JPH10185435A - Method for controlling dry operation of powder dryer and dry operation controller - Google Patents

Method for controlling dry operation of powder dryer and dry operation controller

Info

Publication number
JPH10185435A
JPH10185435A JP35884296A JP35884296A JPH10185435A JP H10185435 A JPH10185435 A JP H10185435A JP 35884296 A JP35884296 A JP 35884296A JP 35884296 A JP35884296 A JP 35884296A JP H10185435 A JPH10185435 A JP H10185435A
Authority
JP
Japan
Prior art keywords
furnace
drying
powder
value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35884296A
Other languages
Japanese (ja)
Inventor
Masahito Yasuda
雅人 安田
Hidekazu Yamazaki
秀和 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP35884296A priority Critical patent/JPH10185435A/en
Publication of JPH10185435A publication Critical patent/JPH10185435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably control dry operation even if supply amount and moisture content of powder to be supplied to a drying furnace are changed. SOLUTION: The powder dryer dries powder by supplying hot air generated from a hot air generating furnace 10 into a drying furnace 5 while continuously feeding the powder. A heat quality set value MV0 for drying powder of standard state to a predetermined water content is calculated in response to a supply quantity Q to the furnace 5, exhaust gas temperature T of the furnace 5 is sampled at a predetermined sampling period. A heat quantity regulator operation signal MV generated from a temperature regulator 37 in response to a deviation of the temperature from an exhaust gas set temperature To is converted to correction values MV1 , MV2 for increasing and decreasing the value MV0 , and added to the value MV0 . With the value MV0 to which the correction value is added as a target value an introducing heat quantity of the regulating part of the furnace 10 is regulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、湿った焼却灰な
どの粉体を乾燥させる粉体乾燥装置における乾燥制御方
法および乾燥制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drying control method and a drying control device in a powder drying apparatus for drying powder such as wet incinerated ash.

【0002】[0002]

【従来の技術】一般に都市ごみの焼却灰は、焼却後に水
中を通過し湿潤状態(たとえば水分含有率=15〜30
%)にあるため、これをさらに灰溶融炉へ供給して減容
化をはかるためには、先ず乾燥装置により所定の水分含
有率(たとえば5%以下)となるまで乾燥せねばならな
い。この乾燥装置としては、たとえば図7に示すよう
に、ロータリーキルンなどの連続式の乾燥炉5を用い、
熱風発生炉10において燃料の燃焼により発生した熱風
を乾燥炉5の炉体内に導入して、該炉体内を連続移送さ
れる焼却灰2を乾燥させるのが一般的である。
2. Description of the Related Art Generally, incinerated ash from municipal waste passes through water after incineration and is in a wet state (for example, a water content = 15 to 30).
%), In order to further supply it to the ash melting furnace to reduce the volume, it must first be dried by a drying device until a predetermined moisture content (for example, 5% or less) is reached. As this drying device, for example, as shown in FIG. 7, a continuous drying furnace 5 such as a rotary kiln is used.
In general, hot air generated by combustion of fuel in the hot air generating furnace 10 is introduced into the furnace of the drying furnace 5 to dry the incinerated ash 2 continuously transferred in the furnace.

【0003】そして乾燥炉5から排出される灰26の水
分含有率を所定値以下とするために、乾燥炉5から流出
する排ガスの温度Tを温度検出器15により検出して、
この温度が温度設定器36による排ガス設定温度T
0 (たとえば130℃)となるように、熱風発生炉10
への燃料供給管11に設けた燃料流量調節弁14の開度
を温度調節計37および流量調節計14aにより調節す
るフィードバック制御方式が一般に採用されている。図
中14bは燃料流量検出器である。なお、これらを用い
ずに弁開度指示を直接燃料流量調節弁14に与えるケー
スもある。
The temperature T of the exhaust gas flowing out of the drying furnace 5 is detected by a temperature detector 15 in order to make the moisture content of the ash 26 discharged from the drying furnace 5 equal to or less than a predetermined value.
This temperature is the exhaust gas set temperature T by the temperature setter 36.
0 (for example, 130 ° C.).
In general, a feedback control system in which the opening degree of a fuel flow control valve 14 provided in a fuel supply pipe 11 to the fuel supply pipe 11 is adjusted by a temperature controller 37 and a flow controller 14a is adopted. In the figure, 14b is a fuel flow rate detector. In some cases, a valve opening instruction is directly given to the fuel flow control valve 14 without using these.

【0004】ところが上記制御方式においては、乾燥炉
5に供給される焼却灰2の供給量や水分含有率が変化し
た場合、安定した制御が困難で、排ガス温度の大きなオ
ーバーシュートやハンチングが生じやすく、これにより
乾燥後の灰の水分含有率が所定値以上となったり、過乾
燥による燃料の浪費をひきおこすなどの問題点があっ
た。
However, in the above control method, when the supply amount of the incinerated ash 2 supplied to the drying furnace 5 or the water content changes, stable control is difficult, and large overshoot or hunting of the exhaust gas temperature is likely to occur. As a result, there are problems that the moisture content of the ash after drying becomes equal to or higher than a predetermined value and that the fuel is wasted due to overdrying.

【0005】[0005]

【発明が解決しようとする課題】この発明は上記従来の
問題点を解決するもので、乾燥炉に供給される粉体の供
給量や水分含有率が変化した場合でも安定した制御がお
こなえ、乾燥後の灰の水分含有率の変動が小さく、また
過乾燥による燃料の浪費も防止することができる粉体乾
燥装置の乾燥制御方法および乾燥制御装置を提供しよう
とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and enables stable control even when the supply amount of the powder supplied to the drying furnace or the moisture content changes. It is an object of the present invention to provide a drying control method and a drying control device for a powder drying apparatus, in which a change in the moisture content of the ash afterwards is small and the waste of fuel due to overdrying can be prevented.

