JPH10186443A - Camera - Google Patents

Camera

Info

Publication number
JPH10186443A
JPH10186443A JP35446396A JP35446396A JPH10186443A JP H10186443 A JPH10186443 A JP H10186443A JP 35446396 A JP35446396 A JP 35446396A JP 35446396 A JP35446396 A JP 35446396A JP H10186443 A JPH10186443 A JP H10186443A
Authority
JP
Japan
Prior art keywords
photometric
area
focus detection
focus
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35446396A
Other languages
Japanese (ja)
Inventor
Yoshiaki Irie
良昭 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35446396A priority Critical patent/JPH10186443A/en
Publication of JPH10186443A publication Critical patent/JPH10186443A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Exposure Control For Cameras (AREA)
  • Focusing (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute optimum photometry where priority is given to a main subject by using a photometry sensor consisting of divided sensors whose division number is comparatively small by performing different photometric operation according to the positional states of a selected focus detection area and a photometric small area related to the focus detection area and deciding the exposure value. SOLUTION: The photometry sensor consists of eight divided sensors SO to S7. A focusing screen (corresponding to a photographic image plane) is divided into eight photometric small areas 50 to 57 corresponding to the sensors S0 to S7 so as to detect the luminance of every photometric small area. A CPU selects one range-finding area based on image deviation amount in seven range-finding areas 70 to T6. Then, an automatic focus detection circuit performs focus detecting operation in the selected range-finding area. The CPU decides the exposure value by performing the different photometric operation according to positional relation between the focused range-finding area (selected range-finding area) and the photometric small area related to the range-finding area.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はカメラに関し、特に
被写界の複数領域を独立に焦点検出可能な焦点検出手段
を備え且つ被写界を複数の小領域に分割して測光するカ
メラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a camera, and more particularly to a camera having focus detecting means capable of independently detecting a focus in a plurality of regions of an object scene and dividing the object scene into a plurality of small regions for photometry.

【0002】[0002]

【従来の技術】従来より、被写界を複数の領域に分割
し、それぞれの領域毎の輝度信号を出力し、これら複数
の輝度信号を用いて、撮影画面に適正露出を与えるよう
にした測光装置が種々提案されている。
2. Description of the Related Art Conventionally, a photometric field is divided into a plurality of regions, and a luminance signal is output for each region, and a proper exposure is given to a photographing screen using the plurality of luminance signals. Various devices have been proposed.

【0003】例えば本出願人は、特開平03-223821 号公
報において、被写界を複数の測光小領域に分割し、それ
ぞれの領域毎の輝度を検出し、同被写界中の複数点で夫
々独立に焦点検出が可能な焦点検出手段の焦点検出領域
の選択に応じて、該複数の測光小領域を前記焦点検出領
域を中心とした同心円状にグループ化し、これらグルー
プ化された領域の平均輝度に重みづけを変えて被写界全
体の測光値を演算するカメラを提案している。
[0003] For example, in Japanese Patent Application Laid-Open No. 03-223821, the present applicant divides an object field into a plurality of photometric small areas, detects the luminance of each area, and detects the luminance at a plurality of points in the same field. The plurality of photometric sub-regions are grouped concentrically around the focus detection region according to the selection of the focus detection region of the focus detection means capable of independently performing focus detection, and the average of these grouped regions is averaged. A camera that calculates the photometric value of the entire scene by changing the weight of the luminance has been proposed.

【0004】また、特開平5-53169 号公報においては、
撮影者が注目する被写界中の被写体位置を撮影者の視線
位置の検出等によって入力し、測光用のCCD イメージセ
ンサの多数の画素を該被写体位置に対応して柔軟に変化
する分割パターンに従って複数のパターンにグループ化
し、これら各グループの平均輝度に重み付けを行って測
光値を求める露出演算装置を提案している。
In Japanese Patent Application Laid-Open No. 5-53169,
The position of the subject in the scene to which the photographer is focused is input by detecting the gaze position of the photographer, etc., and a large number of pixels of the CCD image sensor for photometry are flexibly changed according to the subject position according to the division pattern. There has been proposed an exposure calculation device that groups a plurality of patterns and weights the average luminance of each group to obtain a photometric value.

【0005】[0005]

【発明が解決しようとする課題】前述したように、撮影
被写界を最適な露光量で撮影するために、被写界から多
くの輝度情報を得るべく測光センサは多分割化の傾向に
ある。例えば、上記特開平5-53169 号公報によればCCD
等のエリアセンサを用いることによって、被写体に最適
な分割測光パターンを得ることが可能である。
As described above, in order to obtain a large amount of luminance information from the object field, the photometric sensor tends to be divided into multiple parts in order to obtain an image of the object field with an optimum exposure amount. . For example, according to JP-A-5-53169, CCD
By using such an area sensor, it is possible to obtain an optimal divided photometric pattern for the subject.

【0006】しかしながら、エリアセンサは電荷蓄積型
センサであるために低輝度時での応答性の問題があり、
またその価格が高価であることにより測光センサとして
は、通常、フォトダイオードタイプが広く用いられてい
る。
However, since the area sensor is a charge accumulation type sensor, there is a problem of responsiveness at the time of low luminance.
Also, due to its high price, a photodiode type is generally widely used as a photometric sensor.

【0007】一方、このフォトダイオードタイプのセン
サにとって、センサ部の分割数を多くするということ
は、分割された各分割センサの受光面積が少なくなり、
結果的に測光センサの低輝度での測光能力の低下を招く
ことになる。
On the other hand, for this photodiode type sensor, increasing the number of divisions of the sensor section means that the light receiving area of each divided sensor becomes smaller,
As a result, the photometric capability of the photometric sensor at low luminance is reduced.

【0008】従って1 画素が微小な大きさのセンサの集
合体からなるエリアセンサを任意の多数の細かい分割パ
ターンを形成できる測光センサとして用いるよりも、あ
る程度の大きさと数を持った分割センサを用いる方が前
記の低輝度測光能力、さらには測光演算の処理能力的見
地から一般的に使い易い測光センサと言うことができ
る。一方、撮影被写体に対し撮影レンズのピントを合わ
せるためにカメラでは焦点検出動作を行っている。この
焦点検出を行うセンサも多分割の傾向にあり、例えば2
つのエリアセンサを用い、該エリアセンサの画素を分割
して各々相関をとることで公知の位相差検出方式によっ
て撮影画面内の多くの領域の焦点検出を行うことが可能
となる。
Accordingly, a divided sensor having a certain size and number is used, rather than using an area sensor composed of an aggregate of sensors having a very small size in one pixel as a photometric sensor capable of forming an arbitrary number of fine divided patterns. It can be said that the photometric sensor is generally easier to use from the viewpoint of the above-described low-luminance photometric capability and the processing capability of photometric calculation. On the other hand, a camera performs a focus detection operation in order to focus a photographic lens on a photographic subject. Sensors that perform this focus detection also tend to be multi-divided, such as 2
By using one area sensor and dividing the pixels of the area sensor to obtain a correlation, it is possible to detect the focus of many areas in the photographing screen by a known phase difference detection method.

【0009】これまでに測光領域と測距領域 (焦点検出
領域) の関係について提案されてきた内容は、前記特開
平03-223821 号公報をはじめ、いづれも測光領域数に対
して測距領域数がかなり少ないために、該測距領域を該
領域を包括した測光小領域のほぼ重心位置に配置するこ
とが可能であり、従って焦点検出(測距)動作がなされ
るべき測距領域に対応した測光領域が主被写体位置であ
るという仮定のもとに重み付け演算等の測光演算を行え
ばほぼ適正な露出を得ることができた。
The contents proposed so far for the relationship between the photometry area and the distance measurement area (focus detection area) are described in Japanese Patent Application Laid-Open No. 03-223821. Since the distance measurement area is considerably small, it is possible to arrange the distance measurement area almost at the center of gravity of the photometry small area including the area, and therefore, the distance measurement area corresponds to the distance measurement area where the focus detection (ranging) operation is to be performed. By performing a photometric operation such as a weighting operation on the assumption that the photometric region is the position of the main subject, an almost proper exposure could be obtained.

