JP2942149B2 - Propulsion control method - Google Patents
Propulsion control methodInfo
- Publication number
- JP2942149B2 JP2942149B2 JP6232690A JP23269094A JP2942149B2 JP 2942149 B2 JP2942149 B2 JP 2942149B2 JP 6232690 A JP6232690 A JP 6232690A JP 23269094 A JP23269094 A JP 23269094A JP 2942149 B2 JP2942149 B2 JP 2942149B2
- Authority
- JP
- Japan
- Prior art keywords
- propulsion
- propulsion control
- pitch
- control pitch
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 15
- 239000011295 pitch Substances 0.000 claims description 51
- 238000005259 measurement Methods 0.000 claims description 20
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 239000002689 soil Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 101150054854 POU1F1 gene Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102200124760 rs587777729 Human genes 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/046—Directional drilling horizontal drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B2200/00—Special features related to earth drilling for obtaining oil, gas or water
- E21B2200/22—Fuzzy logic, artificial intelligence, neural networks or the like
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、後方から押圧力を受け
て推進する推進管と、その推進管の先端側に連結され且
つ土中推進に伴う土中からの反力を受けて推進方向を変
更する傾斜受圧面を備えた推進用ヘッドとを設けてある
推進体を推進させるにあたり、土中での前記推進用ヘッ
ドの位置を計測し、その計測結果を基にして計画線との
位置のズレ量を算出し、その位置ズレ量が大の場合に、
次の計測位置まで推進させる推進制御ピッチを、小にす
ると共に、前記位置ズレ量が小の場合に、前記推進制御
ピッチを、大にするように、前記推進制御ピッチを設定
し、前記各推進制御ピッチ毎に、前記傾斜受圧面の操作
方向、及び、その操作方向での推進操作量を、ファジー
ルールによって推進制御する推進制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a propulsion pipe which is propelled by receiving a pressing force from the rear and a propulsion direction which is connected to the tip side of the propulsion pipe and which receives a reaction force from the soil accompanying the underground propulsion. In propelling a propulsion body provided with a propulsion head having an inclined pressure-receiving surface, the position of the propulsion head in the soil is measured, and the position of the propulsion body with respect to a planning line is determined based on the measurement result. Is calculated, and when the positional shift amount is large,
The propulsion control pitch for propulsion to the next measurement position is reduced, and the propulsion control pitch is set so as to increase the propulsion control pitch when the displacement amount is small. The present invention relates to a propulsion control method for controlling the operation direction of the inclined pressure receiving surface and the amount of propulsion operation in the operation direction for each control pitch by a fuzzy rule.
【0002】[0002]
【従来の技術】従来、この種の推進制御方法としては、
推進用ヘッドの位置ズレ量(主に土質状況を含めた環境
状況による差異によって影響を受ける)によって大小に
設定される複数の推進制御ピッチに対応させて、複数の
ファジールールを用意しておき、設定される推進制御ピ
ッチが変わるたびに、その推進制御ピッチに該当するフ
ァジールールに制御装置をチューニングし直して推進制
御を行っていた。2. Description of the Related Art Conventionally, this type of propulsion control method includes:
A plurality of fuzzy rules are prepared in correspondence with a plurality of propulsion control pitches that are set to be large or small according to the displacement amount of the propulsion head (which is mainly affected by differences due to environmental conditions including soil conditions). Each time the set propulsion control pitch changes, the propulsion control is performed by re-tuning the control device to a fuzzy rule corresponding to the propulsion control pitch.
【0003】[0003]
【発明が解決しようとする課題】上述した従来の推進制
御方法によれば、複数のファジールールを用意しておく
と共に、それらを状況に応じて使い分けなければならな
くなり、推進制御が複雑化し、操作が煩雑になり易いと
いう問題点がある。According to the above-described conventional propulsion control method, a plurality of fuzzy rules must be prepared and used depending on the situation. However, there is a problem that this is easily complicated.