【0006】[0006]

【課題を解決するための手段】この発明の粉体乾燥装置
の制御方法は、熱風発生炉で発生した熱風を乾燥炉の炉
体内に流通させ、前記炉体内に装入した粉体を連続移送
しつつ前記熱風により乾燥させる粉体乾燥装置におい
て、前記熱風発生炉の熱量調節部における投入熱量の調
節によって前記粉体の水分含有率を制御する乾燥制御方
法であって、標準性状の前記粉体を所定の水分含有率ま
で乾燥させる熱量設定値を、前記粉体の前記乾燥炉への
供給量に応じて算定するとともに、前記炉体を流出した
排ガスの温度を所定のサンプリング周期でサンプリング
して該温度と排ガス設定温度との偏差に応じて温度調節
計が発する熱量調節部操作信号を、前記熱量設定値を増
減させる補正値に変換して前記熱量設定値に付加し、こ
の補正値を付加した前記熱量設定値を目標値として前記
熱量調節部における投入熱量の調節をおこなうことを特
徴とする。
According to the present invention, there is provided a method for controlling a powder drying apparatus, comprising: flowing hot air generated in a hot air generating furnace into a furnace of a drying furnace; and continuously transferring powder charged in the furnace. In a powder drying apparatus for drying with the hot air while drying, a drying control method for controlling the moisture content of the powder by adjusting the amount of heat input in a calorie adjusting unit of the hot air generating furnace, wherein the powder having a standard property A calorific value for drying the powder to a predetermined moisture content is calculated according to the supply amount of the powder to the drying furnace, and the temperature of the exhaust gas flowing out of the furnace body is sampled at a predetermined sampling cycle. The calorie controller operation signal generated by the temperature controller in accordance with the deviation between the temperature and the exhaust gas set temperature is converted into a correction value for increasing or decreasing the calorie set value, and is added to the calorie set value. did Serial and performs adjustment of the heat input in the heat regulating unit heat quantity setting value as a target value.

【0007】またこの発明の粉体乾燥装置の制御装置
は、熱風発生炉で発生した熱風を乾燥炉の炉体内に流通
させ、前記炉体内に装入した粉体を連続移送しつつ前記
熱風により乾燥させる粉体乾燥装置において、前記熱風
発生炉の熱量調節部における投入熱量の調節によって前
記粉体の水分含有率を制御する乾燥制御装置であって、
標準性状の前記粉体を所定の水分含有率まで乾燥させる
熱量設定値を、前記粉体の前記乾燥炉への供給量に応じ
て出力する熱量設定部と、前記炉体を流出した排ガスの
温度を所定のサンプリング周期でサンプリングして該温
度と排ガス設定温度との偏差に応じた熱量調節部操作信
号を発する温度調節計と、前記熱量調節部操作信号を、
前記熱量設定値を増減させる補正値に変換する信号変換
部と、前記熱量設定値に前記補正値を付加して前記熱量
調節部に投入熱量の目標値として出力する補正値付加部
とを具備したことを特徴とする。
Further, the control device of the powder drying apparatus according to the present invention is characterized in that the hot air generated in the hot air generating furnace is circulated in the furnace of the drying furnace, and the powder charged in the furnace is continuously transferred by the hot air. In a powder drying device for drying, a drying control device for controlling the moisture content of the powder by adjusting the amount of heat input in the calorific value adjustment unit of the hot air generator,
A calorific value setting unit that outputs a calorific value set value for drying the powder of the standard property to a predetermined moisture content according to a supply amount of the powder to the drying furnace, and a temperature of exhaust gas flowing out of the furnace body. A temperature controller that samples a predetermined sampling cycle and issues a calorie control unit operation signal according to the deviation between the temperature and the exhaust gas set temperature, and the calorie control unit operation signal,
A signal conversion unit that converts the calorific value set value into a correction value to increase or decrease, and a correction value adding unit that adds the correction value to the calorific value set value and outputs the calorific value adjustment unit as a target value of the input calorific value. It is characterized by the following.

【0008】[0008]

【発明の実施の形態】以下図1〜図3によって、この発
明の一具体例を説明する。図1は焼却灰処理装置の全体
を示し、1は焼却灰ホッパで、図示しない都市ごみ焼却
装置から排出された湿潤状態(水分含有率=15〜30
%)の焼却灰2を一時貯留するためのもので、この下部
には、スクリューフィーダから成る定量切出装置3(振
動フィーダでもよい)が取付けてある。4は焼却灰搬送
用のコンベヤで、定量切出装置3の排出口直下部から、
乾燥炉5の灰供給口6の上方にかけて配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows the entire incineration ash treatment apparatus, and 1 is an incineration ash hopper, which is in a wet state (water content = 15 to 30) discharged from a municipal solid waste incineration apparatus (not shown).
%), For temporarily storing the incinerated ash 2, and a fixed-quantity cut-out device 3 (may be a vibrating feeder) including a screw feeder is attached to a lower portion of the incinerated ash 2. Reference numeral 4 denotes a conveyor for incineration ash transport, which is located just below the discharge port of the fixed quantity cutting device 3.
It is disposed above the ash supply port 6 of the drying furnace 5.

【0009】乾燥炉5は、ロータリーキルン形式の乾燥
炉で、炉体7内を連続移送される焼却灰を、炉体7内を
流通する熱風によって乾燥するものであり、この熱風供
給源として、燃焼式の熱風発生炉10をそなえている。
この熱風発生炉10は、燃料供給管11から供給される
燃料をバーナ12部で燃焼させ、送気口13から供給さ
れた空気を加熱して加熱空気として乾燥炉5の炉体7の
一端部内へ供給するものである。なおバーナ12の燃焼
空気供給系統の図示は省略してある。
The drying furnace 5 is a rotary kiln type drying furnace for drying incinerated ash continuously transferred in the furnace body 7 by hot air flowing through the furnace body 7. It has a hot air generator 10 of the type.
The hot-air generating furnace 10 burns fuel supplied from a fuel supply pipe 11 in a burner 12 and heats air supplied from an air supply port 13 to generate heated air in one end of a furnace body 7 of a drying furnace 5. To be supplied to The illustration of the combustion air supply system of the burner 12 is omitted.

【0010】炉体7内を流通し、焼却灰を乾燥後炉体他
端部の排気口8から排出された排ガス(熱風)は、排気
路21を流れ、バグフィルタ式の集じん機22を経て排
気用ファン23により吸引され、図示しない煙突から放
出される。14は燃料供給管11に設けられ熱風発生炉
10の熱量調節部である燃料流量調節弁、15は排気路
21に設けた温度検出器で、それぞれ後述の制御装置6
0に接続されている。また25は灰溶融炉で、乾燥炉5
から排出された乾燥後の灰26はコンベヤ27により搬
送され、この灰溶融炉25に投入されて溶融処理され
る。
Exhaust gas (hot air) discharged from the exhaust port 8 at the other end of the furnace body after flowing through the furnace body 7 and drying the incinerated ash flows through an exhaust path 21 and passes through a bag filter type dust collector 22. After that, the air is sucked by the exhaust fan 23 and discharged from a chimney (not shown). Reference numeral 14 denotes a fuel flow control valve provided in the fuel supply pipe 11 and serves as a calorie control unit of the hot-air generating furnace 10. Reference numeral 15 denotes a temperature detector provided in the exhaust path 21.
Connected to 0. 25 is an ash melting furnace, and a drying furnace 5
The dried ash 26 discharged from the ash is conveyed by a conveyor 27 and is introduced into the ash melting furnace 25 for melting.