【0010】しかしながら、測距領域の数を測光小領域
に対し略同じ数、あるいは測光小領域数以上までにする
ようになると、主被写体の焦点検出動作を行うべき測距
領域を該領域を包括した測光小領域のほぼ重心位置に配
置することが困難となり、測光演算を行う基準となる主
被写体位置に対応する測光小領域が一つに確定できなく
なる。つまりこれは撮影被写体に対し正確な露出を決定
できなくなるということを意味する。またこのような測
距領域と測光小領域のパララックスとも言うべき光学的
不一致は、測距センサと測光センサ自身のセンサレイア
ウト形状の差、あるいは光学的構成上の問題からも生じ
る。
However, if the number of distance measurement areas is set to be substantially the same as or smaller than the number of light measurement small areas, the distance measurement areas in which the focus detection operation of the main subject is to be performed are included. It becomes difficult to arrange the photometry small area almost at the position of the center of gravity, and it becomes impossible to determine one photometry small area corresponding to the main subject position as a reference for performing photometry calculation. In other words, this means that an accurate exposure cannot be determined for the photographing subject. Such optical inconsistency, which can also be called parallax between the distance measurement area and the light measurement small area, also arises from a difference in the sensor layout shape between the distance measurement sensor and the light measurement sensor itself, or a problem in the optical configuration.

【0011】上記の現象を具体的に説明する。図4 はフ
ァインダの視野図であるが、同時にファインダ画面に対
して7 個の測距領域70〜76と8 個の分割センサS0〜S7で
構成される測光センサの測光小領域50〜57を図示してい
る。この場合、測距領域70,73,74は夫々測光小領域50〜
52の重心位置に設定されており問題は無い。しかしなが
ら、図4 のように焦点検出すべき測距領域71及び72が2
つの測光小領域50と51の境界上及び50と52の境界上に設
定された場合、また、測距領域75及び76のように境界上
でなくても測光小領域53及び54の重心よりも著しく周辺
側に偏って設定されている場合が問題となる。
The above phenomenon will be specifically described. Fig. 4 is a view of the viewfinder.At the same time, the viewfinder screen shows seven photometry areas 70 to 76 and seven photometry sub-areas 50 to 57 of the photometry sensor composed of eight divided sensors S0 to S7. Is shown. In this case, the distance measurement areas 70, 73, and 74 respectively correspond to the light measurement small area 50 to
There is no problem because it is set at 52 center of gravity. However, as shown in FIG.
When set on the boundary between the two photometric sub-regions 50 and 51 and on the boundary between 50 and 52, and even when not on the boundary as in the distance measurement regions 75 and 76, A problem arises when the setting is significantly biased toward the peripheral side.

【0012】本発明は、主被写体が複数の測距領域のい
づれに存在していても、更に主被写体の合焦動作を行う
測距領域が該領域を含む測光小領域の重心位置に配置さ
れていなくとも、分割数が比較的少ない分割センサより
成る測光センサを用いて、主被写体に重点を置き更に撮
影画面全体を適切に考慮した最適な測光を行うカメラの
提供を目的とする。
According to the present invention, even if the main subject exists in any of the plurality of distance measurement areas, the distance measurement area for performing the focusing operation of the main object is arranged at the center of gravity of the small photometry area including the area. Even if not, the object of the present invention is to provide a camera that uses a photometric sensor composed of divided sensors having a relatively small number of divisions and that performs optimal photometry while emphasizing the main subject and appropriately considering the entire shooting screen.

【0013】[0013]

【課題を解決するための手段】本発明のカメラは、 (1−1) 撮影画面内を複数の測光小領域に分割して
各測光小領域毎の輝度を検出する輝度検出手段と、該撮
影画面内に設定した複数の焦点検出領域夫々の合焦状態
を検出する焦点検出手段を有するカメラにおいて、該焦
点検出領域がこれに関係する測光小領域に対して位置す
る状態は複数あり、検出領域選択手段によって該複数の
焦点検出領域の一つを選択し、該選択した焦点検出領域
とこれに関係する測光小領域との位置状態によって異な
る測光演算を行って露出値を決定する。 (1−2) 撮影画面内を複数の測光小領域に分割して
各測光小領域毎の輝度を検出する輝度検出手段と、該撮
影画面内に設定した複数の焦点検出領域夫々の合焦状態
を検出する焦点検出手段を有するカメラにおいて、検出
領域選択手段によって該複数の焦点検出領域の一つを選
択し、該選択した焦点検出領域が隣り合う測光小領域の
境界上に存在する場合、該隣り合う測光小領域夫々につ
いて夫々重み付け測光演算を行って夫々の測光演算値を
求め、該隣り合う測光小領域夫々の測光演算値を利用し
て露出値を決定する。 (1−3) 撮影画面内を複数の測光小領域に分割して
各測光小領域毎の輝度を検出する輝度検出手段と、該撮
影画面内に設定した複数の焦点検出領域夫々の合焦状態
を検出する焦点検出手段を有するカメラにおいて、検出
領域選択手段によって該複数の焦点検出領域の一つを選
択し、該選択した焦点検出領域が該焦点検出領域を含む
測光小領域の重心より或る方向に偏心して位置している
場合、該焦点検出領域を含む測光小領域と該焦点検出領
域の偏心方向にある少なくとも一つの測光小領域夫々に
ついて夫々重み付け測光演算を行って夫々の測光演算値
を求め、これらの測光小領域の測光演算値を利用して露
出値を決定する。こと等を特徴としている。
According to the present invention, there is provided a camera comprising: (1-1) a luminance detecting means for dividing a photographing screen into a plurality of photometric sub-regions and detecting a luminance for each photometric sub-region; In a camera having focus detection means for detecting the in-focus state of each of a plurality of focus detection areas set in the screen, there are a plurality of states in which the focus detection area is located relative to a photometric small area related thereto. One of the plurality of focus detection areas is selected by the selection means, and a different photometry operation is performed depending on the position state of the selected focus detection area and the photometry small area related thereto to determine an exposure value. (1-2) Luminance detecting means for dividing the inside of the photographing screen into a plurality of photometric sub-regions and detecting the luminance of each photometric sub-region, and the in-focus state of each of the plurality of focus detecting regions set in the photographing screen In a camera having a focus detection unit for detecting the one, the detection region selection unit selects one of the plurality of focus detection regions, and when the selected focus detection region exists on a boundary between adjacent photometric small regions, A weighted photometric operation is performed for each of the adjacent photometric sub-regions to obtain respective photometric operation values, and an exposure value is determined using the photometric operation values of each of the adjacent photometric sub-regions. (1-3) a luminance detecting unit that divides the inside of a photographing screen into a plurality of photometric sub-regions and detects luminance for each photometric sub-region, and a focus state of each of the plurality of focus detecting regions set in the photographing screen In the camera having the focus detection means for detecting the focus detection area, one of the plurality of focus detection areas is selected by the detection area selection means, and the selected focus detection area is located at a certain distance from the center of gravity of the photometric small area including the focus detection area. In the case of being located eccentrically in the direction, a weighted photometric calculation is performed on each of the photometric small area including the focus detection area and at least one photometric small area in the eccentric direction of the focus detection area, and the respective photometric calculation values are calculated. Then, the exposure value is determined by using the photometric operation values of these photometric small areas. It is characterized by

【0014】特に、(1−3−1) 前記測光演算値は
前記焦点検出領域を含む前記測光小領域内における該焦
点検出領域の位置に応じてさらに重み付けを行って露出
値を決定すること等を特徴としている。
In particular, (1-3-1) determining the exposure value by further weighting the photometric calculation value in accordance with the position of the focus detection area in the small photometry area including the focus detection area, etc. It is characterized by.

【0015】[0015]

【発明の実施の形態】図1 は本発明のカメラの実施形態
の要部概略図である。本実施形態は本発明の測光装置を
一眼レフカメラに適用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of an embodiment of a camera according to the present invention. In the present embodiment, the photometric device of the present invention is applied to a single-lens reflex camera.

【0016】図1 において、1 は撮影レンズで便宜上2
枚レンズで示したが、実際はさらに多数のレンズから構
成している。2 は主ミラーで、ファインダ系観察状態と
撮影状態に応じて撮影光路へ斜設されあるいは退去され
る。3 はサブミラーで、主ミラー2 を透過した光束をカ
メラボディの下方へ向けて反射する。4 はシャッタ、5
は感光部材で、銀塩フィルムあるいはCCD やMOS 型等の
固体撮像素子あるいはビディコン等の撮像管より成り立
っている。
In FIG. 1, reference numeral 1 denotes a photographing lens for convenience.
Although shown as a single lens, it is actually composed of more lenses. Reference numeral 2 denotes a main mirror, which is inclined to the photographing optical path or retreated depending on the viewfinder observation state and the photographing state. Reference numeral 3 denotes a sub-mirror, which reflects a light beam transmitted through the main mirror 2 downward of the camera body. 4 is shutter, 5
Reference numeral denotes a photosensitive member, which is composed of a silver halide film, a solid-state imaging device such as a CCD or MOS type, or an imaging tube such as a vidicon.