【0004】この問題点を解決する推進制御方法として
は、ファジールールを一つに固定して、推進制御の複雑
化を避けるものが考えられる。しかし、用いるファジー
ルールを一つにすると、対応する推進制御ピッチも一つ
の値に設定しなければならず、この場合の推進制御ピッ
チの設定値を、例えば、大きなピッチとなるように設定
すると、前記位置ズレ量の大きい地盤においては、推進
精度が低下し易くなるという問題点がある。また、前記
推進制御ピッチの設定を、上述とは逆に小さく設定する
と、その推進制御ピッチの始点及び終点でそれぞれ実施
される推進用ヘッドの位置計測の回数がいたずらに増加
する危険性があり、その計測に手間が掛かり、推進作業
の効率が低下するという問題点がある。[0004] As a propulsion control method for solving this problem, it is conceivable to fix the fuzzy rules to one and avoid complication of the propulsion control. However, if one fuzzy rule is used, the corresponding propulsion control pitch must also be set to one value.If the set value of the propulsion control pitch in this case is set to, for example, a large pitch, There is a problem that the propulsion accuracy tends to be reduced in the ground having a large displacement amount. Further, if the setting of the propulsion control pitch is set to a small value contrary to the above, there is a risk that the number of times of position measurement of the propulsion head performed at the start point and the end point of the propulsion control pitch may be unnecessarily increased, There is a problem that the measurement is troublesome and the efficiency of the propulsion work is reduced.
【0005】従って、本発明の目的は、上記問題点を解
消し、推進制御の複雑化を緩和しながら、精度よく且つ
効率のよい推進作業を実施できる推進制御方法を提供す
るところにある。Accordingly, it is an object of the present invention to provide a propulsion control method capable of solving the above-mentioned problems and reducing the complexity of the propulsion control while performing an accurate and efficient propulsion operation.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
の本発明の推進制御方法の特徴手段は、土中推進に伴う
土中からの反力を受けて推進方向を変更する傾斜受圧面
を備えた推進用ヘッドの土中での位置を計測して、その
計測結果を基にして計画線との位置のズレ量を算出する
と共に、その位置ズレ量が大の場合に、次の計測位置ま
で推進させる推進制御ピッチを、小にすると共に、前記
位置ズレ量が小の場合に、前記推進制御ピッチを、大に
するように、前記推進制御ピッチを設定し、前記各推進
制御ピッチ毎に、前記傾斜受圧面の操作方向、及び、そ
の操作方向での推進操作量を、ファジールールによって
制御する推進制御の実施において、その推進制御夫々に
使用するファジールールを、最小推進制御ピッチに対応
したルールに固定しておき、前記位置ズレ量の算出に基
づいて設定した前記推進制御ピッチ内で、前記最小推進
制御ピッチを推進する毎に、前記ファジールールに基づ
く制御推進到達位置を推定し、その推定位置を基にして
次の推進制御を行うところにある。A feature of the propulsion control method according to the present invention for achieving the above object is to provide an inclined pressure receiving surface for changing a propulsion direction by receiving a reaction force from the soil accompanying the underground propulsion. Measure the position of the propelled head in the soil and calculate the amount of deviation from the plan line based on the measurement result.If the amount of deviation is large, the next measurement position The propulsion control pitch to be propelled up to a small value, and when the displacement amount is small, the propulsion control pitch is set so as to increase the propulsion control pitch. In the implementation of the propulsion control in which the operation direction of the inclined pressure receiving surface and the propulsion operation amount in the operation direction are controlled by the fuzzy rule, the fuzzy rules used for the respective propulsion controls correspond to the minimum propulsion control pitch. Fixed to rule In advance, each time the minimum propulsion control pitch is propelled within the propulsion control pitch set based on the calculation of the positional deviation amount, a control propulsion reaching position based on the fuzzy rule is estimated, and the estimated position is used as a basis. Then, the next propulsion control is performed.