【0011】次に図2は乾燥炉5の制御装置60を示
し、図1と同一部分には同一符号を付してある。30は
熱量設定部で、31は灰供給量設定器であり、定量切出
装置3による焼却灰2の乾燥炉5への灰供給量(単位時
間当りの供給重量)Qを設定値として発するものであ
る。また32はタイマで、定量切出装置3における焼却
灰の切出量を変更して灰供給量Qを変更したとき、その
供給量を変更された焼却灰が乾燥炉5に到達する迄の時
間遅れを補償するためのものであり、定量切出装置3の
直下部から灰供給口6部までのコンベヤ4による搬送所
要時間に相当する遅れ時間後、変更された灰供給量Qを
関数発生器33に出力するものである。
Next, FIG. 2 shows a control device 60 of the drying furnace 5, and the same parts as those in FIG. 1 are denoted by the same reference numerals. Reference numeral 30 denotes a heat amount setting unit, and 31 denotes an ash supply amount setting unit which emits the ash supply amount (supply weight per unit time) Q of the incinerated ash 2 to the drying furnace 5 by the fixed quantity cutting device 3 as a set value. It is. Reference numeral 32 denotes a timer for changing the amount of incinerated ash extracted by the fixed amount extracting device 3 to change the ash supply amount Q, and the time until the incinerated ash whose supply amount has been changed reaches the drying furnace 5. After the delay time corresponding to the time required for transportation by the conveyor 4 from the portion immediately below the fixed quantity cutting device 3 to the ash supply port 6, the changed ash supply amount Q is used to compensate for the delay. 33.

【0012】この関数発生器33は、平均的な水分含有
率(たとえば20%)および粒度等を有する標準性状の
焼却灰2を、焼却灰ホッパ1部から供給量Qで乾燥炉5
に供給したとき、該乾燥炉5により所定の水分含有率
(たとえば5%以下)に乾燥するために必要なバーナ1
2部における加熱量に相当する燃料流量調節弁14の燃
料流量データ(MV0 )を、各灰供給量Qに対して試行
操業をおこなって得た曲線関係式として内蔵しており、
灰供給量Qの入力に対して該灰供給量に応じた燃料流量
設定信号MV0 を算定し熱量設定値として出力するもの
であり、この信号MV0 は補正値付加部51を経て燃料
流量調節弁14の流量調節計14aに与えられる。14
bは燃料流量検出器である。なおこの流量調節計14a
を用いないで、熱量設定値として弁開度信号MV0 を直
接燃料流量調節弁14に与えるようにしてもよい。
The function generator 33 supplies incineration ash 2 having a standard property having an average moisture content (for example, 20%) and particle size to the drying furnace 5 with a supply amount Q from one incineration ash hopper.
Burner 1 necessary for drying to a predetermined moisture content (for example, 5% or less) by the drying furnace 5 when supplied.
The fuel flow rate data (MV 0 ) of the fuel flow rate control valve 14 corresponding to the heating amount in the two parts is incorporated as a curve relational expression obtained by performing a trial operation for each ash supply amount Q,
To output the result as calculated by heat setting value of the fuel flow rate setting signal MV 0 in accordance with The ash supply amount to the input of ash supply quantity Q, the signal MV 0 represents fuel flow rate control through the correction value adding section 51 It is provided to the flow controller 14a of the valve 14. 14
b is a fuel flow rate detector. This flow controller 14a
, The valve opening signal MV 0 may be directly supplied to the fuel flow control valve 14 as the heat amount setting value.

【0013】一方36は、前記の標準性状の焼却灰2を
所定の水分含有率に乾燥処理しているときの乾燥炉5の
排ガス温度に相当する排ガス設定温度T0 を設定するた
めの温度設定器で、温度調節計37は所定のサンプリン
グ周期で温度検出器15の検出温度(排ガス温度)Tを
取込み、偏差算出部37aで前記設定温度T0 と検出温
度Tとの偏差e0 を求め、不感帯処理部37b(図3参
照)により不感帯nを与えて得られた偏差e1 に、温度
制御演算部37cでPID演算を施して熱量調節部操作
信号である燃料流量調節弁14の弁操作信号MV(0〜
100%)を、次回のサンプリング時迄発するものであ
る。
On the other hand, reference numeral 36 denotes a temperature setting for setting an exhaust gas set temperature T 0 corresponding to the exhaust gas temperature of the drying furnace 5 when the above-described incinerated ash 2 having the standard properties is dried to a predetermined moisture content. The temperature controller 37 takes in the detected temperature (exhaust gas temperature) T of the temperature detector 15 at a predetermined sampling cycle, and calculates a deviation e 0 between the set temperature T 0 and the detected temperature T by a deviation calculating unit 37a. The deviation e 1 obtained by giving the dead zone n by the dead zone processing unit 37b (see FIG. 3) is subjected to PID calculation by the temperature control calculation unit 37c, and the valve operation signal of the fuel flow control valve 14, which is the heat amount adjustment unit operation signal. MV (0
100%) until the next sampling.

【0014】また40は、弁操作信号MVを燃料流量設
定信号MV0 に対する補正値に変換する信号変換部で、
該信号MVを開度50%を基準として正負の信号に読み
替えるとともに上限と下限をたとえば±10%および+
10〜−20%に制限した折線41,42に従って、M
Vから補正値MV1 ,MV2 を出力する2つの関数発生
器43,44を、切替スイッチ45を一端部に介して、
並列に接続して成る。関数発生器43は乾燥炉5への灰
連続供給時用、関数発生器44は乾燥炉5への灰供給停
止時用であり、切替スイッチ45は焼却灰処理装置全体
を監視する図示しない監視装置からの下限値変更指令S
1 により、焼却灰の供給状態(図1における定量切出装
置3の運転状態)に応じて、接点aまたはb側に切替え
られるが、その切替時点等については後述する。
[0014] 40 is a signal converter for converting a valve operating signal MV to the correction value for the fuel flow rate setting signal MV 0,
The signal MV is read as a positive / negative signal based on the opening of 50%, and the upper and lower limits are set to, for example, ± 10% and +.
According to the fold lines 41 and 42 restricted to 10-20%, M
Two function generators 43 and 44 that output correction values MV 1 and MV 2 from V are connected to a switch 45 at one end through a changeover switch 45.
Connected in parallel. The function generator 43 is for continuously supplying ash to the drying furnace 5, the function generator 44 is for stopping ash supply to the drying furnace 5, and the changeover switch 45 is a monitoring device (not shown) for monitoring the entire incineration ash processing device. Lower limit value change command S from
According to 1 , the contact is switched to the contact point a or b depending on the supply state of the incineration ash (the operation state of the fixed quantity cutting device 3 in FIG. 1), and the switching point and the like will be described later.