【0017】6 は焦点検出ユニット (焦点検出手段) で
あり、結像面近傍に配置されたフィールドレンズ6a、反
射ミラー6b及び6c、2次結像レンズ6d、絞り6e、複数のCC
D からなるラインセンサ6f等から構成している。
Reference numeral 6 denotes a focus detection unit (focus detection means), which includes a field lens 6a, reflection mirrors 6b and 6c, a secondary imaging lens 6d, an aperture 6e, and a plurality of CCs arranged near the image plane.
And a line sensor 6f made of D.

【0018】本実施形態における焦点検出ユニット6 は
周知の位相差方式を用いており、図4 のファインダ視野
図に示すように、撮影画面内の7 個の測距領域(焦点検
出領域) 70〜76夫々の合焦状態を検出可能なように構成
している。
The focus detection unit 6 in the present embodiment uses a well-known phase difference method. As shown in the viewfinder view of FIG. 4, seven focus detection areas (focus detection areas) 70 to It is configured so that each of the 76 focused states can be detected.

【0019】7 は撮影レンズ1 の予定結像面に配置した
ピント板、8 はファインダ光路変更用のペンタプリズム
である。9 は結像レンズ、10はピント板7 に得られる被
写体像の輝度を測定する測光センサ (輝度検出手段)
で、結像レンズ9 はペンタプリズム8 内の反射光路を介
してピント板7 と測光センサ10を共役に関係付けてい
る。
Reference numeral 7 denotes a focusing plate arranged on a predetermined image forming plane of the photographing lens 1, and 8 denotes a pentaprism for changing a finder optical path. 9 is an image forming lens, 10 is a photometric sensor (luminance detecting means) for measuring the luminance of the subject image obtained on the focus plate 7.
The imaging lens 9 conjugately connects the focusing plate 7 and the photometry sensor 10 via the reflection optical path in the pentaprism 8.

【0020】図3 は測光センサ10の正面図である。又、
図4 はファインダ視野の説明図である。測光センサ10
は、図3 に示すようにの8 個の分割センサS0〜S7で構成
しており、図4 に示すようにピント板7 (これは撮影画
面に対応している) を分割センサS0〜S7に対応する8 個
の測光小領域50〜57に分割して各測光小領域毎の輝度を
検出する。 (なお、図4 中の測光小領域を示す線は説明
の便宜状描いた線であり、実際のファインダでは無い)
FIG. 3 is a front view of the photometric sensor 10. or,
FIG. 4 is an explanatory diagram of the viewfinder field. Photometric sensor 10
Consists of eight divided sensors S0 to S7 as shown in FIG. 3, and focus plate 7 (which corresponds to the shooting screen) is divided into divided sensors S0 to S7 as shown in FIG. The luminance is divided into eight corresponding photometric sub-regions 50 to 57 and the luminance of each photometric sub-region is detected. (Note that the line indicating the photometry small area in FIG. 4 is a line drawn for convenience of explanation, and is not an actual finder.)
.

【0021】なお、図4 に示すように、測距領域70、7
3、74はそれぞれ測光小領域50、51、52のほぼ重心に位
置するように光学的に設定している。また測距領域71、
72はそれぞれ隣り合う測光小領域50と51、50と52の境界
上に設定しており、さらに測距領域75は測光小領域53の
重心位置より下方、測光小領域50寄りに、又測距領域76
は測光小領域54の重心位置より上方、測光小領域50寄り
にそれぞれ偏心して設定している。
Note that, as shown in FIG.
3 and 74 are optically set so as to be located substantially at the centers of gravity of the photometric small areas 50, 51 and 52, respectively. Also, ranging area 71,
72 is set on the boundary between the adjacent photometric sub-regions 50 and 51 and 50 and 52, and the distance-measuring region 75 is located below the center of gravity of the photometric sub-region 53, closer to the photometric sub-region 50, and the distance is measured. Region 76
Are set eccentrically above the center of gravity of the photometric small area 54 and toward the photometric small area 50, respectively.

【0022】11はペンタプリズム8 の射出面後方に設置
した接眼レンズであり、撮影者の眼によるピント板7 の
観察に使用する。
Reference numeral 11 denotes an eyepiece provided behind the exit surface of the pentaprism 8, and is used for observing the focus plate 7 with the eyes of the photographer.

【0023】上記の主ミラー2 、ピント板7 、ペンタプ
リズム8 、接眼レンズ11等によってファインダ光学系を
構成している。
A finder optical system is constituted by the main mirror 2, the focusing plate 7, the pentaprism 8, the eyepiece 11, and the like.

【0024】21は明るい被写体の中でも視認できる高輝
度LED 、さらに22は測距領域 (測距点) の位置をパター
ン化したLCD(以下SI-LCDと記す)で、測距領域選択がな
された位置に相当するLCD パターンのみが透過状態とな
り、LCD 後方のLED21 から発せられた光はSI-LCDの前記
透過パターンを通過し、投光レンズ23、ライトガイドプ
リズム24を通じてピント板7 上に結像し、接眼レンズ11
を通して撮影者は選択された測距領域を視認することが
できる。つまり、図4 に示したファインダ視野図から分
かるように、測距領域70〜76のいずれかに対応する領域
がファインダ視野内で光り、選ばれた焦点検出領域を表
示するのである。
Reference numeral 21 denotes a high-brightness LED which can be visually recognized even in a bright subject, and reference numeral 22 denotes an LCD (hereinafter, referred to as SI-LCD) in which a position of a distance measuring area (ranging point) is patterned, and a distance measuring area is selected. Only the LCD pattern corresponding to the position is in a transmissive state, and the light emitted from the LED 21 behind the LCD passes through the transmissive pattern of the SI-LCD and forms an image on the focus plate 7 through the light projecting lens 23 and the light guide prism 24. And eyepiece 11
Through this, the photographer can visually recognize the selected ranging area. That is, as can be seen from the viewfinder view shown in FIG. 4, an area corresponding to any one of the distance measurement areas 70 to 76 is illuminated in the viewfinder view to display the selected focus detection area.

【0025】図4 中28はシャッタ速度表示、29は絞り値
表示のセグメント、30は撮影レンズ1 の合焦状態を示す
合焦マークである。図1 中の25はファインダ視野外に撮
影情報を表示するためのファインダ内LCD(以下F-LCD と
記す) で、照明用LED26 によって照明される。
In FIG. 4, reference numeral 28 denotes a shutter speed display, 29 denotes an aperture value display segment, and 30 denotes a focusing mark indicating the focusing state of the photographing lens 1. Reference numeral 25 in FIG. 1 denotes an LCD in the viewfinder (hereinafter, referred to as F-LCD) for displaying photographing information outside the field of view of the viewfinder.

【0026】上記F-LCD25 を透過した光は三角プリズム
27によって、図4 の25で示したようにファインダ視野外
に導かれ、撮影者は各種の撮影情報を知ることができ
る。
The light transmitted through the F-LCD 25 is a triangular prism.
By 27, the photographer is guided out of the finder field of view as shown by 25 in FIG. 4, and the photographer can know various photographing information.

【0027】図1 に戻って、31は撮影レンズ1 内に設け
た絞り、32は後述する絞り駆動回路111 を含む絞り駆動
装置、33はレンズ駆動用モータ、34は駆動ギヤ等から成
るレンズ駆動部材である。35はフォトカプラで、レンズ
駆動部材34に連動するパルス板36の回転を検知してレン
ズ焦点調節回路110 に伝えており、該焦点調節回路110
は、この情報とカメラ側からのレンズ駆動量の情報に基
づいて前記レンズ駆動用モータを所定量駆動し、撮影レ
ンズ1 を合焦位置に移動させるようになっている。37は
公知のカメラとレンズとのインターフェイスとなるマウ
ント接点である。
Returning to FIG. 1, reference numeral 31 denotes an aperture provided in the taking lens 1, reference numeral 32 denotes an aperture driving device including an aperture driving circuit 111 described later, reference numeral 33 denotes a lens driving motor, and reference numeral 34 denotes a lens driving unit including a driving gear and the like. It is a member. Reference numeral 35 denotes a photocoupler which detects the rotation of the pulse plate 36 interlocked with the lens driving member 34 and transmits the rotation to the lens focus adjustment circuit 110.
The lens drive motor is driven by a predetermined amount based on this information and information on the amount of lens drive from the camera side, and the photographing lens 1 is moved to the in-focus position. Reference numeral 37 denotes a mount contact which serves as an interface between a known camera and a lens.

