear in a state of the upward posture, the leading conductor 6 is propelled downward, and when switched to the downward posture, starts to protrude upward. Each of the plurality of propulsion tubes 4,. . . Each other,
They are connected to each other so as to be able to swing around a horizontal axis.
FIG. 1 shows the progress of a work process in which the propelling body 1 is propelled from a point A1 in the pit 100 and the tip of the conductor 6 is exposed at a point A3 on the ground surface. In accordance with a simple method, the traversing step of starting the leading conductor 6 from the point A1 in the ground to the point A2 (an example of the second point) separated from the point A1 along the ground surface according to the following steps: And a levitation step from the point A2 to a preset point A3 (an example of a third point) on the ground surface.

【0007】(横断工程)横断工程では、地点A1から
地点A2まで水平に一直線に推進すれば良いので、推進
機8で先ず先頭の推進管4を把持して地中に推進させる
時には、既に推進させた先導体6の傾斜受圧面65を下
向きにした状態で推進させ、次に2番目の推進管4を把
持して推進させる時には、傾斜受圧面65を上向きにし
た状態で推進させると言う具合に、所定の単位推進距離
毎に傾斜受圧面65の向きを上下間で切り換えれば、結
果的に、先導体6を全体として水平に推進させることが
出来る。
(Crossing Step) In the crossing step, the propulsion unit 8 only needs to propel the leading propulsion pipe 4 first and hold it in the ground, since the propulsion unit 8 only needs to propel it horizontally and straight from the point A1 to the point A2. When the propulsion is performed with the inclined pressure receiving surface 65 of the tip conductor 6 turned downward, and then the second propulsion pipe 4 is gripped and propelled, the propulsion is performed with the inclined pressure receiving surface 65 upward. Furthermore, if the direction of the inclined pressure receiving surface 65 is switched up and down for each predetermined unit propulsion distance, the tip conductor 6 can be propelled horizontally as a whole as a result.

【0008】(浮上工程)ここでは、浮上工程として、
傾斜受圧面65を下向きにした状態で推進させることに
よって、先導体6を一気に地表に表出させる方法を採用
する。ところで、上記方法で浮上工程を実施する場合
に、先導体6を出来るだけ正確に、目標とする地点A3
に近い地点で表出させることが、その後の作業を容易に
するために非常に重要になる。そして、地中の或る地
点、例えばA2で浮上工程を開始した場合に、そこから
水平に如何ほど離れた地点で先導体6が地表に表出する
かは、原則的に、浮上工程を開始した地点の深さと、そ
の付近の地域の土質によって決まると考えることができ
る。今、浮上工程の開始地点の深さは実際の作業に応じ
て既知と考えることが出来るので、結局のところ、土質
を出来るだけ正確に把握することによって、点線が描く
浮上経路Cを予測することが出来れば、先導体6を出来
るだけ正確に地点A3に表出させることが可能となる。
言い換えれば、図1の地点A2から地点A3に到る先導
体6の浮上経路Cが実際にはどのような曲線になるか、
すなわち、先導体6の推進経路は、原則的に、そこの土
質に対して先導体6がどのようなステアリング特性を示
すかで決まる訳である。
(Floating Step) Here, as the floating step,
A method is adopted in which the tip conductor 6 is exposed to the ground surface at a stretch by propelling the inclined pressure receiving surface 65 in a downward state. By the way, when the levitation step is performed by the above-described method, the leading conductor 6 is positioned as accurately as possible at the target point A 3
Being exposed at a point close to is very important to facilitate subsequent work. Then, when the levitation process is started at a certain point in the ground, for example, A2, how far the tip conductor 6 appears on the ground horizontally from that point is basically determined by starting the levitation process. It can be considered that it is determined by the depth of the spot and the soil quality of the nearby area. Now, since the depth of the starting point of the ascent process can be considered to be known according to the actual work, after all, it is necessary to predict the ascent route C drawn by the dotted line by grasping the soil as accurately as possible. If it is possible, it becomes possible to make the leading conductor 6 appear at the point A3 as accurately as possible.
In other words, what kind of curve is actually the floating path C of the leading conductor 6 from the point A2 to the point A3 in FIG.
That is, the propulsion route of the leading conductor 6 is basically determined by what steering characteristics the leading conductor 6 exhibits with respect to the soil there.