【0015】また前記監視装置からは、サンプリング周
期切替指令S2 およびMV初期値設定指令S3 が温度調
節計37に与えられる。乾燥炉5への灰供給停止時に
は、外乱が大きいため灰連続供給時のサンプリング周期
(たとえば10分)では温度変化に追従できず過加熱と
なってしまうため、上記サンプリング周期切替指令S2
によりサンプリング周期を短くし(たとえば2分)、同
時に前記下限値変更指令S1 により切替スイッチ45を
関数発生器44側に切替えて補正値の下限値を−10%
から−20%に下げて、燃料流量調節弁14の閉方向へ
の迅速駆動を容易化して過加熱状態を防止するものであ
る。またMV初期値設定指令S3 は、灰供給量Qが変更
になったとき、タイマ32の時限経過時点で温度調節計
37にイニシャル出力としてMV=50(%)を出力さ
せるためのものであり、これによって供給量Q変更時の
初期補正値は零となり、該変更時の制御系のオーバーシ
ュートやハンチングなどが防止される。
The monitoring device sends a sampling cycle switching command S 2 and an MV initial value setting command S 3 to the temperature controller 37. Since the time of the ash supply stop to the drying furnace 5, becomes overheated can not follow a temperature change in the sampling period (e.g. 10 minutes) at the ash continuous supply for the disturbance is large, the sampling period switching command S 2
The sampling period was shortened by (e.g. 2 minutes), at the same time the lower limit of the correction value by switching the changeover switch 45 to the function generator 44 side by the lower limit value changing command S 1 -10%
To -20% to facilitate quick drive of the fuel flow control valve 14 in the closing direction to prevent an overheating state. The MV initial value setting instruction S 3, when the ash supply amount Q is changed, it is for outputting the MV = 50 (%) as an initial output of the temperature adjusting meter 37 in a timed elapse of the timer 32 Thus, the initial correction value when the supply amount Q is changed becomes zero, and overshoot and hunting of the control system at the time of the change are prevented.

【0016】また51は、加算器から成る補正値付加部
で、熱量設定部30の発する燃料流量設定信号(熱量設
定値)MV0 に、信号変換部40の発する補正値MV1
またはMV2 を加算し、燃料流量調節弁14に投入熱量
の目標値として出力するものである。なお図2において
も、バーナ12の燃焼空気供給系統および燃焼(空燃
比)制御系統の図示は省略してある。
Numeral 51 denotes a correction value adding section composed of an adder. The correction value adding section MV 1 generates a correction value MV 1 generated by the signal conversion section 40 in response to a fuel flow rate setting signal (heat amount setting value) MV 0 generated by the heat setting section 30.
Alternatively, MV 2 is added and output to the fuel flow control valve 14 as a target value of the amount of heat input. 2, the illustration of the combustion air supply system and the combustion (air-fuel ratio) control system of the burner 12 is omitted.

【0017】上記構成の制御装置60による制御方法を
次に説明すると、焼却灰2の乾燥炉5への連続供給中
は、その灰供給量Qに応じて、関数発生器33は、標準
性状の焼却灰2を乾燥炉5の炉体7内通過により所定の
水分含有率まで乾燥させるバーナ部の発熱量に相当する
燃料流量調節弁14の燃料流量設定値信号MV0 を出力
し、該信号は補正値付加部51を介して燃料流量調節弁
14の流量調節計14aに与えられる。
The control method by the control device 60 having the above configuration will be described below. During continuous supply of the incinerated ash 2 to the drying furnace 5, the function generator 33 is controlled to a standard property according to the ash supply amount Q. It outputs a fuel flow rate set value signal MV 0 of a fuel flow rate control valve 14 corresponding to a calorific value of a burner unit for drying the incinerated ash 2 to a predetermined moisture content by passing through the furnace body 7 of the drying furnace 5. The correction value is supplied to the flow controller 14 a of the fuel flow control valve 14 via the correction value adding section 51.

【0018】焼却灰2の水分含有率が標準性状の焼却灰
よりも大きい場合は、炉体7を流出する排ガスの温度
は、標準性状の焼却灰の場合の熱風温度である排ガス設
定温度T0 より小となり、また逆に小さい場合は排ガス
の温度は排ガス設定温度T0 より大となり、いずれの場
合もT0 に対して偏差を生じるので、温度調節計37は
所定のサンプリング周期で温度検出器15により検出し
た排ガスの検出温度Tと、温度設定器36の発する排ガ
ス設定温度T0 との偏差にPID演算を施して、弁操作
信号(熱量調節部操作信号)MVを出力する。
When the moisture content of the incinerated ash 2 is higher than that of the incinerated ash of the standard property, the temperature of the exhaust gas flowing out of the furnace 7 is the set exhaust gas temperature T 0 which is the hot air temperature for the incinerated ash of the standard property. less than next, also larger becomes the temperature of the exhaust gas is an exhaust gas set temperature T 0 is smaller Conversely, since they produce deviations against T 0 in either case, the temperature adjusting meter 37 is a temperature detector at a predetermined sampling period The PID calculation is performed on the difference between the detected temperature T of the exhaust gas detected by the step 15 and the exhaust gas set temperature T 0 generated by the temperature setting device 36, and a valve operation signal (heat amount control unit operation signal) MV is output.

【0019】この信号MVは、信号変換部40の関数発
生器43部において補正値MV1 に変換され、補正値付
加部51において燃料流量設定信号(熱量設定値)MV
0 に加算されて、燃料流量調節弁14に与えられ、燃料
流量調節弁14は燃料流量設定信号MV0 に相当する弁
開度に対してさらにMV1 分だけ開方向(MV>50%
のとき)あるいは閉方向(MV<50%のとき)に付加
駆動され、これによって焼却灰2は所定の水分含有率ま
で乾燥されて炉体7から排出され、炉体7を流出する排
ガスの温度Tも設定温度T0 に維持される。
The signal MV is converted into a correction value MV 1 by the function generator 43 of the signal conversion unit 40, and the fuel flow rate setting signal (heat value setting value) MV is output by the correction value adding unit 51.
0 is added to the given fuel flow rate control valve 14, fuel flow rate control valve 14 is further MV 1 minute by opening direction relative to the valve opening degree corresponding to the fuel flow rate setting signal MV 0 (MV> 50%
) Or in the closing direction (when MV <50%), whereby the incinerated ash 2 is dried to a predetermined moisture content, discharged from the furnace body 7, and discharged from the furnace body 7. T is also maintained at the set temperature T 0 .