【0028】図2 は本実施形態に内蔵している電気回路
のブロック図であり、図1 と同一のものは同一番号をつ
けている。
FIG. 2 is a block diagram of an electric circuit incorporated in the present embodiment, and the same components as those in FIG. 1 are denoted by the same reference numerals.

【0029】カメラ本体に内蔵されたマイクロコンピュ
ータの中央処理装置(以下CPU と記す)100 には視線検
出回路101 、測光回路102 、自動焦点検出回路103 、信
号入力回路104 、LCD 駆動回路105 、LED 駆動回路106
、IRED駆動回路107 、シャッター制御回路108 、モー
ター制御回路109 が接続されている。また撮影レンズ内
に配置された焦点調節回路110 、絞り制御回路111 とは
図1 で示したマウント接点37を介して信号の伝達がなさ
れる。
A central processing unit (hereinafter abbreviated as CPU) 100 of a microcomputer built in the camera body includes a line-of-sight detection circuit 101, a photometry circuit 102, an automatic focus detection circuit 103, a signal input circuit 104, an LCD drive circuit 105, and an LED. Drive circuit 106
, An IRED drive circuit 107, a shutter control circuit 108, and a motor control circuit 109. Further, signals are transmitted to the focus adjustment circuit 110 and the aperture control circuit 111 arranged in the taking lens via the mount contact 37 shown in FIG.

【0030】CPU100に付随したEEPROM100aは各種調整デ
ータを記憶する記憶機能を有している。
The EEPROM 100a attached to the CPU 100 has a storage function for storing various adjustment data.

【0031】前記測光回路102 は、前記測光センサ10か
ら送られてくる8 個の測光小領域の輝度信号を増幅後、
対数圧縮、A/D 変換し、各センサの輝度情報としてCPU1
00に送信する。
The photometric circuit 102 amplifies the luminance signals of the eight photometric small areas sent from the photometric sensor 10,
Logarithmic compression, A / D conversion, and CPU1
Send to 00.

【0032】ラインセンサ6fは、ファインダ画面内の7
個の測距領域70〜76に対応した7 組のラインセンサCCD-
0 ,CCD-1 〜CCD-6 によって構成される公知のCCD ライ
ンセンサである。自動焦点検出回路103 はこれらライン
センサ6fから得た電圧をA/D変換し、CPU100に送る。
The line sensor 6f is connected to the 7 in the finder screen.
7 sets of line sensor CCD- corresponding to each ranging area 70-76
0, a known CCD line sensor composed of CCD-1 to CCD-6. The automatic focus detection circuit 103 A / D converts the voltage obtained from the line sensor 6f and sends the voltage to the CPU 100.

【0033】SW-1(12)はレリーズ釦の第一ストロークで
ONし、測光、AF、視線検出動作を開始する測光スイッ
チ、SW-2(13)はレリーズ釦の第二ストロークでONするレ
リーズスイッチ、SW-DIAL1とSW-DIAL2(15)は、不図示の
電子ダイヤル内に設けたダイヤルスイッチで、信号入力
回路104 のアップダウンカウンターに入力され、電子ダ
イヤルの回転クリック量をカウントする。
SW-1 (12) is the first stroke of the release button
SW-2 (13) is a release switch that turns on with the second stroke of the release button, and SW-DIAL1 and SW-DIAL2 (15) are not shown. A dial switch provided in the electronic dial is input to an up / down counter of the signal input circuit 104 and counts the amount of rotation click of the electronic dial.

【0034】これらスイッチの信号が信号入力回路104
に入力されデーターバスによってCPU100に送信される。
The signals of these switches are applied to the signal input circuit 104
And transmitted to the CPU 100 via the data bus.

【0035】又、14は測距領域選択スイッチ(SW-AF) で
あり、ONすれば測距領域を手動で入力することが出来、
OFF すれば測距領域を自動的に選択する。測距領域選択
スイッチ14等は検出領域選択手段の一要素を構成してい
る。
Reference numeral 14 denotes a distance measurement area selection switch (SW-AF). When the switch is turned on, a distance measurement area can be manually input.
If it is turned off, the ranging area is automatically selected. The ranging area selection switch 14 and the like constitute one element of the detection area selection means.

【0036】105 は液晶表示素子LCD を表示駆動させる
ための公知のLCD 駆動回路で、CPU100からの信号に従い
絞り値、シャッタ秒時、設定した撮影モード等の表示を
不図示の外部モニタ用LCD とファインダ内のF-LCD25 に
表示し、又同時にスーパーインポーズ用のSI-LCD22を制
御して測距検出点マークを表示する。LED 駆動回路106
は、照明用LED(F-LED)26とスーパーインポーズ用LED21
(SI-LED) を点灯、点滅制御する。
Reference numeral 105 denotes a well-known LCD drive circuit for driving the liquid crystal display element LCD to display an aperture value, a shutter time, a set shooting mode, and the like according to a signal from the CPU 100. This is displayed on the F-LCD 25 in the viewfinder, and at the same time, the SI-LCD 22 for superimpose is controlled to display the distance measurement detection point mark. LED drive circuit 106
Is LED for lighting (F-LED) 26 and LED 21 for superimpose
(SI-LED) is turned on and off.

【0037】シャッタ制御回路108 は、通電すると先幕
を走行させるマグネットMGー1と、後幕を走行させるマグ
ネットMG-2を制御し、シャッタを開いて感光部材に所定
光量を露光させる。モータ制御回路109 は、フィルムの
巻き上げ、巻戻しを行なうモータM1と主ミラー2 及びシ
ャッタ4 のチャージを行なうモータM2を制御する。上記
シャッタ制御回路108 、モータ制御回路109 によって一
連のカメラのレリーズシーケンスが動作する。
The shutter control circuit 108 controls the magnet MG-1 for running the front curtain and the magnet MG-2 for running the rear curtain when energized, and opens the shutter to expose the photosensitive member to a predetermined amount of light. The motor control circuit 109 controls a motor M1 for winding and rewinding the film and a motor M2 for charging the main mirror 2 and the shutter 4. The shutter control circuit 108 and the motor control circuit 109 operate a series of camera release sequences.