【0007】[0007]
【作用】本発明の推進制御方法の特徴構成によれば、前
記推進制御夫々に使用するファジールールを、最小推進
制御ピッチに対応したルールに固定しておき、前記位置
ズレ量の算出に基づいて設定した前記推進制御ピッチ内
で、前記最小推進制御ピッチを推進する毎に、前記ファ
ジールールに基づく制御推進到達位置を推定し、その推
定位置を基にして次の推進制御を行うから、制御に用い
るファジールールは、一つだけでよく、制御をシンプル
に実施できると共に、操作の煩雑化を防止することがで
きる。また、例えば、前記位置ズレ量が小さい場合に
は、前記推進制御ピッチを大に設定し、その推進制御ピ
ッチ内で、前記最小推進制御ピッチを推進する毎に、前
記ファジールールに基づく制御推進到達位置を推定して
次の推進制御を行うから、前記最小推進制御ピッチを推
進する毎に推進用ヘッドの位置計測作業を実施するのに
替えて制御推進到達位置の推定によってその位置を仮決
めできるようになり、従来のように、位置計測の回数が
いたずらに増加して推進作業の効率が低下するというこ
とを防止できる。一方、例えば、前記位置ズレ量が大き
い場合には、前記推進制御ピッチを小に設定して、その
推進制御ピッチを推進する毎に位置計測を実施するか
ら、肌理の細かい推進制御が可能となり、上述のよう
に、位置ズレ量(例えば、土質状況を含めた環境状況の
変化によって差異を生じる)の値に応じた推進制御、言
い換えれば、より環境状況にマッチした効率的な推進制
御を実施することが可能となる。According to the characteristic structure of the propulsion control method of the present invention, the fuzzy rules used for the respective propulsion controls are fixed to the rules corresponding to the minimum propulsion control pitch, and the fuzzy rules are determined based on the calculation of the position shift amount. Within the set propulsion control pitch, every time the minimum propulsion control pitch is propelled, the control propulsion reaching position based on the fuzzy rule is estimated, and the next propulsion control is performed based on the estimated position. Only one fuzzy rule needs to be used, control can be performed simply, and complicated operation can be prevented. Also, for example, when the displacement amount is small, the propulsion control pitch is set to be large, and within each of the propulsion control pitches, the control propulsion attainment based on the fuzzy rule is performed every time the minimum propulsion control pitch is propelled. Since the next propulsion control is performed by estimating the position, each time the minimum propulsion control pitch is propelled, the position can be provisionally determined by estimating the control propulsion reaching position instead of performing the position measurement work of the propulsion head. As a result, it is possible to prevent the efficiency of the propulsion work from being lowered due to the unnecessary increase in the number of position measurements as in the related art. On the other hand, for example, when the displacement amount is large, the propulsion control pitch is set to small, and the position is measured each time the propulsion control pitch is propelled. As described above, the propulsion control according to the value of the positional deviation amount (for example, a difference is caused by a change in the environmental condition including the soil condition), that is, the efficient propulsion control that matches the environmental condition is performed. It becomes possible.
【0008】[0008]
【発明の効果】従って、本発明の推進制御方法によれ
ば、現場環境状況に応じた無駄の少ない推進制御を、簡
単な操作によってより精度よく実施できるようになり、
推進作業全体としての精度及び作業効率の向上を図るこ
とができる。Therefore, according to the propulsion control method of the present invention, it is possible to carry out less wasteful propulsion control according to the on-site environmental conditions with a simple operation and more accurately.
The accuracy and work efficiency of the entire propulsion work can be improved.
【0009】[0009]
【実施例】以下に本発明の実施例を図面に基づいて説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0010】図2は、発進ピット1内に設置した推進装
置2によって、推進体Sを到達ピット(不図示)の所定
位置に向けて地中推進させている状況を示すものであ
る。FIG. 2 shows a situation in which the propulsion body S is being propelled underground toward a predetermined position of an arrival pit (not shown) by the propulsion device 2 installed in the starting pit 1.
【0011】前記発進ピット1は、土留め壁1aを四方
に設け、それらの土留め壁1aの内方側で前記土留め壁
1aに作用する土圧を受ける支持フレーム1bを設けて
構成してある。The starting pit 1 has four retaining walls 1a, and a support frame 1b provided on the inner side of the retaining walls 1a for receiving the earth pressure acting on the retaining walls 1a. is there.
【0012】前記推進装置2は、前記推進体Sを保持し
つつ土中に向けて押圧して推進させることができるよう
に構成してある周知の装置である。The propulsion device 2 is a well-known device that is configured so that it can be propelled by pressing it toward the ground while holding the propulsion body S.
【0013】前記推進体Sは、図3に示すように、複数
の推進管3と、推進用ヘッド4とをそれぞれ長手方向に
屈曲自在に連設し、前記各推進管3及び前記推進用ヘッ
ド4の内空部にわたって、前記推進用ヘッド駆動用の圧
油を流通させる複数の油圧ホース6を設けて構成してあ
る。As shown in FIG. 3, the propulsion body S includes a plurality of propulsion tubes 3 and a propulsion head 4 connected to each other so as to be freely bent in the longitudinal direction. A plurality of hydraulic hoses 6 for circulating the pressure oil for driving the propulsion head are provided over the inner space of the nozzle 4.
【0014】前記推進管3は、金属製の円筒で構成して
あり、隣合う推進管3又は推進用ヘッド4と球状ジョイ
ントJを介して屈曲自在に連結してある。前記推進用ヘ
ッド4は、図に示すように、円筒状のヘッド本体4aを
設け、前記ヘッド本体4aの筒軸芯周りに回転自在で且
つ筒軸芯方向に沿って出退自在な嵌合筒部材4bを、前
記ヘッド本体4aに内嵌状態に設け、推進に伴う土圧を
受ける傾斜受圧面7aを備えた先導体7を、前記嵌合筒
部材4bの先端部に固着し、前記嵌合筒部材4b並びに
それに固着された先導体7を前記筒軸芯周りに回転駆動
自在な回転駆動機構Rと、前記嵌合筒部材4b・先導体
7を前記筒軸芯方向に出退駆動自在な出退駆動機構Tと
を前記ヘッド本体4aに内装して構成してある。また、
前記先導体7の傾斜受圧面7aは、ヘッド本体4aの筒
軸芯に対して傾斜させて形成してあり、曲線推進施工に
おいては、前記傾斜受圧面7aが、推進カーブ外方側へ
向くように前記回転駆動機構Rによって先導体7を筒軸
芯周りに回転駆動操作し、その状態で前記出退駆動機構
Tによって前記先導体7を前方へ突出駆動操作すること
によって、前記傾斜受圧面7aに作用する土圧によっ
て、推進用ヘッド4の先端部を推進カーブ方向へ誘導す
ることができる。ここに言う傾斜受圧面7aの操作方
向、及び、その操作方向での推進操作量は、ファジール
ールによって求められる。尚、前記回転駆動機構R・出
退駆動機構Tの駆動は、前記油圧ホース6を介して地上
部から送られる圧油によって実施される。一方、前記ヘ
ッド本体4aの外周部には、推進用ヘッド4の位置計測
のための発信コイルC1を設けてあり、この発信コイル
C1からの電磁波を地上部で受信計測することによっ
て、推進用ヘッド4の位置を検出することができ、その
結果から、推進経路の計画線Kに対する推進用ヘッド4
の位置ズレ量dが求められる(図5参照)。尚、位置ず
れ量dとは、前記傾斜受圧面7aを含む面と、推進用ヘ
ッド4との交点部分と、計画線Kとの位置のズレ量を云
う。The propulsion tube 3 is formed of a metal cylinder, and is connected to an adjacent propulsion tube 3 or a propulsion head 4 via a spherical joint J so as to be freely bent. As shown in the drawing, the propulsion head 4 is provided with a cylindrical head main body 4a, and is a fitting cylinder that is rotatable around the cylinder axis of the head body 4a and that can move back and forth along the cylinder axis. The member 4b is provided inside the head main body 4a in a state of being fitted inside, and the leading conductor 7 having the inclined pressure receiving surface 7a receiving the earth pressure accompanying the propulsion is fixed to the tip end of the fitting cylindrical member 4b, and the fitting is performed. A rotary drive mechanism R for rotatably driving the cylindrical member 4b and the leading conductor 7 fixed thereto around the cylindrical axis, and a rotatable driving mechanism for moving the fitting cylindrical member 4b and the leading conductor 7 back and forth in the cylindrical axis direction; The retracting drive mechanism T is provided inside the head main body 4a. Also,
The inclined pressure receiving surface 7a of the leading conductor 7 is formed so as to be inclined with respect to the cylinder axis of the head main body 4a, and in curved propulsion construction, the inclined pressure receiving surface 7a is directed outward of the propulsion curve. By rotating the tip conductor 7 around the axis of the cylinder by the rotation drive mechanism R, and by driving the tip conductor 7 to protrude forward by the retracting drive mechanism T in this state, the inclined pressure receiving surface 7a , The tip of the propulsion head 4 can be guided in the direction of the propulsion curve. The operation direction of the inclined pressure receiving surface 7a and the amount of propulsion operation in the operation direction are determined by fuzzy rules. The driving of the rotary drive mechanism R and the retractable drive mechanism T is performed by pressure oil sent from the ground via the hydraulic hose 6. On the other hand, a transmitting coil C1 for measuring the position of the propulsion head 4 is provided on the outer peripheral portion of the head main body 4a. 4 can be detected, and as a result, the propulsion head 4 with respect to the planning line K of the propulsion path can be detected.
Is obtained (see FIG. 5). Note that the positional deviation amount d refers to a deviation amount of the position between the plane including the inclined pressure receiving surface 7a, the intersection of the propulsion head 4, and the plan line K.
【0015】本実施例の推進制御方法は、図1・4に示
すように、まず、所定位置に設定された第一計測位置A
において推進用ヘッド4の土中での位置を前記発信コイ
ルC1を利用して計測して、その計測結果を基にして計
画線Kとの位置ズレ量dを算出する。In the propulsion control method according to this embodiment, as shown in FIGS. 1 and 4, first, a first measurement position A set at a predetermined position is set.
In step (1), the position of the propulsion head 4 in the soil is measured using the transmission coil C1, and the amount of positional deviation d from the plan line K is calculated based on the measurement result.
【0016】そして、その位置ズレ量dが大の場合に
は、図4(イ)に示すように、次の第二計測位置(本発
明に係わる次の計測位置に対応)Bまでの距離である推
進制御ピッチLを最小の値、即ち、最小推進制御ピッチ
L1に設定し、その推進制御ピッチにわたって、前記フ
ァジールールを適応して推進体Sを推進する。尚、前記
ファジールールは、前記最小推進制御ピッチL1に対応
させてチューニングしてある。推進の後、前記第二計測
位置Bによって、前記第一計測位置Aと同様に位置計測
を実施し、位置ズレ量dを求めて、その値によって、上
述と同じ制御を行うか、または、以下に記載の制御を行
うかを決定する。When the positional deviation amount d is large, as shown in FIG. 4A, the distance to the next second measurement position (corresponding to the next measurement position according to the present invention) B is obtained. A certain propulsion control pitch L is set to a minimum value, that is, a minimum propulsion control pitch L1, and the propulsion body S is propelled by applying the fuzzy rule over the propulsion control pitch. The fuzzy rules are tuned in correspondence with the minimum propulsion control pitch L1. After propulsion, the second measurement position B is used to perform position measurement in the same manner as the first measurement position A, and the position deviation amount d is obtained, and the same control as described above is performed according to the value, or Is to be controlled.
【0017】前記位置ズレ量dが小の場合には、図4
(ロ)に示すように、前記推進制御ピッチLを、大の
値、即ち、大推進制御ピッチL2に設定し、その大推進
制御ピッチL2内で、前記最小推進制御ピッチL1を推
進する毎に、制御推進到達位置を推定し、その推定位置
を基に前記ファジールールを適応して、次の最小推進制
御ピッチL1の推進を行う。但し、前記最小推進制御ピ
ッチL1は、先導体7の出退ストローク長に設定してあ
り、前記大推進制御ピッチL2は、前記位置ズレ量dの
値によって複数の値の中から相関的に求められ、前記最
小推進制御ピッチL1の整数倍に設定してある。図5に
示す状況における前記制御推進到達位置の推定は、以下
の推定式によって算出することができる。In the case where the displacement d is small, FIG.
As shown in (b), the propulsion control pitch L is set to a large value, that is, a large propulsion control pitch L2, and every time the minimum propulsion control pitch L1 is propelled within the large propulsion control pitch L2. , The control propulsion reaching position is estimated, and the fuzzy rule is applied based on the estimated position to propell the next minimum propulsion control pitch L1. However, the minimum propulsion control pitch L1 is set to the length of the forward / backward stroke of the leading conductor 7, and the large propulsion control pitch L2 is correlated from a plurality of values based on the value of the displacement amount d. The pitch is set to an integral multiple of the minimum propulsion control pitch L1. The estimation of the control propulsion reaching position in the situation shown in FIG. 5 can be calculated by the following estimation formula.
【0018】θ1 =θ0 −L1・p・sinθt d1 =d0 +L1・sin{(θ0 +θ1 )/2} θ0 :計画線に対する推進用ヘッドの基の方位角 θ1 :計画線に対する推進後の推進用ヘッドの推定方位
角 L1:推進距離 p :単位推進距離当りの方位角の変化率 θt :先導体の推進用ヘッド軸芯周りの回転角 d0 :計画線に対する推進用ヘッドの基の位置ズレ量 d1 :計画線に対する推進後の推進用ヘッドの推定位置
ズレ量Θ1 = θ0−L1 · p · sin θt d1 = d0 + L1 · sin {(θ0 + θ1) / 2} θ0: azimuth of the base of the propulsion head with respect to the planning line θ1: propulsion head after propulsion with respect to the planning line L1: Propulsion distance p: Rate of change of azimuth angle per unit propulsion distance θt: Rotation angle of tip conductor around propulsion head axis d0: Displacement amount of propulsion head base relative to plan line d1: Estimated displacement of propulsion head after propulsion with respect to plan line
【0019】本実施例の推進制御方法によれば、最小推
進制御ピッチに対応したファジールールのチューニング
をするだけで、そのファジールールを用いた推進制御を
実施できると共に、現場環境状況に応じて推進用ヘッド
の位置計測に替わる位置推定を併用して計測回数を減じ
ながら、推進精度の維持を図った推進作業を実施するこ
とができ、推進作業全体としての精度及び作業効率の向
上を図ることができる。According to the propulsion control method of this embodiment, the propulsion control using the fuzzy rule can be performed only by tuning the fuzzy rule corresponding to the minimum propulsion control pitch, and the propulsion is controlled according to the on-site environmental conditions. Propulsion work that maintains propulsion accuracy while reducing the number of measurements by using position estimation instead of head position measurement, thereby improving the accuracy and work efficiency of the propulsion work as a whole. it can.
【0020】〔別実施例〕以下に別実施例を説明する。[Another embodiment] Another embodiment will be described below.
【0021】前記最小推進制御ピッチは、先の実施例で
説明した先導体7の出退ストローク長に限定されるもの
ではなく、任意に設定することができる。例えば、出退
ストローク長の整数倍の長さや、推進装置2の推進スト
ローク長、または、その推進ストローク長の整数倍の長
さに設定することも可能で、要するに、推進用ヘッドの
推進に伴う最小単位のストロークになり得る長さの整数
倍に設定することによって、推進制御の複雑化を避ける
ことができる。The minimum propulsion control pitch is not limited to the stroke length of the leading conductor 7 described in the previous embodiment, but can be set arbitrarily. For example, it is possible to set the length to an integral multiple of the retracting stroke length, the propulsion stroke length of the propulsion device 2, or the integral multiple of the propulsion stroke length. By setting the length to an integral multiple of the length that can be the minimum unit stroke, complication of propulsion control can be avoided.
【0022】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.
【図1】実施例の推進制御方法を示すフローチャート図FIG. 1 is a flowchart illustrating a propulsion control method according to an embodiment.
【図2】実施例の推進体の推進状況を示す側面視断面図FIG. 2 is a side sectional view showing the state of propulsion of the propulsion body of the embodiment.
【図3】実施例の推進体を示す側面図FIG. 3 is a side view showing the propulsion body of the embodiment.
【図4】実施例の推進制御方法を示す説明図FIG. 4 is an explanatory diagram showing a propulsion control method according to the embodiment.
【図5】実施例の推定式に対応した説明図FIG. 5 is an explanatory diagram corresponding to the estimation formula of the embodiment.
3 推進管 4 推進用ヘッド 7a 傾斜受圧面 B 計測位置 d 位置ズレ量 K 計画線 L 推進制御ピッチ L1 最小推進制御ピッチ S 推進体 Reference Signs List 3 propulsion pipe 4 propulsion head 7a inclined pressure receiving surface B measurement position d displacement amount K planning line L propulsion control pitch L1 minimum propulsion control pitch S propulsion body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻本 和則 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ 技術開発研究所内 (56)参考文献 特開 平4−336196(JP,A) 特開 平4−83092(JP,A) 特開 平2−115492(JP,A) 特開 平4−68193(JP,A) (58)調査した分野(Int.Cl.6,DB名) E21D 9/06 311 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazunori Tsujimoto 1-1-1, Hama, Amagasaki City, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (56) References JP-A-4-336196 (JP, A) JP JP-A-4-83092 (JP, A) JP-A-2-115492 (JP, A) JP-A-4-68193 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) E21D 9 / 06 311
Claims (1)
(3)と、その推進管(3)の先端側に連結され且つ土
中推進に伴う土中からの反力を受けて推進方向を変更す
る傾斜受圧面(7a)を備えた推進用ヘッド(4)とを
設けてある推進体(S)を推進させるにあたり、 土中での前記推進用ヘッド(4)の位置を計測し、その
計測結果を基にして計画線(K)との位置ズレ量(d)
を算出し、その位置ズレ量(d)が大の場合に、次の計
測位置(B)まで推進させる推進制御ピッチ(L)を、
小にすると共に、前記位置ズレ量(d)が小の場合に、
前記推進制御ピッチ(L)を、大にするように、前記推
進制御ピッチ(L)を設定し、前記各推進制御ピッチ
(L)毎に、前記傾斜受圧面(7a)の操作方向、及