【0020】上記のように焼却灰2の灰供給量Qに対す
る燃料流量(発熱量)の設定は熱量設定部30でおこなわ
れるため、温度調節計37によるフィードバック制御
は、焼却灰2の性状(水分含有率や粒径)の変動に対し
てのみおこなわれ、また所定のサンプリング周期による
サンプル制御であるうえ、上下限をカットされた少量の
補正値として燃料流量設定信号MV0 に付加されるだけ
なので、上記フィードバック制御による補正がかかりす
ぎて大きなオーバーシュートやハンチングを生じること
がなく、安定した粉体の乾燥制御がおこなえるのであ
る。
As described above, since the setting of the fuel flow rate (calorific value) with respect to the ash supply amount Q of the incinerated ash 2 is performed by the calorific value setting section 30, the feedback control by the temperature controller 37 determines the properties of the incinerated ash 2 (moisture content). This is performed only for fluctuations of the content and the particle size). In addition, the sampling control is performed at a predetermined sampling cycle, and only a small correction value with upper and lower limits cut off is added to the fuel flow rate setting signal MV 0 . In addition, it is possible to perform stable powder drying control without causing excessive overshoot or hunting due to excessive correction by the feedback control.

【0021】またこの具体例では温度調節計37の不感
帯処理部37bにおける不感帯nの付加作用により、一
層安定した制御がおこなわれる。
Further, in this specific example, more stable control is performed by adding the dead zone n in the dead zone processing section 37b of the temperature controller 37.

【0022】炉体7への焼却灰2の供給量の変更時に
は、定量切出装置3の切出速度変更と同期させて灰供給
量設定器31により新たな灰供給量Qを設定すれば、タ
イマ32による遅延作用により、供給量を変更された焼
却灰2が灰供給口6部にほぼ到達した時点で新たな燃料
流量設定信号MV0 が出力され、また前記MV初期値設
定指令S3 により温度調節計37はMV=50%のイニ
シャル出力を発するので、灰供給量変更に伴う制御系の
オーバーシュートやハンチングは少量に抑制される。
When the supply amount of the incineration ash 2 to the furnace body 7 is changed, a new ash supply amount Q is set by the ash supply amount setting device 31 in synchronization with the change of the cutting speed of the fixed quantity cutting device 3. the delayed action by the timer 32, the fuel flow rate setting signal MV 0 new when it reaches approximately ash 2 ash supply port 6 parts that have changed the supply amount is outputted, and by the MV initial value setting command S 3 Since the temperature controller 37 generates an initial output of MV = 50%, overshoot and hunting of the control system due to the change in the ash supply amount are suppressed to a small amount.

【0023】また炉体7への灰供給停止時には、前記下
限値変更指令S1 により切替スイッチ45は接点b側に
切替えられて信号変換部40の発する補正値の下限値が
下げられ、さらにサンプリング周期切替指令S2 により
温度調節計37のサンプリング周期は短時間(たとえば
2分)に切替えられる。これによって、炉体7内の供給
灰2の量(従って炉体内の水分量)の減少に伴う排ガス
温度の急速な上昇に対応して熱風発生炉10への投入熱
量を急速に低減化でき、過熱による燃料の浪費を防止で
きるのである。
Further when the ash supply stop to the furnace body 7, the lower limit value changing command S 1 by the changeover switch 45 is lowered lower limit value of the correction value generated by the contact b switched by the signal converting unit to the side 40, further sampling the sampling period of the temperature adjusting meter 37 by the periodic switching command S 2 is switched in a short period of time (e.g., 2 minutes). Accordingly, the amount of heat input to the hot-air generating furnace 10 can be rapidly reduced in response to the rapid rise in the exhaust gas temperature accompanying the decrease in the amount of the supplied ash 2 in the furnace body 7 (therefore, the amount of moisture in the furnace body), Fuel consumption due to overheating can be prevented.

【0024】その後乾燥炉5への灰供給が再開され、補
正値MV2 がMV1 の上下限値(±10%)内に入った
時点で、前記監視装置よりの各指令S1 ,S2 により信
号変換部40の補正値出力はMV1 に切替えられ、温度
調節計37のサンプリング周期は灰連続供給時の周期に
復帰する。
[0024] Then drying furnace ash supply to 5 is resumed, the correction value MV 2 is upon entering the upper and lower limit values of MV 1 in (± 10%), the command S 1 than the monitoring device, S 2 the correction value output of the signal converter 40 is switched to MV 1, the sampling period of the temperature adjusting meter 37 is returned to the cycle at the ash continuous supply.

【0025】次に図4は、上記の信号変換部40の他の
実施態様を示し、図中46は温度調節計37の弁操作信
号MVから中央値50%を減算して正負の増減信号M
V′に変換する減算器、47はこの増減信号MV′を上
下限±10%に制限し補正値MV1 を出力するリミッ
タ、48は同じく増減信号MV′を上限10%,下限−
20%に制限し補正値MV2 を出力するリミッタ、45
は前記と同じ切替スイッチであり、本図の信号切替部4
0Aによっても、前記信号変換部40と同作用が得られ
る。
Next, FIG. 4 shows another embodiment of the signal converter 40. In the figure, reference numeral 46 denotes a positive / negative increase / decrease signal M obtained by subtracting 50% of the median value from the valve operation signal MV of the temperature controller 37.
V limiter 'subtractor for converting the, 47 that this decrease signal MV' outputs a correction value MV 1 restricts the upper and lower limit ± 10%, 48 are also increased or decreased signal MV 'the upper limit of 10%, the lower limit -
A limiter that outputs a correction value MV 2 by limiting the correction value to 20%, 45
Is the same changeover switch as described above.
Even with 0A, the same operation as that of the signal conversion unit 40 can be obtained.

【0026】次に図5により、この発明の他の具体例を
説明する。図中、図1および図2と同一部分には同一符
号を付して図示し、その詳細な説明は省略する。この具
体例は、信号変換部70および補正値付加部52のみが
前記具体例と異なる。すなわち、灰連続供給時用の関数
発生器71は弁操作信号MVをその中心値50%に対す
る比率に変換するとともにこの比率の上下限を±10%
(0.9〜1.1)に制限した折線72に従って補正値
α1 を出力するものである。また灰供給停止時用の関数
発生器73は、上記比率の下限値が−20%(0.8)
である他は上記折線72と同じである折線74に従っ
て、補正値α2 を出力するものである。
Next, another embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. This specific example differs from the specific example only in the signal conversion unit 70 and the correction value adding unit 52. That is, the function generator 71 for continuously supplying ash converts the valve operation signal MV into a ratio with respect to the center value 50%, and sets the upper and lower limits of this ratio to ± 10%.
And outputs the correction value alpha 1 according to fold lines 72 is limited to (0.9 to 1.1). The function generator 73 for stopping the ash supply has a lower limit value of the above ratio of −20% (0.8).
Another is in accordance with fold line 74 is the same as the fold line 72, and outputs the correction value alpha 2.

【0027】そして補正値付加部52は乗算器から成
り、切替スイッチ45により択一的に出力された補正値
α1 またはα2 は、熱量設定部30の発する燃料流量設
定信号MV0 に乗算され、燃料流量調節弁14にα1
0 またはα2 MV0 の燃料流量設定信号が熱量設定値
として与えられる。
The correction value adding section 52 is composed of a multiplier. The correction value α 1 or α 2 selectively output by the changeover switch 45 is multiplied by the fuel flow rate setting signal MV 0 generated by the heat quantity setting section 30. , The fuel flow control valve 14 has α 1 M
A fuel flow rate setting signal of V 0 or α 2 MV 0 is given as a heat quantity setting value.

【0028】すなわち、前記具体例の制御装置60では
弁開度信号としての補正値MV1 またはMV2 を燃料流
量設定信号MV0 に加算するのに対し、この具体例(図
3)の制御装置61では無次元化した比率としての補正
値α1 またはα2 を燃料流量設定信号(熱量設定値)MV
0 に乗算するものであり、両装置とも同様な作用が得ら
れ、制御装置61によっても制御装置60と同様に、オ
ーバーシュートやハンチングの少ない安定した粉体の乾
燥制御がおこなえるのである。
[0028] That is, while the correction value MV 1 or MV 2 as a valve opening signal in the control device 60 of the embodiment is added to the fuel flow rate setting signal MV 0, the controller of this embodiment (FIG. 3) correction value alpha 1 or alpha 2 fuel flow rate setting signal as the ratio of dimensionless At 61 (heat quantity set value) MV
The multiplication is performed by 0 , and the same operation is obtained in both devices. Thus, similarly to the control device 60, the control device 61 can perform stable drying control of the powder with little overshoot and hunting.

【0029】また図6は、上記の信号変換部70の他の
実施態様を示し、図中76は温度調節計37の弁操作信
号MVから中央値50%を減じたものを100%で除
し、これに補正0のための比率1.0を加算して比率信
号α0 に変換する演算器、77はこの比率信号α0 を上
下限±10%に制限し補正値α1 を出力するリミッタ、
78は同じく比率信号α0 を上限10%,下限−20%
に制限し補正値α2 を出力するリミッタ、45は前記と
同じ切替スイッチであり、本図の信号変換部70Aによ
っても、前記信号変換部40と同作用が得られる。
FIG. 6 shows another embodiment of the signal converter 70. In the figure, reference numeral 76 denotes a value obtained by subtracting the median value 50% from the valve operation signal MV of the temperature controller 37 by 100%. A computing unit 77 adds a ratio 1.0 for correction 0 to the ratio signal α 0 and converts the ratio signal α 0 into upper and lower limits ± 10% and outputs a correction value α 1. ,
Numeral 78 also indicates that the ratio signal α 0 has an upper limit of 10% and a lower limit of -20%
And a limiter 45 for outputting the correction value α 2, which is the same switch as described above. The same operation as that of the signal conversion unit 40 can be obtained by the signal conversion unit 70A of FIG.

【0030】この発明は上記各具体例および実施態様に
限定されるものではなく、たとえば制御装置の構成は上
記以外のものとしてもよく、また各信号処理はアナログ
処理方式の他にコンピュータを使用したデジタル処理方
式によってもよい。また乾燥炉のレイアウトによっては
タイマ32を、またオフセットを極力減らしたい場合は
不感帯nの付与を、それぞれ省略してもよい。
The present invention is not limited to the above specific examples and embodiments. For example, the configuration of the control device may be other than the above, and each signal processing uses a computer in addition to the analog processing method. A digital processing method may be used. The timer 32 may be omitted depending on the layout of the drying furnace, and the dead zone n may be omitted when the offset is to be reduced as much as possible.

【0031】またこの発明は、焼却灰以外の粉体の乾燥
装置や、ロータリーキルン以外の連続式の乾燥炉や燃焼
式以外の熱風発生炉をそなえた乾燥装置にも適用でき、
たとえば電熱ヒータ式の熱風発生炉、あるいは電熱ヒー
タとバーナを併用した熱風発生炉の場合は、補正値を付
加した熱量設定値は、電熱ヒータの熱量調節部であるサ
イリスタにたとえば熱量設定信号として与えればよい。
The present invention can also be applied to a drying apparatus for powder other than incineration ash, a continuous drying furnace other than a rotary kiln, and a drying apparatus having a hot air generating furnace other than a combustion type.
For example, in the case of an electric heater type hot air generating furnace or a hot air generating furnace using an electric heater and a burner in combination, the calorific value set value with the correction value is given to a thyristor which is a calorie adjusting unit of the electric heater as a calorific value setting signal, for example. I just need.

【0032】[0032]

【実施例】以下実施例および比較例によって、この発明
をさらに詳細に説明する。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples.

【0033】実施例 図1に示す焼却灰処理装置および図2に示す乾燥炉の制
御装置を用い(但し不感帯処理部37bにおける不感帯
巾n=±5℃)、温度設定器37による排ガス設定温度
0 =130℃で制御をおこなった。このとき焼却灰2
の水分含有率の変動(30〜15%)および焼却灰2の
定量切出装置3による供給量Q=3.0tf/Hおよび供
給停止,再供給開始の各運転条件の変動(外乱)に対す
る排ガス温度Tの変動状況例を図7に示す。
EXAMPLE Using the incineration ash treatment device shown in FIG. 1 and the control device of the drying furnace shown in FIG. 2 (however, the dead zone width n = ± 5 ° C. in the dead zone processing section 37 b), the exhaust gas set temperature T by the temperature setting device 37. Control was performed at 0 = 130 ° C. At this time, incineration ash 2
Exhaust gas due to fluctuations in water content (30 to 15%) of the incineration ash 2 and the supply amount Q = 3.0 tf / H by the quantitative extraction device 3 and fluctuations (disturbances) in the respective operating conditions of supply stop and resupply start FIG. 7 shows an example of the fluctuation state of the temperature T.

【0034】比較例 実施例と同じ焼却灰処理装置および図9に示すように温
度調節計37(但し不感帯処理部37bなし)の出力を
直接燃料流量調節弁14の流量調節計14aに入力する
従来の乾燥炉の制御装置を用い、温度設定器37による
排ガス設定温度T0 =130℃で乾燥制御をおこなった
ときの、上記実施例と同じ焼却灰2の水分含有率および
供給量の変動に対する排ガス温度Tの変動状況例を図8
に示す。
COMPARATIVE EXAMPLE The same incineration ash processing apparatus as in the embodiment and the conventional example in which the output of a temperature controller 37 (but no dead zone processing section 37b) is directly input to a flow controller 14a of a fuel flow control valve 14 as shown in FIG. When the drying control is performed at the exhaust gas set temperature T 0 = 130 ° C. by the temperature setting device 37 using the controller of the drying furnace of the above, the exhaust gas with respect to the fluctuation of the water content and the supply amount of the incinerated ash 2 is the same as in the above embodiment. FIG. 8 shows an example of a variation situation of the temperature T.
Shown in

【0035】これらの図から判るように、比較例(従来
技術)では排ガス温度Tの変動が大きく、オペレータの
介入を必要としたのに対し、この発明によれば排ガス温
度Tの変動は小さく、オペレータの介入も不要で、全自
動運転で排ガス温度Tを許容温度160℃以下に維持す
ることができた。
As can be seen from these figures, in the comparative example (prior art), the fluctuation of the exhaust gas temperature T is large and the intervention of the operator is required. On the other hand, according to the present invention, the fluctuation of the exhaust gas temperature T is small, No operator intervention was required, and the exhaust gas temperature T could be maintained at the allowable temperature of 160 ° C. or lower in a fully automatic operation.

【0036】[0036]

【発明の効果】以上説明したようにこの発明によれば、
粉体の乾燥炉への供給量に応じた熱量設定値に、炉体を
流出した排ガス温度をサンプリングして温度調節計が発
するフィードバック信号である熱量調節部操作信号を補
正値に変換して付加したものを、投入熱量の目標値とし
て熱風発生炉の熱量発生部に与えるようにしたので、上
記補正値による補正は粉体の供給量以外の水分含有率や
粒径等の性状の変動のみに対して、かつ所定のサンプル
周期でおこなわれるため、大きなオーバーシュートやハ
ンチングを生じることなく安定した粉体の乾燥制御がお
こなえ、乾燥後の灰の水分含有率の変動が小さく、過乾
燥による燃料の浪費も防止することができる。
As described above, according to the present invention,
The temperature of the exhaust gas flowing out of the furnace is sampled, and the calorie control unit operation signal, which is a feedback signal generated by the temperature controller, is converted into a correction value and added to the calorie set value according to the amount of powder supplied to the drying furnace. The obtained value is given to the calorific value generating section of the hot blast furnace as the target value of the calorific value of heat, so that the correction with the above correction value is performed only for the variation of the properties such as the water content and the particle size other than the supply amount of the powder. On the other hand, since the drying is performed at a predetermined sample cycle, stable drying control of the powder can be performed without generating large overshoot or hunting, the fluctuation of the moisture content of the ash after drying is small, and the fuel Waste can also be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一具体例を示す焼却灰処理装置の機
器系統図である。
FIG. 1 is a system diagram of an incineration ash treatment apparatus showing a specific example of the present invention.

【図2】図1の装置における乾燥炉の制御系統図であ
る。
FIG. 2 is a control system diagram of a drying oven in the apparatus of FIG.

【図3】図2における不感帯処理部の処理内容を示す詳
細図である。
FIG. 3 is a detailed diagram showing processing contents of a dead zone processing unit in FIG. 2;

【図4】図2における信号変換部の他の実施態様を示す
系統図である。
FIG. 4 is a system diagram showing another embodiment of the signal converter in FIG. 2;

【図5】この発明の他の具体例を示す図2相当図であ
る。
FIG. 5 is a diagram corresponding to FIG. 2, showing another specific example of the present invention.

【図6】図4における信号変換部の他の実施態様を示す
系統図である。
FIG. 6 is a system diagram showing another embodiment of the signal converter in FIG. 4;

【図7】この発明の一実施例を示す制御特性線図であ
る。
FIG. 7 is a control characteristic diagram showing one embodiment of the present invention.

【図8】従来法による比較例を示す図7相当図である。FIG. 8 is a diagram corresponding to FIG. 7 showing a comparative example according to a conventional method.

【図9】従来の焼却灰乾燥装置の一例を示す制御系統図
である。
FIG. 9 is a control system diagram showing an example of a conventional incineration ash drying device.

【符号の説明】[Explanation of symbols]

2…焼却灰、5…乾燥炉、7…炉体、10…熱風発生
炉、11…燃料供給管、12…バーナ、14…燃料流量
調節弁、15…温度検出器、30…熱量設定部、31…
灰供給量設定器、33…関数発生器、36…温度設定
器、37…温度調節計、40…信号変換部、40A…信
号変換部、43…関数発生器、44…関数発生器、45
…切替スイッチ、46…減算器、47…リミッタ、48
…リミッタ、51…補正値付加部、52…補正値付加
部、60…制御装置、61…制御装置、70…信号変換
部、70A…信号変換部、71…関数発生器、73…関
数発生器、76…演算器、77…リミッタ、78…リミ
ッタ。
2 ... incineration ash, 5 ... drying furnace, 7 ... furnace body, 10 ... hot air generating furnace, 11 ... fuel supply pipe, 12 ... burner, 14 ... fuel flow rate control valve, 15 ... temperature detector, 30 ... calorie setting unit, 31 ...
Ash supply amount setting unit, 33: function generator, 36: temperature setting unit, 37: temperature controller, 40: signal conversion unit, 40A: signal conversion unit, 43: function generator, 44: function generator, 45
... Changeover switch, 46 ... Subtractor, 47 ... Limiter, 48
... Limiter, 51 ... Correction value addition section, 52 ... Correction value addition section, 60 ... Control device, 61 ... Control device, 70 ... Signal conversion section, 70A ... Signal conversion section, 71 ... Function generator, 73 ... Function generator , 76: arithmetic unit, 77: limiter, 78: limiter.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱風発生炉で発生した熱風を乾燥炉の炉
体内に流通させ、前記炉体内に装入した粉体を連続移送
しつつ前記熱風により乾燥させる粉体乾燥装置におい
て、前記熱風発生炉の熱量調節部における投入熱量の調
節によって前記粉体の水分含有率を制御する乾燥制御方
法であって、標準性状の前記粉体を所定の水分含有率ま
で乾燥させる熱量設定値を、前記粉体の前記乾燥炉への
供給量に応じて算定するとともに、前記炉体を流出した
排ガスの温度を所定のサンプリング周期でサンプリング
して該温度と排ガス設定温度との偏差に応じて温度調節
計が発する熱量調節部操作信号を、前記熱量設定値を増
減させる補正値に変換して前記熱量設定値に付加し、こ
の補正値を付加した前記熱量設定値を目標値として前記
熱量調節部における投入熱量の調節をおこなうことを特
徴とする粉体乾燥装置の乾燥制御方法。
1. A powder drying apparatus for flowing hot air generated in a hot air generating furnace through a furnace of a drying furnace and drying the hot air while continuously transferring the powder charged in the furnace, wherein the hot air generating apparatus comprises: A drying control method for controlling the moisture content of the powder by adjusting the amount of heat input in a calorie control unit of a furnace, wherein the calorific value for drying the powder having a standard property to a predetermined moisture content is set to the powder. While calculating according to the supply amount of the body to the drying furnace, the temperature of the exhaust gas flowing out of the furnace body is sampled at a predetermined sampling cycle, and a temperature controller according to a deviation between the temperature and the set exhaust gas temperature. The generated calorie control unit operation signal is converted into a correction value for increasing or decreasing the calorie set value and is added to the calorie set value, and the calorie set value to which the correction value is added is set as a target value in the calorie adjuster. A drying control method for a powder drying apparatus, comprising: adjusting a heat input.
【請求項2】 熱風発生炉で発生した熱風を乾燥炉の炉
体内に流通させ、前記炉体内に装入した粉体を連続移送
しつつ前記熱風により乾燥させる粉体乾燥装置におい
て、前記熱風発生炉の熱量調節部における投入熱量の調
節によって前記粉体の水分含有率を制御する乾燥制御装
置であって、標準性状の前記粉体を所定の水分含有率ま
で乾燥させる熱量設定値を、前記粉体の前記乾燥炉への
供給量に応じて出力する熱量設定部と、前記炉体を流出
した排ガスの温度を所定のサンプリング周期でサンプリ
ングして該温度と排ガス設定温度との偏差に応じた熱量
調節部操作信号を発する温度調節計と、前記熱量調節部
操作信号を、前記熱量設定値を増減させる補正値に変換
する信号変換部と、前記熱量設定値に前記補正値を付加
して前記熱量調節部に投入熱量の目標値として出力する
補正値付加部とを具備したことを特徴とする粉体乾燥装
置の乾燥制御装置。
2. A powder drying apparatus for flowing hot air generated in a hot-air generating furnace through a furnace of a drying furnace and drying the hot-air while continuously transferring powder charged in the furnace, A drying control apparatus for controlling the moisture content of the powder by adjusting the amount of heat input in a calorie adjustment unit of a furnace, wherein the calorific value for drying the powder having a standard property to a predetermined moisture content is the powder. A calorific value setting unit for outputting a temperature according to a supply amount of the body to the drying furnace, and a calorific value according to a deviation between the temperature and the exhaust gas set temperature by sampling the temperature of the exhaust gas flowing out of the furnace body at a predetermined sampling cycle. A temperature controller for issuing a control section operation signal, a signal conversion section for converting the calorie control section operation signal to a correction value for increasing or decreasing the calorie set value, and adding the correction value to the calorie set value to produce the calorie. For the adjustment unit A drying control device for a powder drying device, comprising: a correction value adding unit that outputs a target value of the amount of heat input.
JP35884296A 1996-12-26 1996-12-26 Method for controlling dry operation of powder dryer and dry operation controller Pending JPH10185435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35884296A JPH10185435A (en) 1996-12-26 1996-12-26 Method for controlling dry operation of powder dryer and dry operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35884296A JPH10185435A (en) 1996-12-26 1996-12-26 Method for controlling dry operation of powder dryer and dry operation controller

Publications (1)

Publication Number Publication Date
JPH10185435A true JPH10185435A (en) 1998-07-14

Family

ID=18461389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35884296A Pending JPH10185435A (en) 1996-12-26 1996-12-26 Method for controlling dry operation of powder dryer and dry operation controller

Country Status (1)

Country Link
JP (1) JPH10185435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000900A1 (en) * 2021-07-21 2023-01-26 青岛海尔生物医疗科技有限公司 Method and apparatus for adjusting temperature of drying oven, and drying oven, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023000900A1 (en) * 2021-07-21 2023-01-26 青岛海尔生物医疗科技有限公司 Method and apparatus for adjusting temperature of drying oven, and drying oven, and storage medium

Similar Documents

Publication Publication Date Title
JPH0120325B2 (en)
JP2015145738A (en) Waste treatment plant and waste treatment plant control method
JP2006291010A (en) Drying equipment for wet raw material and drying method
JPH10185435A (en) Method for controlling dry operation of powder dryer and dry operation controller
JPS59180212A (en) Combustion controller in refuse incinerator
JP2022076571A (en) System control device and control method
JP2002327915A (en) Mill primary air flow rate control device for pulverized coal burning boiler equipment
JPS6116889B2 (en)
JP4062810B2 (en) Control method and apparatus for air preheater bypass damper
JP2000081209A (en) Fine powder coal fired boiler mill primary air control method and device
JP5979722B2 (en) Temperature control system for heating equipment and temperature control method thereof
JP4082416B2 (en) Waste treatment plant
JPH0323806B2 (en)
JP4958037B2 (en) How to adjust the waste incineration plant using the operation of the support burner
JPH07190302A (en) Exhaust gas temperature controller for coal-fired boiler
JP3941405B2 (en) Boiler automatic control apparatus and method
JPH0798108A (en) Combustion controller for incinerator
JPH0646092B2 (en) Waste heat recovery type sludge incinerator
JP3798932B2 (en) Waste treatment plant and control method thereof
JP3235643B2 (en) Combustion control method and apparatus for sludge incinerator
JP2001272170A (en) Operating method for waste drying facility
JPH11237180A (en) Dryer and operating method thereof
JP3052499B2 (en) Control method of incineration ash drying equipment
JPH10158659A (en) Method for operating humidity conditioner for coal fed into coke oven
JP3235644B2 (en) Sludge incinerator start-up operation control method and apparatus