【0038】図5 は本実施形態の動作のフローチャート
である。これによって本実施形態のカメラ全体の動作説
明を行う。ステッフ゜ #100: カメラを不作動状態から所定の撮影モード
に設定すると(本実施形態ではシャッター優先AEに設定
された場合をもとに説明する)カメラの電源がONされ
る。ステッフ゜ #101: カメラはレリーズ釦が押し込まれてスイッ
チSW1(12) がONされるまで待機し、レリーズ釦が押し込
まれスイッチSW1 がONされればステッフ゜#102 へ進む。ステッフ゜ #102: スイッチSW1 がONされたことを信号入力回
路104 が検知すると、CPU100はカメラに装着されたレン
ズとの間で相互通信を行い、カメラが測光や、AFを実行
するのに必要なレンズ情報、例えば、撮影レンズの開放
FNO.、ベストピント位置等の情報がカメラのメモリに転
送される。またここで7 組のラインセンサCCD-0 ,CCD-
1 ,〜CCD-6 は被写界光の蓄積動作を開始し、現時点で
の像ズレ量(デフォーカス量)を測定する。ステッフ゜ #103: 次に測距を行うために、測距領域選択スイ
ッチ14が自動モードになっているか、手動モードになっ
ているかの設定確認、即ち測距領域が自動選択になって
いるか手動選択になっているかの確認を行い、自動選択
の場合はステッフ゜#104 へ進み、手動選択の場合はステッフ゜#10
5 へ進む。ステッフ゜ #104: 前記7 個の測距領域における像ズレ量を基
に、測距領域自動選択サブルーチンによって1 つの測距
領域を選択する。測距領域自動選択のアルゴリズムとし
てはいくつかの方法が考えられるが、多点AFカメラでは
公知となっている中央測距領域に重み付けを置いた近点
優先アルゴリズムが有効である。ステッフ゜ #105: 測距領域選択スイッチ14をONさせておくこ
とで、測距領域選択が手動モードに入り、撮影者がスイ
ッチダイヤル15の操作で測距領域7 個の内の1 個を任意
に選択できる。ステッフ゜ #106: 上記のごとくカメラまかせの測距領域自動
選択あるいは撮影者による測距領域手動入力によって1
つの測距領域が確定する。ステッフ゜ #107: 確定された測距領域において、自動焦点検
出回路103 は焦点検出演算を行い、測距領域が測距可能
であるか否かを判定し、不能であればCPU100はLCD 駆動
回路105 に信号を送ってファインダー内LCD25 の合焦マ
ーク30を点滅させ、測距がNGであることを撮影者に警告
し、一方、測距が可能であれば、ステッフ゜#108 へ進む。ステッフ゜ #108: 所定のアルゴリズムで選択された測距領域
の焦点調節状態が合焦でなければ、CPU100はレンズ焦点
調節回路110 に信号を送って所定量撮影レンズ1を駆動
して合焦動作を行う。ステッフ゜ #109: 合焦動作後、撮影レンズ1 が合焦している
か否かの判定を行う。所定の測距点において撮影レンズ
1 が合焦していたならば、CPU100はLCD 駆動回路105 に
信号を送ってファインダー内LCD25 の合焦マーク30を点
灯させるとともに、LED 駆動回路106 にも信号を送って
合焦している測距領域に対応したスーパーインポーズ用
LED21 を点灯させ、該測距領域を光らせることで合焦表
示する。そしてステッフ゜#110 へ進む。ステッフ゜ #110: 同時にCPU100は測光回路102 に信号を送信
して測光を行なわせる。この時合焦した測距領域 (選択
した測距領域) とこれに関係する測光小領域との位置関
係によって異なる測光演算を行って露出値を決定する。
この測光演算は本発明の最も重要な動作であるが、この
詳細は後述する。
FIG. 5 is a flowchart of the operation of this embodiment. Thus, the operation of the entire camera according to the present embodiment will be described. Step # 100: When the camera is set to a predetermined shooting mode from a non-operation state (this embodiment will be described based on a case where the shutter priority AE is set), the power of the camera is turned on. Step # 101: The camera waits until the release button is pressed and the switch SW1 (12) is turned on, and if the release button is pressed and the switch SW1 is turned on, the camera proceeds to step # 102. Step # 102: When the signal input circuit 104 detects that the switch SW1 has been turned on, the CPU 100 performs mutual communication with the lens mounted on the camera, and the CPU 100 performs necessary operations for photometry and AF. Lens information, e.g. opening the taking lens
Information such as FNO. And best focus position is transferred to the camera memory. Here, seven sets of line sensors CCD-0 and CCD-
1, to CCD-6 start the accumulation operation of the field light and measure the image shift amount (defocus amount) at the present time. Step # 103: In order to perform the next distance measurement, check whether the distance measurement area selection switch 14 is in the automatic mode or the manual mode, that is, manually select whether the distance measurement area is automatically selected. Check if the selection is automatic, proceed to step # 104 for automatic selection, or to step # 10 for manual selection.
Proceed to 5. Step # 104: One ranging area is selected by a ranging area automatic selection subroutine based on the image shift amounts in the seven ranging areas. Several methods can be considered as an algorithm of the automatic selection of the ranging area, but a near-point priority algorithm in which weighting is applied to the central ranging area, which is known for a multi-point AF camera, is effective. Step # 105: By turning on the ranging area selection switch 14, the ranging area selection enters the manual mode, and the photographer can operate the switch dial 15 to arbitrarily select one of the 7 ranging areas. You can choose. Step # 106: As described above, the camera automatically selects the focus detection area or allows the photographer to manually input the focus detection area.
Two ranging areas are determined. Step # 107: In the determined ranging area, the automatic focus detection circuit 103 performs a focus detection calculation to determine whether or not the ranging area can be measured. To flash the focus mark 30 on the LCD 25 in the viewfinder to warn the photographer that the distance measurement is NG. If distance measurement is possible, the process proceeds to step # 108. Step # 108: If the focus adjustment state of the focusing area selected by the predetermined algorithm is not in focus, the CPU 100 sends a signal to the lens focus adjustment circuit 110 to drive the photographing lens 1 by a predetermined amount to perform the focusing operation. Do. Step # 109: After the focusing operation, it is determined whether or not the photographing lens 1 is in focus. Shooting lens at the specified AF point
If 1 is in focus, the CPU 100 sends a signal to the LCD drive circuit 105 to turn on the focus mark 30 on the LCD 25 in the finder, and also sends a signal to the LED drive circuit 106 to measure the focus. For superimpose corresponding to the distance area
The LED 21 is turned on, and the focusing area is displayed by illuminating the distance measurement area. Then, the process proceeds to step # 110. Step # 110: At the same time, the CPU 100 transmits a signal to the photometric circuit 102 to perform photometry. At this time, the exposure value is determined by performing different photometric calculations depending on the positional relationship between the focused ranging area (the selected ranging area) and the related photometric small area.
This photometric calculation is the most important operation of the present invention, and the details will be described later.

【0039】本実施形態の場合、上記測光演算結果とし
てセグメントと小数点を用いて絞り値29である"5,6"を
表示している。ステッフ゜ #111: 次に撮影者が該測距点位置でのピント状態
と測光値を容認しているか否かの判定をSW1 のON,OFF
で判定する。ステッフ゜ #112: レリーズ釦が押し込まれてスイッチSW2 がO
Nされているかどうかの判定を行ない、スイッチSW2 がO
FF 状態であれば再びスイッチSW1 の状態の確認を行な
い、またスイッチSW2 がONされたならばステッフ゜#113 へ進
む。ステッフ゜ #113: CPU100はシャッター制御回路108 、モータ
ー制御回路109 、絞り駆動回路111 にそれぞれ信号を送
信する。まずM2に通電し主ミラー2 をアップさせ、絞り
31を絞り込んだ後、MG1 に通電しシャッター4 の先幕を
開放する。絞り31の絞り値及びシャッター4 のシャッタ
ースピードは、前記測光回路102 にて検知された露出値
とフィルム5 の感度から決定される。所定のシャッター
秒時(1/125 秒)経過後MG2 に通電し、シャッター4 の
後幕を閉じる。フィルム5 への露光が終了すると、M2に
再度通電し、ミラーダウン、シャッターチャージを行な
うとともにM1にも通電し、フィルムのコマ送りを行な
い、一連のシャッターレリーズシーケンスの動作が終了
する。
In the case of this embodiment, "5, 6", which is the aperture value 29, is displayed using the segment and the decimal point as the photometric calculation result. Step # 111: Next, it is determined whether the photographer has accepted the focus state and the photometric value at the distance measuring point position by turning ON / OFF of SW1.
Is determined. Step # 112: Release button is depressed and switch SW2 is set to O
Judgment as to whether the switch is set to N
If the switch is in the FF state, the state of the switch SW1 is checked again. If the switch SW2 is turned on, the process proceeds to step # 113. Step # 113: The CPU 100 transmits signals to the shutter control circuit 108, the motor control circuit 109, and the aperture drive circuit 111, respectively. First, energize M2 to raise main mirror 2 and stop
After narrowing down 31, MG1 is energized and the front curtain of shutter 4 is opened. The aperture value of the aperture 31 and the shutter speed of the shutter 4 are determined from the exposure value detected by the photometric circuit 102 and the sensitivity of the film 5. After a predetermined shutter time (1/125 second) has elapsed, power is supplied to MG2 and the rear curtain of shutter 4 is closed. When the exposure of the film 5 is completed, power is supplied to M2 again, mirror down and shutter charge are performed, and power is supplied to M1 to feed the film, thereby completing a series of shutter release sequence operations.

【0040】その後ステッフ゜#101 へ帰り、再びスイッチSW
1 がONされるまで待機する。
Thereafter, returning to step # 101, the switch SW
Wait until 1 turns ON.

【0041】図6 は測光演算(ステッフ゜#110) のフローチャ
ートである。これによって本実施形態中の測光演算につ
いて詳しく説明する。ステッフ゜ #200: CPU100は測光演算を実行するに際して、ま
ず最初に測光センサ10の測光回路から送られて来る前記
8 個の分割センサS0〜S7の出力(被写体輝度生信号)を
取り込み、夫々の出力のAD変換を行う。ステッフ゜ #201: 次に、前記ステップ#102のレンズ通信で得
られた撮影レンズ1 のレンズ情報である開放FNO.、周辺
光量落ち等のデータを用いて、前記AD変換された分割セ
ンサ出力に補正を行い、撮影被写体の正しい輝度信号に
変換する。 (以降、これら各分割センサS0〜S7センサか
らの出力補正後の輝度信号をe0〜e7とする。)ステッフ゜ #202: この時、前記ステップ#106にて測距領域自
動選択若しくは手動入力の結果により測距領域70〜76の
うちの主被写体が存在する一つが確定している。そこ
で、確定した測距領域に応じて3 種類の測光演算I,II,I
IIの内の1 つの測光演算を行うので、先ず測距領域を判
定し、それによって3 つのステッフ゜に分かれる。ステッフ゜#20
3: もし、測距領域70、73、74のいづれか、つまり測光
小領域の重心位置にある測距領域が選択された場合、CP
U100は前記被写体輝度信号e0〜e7を用いて測光演算I を
実行する。ステッフ゜ #204: もし、測距領域71、72のいづれか、つまり
隣り合う2 個の測光小領域の境界上にある測距領域が選
択された場合、CPU100は測光演算IIを実行する。ステッフ゜ #205: もし、測距領域75、76のいづれか、つまり
測光小領域の重心位置から偏心した位置にある測距領域
が選択された場合、CPU100は測光演算III を実行する。ステッフ゜ #206: 上記のごとく選択された測距領域に対応し
て異なった測光演算を行うことで最適な露出値を決定す
ることができる。
FIG. 6 is a flowchart of the photometric calculation (step # 110). Thus, the photometric calculation in the present embodiment will be described in detail. Step # 200: When the CPU 100 executes the photometric calculation, first, the CPU 100 sends the photometric circuit from the photometric circuit of the photometric sensor 10.
The outputs (raw object luminance signals) of the eight divided sensors S0 to S7 are fetched, and AD conversion of each output is performed. Step # 201: Next, using the lens information of the photographing lens 1 obtained by the lens communication in step # 102, such as the open FNO. Is performed to convert to a correct luminance signal of the photographing subject. (Hereinafter, these luminance signals after the output correction from the divided sensor S0~S7 sensor and e 0 ~e 7.) Stiff ° # 202: this time, the distance measuring area automatic selection or manual input at the step # 106 As a result, one of the ranging areas 70 to 76 where the main subject exists is determined. Therefore, three types of photometric calculations I, II, I
Since one of the photometric operations in II is performed, the distance measurement area is determined first, and the process is divided into three steps. Step # 20
3: If any of the distance measurement areas 70, 73, or 74, that is, the distance measurement area at the center of gravity of the
U100 performs photometric calculation I using the subject luminance signal e 0 to e 7. Step # 204: If any one of the distance measurement areas 71 and 72, that is, a distance measurement area on the boundary between two adjacent light measurement small areas is selected, the CPU 100 executes the photometry calculation II. Step # 205: If any one of the distance measurement areas 75 and 76, that is, a distance measurement area that is eccentric from the center of gravity of the small photometry area is selected, the CPU 100 executes the photometry calculation III. Step # 206: An optimal exposure value can be determined by performing different photometric calculations in accordance with the distance measurement area selected as described above.

【0042】以下、上記の3 種類の測光演算について説
明する。先ず、測距領域73が選択された場合を例にとっ
て測光演算I について説明を行う。
Hereinafter, the three types of photometric calculation will be described. First, the photometric calculation I will be described by taking a case where the distance measurement area 73 is selected as an example.

【0043】図3 に示す測光センサの各分割センサの面
積比率は以下の通りである。
The area ratio of each divided sensor of the photometric sensor shown in FIG. 3 is as follows.

【0044】(S0,S1,S2):(S3,S4):(S5,S6):S7=3:2:6:16 従って、もし被写体を完全平均測光するとしたら、各分
割センサS0〜S7からの輝度信号e0〜e7を用いて以下の式
で演算を行えば良い。
(S0, S1, S2) :( S3, S4) :( S5, S6): S7 = 3: 2: 6: 16 Therefore, if the subject is to be fully averaged, the divided sensors S0 to S7 The calculation may be performed by the following equation using the luminance signals e 0 to e 7 .

【0045】 Eav={3(e0+e1+e2)+2(e3+e4)+6(e5+e6)+16e7}/41 (単位:BV) しかしながら、本発明では選んだ測距領域に応じて重み
付け測光演算をする合焦領域重点測光を行う。
Eav = {3 (e 0 + e 1 + e 2 ) +2 (e 3 + e 4 ) +6 (e 5 + e 6 ) + 16e 7 } / 41 (unit: BV) However, the present invention Then, focus area weighted photometry for performing weighted photometry calculation according to the selected ranging area is performed.

【0046】測距領域70、73、74のいずれかが選択され
た場合の測光演算I について、測距領域73が選択された
として説明する。まず測距領域73を含む測光小領域51に
対応する分割センサS1からの輝度信号e1より、 A73=e1 を定義する。
The photometric operation I when any one of the distance measurement areas 70, 73, 74 is selected will be described assuming that the distance measurement area 73 has been selected. First, A 73 = e 1 is defined from the luminance signal e 1 from the division sensor S1 corresponding to the photometry small area 51 including the distance measurement area 73.

【0047】次に分割センサS1以外のセンサ部の輝度信
号については前記のごとく面積比を考慮して求めた平均
値B73 を以下のごとく定義する。
Next, as for the luminance signals of the sensor units other than the divided sensor S1, the average value B73 obtained in consideration of the area ratio as described above is defined as follows.

【0048】 B73={3(e0+e2)+2(e3+e4)+6(e5+e6)+16e7}/38 さらに、測距領域73に主被写体が存在するとの仮定か
ら、求まったA73,B73 の値に対しA73 に重みを置いた次
式の重み付け測光演算を行って測光演算値として露出値
E73 を求める。
B 73 = {3 (e 0 + e 2 ) +2 (e 3 + e 4 ) +6 (e 5 + e 6 ) + 16e 7 } / 38 Further, the main subject exists in the distance measurement area 73. Based on this assumption, the obtained values of A 73 and B 73 are subjected to a weighted photometric calculation of the following equation with a weight on A 73 , and an exposure value is calculated as a photometric calculated value.
Ask for E73.

【0049】E73=(2A73+B73)/3+α … ここで、αは逆光補正用の露出補正値であり、図7 に示
すように上記A、B の値からB-A を求め、この値(逆光
度)に応じて補正量αを決定する。
E 73 = (2A 73 + B 73 ) / 3 + α where α is an exposure compensation value for backlight compensation, and BA is obtained from the above A and B values as shown in FIG. The correction amount α is determined according to this value (backlight intensity).

【0050】また、測距領域70が選択された場合も上と
同様に以下の式による重み付け測光演算 (測光演算I)を
実行し、露出値E70 を決定する。
Also, when the distance measurement area 70 is selected, a weighted photometric operation (photometric operation I) by the following equation is executed in the same manner as above, and the exposure value E 70 is determined.

【0051】 A70=e0 B70={3(e1+e2)+2(e3+e4)+6(e5+e6)+16e7}/38 E70= (2A70+B70)/3+α … 次に、測距領域71、72のいづれか、つまり2 個の測光小
領域の境界上にある測距領域が選択された場合の測光演
算IIについて、測距領域71が選択された場合を例にとっ
て説明する。測距領域71はファインダ光学系上、測光小
領域50と51の境界上に存在しているために、測光小領域
50、あるいは51にそれぞれ重み付けを置いた測光演算
(測距領域70、あるいは73が選択された状況)のいずれ
かを選んで露出演算値として用いると、主被写体に対す
る測光誤差が大きくなることが考えられる(特に主被写
体が小さい場合)。そこでこの場合は測光小領域50と51
夫々について夫々重み付けを置いた測光演算 (重み付け
測光演算) を別個に行って夫々の測光演算値E70 とE73
とを求め、次いでこれら2 つの測光演算値の平均値を求
め、これを測距領域71が選択された場合の露出値E71
して用いる。
A 70 = e 0 B 70 = {3 (e 1 + e 2 ) +2 (e 3 + e 4 ) +6 (e 5 + e 6 ) + 16e 7 } / 38 E 70 = (2A 70 + B 70 ) / 3 + α... Next, regarding one of the distance measurement areas 71 and 72, that is, the light measurement calculation II when the distance measurement area on the boundary between the two light measurement small areas is selected, the distance measurement area The case where 71 is selected will be described as an example. Since the distance measurement area 71 exists on the viewfinder optical system and on the boundary between the light measurement small areas 50 and 51, the light measurement small area
If one of the photometric calculations (weighting area 70 or 73 is selected) weighted to 50 or 51 is selected and used as the exposure calculation value, the photometric error for the main subject may increase. (Especially when the main subject is small). Therefore, in this case, the photometric small areas 50 and 51
The photometric calculation (weighted photometric calculation) with weighting is performed separately for each, and the respective photometric calculation values E 70 and E 73
Then, an average value of these two photometric operation values is obtained, and this is used as the exposure value E 71 when the distance measurement area 71 is selected.