【0009】(ステアリング特性の学習)本実施形態で
は、浮上工程に先行して行われる横断工程の間で、土質
に対する先導体6の実際の上下ステアリング特性を学習
し、この学習結果を具体的な根拠として、浮上工程で実
際に遭遇する土質に対する先導体6のステアリング特性
(ここで特に必要となるのは先導体6を上方に推進させ
ようとする際のステアリング特性であるが)を予測する
という手法をとる。すなわち、一般的に言って、浮上工
程で遭遇する土質と横断工程で遭遇する土質とは当然に
近似していると考えることができるからである。横断工
程において実際に見られる先導体6の上下ステアリング
特性の学習は、傾斜受圧面65を一定姿勢(例えば、先
導体6を上方に推進させることのできる下向き姿勢)に
した状態で一定距離だけ推進させた時の先導体6の位置
のずれ度の計測結果から行うことができる。そして、前
記学習結果に基づいて浮上経路Cを予測することがで
き、結果的に、より適した地点A2の位置割り出しが可
能となる。ここで、先導体6の位置のずれ度の計測の方
法としては、例えば次のような形態が可能である。すな
わち、図2に示すように、先導体6の内部に、先導体6
の軸芯Xの水平面に対する上下方向の姿勢角θを検知可
能な姿勢角検知手段68を、傾斜受圧面65の(上向き
なのか、下向きなのかの)向きを検知可能な傾斜方向検
知手段66と共に設けておいて、傾斜受圧面65を例え
ば下向きに保持したまま、図2の左方に二点鎖線で示さ
れた水平状態の先導体6を推進機8によって所定量aだ
け、押し出した時、図2の中央に実線で示されたような
傾斜姿勢になったと仮定すると、前記押し出し後の先導
体6の上下方向の姿勢角θと前記所定量aとから三角法
によって先導体6の先端部の上昇距離bを算出すること
ができ、得られた二つの値a,bを先導体6の位置のず
れ度として扱うことで、先導体6の前記上下ステアリン
グ特性の学習が遂行できる。
(Learning of Steering Characteristics) In the present embodiment, the actual vertical steering characteristics of the leading conductor 6 with respect to the soil are learned during the traversing process performed prior to the levitation process, and the learning result is concretely described. The basis is to predict the steering characteristics of the leading conductor 6 with respect to the soil actually encountered in the ascent process (although the steering characteristics when trying to propel the leading conductor 6 upward are particularly required). Take the technique. That is, generally speaking, it can be considered that the soil encountered in the ascent process and the soil encountered in the crossing process are naturally similar. The learning of the vertical steering characteristics of the leading conductor 6 actually observed in the traversing process is performed by pushing the inclined pressure receiving surface 65 in a fixed posture (for example, a downward posture in which the leading conductor 6 can be pushed upward) for a fixed distance. The measurement can be performed based on the measurement result of the degree of displacement of the position of the leading conductor 6 when this is performed. Then, the ascending route C can be predicted based on the learning result, and as a result, the position of the point A2 can be determined more appropriately. Here, as a method of measuring the degree of displacement of the position of the leading conductor 6, for example, the following form is possible. That is, as shown in FIG.
The attitude angle detecting means 68 capable of detecting the vertical attitude angle θ of the axis X of the axis with respect to the horizontal plane is provided together with the inclination direction detecting means 66 capable of detecting the direction of the inclined pressure receiving surface 65 (upward or downward). When the propulsion unit 8 pushes out the horizontal leading conductor 6 shown by a two-dot chain line to the left in FIG. 2 by a predetermined amount a while holding the inclined pressure receiving surface 65 downward, for example, Assuming that the inclined posture is as shown by the solid line in the center of FIG. 2, the tip end of the front conductor 6 is triangularly determined from the vertical posture angle θ of the extruded front conductor 6 and the predetermined amount a. Can be calculated, and the two values a and b obtained are treated as the degree of deviation of the position of the leading conductor 6, whereby the learning of the vertical steering characteristics of the leading conductor 6 can be performed.

【0010】〔別実施形態〕本発明に係る推進工法に用
いる推進体1としては、先導体6の推進時の地中におけ
る挙動をより単純にすることによって、横断工程におけ
る先導体6のステアリング特性の把握をより容易にする
目的で、先導体6や複数の推進管4,...同士が横向
きの軸芯のみで揺動可能に設定されているものが適して
いるが、縦横両軸芯回りで揺動可能な構造の推進体を用
いた推進工法にも、同じ考え方を適用可能である。
[Alternative Embodiment] As the propulsion body 1 used in the propulsion method according to the present invention, the behavior of the front conductor 6 in the ground at the time of propulsion is made simpler, so that the steering characteristic of the front conductor 6 in the crossing process is improved. In order to make it easier to ascertain the position, the leading conductor 6 and the plurality of propulsion tubes 4,. . . It is suitable to use the one that is set to be able to swing only with the horizontal shaft center, but the same concept can be applied to the propulsion method using a propulsion structure that can swing around both the vertical and horizontal axes. It is.

【0011】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
[0011] In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the attached drawings by the entry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る推進工法を示す概念図FIG. 1 is a conceptual diagram showing a propulsion method according to the present invention.