び、その操作方向での推進操作量を、ファジールールに
よって推進制御する推進制御方法であって、 前記推進制御夫々に使用するファジールールを、最小推
進制御ピッチ(L1)に対応したルールに固定してお
き、前記位置ズレ量(d)の算出に基づいて設定した前
記推進制御ピッチ(L)内で、前記最小推進制御ピッチ
(L1)を推進する毎に、前記ファジールールに基づく
制御推進到達位置を推定し、その推定位置を基にして次
の推進制御を行う推進制御方法。1. A propulsion pipe (3) for propelling by receiving a pressing force from the rear, and a propulsion direction connected to the tip side of the propulsion pipe (3) and receiving a reaction force from the soil accompanying the underground propulsion. In propelling the propulsion body (S) provided with the propulsion head (4) having the inclined pressure receiving surface (7a) for changing the position, the position of the propulsion head (4) in the soil is measured, Based on the measurement result, the amount of displacement (d) from the plan line (K)
Is calculated, and when the positional deviation amount (d) is large, the propulsion control pitch (L) for propelling to the next measurement position (B) is calculated as follows:
When the displacement (d) is small,
The propulsion control pitch (L) is set so as to increase the propulsion control pitch (L), and for each of the propulsion control pitches (L), the operation direction of the inclined pressure receiving surface (7a); A propulsion control method for controlling the propulsion operation amount in the operation direction by a fuzzy rule, wherein a fuzzy rule used for each of the propulsion controls is fixed to a rule corresponding to a minimum propulsion control pitch (L1). Within the propulsion control pitch (L) set based on the calculation of the displacement amount (d), every time the minimum propulsion control pitch (L1) is propelled, the control propulsion reaching position based on the fuzzy rule is estimated. And a propulsion control method for performing the next propulsion control based on the estimated position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6232690A JP2942149B2 (en) | 1994-09-28 | 1994-09-28 | Propulsion control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6232690A JP2942149B2 (en) | 1994-09-28 | 1994-09-28 | Propulsion control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0893386A JPH0893386A (en) | 1996-04-09 |
JP2942149B2 true JP2942149B2 (en) | 1999-08-30 |
Family
ID=16943261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6232690A Expired - Lifetime JP2942149B2 (en) | 1994-09-28 | 1994-09-28 | Propulsion control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2942149B2 (en) |
-
1994
- 1994-09-28 JP JP6232690A patent/JP2942149B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0893386A (en) | 1996-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2942149B2 (en) | Propulsion control method | |
JP2942150B2 (en) | Estimation method of propulsion position | |
JP2791398B2 (en) | Curved propulsion method and equipment and buried pipe for curved propulsion | |
JP2003262521A (en) | Surveying apparatus for pipe jacking method, surveying method, and the pipe jacking method | |
JP2753558B2 (en) | Small bore excavator and direction correction method in small bore propulsion method | |
JPH0339156B2 (en) | ||
JPH0842286A (en) | Driving method | |
JP2001065286A (en) | Position detecting device for tunnel excavator | |
JPH0842285A (en) | Driving control method | |
JP2004100288A (en) | Method for measuring direction of horizontal drillhole | |
JP3056870B2 (en) | Propulsion device | |
JP2851195B2 (en) | Control method of propulsion head | |
JPH09296682A (en) | Thrusting body | |
JPS60158307A (en) | Position detector of shield excavator | |
JP3526151B2 (en) | Horizontal position estimation method of tunnel machine | |
JPH05280285A (en) | Control method for propulsion head | |
JP3520141B2 (en) | How to lay pipes underground in an arc | |
JPH07269287A (en) | Pipe jacking method | |
JP2851196B2 (en) | Control method of propulsion head | |
JP3362964B2 (en) | Propulsion body | |
JPH0410971B2 (en) | ||
JPH0748987A (en) | Driving body for pipe jacking method | |
JPH0791943B2 (en) | Double pipe type excavator | |
JPH07305590A (en) | Control device for shield machine | |
JPH06185286A (en) | Shield excavating machine and direction control method thereof |