【0052】つまり、上記式、を用い、 E71=(E70+E73)/2 ={2(A70+A73)+(B70+B73)}/6 によって露出値E71 を決定する。That is, using the above equation, the exposure value E 71 is obtained by E 71 = (E 70 + E 73 ) / 2 = {2 (A 70 + A 73 ) + (B 70 + B 73 )} / 6. decide.

【0053】次ぎに、測距領域75、76のいづれか、つま
り測光小領域の重心位置から偏心した位置にある測距領
域が選択された場合の測光演算III について、測距領域
75が選択された場合を例にとって説明を行う。
Next, in one of the distance measurement areas 75 and 76, that is, in the photometry calculation III when a distance measurement area located at a position eccentric from the center of gravity of the small photometry area is selected, the distance measurement area III is used.
The description will be made by taking the case where 75 is selected as an example.

【0054】測距領域75はファインダ視野の見かけ上、
測光小領域53の重心位置から測光小領域50方向の境界線
までの半分の距離だけズレた位置に存在している。
The distance measurement area 75 is apparently
It exists at a position shifted by a half distance from the position of the center of gravity of the photometric small area 53 to the boundary in the direction of the photometric small area 50.

【0055】この場合の測光演算は、測光小領域53と50
夫々について夫々重み付け測光演算を別個に行って夫々
の測光演算値を求め、さらにここで得られた2 つの測光
演算値に重み付けを行って測距領域75が選択された場合
の露出値として用いるのである。
In this case, the photometric calculation is performed in the photometric small areas 53 and 50.
Since the weighted photometric calculation is performed separately for each of them, the respective photometric calculated values are obtained, and the two photometric calculated values obtained here are weighted and used as the exposure values when the ranging area 75 is selected. is there.

【0056】具体的にはまず最初に、測光小領域53につ
いて重み付け測光演算を行って得た測光演算値ES3 を前
記測光演算I と同じ考えで次式より求める。
More specifically, first, a photometric operation value E S3 obtained by performing weighted photometric operation on the photometric small area 53 is obtained from the following equation in the same manner as the photometric operation I.

【0057】 AS3=e3 BS3={3(e0+e1+e2)+2e4+6(e5+e6)+16e7}/39 ES3= (2AS3+BS3)/3+α … 又、測光小領域50について式による重み付け測光演算
をおこなって測光演算値E70 を求める。
A S3 = e 3 B S3 = {3 (e 0 + e 1 + e 2 ) + 2e 4 +6 (e 5 + e 6 ) + 16e 7 } / 39 E S3 = (2A S3 + B S3 ) / 3 + α ... also, the photometric small region 50 by performing weighted photometric calculation by the formula determining the photometric calculation value E 70.

【0058】次ぎに、上記の2 つの測光演算値ES3 とE
70 を用いて測距領域75の位置に対する重み付け計算を
行う。即ち、 (測光小領域50重点の測光演算値): (測光
小領域53重点の測光演算値) =1:2 として、測距領域75
が選択された場合の露出値E75を次式より決定する。
Next, the above two photometric operation values E S3 and E S3
Using 70 , weighting calculation is performed on the position of the distance measurement area 75. That is, assuming that (photometric operation value of 50 light-weighted small area): (photometric operation value of 53 light-weighted small area) = 1: 2, distance measurement area
The exposure value E 75 when is selected is determined by the following equation.

【0059】E75=(E70+2ES3)/3 本実施形態は、撮影画面内を8 つの測光小領域に分割し
て各測光小領域毎の輝度を検出する測光センサと、該撮
影画面内に設定した7 つの測距領域夫々の合焦状態を検
出する焦点検出ユニットを有し、該測距領域がこれに関
係する測光小領域に対して位置する状態は測光小領域の
重心に、又2 つの測光小領域の境界上に、又測光小領域
の重心から或る方向へ偏心している、の3 つの場合があ
り、検出領域選択手段によって該複数の測距領域のうち
主被写体がある一つを選択し、選択した測距領域とこれ
に関係する測光小領域との位置関係によって測光演算I,
II,IIIの内のいずれかの測光演算を行って露出値を決定
することによって、主被写体が複数の測距領域のいづれ
に存在していても、更に主被写体の合焦動作を行う測距
領域が該領域を含む測光小領域の重心位置に配置されて
いなくとも、分割数が8 個と比較的少ない分割センサよ
り成る測光センサを用いて、主被写体に重点を置き更に
撮影画面全体を適切に考慮した最適な測光を行うことが
可能なカメラとなっている。
E 75 = (E 70 + 2E S3 ) / 3 In the present embodiment, a photometric sensor that divides the photographic screen into eight small photometric areas and detects the luminance of each small photometric area, Has a focus detection unit that detects the in-focus state of each of the seven ranging areas set within, and the state in which the ranging area is located relative to the photometry sub-area related thereto is located at the center of gravity of the photometry sub-area, In addition, there are three cases: on the boundary between the two photometry sub-regions, and eccentric in a certain direction from the center of gravity of the photometry sub-regions. One is selected, and the photometric operation I, is determined by the positional relationship between the selected ranging area and the related photometric sub-area.
Distance measurement that focuses on the main subject even if the main subject is present in any of the multiple distance measurement areas by determining the exposure value by performing one of the photometric calculations II and III Even if the area is not located at the center of gravity of the photometric small area including the area, the number of divisions is 8 and the number of divisions is relatively small. It is a camera that can perform optimal photometry in consideration of the above.

【0060】なお、上記の実施形態では7 つの測距領域
に対して所定の測光演算I 又はII又はIII を行うことを
予め定めているが、測距領域の一つを選んだ後にその測
距領域に応じて或るアルゴリズムによって重み付け測光
演算の重みを決定するようにしても良い。
In the above-described embodiment, the predetermined photometric operation I, II or III is predetermined for the seven distance measurement areas. However, after one of the distance measurement areas is selected, the distance measurement is performed. The weight of the weighted photometric calculation may be determined by a certain algorithm according to the area.

【0061】[0061]

【発明の効果】本発明は、撮影画面内を複数の測光小領
域に分割して各測光小領域毎の輝度を検出する輝度検出
手段と、該撮影画面内に設定した複数の焦点検出領域夫
々の合焦状態を検出する焦点検出手段を有するカメラに
おいて、該焦点検出領域がこれに関係する測光小領域に
対して位置する状態は複数あり、検出領域選択手段によ
って該複数の焦点検出領域の一つを選択し、該選択した
焦点検出領域とこれに関係する測光小領域との位置状態
によって異なる測光演算を行って露出値を決定すること
によって、主被写体が複数の測距領域のいづれに存在し
ていても、更に主被写体の合焦動作を行う測距領域が該
領域を含む測光小領域の重心位置に配置されていなくと
も、分割数が比較的少ない分割センサより成る測光セン
サを用いて、主被写体に重点を置き更に撮影画面全体を
適切に考慮した最適な測光を行うカメラを達成する。
As described above, according to the present invention, there are provided a luminance detecting means for dividing the photographing screen into a plurality of photometric small areas and detecting the luminance of each of the photometric small areas, and a plurality of focus detecting areas set in the photographing screen, respectively. In a camera having focus detection means for detecting the in-focus state, there are a plurality of states in which the focus detection area is located with respect to the photometric small area related thereto, and the detection area selection means selects one of the plurality of focus detection areas. The main subject is present in any of the plurality of distance measurement areas by selecting one of the focus detection areas and performing a different photometry operation depending on the position state of the selected focus detection area and the related photometry small area to determine the exposure value. Even if the distance measurement area for performing the focusing operation of the main subject is not disposed at the position of the center of gravity of the light measurement small area including the area, the number of divisions is relatively small. , Chief coat To achieve the camera for optimal photometric entire further imaging screen focus was appropriately considered the body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のカメラの実施形態の要部概略図FIG. 1 is a schematic view of a main part of an embodiment of a camera according to the present invention.

【図2】 実施形態が内蔵している電気回路のブロック
FIG. 2 is a block diagram of an electric circuit included in the embodiment.

【図3】 実施形態の測光センサの正面図FIG. 3 is a front view of the photometric sensor according to the embodiment;

【図4】 実施形態のファインダ視野の説明図FIG. 4 is an explanatory diagram of a finder visual field according to the embodiment;

【図5】 実施形態の動作のフローチャートFIG. 5 is a flowchart of an operation according to the embodiment;

【図6】 実施形態の測光演算のフローチャートFIG. 6 is a flowchart of photometry calculation according to the embodiment.

【図7】 露出補正値の説明図FIG. 7 is an explanatory diagram of an exposure correction value.

【符号の説明】[Explanation of symbols]

1 :撮影レンズ 2 :主ミラー 3 :サブミラー 4 :シャッタ 5 :感光部材 6 :焦点検出ユニット 6f:イメージセンサ 7 :ピント板 8 :ペンタプリズム 9 :結像レンズ 10 :測光センサ 11 :接眼レンズ 50 〜57:測光小領域 70 〜76:測距領域 100 :CPU 102 :測光回路 103 :焦点検出回路 S0〜S6 :測光センサを構成する分割センサ 1: Photographic lens 2: Main mirror 3: Submirror 4: Shutter 5: Photosensitive member 6: Focus detection unit 6f: Image sensor 7: Focusing plate 8: Pentaprism 9: Imaging lens 10: Photometric sensor 11: Eyepiece lens 50 ~ 57: Photometry small area 70 to 76: Distance measurement area 100: CPU 102: Photometry circuit 103: Focus detection circuit S0 to S6: Split sensors constituting the photometry sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 撮影画面内を複数の測光小領域に分割し
て各測光小領域毎の輝度を検出する輝度検出手段と、該
撮影画面内に設定した複数の焦点検出領域夫々の合焦状
態を検出する焦点検出手段を有するカメラにおいて、 該焦点検出領域がこれに関係する測光小領域に対して位
置する状態は複数あり、検出領域選択手段によって該複
数の焦点検出領域の一つを選択し、該選択した焦点検出
領域とこれに関係する測光小領域との位置状態によって
異なる測光演算を行って露出値を決定することを特徴と
するカメラ。
1. A luminance detecting means for dividing the inside of a photographing screen into a plurality of photometric sub-regions and detecting the luminance of each photometric sub-region, and a focus state of each of the plurality of focus detecting regions set in the photographing screen. In a camera having focus detection means for detecting the position, there are a plurality of states in which the focus detection area is located with respect to the photometric small area related thereto, and one of the plurality of focus detection areas is selected by the detection area selection means. A camera which performs different photometric calculations depending on the position state of the selected focus detection area and the related photometric small area to determine an exposure value.
【請求項2】 撮影画面内を複数の測光小領域に分割し
て各測光小領域毎の輝度を検出する輝度検出手段と、該
撮影画面内に設定した複数の焦点検出領域夫々の合焦状
態を検出する焦点検出手段を有するカメラにおいて、 検出領域選択手段によって該複数の焦点検出領域の一つ
を選択し、該選択した焦点検出領域が隣り合う測光小領
域の境界上に存在する場合、該隣り合う測光小領域夫々
について夫々重み付け測光演算を行って夫々の測光演算
値を求め、該隣り合う測光小領域夫々の測光演算値を利
用して露出値を決定することを特徴とするカメラ。
2. A luminance detecting means for dividing the photographing screen into a plurality of photometric sub-regions and detecting the luminance of each photometric sub-region, and a focusing state of each of the plurality of focus detecting regions set in the photographing screen. In a camera having a focus detection means for detecting the focus detection area, one of the plurality of focus detection areas is selected by a detection area selection means, and when the selected focus detection area exists on a boundary between adjacent photometric small areas, A camera characterized in that a weighted photometric operation is performed for each of adjacent photometric sub-regions to obtain respective photometric operation values, and an exposure value is determined using the photometric operation values of each of the adjacent photometric sub-regions.
【請求項3】 撮影画面内を複数の測光小領域に分割し
て各測光小領域毎の輝度を検出する輝度検出手段と、該
撮影画面内に設定した複数の焦点検出領域夫々の合焦状
態を検出する焦点検出手段を有するカメラにおいて、 検出領域選択手段によって該複数の焦点検出領域の一つ
を選択し、該選択した焦点検出領域が該焦点検出領域を
含む測光小領域の重心より或る方向に偏心して位置して
いる場合、該焦点検出領域を含む測光小領域と該焦点検
出領域の偏心方向にある少なくとも一つの測光小領域夫
々について夫々重み付け測光演算を行って夫々の測光演
算値を求め、これらの測光小領域の測光演算値を利用し
て露出値を決定することを特徴とするカメラ。
3. A luminance detecting means for dividing the photographing screen into a plurality of photometric sub-regions and detecting the luminance of each photometric sub-region, and a focus state of each of the plurality of focus detecting regions set in the photographing screen. Wherein one of the plurality of focus detection areas is selected by the detection area selection means, and the selected focus detection area is located at a distance from the center of gravity of the photometric small area including the focus detection area. In the case of being located eccentrically in the direction, a weighted photometric calculation is performed on each of the photometric small area including the focus detection area and at least one photometric small area in the eccentric direction of the focus detection area, and the respective photometric calculation values are calculated. A camera which determines the exposure value by using the photometric operation values of these photometric small areas.
【請求項4】 前記測光演算値は前記焦点検出領域を含
む前記測光小領域内における該焦点検出領域の位置に応
じてさらに重み付けを行って露出値を決定することを特
徴とする請求項3のカメラ。
4. The exposure value is determined by further weighting the photometric operation value in accordance with the position of the focus detection area in the small photometry area including the focus detection area. camera.
JP35446396A 1996-12-19 1996-12-19 Camera Withdrawn JPH10186443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35446396A JPH10186443A (en) 1996-12-19 1996-12-19 Camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35446396A JPH10186443A (en) 1996-12-19 1996-12-19 Camera

Publications (1)

Publication Number Publication Date
JPH10186443A true JPH10186443A (en) 1998-07-14

Family

ID=18437734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35446396A Withdrawn JPH10186443A (en) 1996-12-19 1996-12-19 Camera

Country Status (1)

Country Link
JP (1) JPH10186443A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228390A (en) * 2000-02-17 2001-08-24 Asahi Optical Co Ltd Focusing device for camera
WO2003019285A1 (en) * 2001-08-22 2003-03-06 Cardax International Ltd Camera metering and exposure control system
JP2007047713A (en) * 2005-08-12 2007-02-22 Canon Inc Imaging apparatus and its control method
JP2014109760A (en) * 2012-12-04 2014-06-12 Canon Inc Imaging apparatus, control method for the same, and lens device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228390A (en) * 2000-02-17 2001-08-24 Asahi Optical Co Ltd Focusing device for camera
WO2003019285A1 (en) * 2001-08-22 2003-03-06 Cardax International Ltd Camera metering and exposure control system
JP2007047713A (en) * 2005-08-12 2007-02-22 Canon Inc Imaging apparatus and its control method
JP2014109760A (en) * 2012-12-04 2014-06-12 Canon Inc Imaging apparatus, control method for the same, and lens device

Similar Documents

Publication Publication Date Title
JP4040139B2 (en) camera
US6463214B1 (en) Multi-point autofocus system
US6584284B1 (en) Camera provided with focus adjusting apparatus
US5515131A (en) Optical apparatus having a function of inputting data of a visual axis
JPH07318785A (en) Camera provided with bracket device
JPH10186443A (en) Camera
JP5371399B2 (en) Measurement area information display device for imaging equipment
US5576796A (en) Optical apparatus having function to detect visual axis
JP3912853B2 (en) camera
US6085042A (en) Camera
US6097893A (en) Optical device
JP2000081647A (en) Camera
JP4086367B2 (en) camera
JP3471923B2 (en) camera
JP4474040B2 (en) Camera and camera system
JP4756721B2 (en) Camera focus detection device
JP2002072331A (en) Camera
JP4313880B2 (en) Camera autofocus device
JPH1164920A (en) Exposure controller for camera
JPH11271596A (en) Camera
JP2000075392A (en) Camera
JPH11282064A (en) Camera
JPH11282063A (en) Camera
JP2001154256A (en) Camera
JPH08240835A (en) Camera

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060525