【図2】先導体の位置のずれ度の計測方法を示す概念図FIG. 2 is a conceptual diagram showing a method of measuring the degree of displacement of the position of a leading conductor.

【符号の説明】[Explanation of symbols]

6 先導体 65 傾斜受圧面 A2 第2地点 6 tip conductor 65 inclined pressure receiving surface A2 2nd point

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 幸重 兵庫県尼崎市浜1丁目1番1号 株式会社 クボタ技術開発研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Kokegumi Yamada 1-1-1 Hama, Amagasaki-shi, Hyogo Pref.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一軸芯回りで互いに揺動可能に連設され
た複数の推進管と、前記複数の推進管の先頭部に設けら
れた、上向き姿勢と下向き姿勢の間で切り換え操作可能
な傾斜受圧面を持った先導体とを備えた推進体を用い、
前記先導体を、地中の第1地点から地表面に沿って離間
した第2地点まで進ませる横断工程と、前記第2地点か
ら地表面の予め設定された第3地点に向かう浮上工程と
を備えた推進工法であって、 前記横断工程の間で、土質に対する前記先導体(6)の
上下ステアリング特性を、前記傾斜受圧面(65)を一
定姿勢にした状態で推進させた時の前記先導体(6)の
位置のずれ度の計測結果から学習し、前記学習結果に基
づいて前記浮上工程における推進経路を予測して前記第
2地点(A2)の位置を決定する推進工法。
1. A plurality of propulsion pipes connected to each other so as to be able to swing around one axis, and an inclination provided at a leading end of the plurality of propulsion pipes, which can be switched between an upward posture and a downward posture. Using a propulsion body with a tip conductor having a pressure receiving surface,
A traversing step of advancing the leading conductor from a first point in the ground to a second point separated along the ground surface, and a floating step from the second point to a third predetermined point on the ground surface. A propulsion method comprising: providing a vertical steering characteristic of the leading conductor (6) with respect to soil during the traversing step, wherein the leading lead when the inclined pressure receiving surface (65) is in a fixed posture is propelled. A propulsion method that learns from the measurement result of the degree of displacement of the position of the body (6), predicts a propulsion path in the levitation step based on the learning result, and determines the position of the second point (A2).
JP8173190A 1996-07-03 1996-07-03 Propulsion construction method Pending JPH1018769A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8173190A JPH1018769A (en) 1996-07-03 1996-07-03 Propulsion construction method
US08/886,220 US5878825A (en) 1996-07-03 1997-07-01 Underground propelling method
DE69725053T DE69725053T2 (en) 1996-07-03 1997-07-03 Underground drilling
EP97111234A EP0816627B1 (en) 1996-07-03 1997-07-03 Underground drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8173190A JPH1018769A (en) 1996-07-03 1996-07-03 Propulsion construction method

Publications (1)

Publication Number Publication Date
JPH1018769A true JPH1018769A (en) 1998-01-20

Family

ID=15955771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8173190A Pending JPH1018769A (en) 1996-07-03 1996-07-03 Propulsion construction method

Country Status (1)

Country Link
JP (1) JPH1018769A (en)

Similar Documents

Publication Publication Date Title
JPH1018769A (en) Propulsion construction method
US4177585A (en) Method and apparatus for dredging
CN114517687A (en) Non-excavation construction intelligence direction auxiliary system
JPS5910128B2 (en) How to install flexible bodies underwater
JP3776070B2 (en) Horizontal drilling direction measurement method
JPH0781492B2 (en) Ground improvement method for shield machine joint and its equipment
JP2991603B2 (en) Buried pipe propulsion type excavator and direction control method thereof
JP2997205B2 (en) Curve propulsion method for small diameter pipe
JP3904850B2 (en) Arc propulsion method and excavation method analyzer
JPH05321577A (en) Attitude control method of shield excavator
JP2001032681A (en) Advancing pipe laying method
JP3140947B2 (en) Propulsion position detection method
JPS6117977B2 (en)
JPH07189589A (en) Method and device for controlling tunnel machine
JPH0665840B2 (en) Automatic direction control method for shield machine
JPS60158307A (en) Position detector of shield excavator
JPH08303180A (en) Control method for head for propulsion
JP3822521B2 (en) State estimation method and apparatus for buried pipe propulsion device tip device
JP2585125B2 (en) Automatic direction control device and control method for small diameter pipe propulsion
JPH06158992A (en) Method and device for controlling direction of small-bore pipe propelling machine
JP2002090141A (en) Method and device for measuring leader position
JP2942149B2 (en) Propulsion control method
JP2620969B2 (en) Small diameter pipe burying device and small diameter pipe burying method
JPS6128080B2 (en)
JPH0652175B2 (en) Excavation status monitoring device for pipe burying machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees