JPH10185349A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH10185349A
JPH10185349A JP8337882A JP33788296A JPH10185349A JP H10185349 A JPH10185349 A JP H10185349A JP 8337882 A JP8337882 A JP 8337882A JP 33788296 A JP33788296 A JP 33788296A JP H10185349 A JPH10185349 A JP H10185349A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
hot water
heat
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8337882A
Other languages
Japanese (ja)
Inventor
Shinya Takehana
真也 竹花
Hiroshi Shibata
洋 柴田
Shotaro Ito
正太郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Original Assignee
Matsushita Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP8337882A priority Critical patent/JPH10185349A/en
Publication of JPH10185349A publication Critical patent/JPH10185349A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To permit low-capacity heating operation with a small electric power by a method wherein fluorocarbon based refrigerant, which recovered waste heat, is circulated employing a refrigerant transfer means to heat indoor without employing any compressor. SOLUTION: When heating operation is effected upon normal time or under a low load, a compressor 101 is stopped and a first flow passage switching means 1 is switched so that refrigerant flows through a refrigerant transfer means 6 and an outdoor heat exchanger 10 while a second flow passage switching means 2 is switched so that the refrigerant flows through a four-way valve 3 and the refrigerant transfer means 6. Further, the four-way valve 3 is switched into the direction of a dotted line in a diagram and the refrigerant is discharged through the refrigerant transfer means 6 at first, then, heat exchange is effected in an outdoor hot-water heat exchanger 10 between cooling water, whose temperature is increased to a high value by waste heat from the cooling unit of a thermal engine 113 such as a diesel engine or the like, whereby high-temperature refrigerant is obtained. The high-temperature refrigerant is introduced into an indoor heat exchanger 8 to effect the heating of a room. In this case, the refrigerant transfer means 6 is stopped in a cold district or the like and the compressor 101 is driven to effect the heating operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置に関
し、熱機関及び、発電機により駆動するヒートポンプ
と、熱機関の排熱を冷媒と熱交換させることにより、熱
機関の排熱を空気調和に有効に利用するようにした空気
調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner, and more particularly to a heat pump driven by a heat engine and a generator, and by exchanging heat exhausted from the heat engine with a refrigerant, thereby making the heat exhausted from the heat engine air-conditioned. The present invention relates to an air conditioner that is used effectively.

【0002】[0002]

【従来の技術】従来、この種の空気調和装置は、特開平
1−314829号公報に記載されたものが知られてい
る。以下、その空気調和装置について、図36を参照し
ながら説明する。図36に示すように、圧縮機101は
モーター102にて駆動され、熱交換器103、104
は、その内部に冷媒を流通させる冷媒管105、106
をそれぞれ配してなる熱交換器である。熱交換器103
は外気と冷媒管105内を流通する冷媒との間にて熱交
換を行わせるものであり、また、他方の熱交換器104
は、循環ポンプ107によりこれに導入される循環水
と、冷媒管106内を流通する冷媒との間にて熱交換を
行わせるものである。前記圧縮機101と熱交換器10
3、104とは減圧弁108及びこれと直列接続された
蓄熱機109と共に、切換弁110、111により接続
されている。また、発電機112は、熱機関113によ
り駆動され、直列接続された電源切換スイッチ114、
115を介して、前記圧縮機101を駆動するモーター
102に接続されている。熱機関113には、これの排
熱を利用して温水を生成する温水生成部116が設けて
ある。温水生成部116は、これへの導入水と熱機関1
13の冷却用水との間にて熱交換を行わせる冷却水熱交
換器117、熱機関113の排気筒118の中途に配さ
れ、前記導入水と排気の間にて熱交換を行わせる排気熱
交換器119、並びに前記導入水の流れ方向を切換える
切替弁120から構成されている。温水生成部116か
らの送出管路121は、その中途において2方向に分岐
されており、一方は、貯湯槽122内に配接された温水
管123に、流量調整弁124を介して接続されてい
る。また他方は、その中途において更に2方向に分岐さ
れており、これの一方は、前記熱交換器103内に、外
気の流通方向に対し、冷媒管105よりも前方に配接さ
れた温水管125に流量調整弁126を介して接続さ
れ、他方は熱交換器103に並設してある熱負荷調整用
の他の熱交換器127内に配接された温水管128に接
続されている。温水管123、125、128の下流端
は、温水生成部116への導入管路129に合流させて
ある。以上のように構成された空気調和装置を暖房運転
する場合、熱交換器103に導入された外気は温水管1
25内を流通する温水との熱交換により昇温した後、冷
媒管105に接触し、冷媒管105内を流通する冷媒と
の間にて熱交換を行う。従って、外気の温度が低い厳寒
期においても、前記冷媒と冷媒管105を介してこれに
接触する外気との間に十分な温度差を生じさせることが
でき、高い暖房能力を維持できる。また、冷媒管105
に着霜が生じた場合、流量調整弁126を全開にするこ
とにより、熱交換器103の導入空気は十分に温められ
た状態で冷媒管105に接触することになり、前記着霜
は除去される。
2. Description of the Related Art Conventionally, an air conditioner of this type is known from Japanese Patent Application Laid-Open No. 1-318829. Hereinafter, the air conditioner will be described with reference to FIG. As shown in FIG. 36, a compressor 101 is driven by a motor 102, and heat exchangers 103, 104
Are refrigerant tubes 105 and 106 through which the refrigerant flows.
Are arranged respectively. Heat exchanger 103
Is for causing heat to be exchanged between the outside air and the refrigerant flowing through the refrigerant pipe 105, and the other heat exchanger 104
Is for causing heat exchange between the circulating water introduced by the circulation pump 107 and the refrigerant flowing through the refrigerant pipe 106. The compressor 101 and the heat exchanger 10
3 and 104 are connected by switching valves 110 and 111 together with a pressure reducing valve 108 and a heat storage unit 109 connected in series with the pressure reducing valve 108. The generator 112 is driven by a heat engine 113 and connected in series with a power switch 114,
It is connected to the motor 102 for driving the compressor 101 via 115. The heat engine 113 is provided with a hot water generating unit 116 that generates hot water using the exhaust heat. The hot water generator 116 is configured to supply the introduced water and heat engine 1
A cooling water heat exchanger 117 for exchanging heat with the cooling water 13 and an exhaust heat arranged in the exhaust pipe 118 of the heat engine 113 for exchanging heat between the introduced water and the exhaust water. It comprises an exchanger 119 and a switching valve 120 for switching the flow direction of the introduced water. The delivery pipe 121 from the hot water generation unit 116 is branched in two directions in the middle thereof, and one of the delivery pipes 121 is connected to a hot water pipe 123 disposed in a hot water storage tank 122 via a flow control valve 124. I have. The other is further branched in two directions in the middle thereof, and one of the two branches is provided in the heat exchanger 103 with a hot water pipe 125 disposed in front of the refrigerant pipe 105 in the flowing direction of the outside air. The other is connected to a hot water pipe 128 disposed in another heat exchanger 127 for adjusting a heat load, which is arranged in parallel with the heat exchanger 103. The downstream ends of the hot water pipes 123, 125, and 128 are joined to an introduction pipe 129 to the hot water generation unit 116. When the air-conditioning apparatus configured as described above performs the heating operation, the outside air introduced into the heat exchanger 103 is heated by the hot water pipe 1.
After the temperature is raised by heat exchange with the warm water flowing through the inside of the coolant tube 25, the coolant comes into contact with the coolant tube 105 and exchanges heat with the coolant flowing through the coolant tube 105. Therefore, even in the severe cold season when the temperature of the outside air is low, a sufficient temperature difference can be generated between the refrigerant and the outside air that comes into contact with the refrigerant via the refrigerant pipe 105, and a high heating capacity can be maintained. Also, the refrigerant pipe 105
When frost occurs on the air, the air introduced into the heat exchanger 103 comes into contact with the refrigerant pipe 105 in a sufficiently warmed state by fully opening the flow control valve 126, and the frost is removed. You.

【0003】[0003]

【発明が解決しようとする課題】このような従来の空気
調和装置では、低暖房能力要求時においても圧縮機を駆
動させるため、要求能力に対する消費電力が大きくなる
という課題があり、省電力化することが要求されてい
る。また、複数の室内ユニットが接続されている場合、
複数の室内ユニット間で、冷房運転と暖房運転を同時に
行なうことができないという課題があり、複数の室内ユ
ニット間で冷暖房同時運転を可能とすることが要求され
ている。また、除湿運転時においては、弱冷房運転を行
うため、室温が低下するという課題があり、室温を低下
させることなく除湿することが要求されている。
In such a conventional air conditioner, since the compressor is driven even when a low heating capacity is required, there is a problem that the power consumption corresponding to the required capacity becomes large, and the power consumption is reduced. Is required. When a plurality of indoor units are connected,
There is a problem that the cooling operation and the heating operation cannot be performed at the same time among a plurality of indoor units, and it is required to enable the simultaneous cooling and heating operation between the plurality of indoor units. In addition, during the dehumidifying operation, there is a problem that the room temperature decreases because the weak cooling operation is performed, and it is required to dehumidify without lowering the room temperature.

【0004】本発明は、このような従来の課題を解決す
るものであり、省電力で低能力暖房運転を行うことがで
き、また、効率よく液冷媒を冷媒搬送手段により搬送す
ることができ、また、熱機関としてのターボエンジンの
効率を向上させ、また、冷暖房同時運転を可能とし、ま
た、適確に室内の設定温度による負荷に応じた暖房運転
を行うことができ、排気を利用して冷媒搬送手段の補助
動力を得、また、室温を低下させることなく除湿運転を
行え、室内温度の設定に応じた温度変化可能の除湿運転
を行うことができる空気調和装置を提供することを目的
としている。
[0004] The present invention is to solve such a conventional problem, it is possible to perform a low-capacity heating operation with power saving, and to efficiently transport the liquid refrigerant by the refrigerant transport means, In addition, it improves the efficiency of the turbo engine as a heat engine, enables simultaneous operation of air conditioning and heating, and can perform heating operation properly according to the load based on the set temperature in the room. It is an object of the present invention to provide an air conditioner that can obtain an auxiliary power of a refrigerant transport unit, can perform a dehumidifying operation without lowering a room temperature, and can perform a dehumidifying operation in which a temperature can be changed according to a setting of an indoor temperature. I have.

【0005】[0005]

【課題を解決するための手段】本発明の空気調和装置は
上記目的を達成するために、冷媒搬送手段と、前記冷媒
搬送手段の吐出側の冷媒と熱機関の冷却水とを熱交換さ
せる室外温水熱交換器を設けた構成としたものである。
In order to achieve the above object, an air conditioner according to the present invention has an outdoor unit for exchanging heat between refrigerant conveying means, and refrigerant on the discharge side of the refrigerant conveying means and cooling water of a heat engine. It has a configuration provided with a hot water heat exchanger.

【0006】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with small electric power is obtained.

【0007】また他の手段は、四方弁と室内熱交換器と
の間に第1の流路切替手段、また、四方弁と室外熱交換
器との間に第2の流路切替手段を設け、室外温水熱交換
器を冷媒搬送手段の吐出側に接続した回路の両端を、四
方弁と並列となるように第1、第2の流路切替手段と接
続した構成としたものである。
Further, as another means, first flow path switching means is provided between the four-way valve and the indoor heat exchanger, and second flow path switching means is provided between the four-way valve and the outdoor heat exchanger. In this configuration, both ends of a circuit in which the outdoor hot water heat exchanger is connected to the discharge side of the refrigerant transfer means are connected to the first and second flow path switching means so as to be in parallel with the four-way valve.

【0008】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with small electric power is obtained.

【0009】また他の手段は、四方弁と室内熱交換器と
の間に第1の流路切替手段、また、室外熱交換器と第1
の絞り手段との間に第2の流路切替手段を設け、室外温
水熱交換器を冷媒搬送手段の吐出側に接続した回路の両
端を、第1、第2の流路切替手段と接続した構成とした
ものである。
Another means is a first flow path switching means between the four-way valve and the indoor heat exchanger, and an outdoor heat exchanger and the first heat exchanger.
A second flow path switching means is provided between the first and second flow path switching means, and both ends of a circuit in which the outdoor hot water heat exchanger is connected to the discharge side of the refrigerant conveying means are connected to the first and second flow path switching means. It is configured.

【0010】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with small electric power is obtained.

【0011】また他の手段は、室外熱交換器と第2の流
路切替手段との間に第3の流路切替手段、また、四方弁
と第1の流路切替手段との間に第4の流路切替手段を設
け、また、第2の流路切替手段と冷媒搬送手段との間を
流れる冷媒と、第3の流路切替手段と第4の流路切替手
段との間を流れる冷媒とを熱交換させる冷媒間熱交換器
を設け、更に、この冷媒間熱交換器と第3の流路切替手
段との間に第2の絞り手段を備えた構成としたものであ
る。
Another means is a third flow switching means between the outdoor heat exchanger and the second flow switching means, and a third flow switching means between the four-way valve and the first flow switching means. And a refrigerant flowing between the second flow path switching means and the refrigerant conveying means, and a refrigerant flowing between the third flow path switching means and the fourth flow path switching means. An inter-refrigerant heat exchanger for exchanging heat with the refrigerant is provided, and a second throttle means is provided between the inter-refrigerant heat exchanger and the third flow path switching means.

【0012】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with small electric power is obtained.

【0013】また他の手段は、熱機関としてターボエン
ジンを備え、このターボエンジンの吸気側空気と、第3
の流路切替手段と第4の流路切替手段との間を流れる冷
媒とを熱交換させる吸気冷却熱交換器を設けた構成とし
たものである。
Another means is provided with a turbo engine as a heat engine.
And an intake cooling heat exchanger for exchanging heat with the refrigerant flowing between the flow path switching means and the fourth flow path switching means.

【0014】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, there is provided an air conditioner capable of performing a low-capacity heating operation with low power.

【0015】また他の手段は、複数の第1の絞り手段と
複数の室内熱交換器を備え、複数の第1の絞り手段と第
2の流路切替手段との間に複数の第5の流路切替手段、
複数の室内熱交換器と第1の流路切替手段との間に第6
の流路切替手段を設け、室外熱交換器と第2の流路切替
手段との間の配管を複数の第5の流路切替手段に分岐接
続し、かつ第1の流路切替手段と四方弁との間の配管を
複数の第6の流路切替手段に分岐接続させる構成とした
ものである。
Further, another means includes a plurality of first throttling means and a plurality of indoor heat exchangers, and a plurality of fifth throttling means between the plurality of first throttling means and the second flow path switching means. Channel switching means,
A sixth path between the plurality of indoor heat exchangers and the first flow path switching means.
And a pipe between the outdoor heat exchanger and the second flow path switching means is branched and connected to a plurality of fifth flow path switching means. In this configuration, a pipe between the valve and the valve is branched and connected to a plurality of sixth flow path switching means.

【0016】そして本発明によれば、複数の室内ユニッ
ト間で冷暖房同時運転を行なうことができる空気調和装
置が得られる。
According to the present invention, there is provided an air conditioner capable of performing simultaneous cooling and heating operations between a plurality of indoor units.

【0017】また他の手段は、室内の設定温度を記憶し
出力する第1の記憶手段と、室内ユニットに設けられ室
内温度を検出する第1の温度検出手段と、第1の記憶手
段による検出値と第1の温度検出手段による検出値との
差を演算する第1の演算手段と、この第1の演算手段に
よる演算結果を判定する第1の判定手段と、この第1の
判定手段による判定結果より第1の絞り手段の絞り開度
を判定する第2の判定手段と、この第2の判定手段によ
る判定結果より第1の絞り手段の絞り開度を演算する第
2の演算手段と、この第2の演算手段による演算結果よ
り第1の絞り手段の絞り開度を制御する第1の制御手段
と、第2の判定手段による判定結果より冷媒搬送手段の
回転数を演算する第3の演算手段と、この第3の演算手
段による演算結果より冷媒搬送手段の回転数を制御する
第2の制御手段とを備え、第1の絞り手段の開度、及
び、冷媒搬送手段の回転数を制御する構成としたもので
ある。
Further, the other means includes a first storage means for storing and outputting the indoor set temperature, a first temperature detection means provided in the indoor unit for detecting the indoor temperature, and a detection by the first storage means. First calculating means for calculating the difference between the value and the value detected by the first temperature detecting means, first determining means for determining the result of calculation by the first calculating means, and Second determining means for determining the degree of opening of the first restricting means from the result of the determination, and second calculating means for calculating the degree of opening of the first restricting means from the result of the determination by the second determining means; A first control means for controlling the throttle opening of the first throttle means on the basis of the result of calculation by the second calculation means, and a third control means for calculating the rotation speed of the refrigerant conveying means on the basis of the result of determination by the second determination means. Calculation means and the calculation result by the third calculation means Ri and a second control means for controlling the rotational speed of the refrigerant carrying means, opening of the first throttle means, and is obtained by the configuration for controlling the rotational speed of the refrigerant carrying means.

【0018】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置及び、 複数の
室内ユニット間で冷暖房同時運転を行なうことができる
空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with low power and an air conditioner capable of performing a simultaneous cooling and heating operation among a plurality of indoor units are obtained.

【0019】また他の手段は、熱機関の冷却水回路に温
水流量調整手段と、温水搬送手段装置と、温水用熱交換
器と、冷却用熱交換器と、この冷却用熱交換器に送風す
る送風装置とを備え、第2の判定手段による判定結果よ
り冷媒搬送手段の回転数を判定する第3の判定手段と、
この第3の判定手段による判定結果より温水流量調整手
段の開度を演算する第4の演算手段と、この第4の演算
手段による演算結果より温水流量調整手段の開度を制御
する第3の制御手段とを備え、第1の絞り手段の開度、
冷媒搬送手段の回転数、及び、温水流量調整手段の開度
を制御する構成としたものである。
Still another means is that a cooling water circuit of the heat engine has a hot water flow rate adjusting means, a hot water conveying means device, a hot water heat exchanger, a cooling heat exchanger, and a blower for the cooling heat exchanger. A third determining means for determining the number of revolutions of the refrigerant conveying means based on the determination result by the second determining means,
A fourth calculating means for calculating the opening of the hot water flow rate adjusting means from the result of the determination by the third determining means, and a third means for controlling the opening degree of the hot water flow rate adjusting means from the result of the calculation by the fourth calculating means. Control means, the opening degree of the first throttle means,
The number of revolutions of the refrigerant transporting means and the opening of the hot water flow rate adjusting means are controlled.

【0020】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置及び、 複数の
室内ユニット間で冷暖房同時運転を行なうことができる
空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing low-capacity heating operation with low power and an air conditioner capable of performing simultaneous cooling and heating operation among a plurality of indoor units are obtained.

【0021】また他の手段は、第3の判定手段による判
定結果より温水流量調整手段の開度を判定する第4の判
定手段と、この第4の判定手段による判定結果より温水
搬送手段の回転数を演算する第5の演算手段と、この第
5の演算手段による演算結果より温水搬送手段の回転数
を制御する第4の制御手段とを備え、第1の絞り手段の
開度、冷媒搬送手段の回転数、温水流量調整手段の開
度、及び、温水搬送手段の回転数を制御する構成とした
ものである。
The other means includes a fourth judging means for judging the degree of opening of the hot water flow rate adjusting means based on the judgment result by the third judging means, and a rotation of the hot water conveying means based on the judgment result by the fourth judging means. A fifth calculating means for calculating the number of rotations, and a fourth control means for controlling the number of revolutions of the hot water conveying means based on the result of the calculation by the fifth calculating means. The rotation number of the means, the opening degree of the hot water flow rate adjusting means, and the rotation number of the hot water conveying means are controlled.

【0022】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置及び、 複数の
室内ユニット間で冷暖房同時運転を行なうことができる
空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing low-capacity heating operation with low power and an air conditioner capable of performing simultaneous cooling and heating operation among a plurality of indoor units are obtained.

【0023】また他の手段は、第4の判定手段による判
定結果より温水搬送手段の回転数を判定する第5の判定
手段と、この第5の判定手段による判定結果より熱機関
の回転数を演算する第6の演算手段と、この第6の演算
手段による演算結果より熱機関の回転数を制御する第5
の制御手段とを備え、第1の絞り手段の開度、冷媒搬送
手段の回転数、温水流量調整手段の開度、温水搬送手段
の回転数、及び、熱機関の回転数を制御する構成とした
ものである。 そして本発明によれば、小電力で低能力
暖房運転を行うことができる空気調和装置及び、 複数
の室内ユニット間で冷暖房同時運転を行なうことができ
る空気調和装置が得られる。
Another means is a fifth determining means for determining the rotational speed of the hot water conveying means from the result of the determination by the fourth determining means, and the rotational speed of the heat engine is determined by the result of the determination by the fifth determining means. A sixth calculating means for calculating, and a fifth calculating means for controlling the number of revolutions of the heat engine based on the calculation result by the sixth calculating means.
Control means for controlling the opening degree of the first throttle means, the rotation speed of the refrigerant conveyance means, the opening degree of the hot water flow rate adjustment means, the rotation speed of the hot water conveyance means, and the rotation speed of the heat engine. It was done. According to the present invention, an air conditioner capable of performing low-capacity heating operation with low power and an air conditioner capable of performing simultaneous cooling and heating operation between a plurality of indoor units are obtained.

【0024】また他の手段は、第5の判定手段による判
定結果より熱機関の回転数を判定する第6の判定手段
と、この第6の判定手段による判定結果より圧縮機の回
転数を演算する第7の演算手段と、この第7の演算手段
による演算結果より圧縮機の回転数を制御する第6の制
御手段とを備え、第1の絞り手段の開度、冷媒搬送手段
の回転数、温水流量調整手段の開度、温水搬送手段の回
転数、熱機関の回転数、及び、圧縮機の回転数を制御す
る構成としたものである。
Another means is a sixth determining means for determining the rotational speed of the heat engine from the result of the determination by the fifth determining means, and calculates the rotational speed of the compressor from the result of the determination by the sixth determining means. And a sixth control means for controlling the number of rotations of the compressor based on the result of the calculation by the seventh calculation means, the opening degree of the first throttle means, the number of rotations of the refrigerant conveying means. , The opening degree of the hot water flow control means, the rotation speed of the hot water transport means, the rotation speed of the heat engine, and the rotation speed of the compressor.

【0025】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置及び、 複数の
室内ユニット間で冷暖房同時運転を行なうことができる
空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing low-capacity heating operation with low power and an air conditioner capable of performing simultaneous cooling and heating operation among a plurality of indoor units are obtained.

【0026】また他の手段は、第2の流路切替手段と冷
媒間熱交換器との間に冷媒温度を検出する第2の温度検
出手段と冷媒圧力を検出する第1の圧力検出手段を備
え、第2の絞り手段と冷媒間熱交換器との間に冷媒温度
を検出する第3の温度検出手段とを備え、第1の圧力検
出手段による検出結果より冷媒の飽和温度を演算する第
8の演算手段と、この第8の演算手段による演算結果と
第2の温度検出手段による検出結果の差を演算する第9
の演算手段と、この第9の演算手段による演算結果より
冷媒の状態を判定する第7の判定手段と、この第7の判
定手段による判定結果より前記第3の温度検出手段によ
る検出結果と前記第2の温度検出手段による検出結果と
の差を演算する第10の演算手段と、この第10の演算
手段による演算結果より冷媒間の温度差を判定する第8
の判定手段と、この第8の判定手段による判定結果より
圧縮機の回転数を判定する第9の判定手段と、この第9
の判定手段による判定結果より前記第2の絞り手段の開
度を判定する第10の判定手段と、この第10の判定手
段による判定結果より第2の絞り手段の開度を演算する
第11の演算手段と、この第11の演算手段による演算
結果より前記第2の絞り手段の開度を制御する第7の制
御手段とを備え、第1の絞り手段の開度、冷媒搬送手段
の回転数、温水流量調整手段の開度、温水搬送手段の回
転数、熱機関の回転数、圧縮機の回転数、及び、第2の
絞り手段を制御する構成としたものである。
Further, another means includes a second temperature detecting means for detecting the refrigerant temperature and a first pressure detecting means for detecting the refrigerant pressure between the second flow path switching means and the inter-refrigerant heat exchanger. A third temperature detecting means for detecting a refrigerant temperature between the second throttle means and the inter-refrigerant heat exchanger, and calculating a saturation temperature of the refrigerant from a detection result by the first pressure detecting means. Calculating means for calculating a difference between a calculation result obtained by the eighth calculating means and a detection result obtained by the second temperature detecting means.
Calculating means, a seventh judging means for judging the state of the refrigerant from the calculation result by the ninth calculating means, a detection result by the third temperature detecting means from a judgment result by the seventh judging means, A tenth calculating means for calculating a difference from a detection result by the second temperature detecting means, and an eighth calculating means for determining a temperature difference between the refrigerants based on a calculation result by the tenth calculating means.
Determination means, a ninth determination means for determining the rotational speed of the compressor based on the determination result by the eighth determination means, and a ninth determination means.
A tenth determining means for determining the opening degree of the second throttle means from the determination result by the determining means; and an eleventh calculating means for calculating the opening degree of the second throttle means from the determination result by the tenth determining means. Computing means, and seventh control means for controlling the degree of opening of the second restricting means based on the result of computation by the eleventh computing means, the degree of opening of the first restricting means, the number of revolutions of the refrigerant conveying means. , The opening degree of the hot water flow adjusting means, the rotation speed of the hot water transport means, the rotation speed of the heat engine, the rotation speed of the compressor, and the second throttle means.

【0027】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing a low-capacity heating operation with small electric power is obtained.

【0028】また他の手段は、冷媒搬送手段に、熱機関
より排出される排気を利用して動力を得る補助動力手段
を備えた構成としたものである。
Another means is that the refrigerant conveying means is provided with an auxiliary power means for obtaining power by using exhaust gas discharged from the heat engine.

【0029】そして本発明によれば、小電力で低能力暖
房運転を行うことができる空気調和装置及び、 複数の
室内ユニット間で冷暖房同時運転を行なうことができる
空気調和装置が得られる。
According to the present invention, an air conditioner capable of performing low-capacity heating operation with low power and an air conditioner capable of performing simultaneous cooling and heating operation among a plurality of indoor units are obtained.

【0030】また他の手段は、一端を四方弁に配管接続
し他端を第1の絞り手段に配管接続する室内熱交換器
と、温水搬送手段から搬送される冷却水の流れる室内温
水熱交換器とを備えた室内ユニットとしたものである。
The other means includes an indoor heat exchanger having one end connected to a four-way valve and the other end connected to a first throttle means, and an indoor hot water heat exchanger through which cooling water conveyed from the hot water conveying means flows. It is an indoor unit provided with a vessel.

【0031】そして本発明によれば、室温を低下させる
ことなく除湿運転を行うことのできる空気調和装置が得
られる。
According to the present invention, an air conditioner capable of performing a dehumidifying operation without lowering the room temperature is obtained.

【0032】また他の手段は、室内の設定温度を記憶し
出力する第1の記憶手段と、室内ユニットに設けられ、
室内温度を検出する第1の温度検出手段と、第1の記憶
手段による検出値と第1の温度検出手段による検出値と
の差を演算する第1の演算手段と、この第1の演算手段
による演算結果より温水流量調整手段の開度を演算する
第4の演算手段と、この第4の演算手段による演算結果
より温水流量調整手段の開度を制御する第3の制御手段
とを備え、温水流量調整手段の開度を制御する構成とし
たものである。
Another means is provided in a first storage means for storing and outputting the set temperature in the room, and in the indoor unit,
First temperature detecting means for detecting a room temperature, first calculating means for calculating a difference between a value detected by the first storage means and a value detected by the first temperature detecting means, and the first calculating means And fourth control means for controlling the degree of opening of the hot water flow rate adjusting means based on the result of calculation by the fourth calculating means. The configuration is such that the opening degree of the hot water flow rate adjusting means is controlled.

【0033】そして本発明によれば、室温を低下させる
ことなく除湿運転を行うことのできる空気調和装置が得
られる。
According to the present invention, an air conditioner capable of performing a dehumidifying operation without lowering the room temperature is obtained.

【0034】また他の手段は、温水流量調整手段の開度
を判定する第4の判定手段と、この第4の判定手段によ
る判定結果より温水搬送手段の回転数を演算する第5の
演算手段と、この第5の演算手段による演算結果より温
水搬送手段の回転数を制御する第4の制御手段とを備
え、温水流量調整手段の開度、及び、温水搬送手段の回
転数を制御する構成としたものである。 そして本発明
によれば、室温を低下させることなく除湿運転を行うこ
とのできる空気調和装置が得られる。
Another means is a fourth determining means for determining the degree of opening of the hot water flow rate adjusting means, and a fifth calculating means for calculating the number of revolutions of the hot water conveying means from the result of the determination by the fourth determining means. And a fourth control means for controlling the number of rotations of the hot water conveying means based on the result of the calculation by the fifth calculating means, wherein the opening degree of the hot water flow rate adjusting means and the number of rotations of the hot water conveying means are controlled. It is what it was. According to the present invention, an air conditioner capable of performing a dehumidifying operation without lowering the room temperature is obtained.

【0035】また他の手段は、複数の室内熱交換器と、
複数の室内温水熱交換器と、複数の第1の絞り手段と、
複数の温水流量調整弁とを備えた構成としたものであ
る。
Another means is a plurality of indoor heat exchangers,
A plurality of indoor hot water heat exchangers, a plurality of first throttle means,
It is configured to include a plurality of hot water flow control valves.

【0036】そして本発明によれば、複数の室内ユニッ
ト間で冷暖房同時運転を行なうことができる空気調和装
置が得られる。
According to the present invention, there is provided an air conditioner capable of performing simultaneous cooling and heating operations between a plurality of indoor units.

【0037】[0037]

【発明の実施の形態】本発明は、圧縮機を使わずに、排
熱回収したフロン系冷媒を冷媒搬送手段を用いて循環さ
せることにより室内を暖房することのできる構成とした
ものである。上記のように構成された空気調和装置にお
いて通常の暖房運転もしくは低負荷時暖房運転を行なう
場合、冷媒搬送手段より吐出された冷媒に排熱を回収さ
せ、高温冷媒にする。この排熱を持った高温冷媒はその
まま冷媒搬送手段により搬送され、室内空気と熱交換
し、排熱を放熱して室内を暖房する。その後、放熱によ
り温度の下がった冷媒は再び冷媒搬送手段に戻り、上記
動作を繰り返す。このようにして、圧縮機を駆動させる
ことなく熱機関の排熱を利用して暖房するので、消費電
力を小さく抑えながらも低能力暖房運転を行うことがで
きる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a structure in which the interior of a room can be heated by circulating a CFC-based refrigerant from which exhaust heat has been recovered using a refrigerant transfer means without using a compressor. When a normal heating operation or a low-load heating operation is performed in the air-conditioning apparatus configured as described above, the refrigerant discharged from the refrigerant conveying means recovers exhaust heat to make a high-temperature refrigerant. The high-temperature refrigerant having the exhaust heat is transported as it is by the refrigerant transport means, exchanges heat with the indoor air, and radiates the exhaust heat to heat the room. Thereafter, the refrigerant whose temperature has been lowered by the heat radiation returns to the refrigerant conveying means again and repeats the above operation. In this way, since heating is performed using exhaust heat of the heat engine without driving the compressor, a low-capacity heating operation can be performed while suppressing power consumption.

【0038】また、冷却水によって冷却される冷却水回
路を備えた熱機関と、この熱機関により駆動される発電
機と、冷媒を圧縮する圧縮機と、この圧縮機の吐出側に
配管接続する第1の流路切替手段と、圧縮機の吸入側に
配管接続する第2の流路切替手段と、第1の流路切替手
段及び第2の流路切替手段の一端に配管接続される四方
弁と、この四方弁の一端に配管接続される室外熱交換器
と、この室外熱交換器の他端に配管接続される第1の絞
り手段と、第1の流路切替手段の他端と第2の流路切替
手段の他端との間に配管接続される冷媒搬送手段とを備
えてなる室外ユニットと、一端を四方弁に配管接続し他
端を第1の絞り手段に配管接続する室内熱交換器を備え
てなる室内ユニットとから構成され、冷媒搬送手段の吐
出側の冷媒と熱機関の冷却水とを熱交換させる室外温水
熱交換器を設けた構成としたものである。上記のように
構成された空気調和装置において、通常の暖房運転もし
くは低負荷時暖房運転を行なう場合、まず冷媒の流通す
る向きの切り替えとして第1の流路切替手段は冷媒搬送
手段の吐出側から室外温水熱交換器へ冷媒が流通するよ
うに切り替わり、第2の流路切替手段は四方弁から冷媒
搬送手段の吸入側へ冷媒が流通するように切り替わり、
四方弁は室外温水熱交換器から室内熱交換器へ冷媒が流
通し、室外熱交換器から第2の切替手段へ冷媒が流通す
るように切り替わる。この状態において、冷媒搬送手段
から吐出された冷媒は、まず室外温水熱交換器におい
て、熱機関から流出した温水と熱交換を行うことにより
熱機関の排熱を回収して高温冷媒となる。この高温冷媒
は次に室内熱交換器に流入し、この室内熱交換器におい
て室内空気と熱交換を行ない、室内空気に放熱して室内
を暖房する。このように室内熱交換器において熱交換を
行った冷媒はその後、室内熱交換器から第1の絞り手
段、室外熱交換器、四方弁、第2の流路切替手段を順次
通過し、冷媒搬送手段に再び流入し、上記動作を繰り返
す。このようにして、暖房運転時、圧縮機を駆動させる
ことなく熱機関の排熱を利用して暖房するので、消費電
力を小さく抑えながらも低能力暖房運転を行うことがで
きる。
Further, a heat engine having a cooling water circuit cooled by the cooling water, a generator driven by the heat engine, a compressor for compressing the refrigerant, and piping connected to a discharge side of the compressor. A first flow path switching means, a second flow path switching means connected to the suction side of the compressor by piping, and a four-way pipe connected to one end of the first flow path switching means and one end of the second flow path switching means. A valve, an outdoor heat exchanger connected to one end of the four-way valve, a first throttle unit connected to the other end of the outdoor heat exchanger, and another end of the first flow path switching unit. An outdoor unit comprising a refrigerant conveying means connected to the other end of the second flow path switching means by piping; one end connected to a four-way valve by piping and the other end connected to the first throttle means by piping; An indoor unit including an indoor heat exchanger, wherein the refrigerant on the discharge side of the refrigerant conveying means and a heat machine And the cooling water is obtained by a configuration in which the outdoor hot water heat exchanger for heat exchange. In the air-conditioning apparatus configured as described above, when performing the normal heating operation or the heating operation at a low load, first, the first flow path switching unit is switched from the discharge side of the refrigerant conveying unit as switching of the direction of circulation of the refrigerant. The refrigerant is switched so that the refrigerant flows to the outdoor hot water heat exchanger, and the second flow path switching means is switched so that the refrigerant flows from the four-way valve to the suction side of the refrigerant conveying means,
The four-way valve switches so that the refrigerant flows from the outdoor hot water heat exchanger to the indoor heat exchanger, and the refrigerant flows from the outdoor heat exchanger to the second switching means. In this state, the refrigerant discharged from the refrigerant conveying means first exchanges heat with the hot water flowing out of the heat engine in the outdoor hot water heat exchanger, thereby recovering the exhaust heat of the heat engine to become a high-temperature refrigerant. The high-temperature refrigerant then flows into the indoor heat exchanger, where it exchanges heat with the indoor air, and radiates heat to the indoor air to heat the room. The refrigerant that has thus undergone heat exchange in the indoor heat exchanger then passes sequentially from the indoor heat exchanger to the first throttling means, the outdoor heat exchanger, the four-way valve, and the second flow path switching means, and It flows back into the means and repeats the above operation. In this manner, during the heating operation, the heating is performed by using the exhaust heat of the heat engine without driving the compressor, so that the low-capacity heating operation can be performed while suppressing the power consumption.

【0039】また、室外温水熱交換器を冷媒搬送手段の
吐出側に配し、第1の流路切替手段を四方弁と室内熱交
換器との間に配し、第2の流路切替手段を四方弁と室外
熱交換器との間に配し、室外温水熱交換器と冷媒搬送手
段を第1の流路切替手段の他端と第2の流路切替手段の
他端との間に設けた構成としたものである。上記のよう
に構成された空気調和装置において、通常の暖房運転も
しくは低負荷時暖房運転を行なう場合、まず冷媒の流通
する向きの切り替えとして第1の流路切替手段は室外温
水熱交換器から室内熱交換器へ冷媒が流通するように切
り替わり、第2の流路切替手段は室外熱交換器から冷媒
搬送手段の吸入側へ冷媒が流通するように切り替わる。
この状態において、冷媒搬送手段から吐出された冷媒
は、まず室外温水熱交換器において、室外温水熱交換器
において、熱機関から流出した温水と熱交換を行うこと
により熱機関の排熱を回収して高温冷媒となる。この高
温冷媒は次に室内熱交換器に流入し、この室内熱交換器
において室内空気と熱交換を行ない、室内空気に放熱し
て室内を暖房する。このように室内熱交換器において熱
交換を行った冷媒はその後、室内熱交換器から第1の絞
り手段、室外熱交換器、第2の流路切替手段を順次通過
し、冷媒搬送手段に再び流入し、上記動作を繰り返す。
このようにして、暖房運転時、圧縮機を駆動させること
なく熱機関の排熱を利用して室内を暖房することがで
き、かつ冷媒は四方弁を通らずに循環するので、サイク
ルの圧力損失と消費電力を小さく抑えながら、低能力暖
房運転を行うことができる。
Further, an outdoor hot water heat exchanger is disposed on the discharge side of the refrigerant conveying means, a first flow path switching means is disposed between the four-way valve and the indoor heat exchanger, and a second flow path switching means is provided. Is disposed between the four-way valve and the outdoor heat exchanger, and the outdoor hot water heat exchanger and the refrigerant transfer means are provided between the other end of the first flow path switching means and the other end of the second flow path switching means. This is a configuration provided. In the air-conditioning apparatus configured as described above, when performing a normal heating operation or a heating operation at a low load, the first flow path switching unit first switches the direction of flow of the refrigerant from the outdoor hot water heat exchanger to the indoor. The refrigerant is switched so as to flow to the heat exchanger, and the second flow path switching means is switched so that the refrigerant flows from the outdoor heat exchanger to the suction side of the refrigerant conveying means.
In this state, the refrigerant discharged from the refrigerant conveying means first recovers exhaust heat of the heat engine by performing heat exchange with hot water flowing out of the heat engine in the outdoor hot water heat exchanger in the outdoor hot water heat exchanger. And becomes a high-temperature refrigerant. The high-temperature refrigerant then flows into the indoor heat exchanger, where it exchanges heat with the indoor air, and radiates heat to the indoor air to heat the room. The refrigerant that has exchanged heat in the indoor heat exchanger in this manner subsequently passes from the indoor heat exchanger to the first throttle unit, the outdoor heat exchanger, and the second flow path switching unit, and then returns to the refrigerant transfer unit. And the above operation is repeated.
In this way, during the heating operation, the interior of the room can be heated using the exhaust heat of the heat engine without driving the compressor, and the refrigerant circulates without passing through the four-way valve. Thus, low-capacity heating operation can be performed while suppressing power consumption.

【0040】また、室外温水熱交換器を冷媒搬送手段の
吐出側に配し、第1の流路切替手段を四方弁と室内熱交
換器との間に配し、第2の流路切替手段を室外熱交換器
と第1の絞り手段との間に配し、室外温水熱交換器と冷
媒搬送手段を第1の流路切替手段の他端と第2の流路切
替手段の他端との間に設けた構成としたものである。上
記のように構成された空気調和装置において、通常の暖
房運転もしくは低負荷時に暖房運転を行う場合、第1の
流路切替手段は室外温水熱交換器から室内熱交換器へ冷
媒が流通するように切り替わり、第2の流路切替手段は
第1の絞り手段から冷媒搬送手段へ冷媒が流通するよう
に切り替わる。このような状態の冷媒回路で、冷媒搬送
手段から吐出された冷媒は室外温水熱交換器において、
熱機関から流出した温水と熱交換を行い吸熱し高温冷媒
となる。この高温冷媒は室内熱交換器に流入し、室内熱
交換器において室内空気と熱交換を行ない放熱し室内を
暖房する。このように室内熱交換器において熱交換を行
った後に冷媒は、室内熱交換器から第1の絞り手段、第
2の流路切替手段を順次通過し、冷媒搬送手段に再び流
入し上記の動作を繰り返す。このようにして、通常の暖
房運転もしくは低負荷時に暖房運転を行う場合、圧縮機
を駆動させることなく熱機関の排熱を利用して暖房運転
を行ない、また、冷媒が四方弁及び、室外熱交換器を通
過しないため、四方弁及び、室外熱交換器の圧力損失の
影響を受けずに消費電力を抑えながらも低能力暖房運転
を行なうことができる。
Further, an outdoor hot water heat exchanger is disposed on the discharge side of the refrigerant conveying means, a first flow path switching means is disposed between the four-way valve and the indoor heat exchanger, and a second flow path switching means is provided. Is disposed between the outdoor heat exchanger and the first throttle means, and the outdoor hot water heat exchanger and the refrigerant transfer means are connected to the other end of the first flow path switching means and the other end of the second flow path switching means. This is a configuration provided between them. In the air conditioner configured as described above, when performing the normal heating operation or the heating operation at a low load, the first flow path switching unit causes the refrigerant to flow from the outdoor hot water heat exchanger to the indoor heat exchanger. And the second flow path switching means switches so that the refrigerant flows from the first throttle means to the refrigerant conveying means. In the refrigerant circuit in such a state, the refrigerant discharged from the refrigerant conveying means in the outdoor hot water heat exchanger,
It exchanges heat with the warm water flowing out of the heat engine and absorbs heat to become a high-temperature refrigerant. The high-temperature refrigerant flows into the indoor heat exchanger, exchanges heat with the indoor air in the indoor heat exchanger, and radiates heat to heat the room. After performing the heat exchange in the indoor heat exchanger as described above, the refrigerant sequentially passes from the indoor heat exchanger through the first throttle means and the second flow path switching means, flows into the refrigerant conveying means again, and performs the above operation. repeat. In this manner, when performing the normal heating operation or the heating operation at a low load, the heating operation is performed using the exhaust heat of the heat engine without driving the compressor, and the refrigerant is heated by the four-way valve and the outdoor heat. Since it does not pass through the exchanger, low-capacity heating operation can be performed while suppressing power consumption without being affected by the pressure loss of the four-way valve and the outdoor heat exchanger.

【0041】また、室外熱交換器と第2の流路切替手段
との間に第3の流路切替手段を備え、四方弁と第1の流
路切替手段との間に第4の流路切替手段を備え、第2の
流路切替手段と冷媒搬送手段との間を流れる冷媒と、第
3の流路切替手段と第4の流路切替手段との間を流れる
冷媒とを熱交換させる冷媒間熱交換器を備え、この冷媒
間熱交換器と第3の流路切替手段との間に第2の絞り手
段とを設けた構成としたものである。上記のように構成
された空気調和装置において、通常の暖房運転もしくは
低負荷時に暖房運転を行う場合、、第1の流路切替手段
は室外温水熱交換器から室内熱交換器へ冷媒が流通する
ように切り替わり、第2の流路切替手段は第1の絞り手
段から冷媒間熱交換器へ冷媒が流通するように切り替わ
り、第3の流路切替手段は室外熱交換器から第2の絞り
手段へ冷媒が流通するように切り替わり、第4の流路切
替手段は冷媒間熱交換器から四方弁へ冷媒が流通するよ
うに切り替わり、四方弁は圧縮機の吐出側から室外熱交
換器へ冷媒が流通し、また第4の流路切替手段から圧縮
機の吸入側へ冷媒が流通するように切り替わる。このよ
うな状態の冷媒回路で冷媒搬送手段から吐出された冷媒
は室外温水熱交換器において、熱機関から流出した温水
と熱交換を行い吸熱し高温冷媒となる。この高温冷媒は
第1の冷媒切替手段を通過し、室内熱交換器に流入し、
室内熱交換器において室内空気と熱交換を行ない放熱す
ることで室内を暖房する。このように室内熱交換器にお
いて熱交換を行った後に冷媒は、室内熱交換器から第1
の絞り手段、第2の流路切替手段を順次通過し、冷媒間
熱交換器へと流入する。一方、圧縮機から吐出された高
温高圧冷媒は、四方弁を通過し室外熱交換器へと流入
し、室外熱交換器において外気と熱交換を行い放熱し凝
縮する。凝縮した冷媒は、室外熱交換器から第3の流路
切替手段を通過し、第2の絞り手段を通過し、この第2
の絞り手段を通過する際に低温低圧の冷媒となり、冷媒
間熱交換器へ流入する。第2の流路切替手段から冷媒間
熱交換器へ流入した冷媒と第2の絞り手段から冷媒間熱
交換器へ流入した冷媒は、冷媒間熱交換器において熱交
換を行い、第2の流路切替手段から冷媒間熱交換器へ流
入した冷媒は、第2の絞り手段から冷媒管熱交換器へ流
入した冷媒の吸熱作用により冷却され冷媒搬送手段に再
び流入し、また、第2の絞り手段から冷媒間熱交換器へ
流入した冷媒は、第4の流路切替手段、四方弁を順次通
過し、圧縮機へ再び流入し、上記の動作を繰り返す。こ
のようにして、通常の暖房運転もしくは低負荷時に暖房
運転を行う場合、冷媒搬送手段の吸入側冷媒を冷却し常
に液冷媒となるようにするので、冷媒搬送手段の効率低
下を抑制することができる。
A third flow path switching means is provided between the outdoor heat exchanger and the second flow path switching means, and a fourth flow path is provided between the four-way valve and the first flow path switching means. A switching unit for exchanging heat between the refrigerant flowing between the second channel switching unit and the refrigerant conveying unit and the refrigerant flowing between the third channel switching unit and the fourth channel switching unit; A heat exchanger for refrigerant is provided, and a second throttle means is provided between the heat exchanger for refrigerant and the third flow path switching means. In the air conditioner configured as described above, when performing the normal heating operation or the heating operation at a low load, the first flow path switching unit causes the refrigerant to flow from the outdoor hot water heat exchanger to the indoor heat exchanger. The second flow path switching means is switched so that the refrigerant flows from the first throttle means to the inter-refrigerant heat exchanger, and the third flow path switching means is switched from the outdoor heat exchanger to the second throttle means. The fourth flow path switching means switches so that the refrigerant flows from the inter-refrigerant heat exchanger to the four-way valve, and the four-way valve switches the refrigerant from the discharge side of the compressor to the outdoor heat exchanger. The flow is switched so that the refrigerant flows from the fourth flow path switching means to the suction side of the compressor. The refrigerant discharged from the refrigerant conveying means in the refrigerant circuit in such a state exchanges heat with the hot water flowing out of the heat engine in the outdoor hot water heat exchanger and absorbs heat to become a high-temperature refrigerant. This high-temperature refrigerant passes through the first refrigerant switching means, flows into the indoor heat exchanger,
The indoor heat exchanger heats the room by exchanging heat with the indoor air to radiate heat. After performing the heat exchange in the indoor heat exchanger in this manner, the refrigerant flows from the indoor heat exchanger to the first heat exchanger.
And then flows into the inter-refrigerant heat exchanger. On the other hand, the high-temperature and high-pressure refrigerant discharged from the compressor passes through the four-way valve, flows into the outdoor heat exchanger, exchanges heat with the outside air in the outdoor heat exchanger, releases heat, and condenses. The condensed refrigerant passes from the outdoor heat exchanger through the third flow path switching means, passes through the second throttle means, and
When passing through the throttle means, the refrigerant becomes low-temperature and low-pressure refrigerant and flows into the inter-refrigerant heat exchanger. The refrigerant that has flowed into the inter-refrigerant heat exchanger from the second flow path switching means and the refrigerant that has flowed into the inter-refrigerant heat exchanger from the second throttle means perform heat exchange in the inter-refrigerant heat exchanger. The refrigerant that has flowed into the inter-refrigerant heat exchanger from the path switching means is cooled by the heat absorbing action of the refrigerant that has flowed into the refrigerant pipe heat exchanger from the second throttle means, and flows again into the refrigerant conveying means. The refrigerant flowing from the means into the inter-refrigerant heat exchanger sequentially passes through the fourth flow path switching means and the four-way valve, flows into the compressor again, and repeats the above operation. In this manner, when performing the normal heating operation or the heating operation at the time of a low load, the suction side refrigerant of the refrigerant conveyance unit is cooled so as to be always a liquid refrigerant, so that the efficiency of the refrigerant conveyance unit can be prevented from decreasing. it can.

【0042】また、熱機関としてターボエンジンを備
え、このターボエンジンの吸気側空気と、第3の流路切
替手段と第4の流路切替手段との間を流れる冷媒とを熱
交換させる吸気冷却熱交換器を設けた構成としたもので
ある。上記のように構成された空気調和装置において、
通常の暖房運転もしくは低負荷時の暖房運転を行う場
合、第1の流路切替手段は室外温水熱交換器から室内熱
交換器へ冷媒が流通するように切り替わり、第2の流路
切替手段は第1の絞り手段から吸気冷却熱交換器へ冷媒
が流通するように切り替わり、第3の流路切替手段は室
外熱交換器から第2の絞り手段へ冷媒が流通するように
切り替わり、第4の流路切替手段は吸気冷却熱交換器か
ら四方弁へ冷媒が流通するように切り替わり、四方弁は
圧縮機の吐出側から室外熱交換器を冷媒が流通し、また
第4の流路切替手段から圧縮機の吸入側へ冷媒が流通す
るように切り替わる。このような状態の冷媒回路で、冷
媒搬送手段から吐出された冷媒は室外温水熱交換器にお
いて、熱機関から流出した温水と熱交換を行い吸熱し高
温冷媒となる。この高温冷媒は第1の流路切替手段を通
過し、室内熱交換器に流入し、室内熱交換器において室
内空気と熱交換を行ない放熱することで室内を暖房す
る。このように室内熱交換器において熱交換を行った後
に冷媒は、室内熱交換器から第1の絞り手段、第2の流
路切替手段を順次通過し、吸気冷却熱交換器へと流入す
る。一方、圧縮機から吐出された高温高圧冷媒は、四方
弁を通過し室外熱交換器へと流入し、室外熱交換器にお
いて外気と熱交換を行い放熱し凝縮する。このように室
外熱交換器において熱交換を行った後に冷媒は、室外熱
交換器から第3の流路切替手段を通過し、第2の絞り手
段を通過し、この第2の絞り手段を通過する際に低温低
圧の冷媒となり吸気冷却熱交換器へ流入する。また、タ
ーボエンジンの吸気側空気は吸気冷却熱交換器を通過し
ターボエンジンへと流入する。そして、吸気冷却熱交換
器において、第2の流路切替手段から吸気冷却熱交換器
へ流入した冷媒は第2の絞り手段から吸気冷却熱交換器
へ流入した冷媒と熱交換を行い、第2の絞り手段から吸
気冷却熱交換器へ流入した冷媒の吸熱作用により冷却さ
れ冷媒搬送手段に流入し、ターボエンジンの吸気側空気
は、第2の流路切替手段から吸気冷却熱交換器へ流入し
た冷媒と熱交換を行った後の第2の絞り手段から吸気冷
却熱交換器へ流入した冷媒と熱交換を行い、第2の絞り
手段から吸気冷却熱交換器へ流入した冷媒の吸熱作用に
より冷却され、吸気冷却熱交換器に流入する前よりも比
重量が大きな空気となりターボエンジンに吸入されるこ
とになる。また、第2の絞り手段から吸気冷却熱交換器
へ流入した冷媒は、第4の流路切替手段、四方弁を順次
通過し、圧縮機へ流入し、上記の動作を繰り返す。この
ようにして、ターボエンジンの吸気側空気を冷媒と熱交
換させ冷媒の蒸発熱を利用して冷却することにより、タ
ーボエンジンの吸気側空気の比重量を増加させることに
より、ターボエンジンの効率を向上することができる。
Further, a turbo engine is provided as a heat engine, and intake air cooling for exchanging heat between the intake side air of the turbo engine and the refrigerant flowing between the third flow path switching means and the fourth flow path switching means. This is a configuration provided with a heat exchanger. In the air conditioner configured as described above,
When performing the normal heating operation or the heating operation at the time of low load, the first flow path switching means switches so that the refrigerant flows from the outdoor hot water heat exchanger to the indoor heat exchanger, and the second flow path switching means The third flow path switching means is switched so that the refrigerant flows from the first throttle means to the intake cooling heat exchanger, and the third flow path switching means is switched such that the refrigerant flows from the outdoor heat exchanger to the second throttle means. The flow path switching means switches so that the refrigerant flows from the intake cooling heat exchanger to the four-way valve, the four-way valve allows the refrigerant to flow through the outdoor heat exchanger from the discharge side of the compressor, and The switching is performed so that the refrigerant flows to the suction side of the compressor. In the refrigerant circuit in such a state, the refrigerant discharged from the refrigerant conveying means exchanges heat with the hot water flowing out of the heat engine in the outdoor hot water heat exchanger and absorbs heat to become a high-temperature refrigerant. The high-temperature refrigerant passes through the first flow path switching means, flows into the indoor heat exchanger, exchanges heat with indoor air in the indoor heat exchanger, and radiates heat to heat the room. After performing the heat exchange in the indoor heat exchanger as described above, the refrigerant sequentially passes from the indoor heat exchanger through the first throttle unit and the second flow path switching unit, and flows into the intake cooling heat exchanger. On the other hand, the high-temperature and high-pressure refrigerant discharged from the compressor passes through the four-way valve, flows into the outdoor heat exchanger, exchanges heat with the outside air in the outdoor heat exchanger, releases heat, and condenses. After performing the heat exchange in the outdoor heat exchanger in this manner, the refrigerant passes from the outdoor heat exchanger, passes through the third flow path switching unit, passes through the second throttle unit, and passes through the second throttle unit. At this time, the refrigerant becomes a low-temperature low-pressure refrigerant and flows into the intake cooling heat exchanger. The air on the intake side of the turbo engine passes through the intake cooling heat exchanger and flows into the turbo engine. Then, in the intake cooling heat exchanger, the refrigerant flowing into the intake cooling heat exchanger from the second flow path switching means exchanges heat with the refrigerant flowing into the intake cooling heat exchanger from the second throttle means, and The refrigerant flowing from the throttle means into the intake cooling heat exchanger is cooled by the endothermic action of the refrigerant and flows into the refrigerant conveying means, and the air on the intake side of the turbo engine flows from the second flow path switching means into the intake cooling heat exchanger. After the heat exchange with the refrigerant, the second throttle means exchanges heat with the refrigerant flowing into the intake cooling heat exchanger, and the refrigerant flows from the second throttle means into the intake cooling heat exchanger to be cooled by heat absorption. As a result, the specific weight of the air becomes larger than that before the air flows into the intake cooling heat exchanger, and is sucked into the turbo engine. The refrigerant flowing from the second throttle means into the intake air cooling heat exchanger sequentially passes through the fourth flow path switching means and the four-way valve, flows into the compressor, and repeats the above operation. In this way, the air on the intake side of the turbo engine is heat-exchanged with the refrigerant and cooled by utilizing the heat of evaporation of the refrigerant, thereby increasing the specific weight of the air on the intake side of the turbo engine, thereby increasing the efficiency of the turbo engine. Can be improved.

【0043】また、複数の第1の絞り手段と複数の室内
熱交換器を備え、複数の第1の絞り手段と第2の流路切
替手段との間に複数の第5の流路切替手段を備え、複数
の室内熱交換器と第1の流路切替手段との間に第6の流
路切替手段を備え、室外熱交換器と第2の流路切替手段
との間の配管を複数の第5の流路切替手段に分岐接続
し、かつ第1の流路切替手段と四方弁との間の配管を複
数の第6の流路切替手段に分岐接続させる構成としたも
のである。上記のように構成された空気調和装置におい
て、複数の室内ユニット間において冷房と暖房を同時に
運転する場合、第1の流路切替手段は室外温水熱交換器
から第6の流路切替手段へ冷媒が流通するように切り替
わり、第2の流路切替手段は第5の流路切替手段から冷
媒搬送手段へ冷媒が流通するように切り替わり、冷房運
転を行う室内ユニットと第1の絞り手段を介して接続さ
れている第5の流路切替手段は、室外熱交換器から第1
の絞り手段へ冷媒が流通するように切り替わり、暖房運
転を行う室内ユニットと第1の絞り手段を介して接続さ
れている第5の流路切替手段は、第1の絞り手段から第
2の流路切替手段へ冷媒が流通するように切り替わり、
冷房運転を行う室内ユニットと接続されている第6の流
路切替手段は室内ユニットから四方弁へ冷媒が流通する
ように切り替わり、暖房運転を行う室内ユニットと接続
されている第6の流路切替手段は第1の流路切替手段か
ら室内ユニットへ冷媒が流通するように切り替わり、四
方弁は圧縮機の吐出側から室外熱交換器へ冷媒が流通
し、また、第6の流路切替手段から圧縮機の吸入側へ冷
媒が流通するように切り替わる。このような状態の冷媒
回路で、冷媒搬送手段から吐出された冷媒は室外温水熱
交換器において、熱機関から流出した温水と熱交換を行
い吸熱し高温冷媒となる。この高温冷媒は、第1の流路
切替手段を通過し暖房運転を行う室内ユニット側に流路
の切り替えられた第6の流路切替手段を通過し、暖房運
転を行う室内ユニットに搭載された室内熱交換器に流入
し、この室内熱交換器において室内空気と熱交換を行な
い放熱することで室内を暖房する。室内熱交換器におい
て熱交換を行った後に冷媒は、室内熱交換器から第1の
絞り手段、第5の流路切替手段、第2の流路切替手段を
順次通過し、冷媒搬送手段に流入する。一方、圧縮機か
ら吐出された高温高圧冷媒は、四方弁を通過し室外熱交
換器へと流入し、室外熱交換器において外気と熱交換を
行い放熱し凝縮する。このように室外熱交換器において
熱交換を行った後に冷媒は、室外熱交換器から冷房運転
を行う室内ユニット側に切り替えられた第5の流路切替
手段を通過し、第2の絞り手段を通過し、この第2の絞
り手段を通過する際に低温低圧の冷媒となり冷房運転を
行う室内ユニットに搭載された室内熱交換器に流入し、
この室内熱交換器において室内空気と熱交換を行ない吸
熱することで室内を冷房する。室内熱交換器において熱
交換を行った冷媒は、第6の流路切替手段、四方弁を順
次通過し、圧縮機へ流入する。このようにして、熱機関
の排熱利用による暖房回路と通常のヒートポンプとして
の冷房回路とを第1の流路切替、第2の流路切替手段、
第5の流路切替手段、第6の流路切替手段の切り替えに
より独立させるので、複数の室内ユニット間において冷
房と暖房を同時に運転することができる。
Also, a plurality of first throttling means and a plurality of indoor heat exchangers are provided, and a plurality of fifth flow path switching means are provided between the plurality of first throttling means and the second flow path switching means. And a sixth flow path switching means between the plurality of indoor heat exchangers and the first flow path switching means, and a plurality of pipes between the outdoor heat exchanger and the second flow path switching means. And the piping between the first flow path switching means and the four-way valve is branched and connected to a plurality of sixth flow path switching means. In the air conditioner configured as described above, when cooling and heating are simultaneously performed among a plurality of indoor units, the first flow path switching means transmits the refrigerant from the outdoor hot water heat exchanger to the sixth flow path switching means. Is switched to flow, and the second flow path switching means is switched to flow the refrigerant from the fifth flow path switching means to the refrigerant conveying means, and is connected to the indoor unit performing the cooling operation and the first throttle means. The connected fifth flow path switching unit is configured to connect the first heat exchanger to the first heat exchanger.
The refrigerant is switched so as to flow to the first throttle means, and the fifth flow path switching means connected to the indoor unit performing the heating operation via the first throttle means is connected to the second flow from the first throttle means. It is switched so that the refrigerant flows to the path switching means,
The sixth flow path switching means connected to the indoor unit performing the cooling operation switches so that the refrigerant flows from the indoor unit to the four-way valve, and the sixth flow path switching connected to the indoor unit performing the heating operation The means is switched so that the refrigerant flows from the first flow path switching means to the indoor unit. The four-way valve flows the refrigerant from the discharge side of the compressor to the outdoor heat exchanger. The switching is performed so that the refrigerant flows to the suction side of the compressor. In the refrigerant circuit in such a state, the refrigerant discharged from the refrigerant conveying means exchanges heat with the hot water flowing out of the heat engine in the outdoor hot water heat exchanger and absorbs heat to become a high-temperature refrigerant. The high-temperature refrigerant passes through the first flow path switching unit, passes through the sixth flow path switching unit whose flow path is switched to the indoor unit that performs the heating operation, and is mounted on the indoor unit that performs the heating operation. The air flows into the indoor heat exchanger and exchanges heat with indoor air in the indoor heat exchanger to radiate heat, thereby heating the room. After performing heat exchange in the indoor heat exchanger, the refrigerant sequentially passes from the indoor heat exchanger through the first throttle means, the fifth flow path switching means, and the second flow path switching means, and flows into the refrigerant conveying means. I do. On the other hand, the high-temperature and high-pressure refrigerant discharged from the compressor passes through the four-way valve, flows into the outdoor heat exchanger, exchanges heat with the outside air in the outdoor heat exchanger, releases heat, and condenses. After performing the heat exchange in the outdoor heat exchanger as described above, the refrigerant passes through the fifth flow path switching unit that is switched from the outdoor heat exchanger to the indoor unit that performs the cooling operation, and passes through the second throttle unit. When passing through the second throttle means, it becomes a low-temperature low-pressure refrigerant and flows into an indoor heat exchanger mounted on an indoor unit performing a cooling operation,
The indoor heat exchanger exchanges heat with indoor air and absorbs heat to cool the room. The refrigerant that has exchanged heat in the indoor heat exchanger sequentially passes through the sixth flow path switching means and the four-way valve, and flows into the compressor. In this manner, the heating circuit using the exhaust heat of the heat engine and the cooling circuit as a normal heat pump are switched between the first flow path and the second flow path switching means.
Since the fifth flow path switching means and the sixth flow path switching means are made independent by switching, cooling and heating can be simultaneously operated between a plurality of indoor units.

【0044】また、設定温度と室内温度の温度差にあわ
せて暖房能力が増減できるよう適確に室内の負荷に応じ
た暖房運転を行う制御手段を備えた構成としたものであ
る。上記のような構成において、設定温度と室内温度を
とりこみ、もし設定温度よりも室内温度の方が低けれ
ば、暖房能力が不足なので、より暖房能力を増大させる
ように制御する。反対に、もし設定温度よりも室内温度
の方が高ければ、暖房能力が過多であるので、暖房能力
を低下させるように制御する。このようにして、設定温
度と室内温度との温度差を演算し、この温度差にあわせ
て暖房能力が増減できるので、適確に室内の設定温度に
よる負荷に応じた暖房運転を行うことができる。
Further, the apparatus is provided with a control means for performing a heating operation appropriately in accordance with the indoor load so that the heating capacity can be increased or decreased in accordance with the temperature difference between the set temperature and the indoor temperature. In the above configuration, the set temperature and the room temperature are taken in. If the room temperature is lower than the set temperature, the heating capacity is insufficient, so the heating capacity is controlled to be further increased. Conversely, if the room temperature is higher than the set temperature, the heating capacity is excessive, so that the heating capacity is controlled to decrease. In this manner, the temperature difference between the set temperature and the room temperature is calculated, and the heating capacity can be increased or decreased in accordance with the temperature difference, so that the heating operation can be performed appropriately according to the load based on the room set temperature. .

【0045】また、室内の設定温度を記憶し出力する第
1の記憶手段と、室内ユニットに設けられ室内温度を検
出する第1の温度検出手段と、第1の記憶手段による検
出値と第1の温度検出手段による検出値との差を演算す
る第1の演算手段と、この第1の演算手段による演算結
果を判定する第1の判定手段と、この第1の判定手段に
よる判定結果より第1の絞り手段の絞り開度を判定する
第2の判定手段と、この第2の判定手段による判定結果
より第1の絞り手段の絞り開度を演算する第2の演算手
段と、この第2の演算手段による演算結果より第1の絞
り手段の絞り開度を制御する第1の制御手段と、第2の
判定手段による判定結果より冷媒搬送手段の回転数を演
算する第3の演算手段と、この第3の演算手段による演
算結果より冷媒搬送手段の回転数を制御する第2の制御
手段とを備えた構成としたものである。上記のような構
成において、第1の記憶手段によって記憶した設定温度
と第1の温度検出手段より検出した室内温度との温度差
を第1の演算手段により演算し、この演算結果の正負を
第1の判定手段により演算結果を判定する。第1の演算
手段による演算結果が正の場合は、第1の絞り手段の絞
り開度が最大であるかを第2の判定手段により判定し、
この結果、第1の絞り手段の絞り開度が最大である場合
は冷媒搬送手段の回転数を第3の演算手段により演算
し、この演算結果から冷媒搬送手段の回転数を第2の制
御手段により増大させる。また、第1の絞り開度が最大
でない場合は、第1の絞り手段の絞り開度を第2の演算
手段により演算し、この演算結果から第1の絞り手段の
絞り開度を第1の制御手段により増大させる。一方、第
1の演算手段による演算結果が負の場合は、第1の絞り
手段の絞り開度が最少であるかを第2の判定手段により
判定し、もし第1の絞り手段の絞り開度が最少である場
合は、冷媒搬送手段の回転数を第3の演算手段により演
算し、この演算結果から冷媒搬送手段の回転数を第2の
制御手段により減少させる。また、もし第1の絞り手段
の絞り開度が最少でない場合は、第1の絞り手段の絞り
開度を第2の演算手段により演算し、この演算結果から
第1の絞り手段の絞り開度を第1の制御手段により減少
させる。このようにして、第1の記憶手段よって記憶し
た設定温度と第1の温度検出手段より検出した室内温度
との温度差を演算し、この温度差にあわせて暖房能力が
増減できるように、第1の絞り手段の絞り開度、冷媒搬
送手段の回転数および温水流量調整手段の開度を増減さ
せることができるので、適確に室内の設定温度による負
荷に応じた暖房運転を行うことができる。
Further, first storage means for storing and outputting the indoor set temperature, first temperature detection means provided in the indoor unit for detecting the indoor temperature, and a value detected by the first storage means and the first storage means. A first calculating means for calculating a difference between the detected value by the temperature detecting means, a first determining means for determining a result of the calculation by the first calculating means, and a first determining means for determining a calculation result by the first determining means. A second judging means for judging the degree of opening of the first throttling means, a second calculating means for calculating the degree of opening of the first throttling means from the judgment result by the second judging means; First control means for controlling the throttle opening of the first throttle means based on the calculation result of the calculation means, and third calculation means for calculating the rotation speed of the refrigerant transport means based on the determination result by the second determination means. From the calculation result by the third calculation means. Is obtained by a structure in which a second control means for controlling the rotational speed of the unit. In the above configuration, the first calculating means calculates the temperature difference between the set temperature stored by the first storing means and the room temperature detected by the first temperature detecting means, and determines whether the calculated result is positive or negative. The calculation result is determined by the first determination means. If the result of the calculation by the first calculating means is positive, it is determined by the second determining means whether or not the aperture of the first throttle means is maximum;
As a result, when the throttle opening of the first throttle means is the maximum, the rotation speed of the refrigerant conveyance means is calculated by the third calculation means, and the rotation speed of the refrigerant conveyance means is calculated from the calculation result by the second control means. To increase. If the first throttle opening is not the maximum, the throttle opening of the first throttle means is calculated by the second calculating means, and the throttle opening of the first throttle means is calculated based on the calculation result. Increased by control means. On the other hand, if the result of the calculation by the first calculating means is negative, it is determined by the second determining means whether or not the first throttle means has the smallest opening degree. Is the minimum, the rotation speed of the refrigerant transfer means is calculated by the third calculation means, and the rotation number of the refrigerant transfer means is reduced by the second control means from the calculation result. If the aperture of the first aperture is not the minimum, the aperture of the first aperture is calculated by the second calculating means, and from this calculation result, the aperture of the first aperture is calculated. Is reduced by the first control means. In this way, the temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with this temperature difference. Since the opening degree of the throttle means, the number of revolutions of the refrigerant conveying means, and the opening degree of the hot water flow rate adjusting means can be increased or decreased, the heating operation can be accurately performed according to the load based on the set temperature in the room. .

【0046】また、熱機関の冷却水回路に温水流量調整
手段と、温水搬送手段と、温水用熱交換器と、冷却用熱
交換器と、この冷却用熱交換器に送風する送風手段とを
備え、第2の判定手段による判定結果より冷媒搬送手段
の回転数を判定する第3の判定手段と、この第3の判定
手段による判定結果より温水流量調整手段の開度を演算
する第4の演算手段と、この第4の演算手段による演算
結果より温水流量調整手段の開度を制御する第3の制御
手段とを備えた構成としたものである。上記のような構
成において、第1の記憶手段によって記憶した設定温度
と第1の温度検出手段より検出した室内温度との温度差
を第1の演算手段により演算し、この第1の演算手段に
よる演算結果の正負を第1の判定手段により判定する。
もし第1の演算手段による演算結果が正の場合は、次に
第1の絞り手段の絞り開度が最大であるかを第2の判定
手段により判定し、この結果第1の絞り手段の絞り開度
が最大である場合は、さらに冷媒搬送手段の回転数が最
大であるかを第3の判定手段により判定し、この結果冷
媒搬送手段の回転数が最大である場合は温水流量調整手
段の開度を第4の演算手段により演算し、この演算結果
から温水流量調整手段の開度を第3の制御手段により増
大させる。また、冷媒搬送手段の回転数が最大でない場
合は冷媒搬送手段の回転数を第3の演算手段により演算
し、この演算結果から冷媒搬送手段の回転数を第2の制
御手段により増大させる。また、第1の絞り手段の絞り
開度が最大でない場合は、第1の絞り手段の絞り開度を
第2の演算手段により演算し、この演算結果から第1の
絞り手段の絞り開度を第1の制御手段により増大させ
る。一方、第1の演算結果の判定が負の場合には、まず
第1の絞り手段の絞り開度が最少であるかを第2の判定
手段により判定し、この結果第1の絞り手段の絞り開度
が最少である場合は、さらに冷媒搬送手段の回転数が最
少であるかを第3の判定手段により判定し、この結果冷
媒搬送手段の回転数が最少である場合は温水流量調整手
段の開度を第4の演算手段により演算し、この演算結果
から温水流量調整手段の開度を第3の制御手段により減
少させる。また、冷媒搬送手段の回転数が最少でない場
合には冷媒搬送手段の回転数を第3の演算手段により演
算し、この演算結果から冷媒搬送手段の回転数を第2の
制御手段により減少させる。また、第1の絞り手段の絞
り開度が最少でない場合は、第1の絞り手段の絞り開度
を第2の演算手段により演算し、この演算結果から第1
の絞り手段の絞り開度を第1の制御手段により減少させ
る。このようにして第1の記憶手段によって記憶した設
定温度と第1の温度検出手段より検出した室内温度との
温度差を演算し、この温度差にあわせて暖房能力が増減
できるように、第1の絞り手段の絞り開度、冷媒搬送手
段の回転数および温水流量調整手段の開度を増減させる
ことができるので、適確に室内の設定温度による負荷に
応じた暖房運転を行うことができる。
The cooling water circuit of the heat engine includes a hot water flow rate adjusting means, a hot water conveying means, a hot water heat exchanger, a cooling heat exchanger, and a blowing means for blowing air to the cooling heat exchanger. A third judging means for judging the rotation speed of the refrigerant conveying means from the judgment result by the second judging means, and a fourth judging means for calculating the opening of the hot water flow rate adjusting means from the judgment result by the third judging means. The configuration is provided with a calculating means and a third control means for controlling the opening of the hot water flow rate adjusting means based on the calculation result by the fourth calculating means. In the above configuration, the first calculating means calculates a temperature difference between the set temperature stored by the first storing means and the room temperature detected by the first temperature detecting means. The positive / negative of the operation result is determined by the first determining means.
If the result of the calculation by the first calculating means is positive, then the second determining means determines whether or not the first throttle means has the maximum aperture opening. When the opening degree is the maximum, it is further determined whether or not the rotation speed of the refrigerant conveying means is the maximum by the third determining means. As a result, when the rotation speed of the refrigerant conveying means is the maximum, The opening degree is calculated by the fourth calculating means, and the opening degree of the hot water flow rate adjusting means is increased by the third control means based on the calculation result. If the rotational speed of the refrigerant transporting means is not the maximum, the rotational speed of the refrigerant transporting means is calculated by the third calculating means, and the rotational speed of the refrigerant transporting means is increased by the second control means based on the calculation result. If the aperture of the first aperture is not the maximum, the aperture of the first aperture is calculated by the second calculator, and the aperture of the first aperture is calculated from the calculation result. Increased by the first control means. On the other hand, when the determination of the first calculation result is negative, first, the second determination unit determines whether the aperture of the first aperture unit is minimum, and as a result, the aperture of the first aperture unit is determined. If the opening degree is the minimum, it is further determined by the third determination means whether the rotation speed of the refrigerant transport means is the minimum, and as a result, if the rotation speed of the refrigerant transport means is the minimum, The opening degree is calculated by the fourth calculating means, and the opening degree of the hot water flow rate adjusting means is reduced by the third control means based on the calculation result. If the number of revolutions of the refrigerant conveying means is not the minimum, the number of revolutions of the refrigerant conveying means is calculated by the third calculating means, and the number of revolutions of the refrigerant conveying means is reduced by the second control means based on the calculation result. If the opening degree of the first throttle means is not the minimum, the opening degree of the first throttle means is calculated by the second calculating means.
The throttle opening of the throttle means is reduced by the first control means. In this manner, the temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the first heating means can increase or decrease the heating capacity in accordance with this temperature difference. The opening degree of the throttle means, the number of revolutions of the refrigerant conveying means, and the opening degree of the hot water flow rate adjusting means can be increased or decreased, so that the heating operation can be accurately performed according to the load based on the set temperature in the room.

【0047】また、第3の判定手段による判定結果より
温水流量調整手段の開度を判定する第4の判定手段と、
この第4の判定手段による判定結果より温水搬送手段の
回転数を演算する第5の演算手段と、この第5の演算手
段による演算結果より温水搬送手段の回転数を制御する
第4の制御手段とを備えた構成としたものである。上記
のような構成において、第1の記憶手段によって記憶し
た設定温度と第1の温度検出手段より検出した室内温度
との温度差を第1の演算手段により演算し、この演算結
果の正負を第1の判定手段により判定しする。もし第1
の演算手段による演算結果が正の場合は、次に第1の絞
り手段の絞り開度が最大であるかを第2の判定手段によ
り判定し、この結果第1の絞り手段の絞り開度が最大で
ある場合は、さらに冷媒搬送手段の回転数が最大である
かを第3の判定手段により判定し、この結果冷媒搬送手
段の回転数が最大である場合は温水流量調整手段の開度
が最大であるかを第4の判定手段により判定し、この結
果温水流量調整手段の開度が最大である場合は、温水搬
送手段の回転数を第5の演算手段により演算し、その演
算結果から温水搬送手段の回転数を第4の制御手段によ
り増大させる。もし温水流量調整手段の開度が最大でな
い場合は、温水流量調整手段の開度を第4の演算手段に
より演算し、この演算結果から温水流量調整手段の開度
を第3の制御手段により増大させる。また、冷媒搬送手
段の回転数が最大でない場合は冷媒搬送手段の回転数を
第3の演算手段により演算し、その演算結果から冷媒搬
送手段の回転数を第2の制御手段により増大させる。ま
た、第1の絞り手段の絞り開度が最大でない場合は、第
1の絞り手段の絞り開度を第2の演算手段により演算
し、その演算結果から第1の絞り手段の絞り開度を第1
の制御手段により増大させる。一方、第1の演算結果の
判定が負の場合は、第1の絞り手段の絞り開度が最少で
あるかを第2の判定手段により判定し、この結果、第1
の絞り手段の絞り開度が最少である場合は冷媒搬送手段
の回転数が最少であるかを第3の判定手段により判定
し、この結果冷媒搬送手段の回転数が最少である場合は
温水流量調整手段の開度が最少であるかを第4の判定手
段により判定し、この結果温水流量調整手段の開度が最
少である場合は、温水搬送手段の回転数を第5の演算手
段により演算し、その演算結果から温水搬送手段の回転
数を第4の制御手段により減少させる。また、もし温水
流量調整手段の開度が最少でない場合は温水流量調整手
段の開度を第4の演算手段により演算し、その演算結果
から温水流量調整手段の開度を第3の制御手段により減
少させる。また、もし冷媒搬送手段の回転数が最少でな
い場合は冷媒搬送手段の回転数を第3の演算手段により
演算し、その演算結果から冷媒搬送手段の回転数を第2
の制御手段により減少させる。また、もし絞り開度が最
少でない場合は、第1の絞り手段の絞り開度を第2の演
算手段により演算し、その演算結果から第1の絞り手段
の絞り開度を第1の制御手段により減少させる。このよ
うにして第1の記憶手段よって記憶した設定温度と第1
の温度検出手段より検出した室内温度との温度差を演算
し、この温度差にあわせて暖房能力が増減できるよう
に、第1の絞り手段の絞り開度、冷媒搬送手段の回転
数、温水流量調整手段の開度および温水搬送手段の回転
数を増減させることができるので、適確に室内の設定温
度による負荷に応じた暖房運転を行うことができる。
Further, fourth determining means for determining the opening of the hot water flow rate adjusting means based on the determination result by the third determining means,
Fifth calculating means for calculating the number of rotations of the hot water conveying means from the result of the determination by the fourth determining means, and fourth control means for controlling the number of rotations of the hot water conveying means from the result of the calculation by the fifth calculating means. And a configuration provided with: In the above configuration, the first calculating means calculates the temperature difference between the set temperature stored by the first storing means and the room temperature detected by the first temperature detecting means, and determines whether the calculated result is positive or negative. The determination is made by the first determination means. If the first
If the result of the calculation by the calculation means is positive, then the second determination means determines whether or not the first throttle means has the maximum aperture. As a result, the first throttle means has a maximum aperture. When the rotation speed of the refrigerant transporting means is maximum, the third determining means determines whether the rotation speed of the refrigerant transporting means is maximum. As a result, when the rotation speed of the refrigerant transporting means is maximum, the opening degree of the hot water flow rate adjusting means is determined. The fourth determining means determines whether or not it is the maximum. As a result, when the opening of the hot water flow rate adjusting means is the maximum, the rotation speed of the hot water conveying means is calculated by the fifth calculating means, and from the calculation result, The number of revolutions of the hot water conveying means is increased by the fourth control means. If the opening degree of the hot water flow rate adjusting means is not the maximum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and the opening degree of the hot water flow rate adjusting means is increased by the third control means from the calculation result. Let it. If the rotation speed of the refrigerant transfer means is not the maximum, the rotation speed of the refrigerant transfer means is calculated by the third calculation means, and the calculation result is increased by the second control means. When the aperture of the first aperture is not the maximum, the aperture of the first aperture is calculated by the second calculator, and the aperture of the first aperture is calculated from the calculation result. First
Control means. On the other hand, when the determination of the first calculation result is negative, the second determination unit determines whether the aperture of the first aperture unit is minimum, and as a result,
If the throttle opening of the throttle means is the minimum, the third determination means determines whether the rotation speed of the refrigerant transport means is the minimum. As a result, if the rotation speed of the refrigerant transport means is the minimum, the flow rate of the hot water is determined. The fourth determining means determines whether the opening degree of the adjusting means is the minimum. If the opening degree of the hot water flow rate adjusting means is the minimum as a result, the rotation number of the hot water conveying means is calculated by the fifth calculating means. Then, the rotation speed of the hot water conveying means is reduced by the fourth control means from the calculation result. If the opening degree of the hot water flow rate adjusting means is not the minimum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and from the calculation result, the opening degree of the hot water flow rate adjusting means is calculated by the third control means. Decrease. If the number of revolutions of the refrigerant conveying means is not the minimum, the number of revolutions of the refrigerant conveying means is calculated by the third calculating means.
Control means. If the throttle opening is not the minimum, the throttle opening of the first throttle means is calculated by the second calculating means, and the throttle opening of the first throttle means is calculated from the calculation result by the first control means. To reduce. The set temperature stored by the first storage means and the first
The temperature difference from the room temperature detected by the temperature detecting means is calculated, and the opening degree of the first restricting means, the rotation speed of the refrigerant conveying means, the flow rate of hot water are adjusted so that the heating capacity can be increased or decreased in accordance with the temperature difference. Since the degree of opening of the adjusting means and the number of revolutions of the hot water conveying means can be increased or decreased, the heating operation can be accurately performed according to the load based on the set temperature in the room.

【0048】また、第4の判定手段による判定結果より
温水搬送手段の回転数を判定する第5の判定手段と、こ
の第5の判定手段による判定結果より熱機関の回転数を
演算する第6の演算手段と、この第6の演算手段による
演算結果より熱機関の回転数を制御する第5の制御手段
とを備えた構成としたものである。上記のような構成に
おいて、第1の記憶手段によって記憶した設定温度と第
1の温度検出手段より検出した室内温度との温度差を第
1の演算手段により演算し、この演算結果の正負を第1
の判定手段により判定する。もし第1の演算手段による
演算結果が正の場合は、次に第1の絞り手段の絞り開度
が最大であるかを第2の判定手段により判定し、この結
果第1の絞り手段の絞り開度が最大である場合は、さら
に冷媒搬送手段の回転数が最大であるかを第3の判定手
段により判定し、この結果冷媒搬送手段の回転数が最大
である場合は温水流量調整手段の開度が最大であるかを
第4の判定手段により判定し、この結果温水流量調整手
段の開度が最大である場合は、温水搬送手段の回転数が
最大であるかを第5の判定手段により判定し、この結果
温水搬送手段の回転数が最大である場合は熱機関の回転
数を第6の演算手段により演算し、その演算結果から熱
機関の回転数を第5の制御手段により増大させる。ま
た、温水搬送手段の回転数が最大でない場合は、第5の
演算手段により温水搬送手段の回転数を演算し、その演
算結果から温水搬送手段の回転数を第4の制御手段によ
り増大させる。また、もし温水流量調整手段の開度が最
大でない場合は温水流量調整手段の開度を第4の演算手
段により演算し、その演算結果から温水流量調整手段の
開度を第3の制御手段により増大させる。また、もし冷
媒搬送手段の回転数が最大でない場合は冷媒搬送手段の
回転数を第3の演算手段により演算し、その演算結果か
ら冷媒搬送手段の回転数を第2の制御手段により増大さ
せる。また、もし第1の絞り手段の絞り開度が最大でな
い場合は、第1の絞り手段の絞り開度を第2の演算手段
により演算し、その演算結果から第1の絞り手段の絞り
開度を第1の制御手段により増大させる。一方、第1の
演算結果の判定が負の場合は、第1の絞り手段の絞り開
度が最少であるかを第2の判定手段により判定し、この
結果、第1の絞り手段の絞り開度が最少である場合は冷
媒搬送手段の回転数が最少であるかを第3の判定手段に
より判定し、この結果冷媒搬送手段の回転数が最少であ
る場合は温水流量調整手段の開度が最少であるかを第4
の判定手段により判定し、この結果温水流量調整手段の
開度が最少である場合は、温水搬送手段の回転数が最少
であるかを第5の判定手段により判定し、この結果温水
搬送手段の回転数が最少である場合は熱機関の回転数を
第6の演算手段により演算し、その演算結果から熱機関
の回転数を第5の制御手段により減少させる。もし温水
搬送手段の回転数が最少でない場合は、温水搬送手段の
回転数を第5の演算手段により演算し、その演算結果か
ら温水搬送手段の回転数を第4の制御手段により減少さ
せる。また、もし温水流量調整手段の開度が最少でない
場合は温水流量調整手段の開度を第4の演算手段により
演算し、その演算結果から温水流量調整手段の開度を第
3の制御手段により減少させる。また、もし冷媒搬送手
段の回転数が最少でない場合は冷媒搬送手段の回転数を
第3の演算手段により演算し、その演算結果から冷媒搬
送手段の回転数を第2の制御手段により減少させる。ま
た、もし第1の絞り手段の絞り開度が最少でない場合
は、第1の絞り手段の絞り開度を第2の演算手段により
演算し演算結果から第1の絞り手段の絞り開度を第1の
制御手段により減少させる。このようにして、第1の記
憶手段よって記憶した設定温度と第1の温度検出手段よ
り検出した室内温度との温度差を演算し、この温度差に
あわせて暖房能力が増減できるように、第1の絞り手段
の絞り開度、冷媒搬送手段の回転数、温水流量調整手段
の開度、温水搬送手段の回転数および熱機関の回転数を
増減させることができるので、適確に室内の設定温度に
よる負荷に応じた暖房運転を行うことができる。
A fifth judging means for judging the rotation speed of the hot water conveying means from the judgment result by the fourth judging means and a sixth judging means for calculating the rotation speed of the heat engine from the judgment result by the fifth judging means. And a fifth control means for controlling the number of revolutions of the heat engine based on the calculation result of the sixth calculation means. In the above configuration, the first calculating means calculates the temperature difference between the set temperature stored by the first storing means and the room temperature detected by the first temperature detecting means, and determines whether the calculated result is positive or negative. 1
Is determined by the determining means. If the result of the calculation by the first calculating means is positive, then the second determining means determines whether or not the first throttle means has the maximum aperture opening. When the opening degree is the maximum, it is further determined whether or not the rotation speed of the refrigerant conveying means is the maximum by the third determining means. As a result, when the rotation speed of the refrigerant conveying means is the maximum, The fourth determining means determines whether the opening degree is the maximum. As a result, when the opening degree of the hot water flow rate adjusting means is the maximum, the fifth determining means determines whether the rotation speed of the hot water conveying means is the maximum. If the result is that the rotation speed of the hot water conveying means is the maximum, the rotation speed of the heat engine is calculated by the sixth calculation means, and the rotation speed of the heat engine is increased by the fifth control means from the calculation result. Let it. If the rotation speed of the hot water transfer means is not the maximum, the rotation speed of the hot water transfer means is calculated by the fifth calculation means, and the rotation speed of the hot water transfer means is increased by the fourth control means based on the calculation result. If the opening degree of the hot water flow rate adjusting means is not the maximum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and the opening degree of the hot water flow rate adjusting means is calculated by the third control means from the calculation result. Increase. If the number of revolutions of the refrigerant transporting means is not the maximum, the number of revolutions of the refrigerant transporting means is calculated by the third calculating means, and from the calculation result, the number of revolutions of the refrigerant transporting means is increased by the second control means. If the opening degree of the first throttle means is not the maximum, the opening degree of the first throttle means is calculated by the second calculating means, and from the calculation result, the opening degree of the first throttle means is calculated. Is increased by the first control means. On the other hand, if the determination of the first calculation result is negative, the second determination means determines whether or not the aperture of the first aperture means is minimum. As a result, the aperture of the first aperture means is determined. If the degree is the minimum, it is determined by the third determining means whether the rotation speed of the refrigerant conveying means is the minimum, and as a result, if the rotation number of the refrigerant conveying means is the minimum, the opening degree of the hot water flow rate adjusting means is 4th is the least
When the opening degree of the hot water flow rate adjusting means is the minimum, the fifth determining means determines whether the rotation speed of the hot water conveying means is the minimum, and as a result, When the rotation speed is the minimum, the rotation speed of the heat engine is calculated by the sixth calculation means, and the rotation speed of the heat engine is reduced by the fifth control means from the calculation result. If the number of revolutions of the hot water conveying means is not the minimum, the number of revolutions of the hot water conveying means is calculated by the fifth calculating means, and the number of revolutions of the hot water conveying means is reduced by the fourth control means based on the calculation result. If the opening degree of the hot water flow rate adjusting means is not the minimum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and from the calculation result, the opening degree of the hot water flow rate adjusting means is calculated by the third control means. Decrease. If the number of revolutions of the refrigerant transporting means is not the minimum, the number of revolutions of the refrigerant transporting means is calculated by the third calculating means, and the number of revolutions of the refrigerant transporting means is reduced by the second control means from the calculation result. If the aperture of the first aperture is not the minimum, the aperture of the first aperture is calculated by the second calculator, and the aperture of the first aperture is calculated from the calculation result. It is reduced by one control means. In this way, the temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with this temperature difference. (1) Since the throttle opening degree of the throttle means, the rotation speed of the refrigerant transport means, the opening degree of the hot water flow rate adjusting means, the rotation speed of the hot water transport means and the rotation speed of the heat engine can be increased or decreased, the indoor setting can be accurately performed. The heating operation according to the load depending on the temperature can be performed.

【0049】また、第5の判定手段による判定結果より
熱機関の回転数を判定する第6の判定手段と、この第6
の判定手段による判定結果より圧縮機の回転数を演算す
る第7の演算手段と、この第7の演算手段による演算結
果より圧縮機の回転数を制御する第6の制御手段とを備
えた構成としたものである。上記のような構成におい
て、第1の記憶手段によって記憶した設定温度と第1の
温度検出手段より検出した室内温度との温度差を第1の
演算手段により演算し、この演算結果の正負を第1の判
定手段により判定する。もし第1の演算手段による演算
結果が正の場合は、次に第1の絞り手段の絞り開度が最
大であるかを第2の判定手段により判定し、この結果第
1の絞り手段の絞り開度が最大である場合は、さらに冷
媒搬送手段の回転数が最大であるかを第3の判定手段に
より判定し、この結果冷媒搬送手段の回転数が最大であ
る場合は温水流量調整手段の開度が最大であるかを第4
の判定手段により判定し、この結果温水流量調整手段の
開度が最大である場合は、温水搬送手段の回転数が最大
であるかを第5の判定手段により判定し、この結果温水
搬送手段の回転数が最大である場合は、熱機関の回転数
が最大であるかどうかを第6の判定手段により判定し、
この結果熱機関の回転数が最大である場合は圧縮機を駆
動し、圧縮機の回転数を第7の演算手段により演算し、
その演算結果から圧縮機の回転数を第6の制御手段によ
り増大させる。もし熱機関の回転数が最大でない場合
は、熱機関の回転数を第6の演算手段により演算し、そ
の演算結果から熱機関の回転数を第5の制御手段により
増大させる。また、もし温水搬送手段の回転数が最大で
ない場合は、第5の演算手段により温水搬送手段の回転
数を演算し、その演算結果から温水搬送手段の回転数を
第4の制御手段により増大させる。また、もし温水流量
調整手段の開度が最大でない場合は温水流量調整手段の
開度を第4の演算手段により演算し、その演算結果から
温水流量調整手段の開度を第3の制御手段により増大さ
せる。また、もし冷媒搬送手段の回転数が最大でない場
合は冷媒搬送手段の回転数を第3の演算手段により演算
し、その演算結果から冷媒搬送手段の回転数を第2の制
御手段により増大させる。また、もし第1の絞り手段の
絞り開度が最大でない場合は、第1の絞り手段の絞り開
度を第2の演算手段により演算し、その演算結果から第
1の絞り手段の絞り開度を第1の制御手段により増大さ
せる。一方、第1の演算結果の判定が負の場合は、第1
の絞り手段の絞り開度が最少であるかを第2の判定手段
により判定し、この結果第1の絞り手段の絞り開度が最
少である場合は、冷媒搬送手段の回転数が最少であるか
を第3の判定手段により判定し、この結果冷媒搬送手段
の回転数が最少である場合は温水流量調整手段の開度が
最少であるかを第4の判定手段により判定し、この結果
温水流量調整手段の開度が最少である場合は、温水搬送
手段の回転数が最少であるかを第5の判定手段により判
定し、この結果温水搬送手段の回転数が最少である場合
は圧縮機の回転数を第7の演算手段により演算し、その
演算結果から圧縮機の回転数を第6の制御手段により減
少させる。もし熱機関の回転数が最小でない場合は、熱
機関の回転数を第6の演算手段により演算し、その演算
結果から熱機関の回転数を第5の制御手段により減少さ
せる。また、もし温水搬送手段の回転数が最少でない場
合は、温水搬送手段の回転数を第5の演算手段により演
算し、その演算結果から温水搬送手段の回転数を第4の
制御手段により減少させる。また、もし温水流量調整手
段の開度が最少でない場合は温水流量調整手段の開度を
第4の演算手段により演算し、その演算結果から温水流
量調整手段の開度を第3の制御手段により減少させる。
また、もし冷媒搬送手段の回転数が最少でない場合は冷
媒搬送手段の回転数を第3の演算手段により演算し、そ
の演算結果から冷媒搬送手段の回転数を第2の制御手段
により減少させる。また、もし第1の絞り手段の絞り開
度が最少でない場合は、第1の絞り手段の絞り開度を第
2の演算手段により演算し演算結果から第1の絞り手段
の絞り開度を第1の制御手段により減少させる。このよ
うにして、第1の記憶手段よって記憶した設定温度と第
1の温度検出手段より検出した室内温度との温度差を演
算し、この温度差にあわせて暖房能力が増減できるよう
に、第1の絞り手段の絞り開度、冷媒搬送手段の回転
数、温水流量調整手段の開度、温水搬送手段の回転数、
熱機関の回転数および圧縮機の回転数を増減させること
ができるので、適確に室内の設定温度による負荷に応じ
た暖房運転を行うことができる。
Further, sixth determining means for determining the number of revolutions of the heat engine based on the determination result by the fifth determining means,
And a sixth control means for controlling the number of rotations of the compressor based on the result of calculation by the seventh calculation means. It is what it was. In the above configuration, the first calculating means calculates the temperature difference between the set temperature stored by the first storing means and the room temperature detected by the first temperature detecting means, and determines whether the calculated result is positive or negative. The determination is made by the first determination means. If the result of the calculation by the first calculating means is positive, then the second determining means determines whether or not the first throttle means has the maximum aperture opening. When the opening degree is the maximum, it is further determined whether or not the rotation speed of the refrigerant conveying means is the maximum by the third determining means. As a result, when the rotation speed of the refrigerant conveying means is the maximum, Determine if the opening is the maximum
If the opening degree of the hot water flow rate adjusting means is the maximum, the fifth determining means determines whether the rotation speed of the hot water conveying means is the maximum, and as a result, When the rotation speed is the maximum, the sixth determination unit determines whether the rotation speed of the heat engine is the maximum,
As a result, when the rotation speed of the heat engine is the maximum, the compressor is driven, and the rotation speed of the compressor is calculated by the seventh calculation means.
From the calculation result, the rotation speed of the compressor is increased by the sixth control means. If the number of revolutions of the heat engine is not the maximum, the number of revolutions of the heat engine is calculated by the sixth calculating means, and the number of revolutions of the heat engine is increased by the fifth control means from the calculation result. If the rotation speed of the hot water transfer means is not the maximum, the rotation speed of the hot water transfer means is calculated by the fifth calculation means, and the rotation speed of the hot water transfer means is increased by the fourth control means from the calculation result. . If the opening degree of the hot water flow rate adjusting means is not the maximum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and the opening degree of the hot water flow rate adjusting means is calculated by the third control means from the calculation result. Increase. If the number of revolutions of the refrigerant transporting means is not the maximum, the number of revolutions of the refrigerant transporting means is calculated by the third calculating means, and from the calculation result, the number of revolutions of the refrigerant transporting means is increased by the second control means. If the opening degree of the first throttle means is not the maximum, the opening degree of the first throttle means is calculated by the second calculating means, and from the calculation result, the opening degree of the first throttle means is calculated. Is increased by the first control means. On the other hand, if the determination of the first calculation result is negative, the first
The second determination means determines whether the throttle opening of the first throttle means is the minimum. As a result, when the throttle opening of the first throttle means is the minimum, the rotation speed of the refrigerant conveying means is the minimum. Is determined by the third determining means. If the rotation speed of the refrigerant conveying means is the minimum, the fourth determining means determines whether the opening of the hot water flow rate adjusting means is the minimum. When the opening degree of the flow rate adjusting means is the minimum, the fifth judging means judges whether the rotation speed of the hot water conveying means is the minimum. As a result, when the rotation speed of the hot water conveying means is the minimum, the compressor The rotation speed of the compressor is calculated by the seventh calculation means, and the rotation speed of the compressor is reduced by the sixth control means from the calculation result. If the number of revolutions of the heat engine is not the minimum, the number of revolutions of the heat engine is calculated by the sixth calculating means, and the number of revolutions of the heat engine is reduced by the fifth control means from the calculation result. If the number of revolutions of the hot water conveying means is not the minimum, the number of revolutions of the hot water conveying means is calculated by the fifth calculating means, and the number of revolutions of the hot water conveying means is reduced by the fourth control means from the calculation result. . If the opening degree of the hot water flow rate adjusting means is not the minimum, the opening degree of the hot water flow rate adjusting means is calculated by the fourth calculating means, and from the calculation result, the opening degree of the hot water flow rate adjusting means is calculated by the third control means. Decrease.
If the number of revolutions of the refrigerant transporting means is not the minimum, the number of revolutions of the refrigerant transporting means is calculated by the third calculating means, and the number of revolutions of the refrigerant transporting means is reduced by the second control means from the calculation result. If the aperture of the first aperture is not the minimum, the aperture of the first aperture is calculated by the second calculator, and the aperture of the first aperture is calculated from the calculation result. It is reduced by one control means. In this way, the temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with this temperature difference. 1, the opening degree of the throttle means, the rotation speed of the refrigerant conveyance means, the opening degree of the hot water flow rate adjustment means, the rotation speed of the hot water conveyance means,
Since the number of revolutions of the heat engine and the number of revolutions of the compressor can be increased or decreased, the heating operation can be accurately performed according to the load based on the set temperature in the room.

【0050】また、第2の流路切替手段と冷媒間熱交換
器との間に冷媒温度を検出する第2の温度検出手段と冷
媒圧力を検出する第1の圧力検出手段を備え、第2の絞
り手段と冷媒間熱交換器との間に冷媒温度を検出する第
3の温度検出手段とを備え、第1の圧力検出手段による
検出結果より冷媒の飽和温度を演算する第8の演算手段
と、この第8の演算手段による演算結果と第2の温度検
出手段による検出結果の差を演算する第9の演算手段
と、この第9の演算手段による演算結果より冷媒の状態
を判定する第7の判定手段と、この第7の判定手段によ
る判定結果より第3の温度検出手段による検出結果と第
2の温度検出手段による検出結果との差を演算する第1
0の演算手段と、この第10の演算手段による演算結果
より冷媒間の温度差を判定する第8の判定手段と、この
第8の判定手段による判定結果より圧縮機の回転数を判
定する第9の判定手段と、この第9の判定手段による判
定結果より第2の絞り手段の開度を判定する第10の判
定手段と、この第10の判定手段による判定結果より第
2の絞り手段の開度を演算する第11の演算手段と、こ
の第11の演算手段による演算結果より第2の絞り手段
の開度を制御する第7の制御手段とを備えた構成とした
ものである。上記のような構成において、まず冷媒間熱
交換器を通過して冷媒搬送手段に流入する冷媒の飽和温
度を、第1の圧力検出手段により検出された圧力から第
8の演算手段により演算する。この結果求まった飽和温
度と、第2の温度検出手段により検出された冷媒温度と
の温度差を第9の演算手段により演算し、この演算結果
の正負を第7の判定手段により判定する。もし第9の演
算手段による演算結果が負の場合は、第2の温度検出手
段により検出された、冷媒間熱交換器を通過して冷媒搬
送手段に流入する部分の冷媒の温度と、第3の温度検出
手段により検出された、第2の絞り手段を通過し冷媒間
熱交換器へ流入する部分の冷媒の温度の温度差を第10
の演算手段により演算する。そしてこの第10の演算手
段による演算結果から冷媒の温度差の正負を第5の判定
手段により判定する。もし、第5の判定手段による判定
結果が負の場合は、圧縮機の回転数が最大であるかを第
9の判定手段により判定し、この結果圧縮機の回転数が
最大でない場合は第2の絞り手段の開度が最大であるか
を第10の判定手段により判定し、この結果第2の絞り
手段の開度が最大でない場合は第2の絞り手段の開度を
第11の演算手段により演算し、その演算結果から第7
の制御手段により第2の絞り手段の開度を増大させる。
もし第2の絞り手段の開度が最大の場合は、圧縮機の回
転数を第7の演算手段により演算し、その演算結果から
第6の制御手段により圧縮機の回転数を増大させる。ま
た、もし圧縮機の回転数が最大の場合は、冷媒搬送手段
の回転数を第3の演算手段により演算し、その演算結果
から第2の制御手段により冷媒搬送手段の回転数を減少
させる。一方、第5の判定手段の判定結果が正の場合、
または、第7の判定手段の判定結果が正の場合は、計算
は第1の圧力検出手段の検出に戻り、第8の演算手段に
より再び冷媒の飽和温度の計算に入る。このようにして
第8の演算手段により計算される冷媒搬送手段に流れ込
む冷媒の飽和温度と第2の温度検出手段により検出され
るの差を演算して得られる冷媒の過冷却度と、第3の温
度検出手段により検出される冷却冷媒の温度と被冷却冷
媒の温度との温度差を判定して、冷媒の過冷却度である
が正になるように第2の絞り手段の絞り開度、圧縮機の
回転数および冷媒搬送手段の回転数を増減させることが
できるので、冷媒搬送手段の効率低下を防ぐことができ
る。 また、冷媒搬送手段に、熱機関より排出される排
気を利用して動力を得る補助動力手段を備えた構成とし
たものである。上記の用に構成された空気調和装置にお
いて、通常の暖房運転もしくは低負荷時に暖房運転を行
う場合、熱機関より排出された排気は冷媒搬送手段と接
続された補助動力手段を駆動させ、冷媒搬送装置はこの
補助動力手段により得られる動力により冷媒を吐出し、
冷媒を循環させる。このようにして、通常の暖房運転も
しくは低負荷時に暖房運転を行う場合、圧縮機を駆動さ
せることなく熱機関の排熱を利用して暖房運転を行な
い、また、冷媒搬送手段の駆動動力を補助動力手段によ
り熱機関の排気を利用して補助することで駆動負荷を低
減するので、冷媒搬送手段の消費電力を抑えることがで
きる。
Further, a second temperature detecting means for detecting a refrigerant temperature and a first pressure detecting means for detecting a refrigerant pressure are provided between the second flow path switching means and the inter-refrigerant heat exchanger. Eighth temperature calculating means for calculating the saturation temperature of the refrigerant from the result of detection by the first pressure detecting means, comprising third temperature detecting means for detecting the temperature of the refrigerant between the throttle means and the heat exchanger between refrigerants. A ninth calculating means for calculating a difference between a calculation result by the eighth calculating means and a detection result by the second temperature detecting means; and a ninth calculating means for determining a state of the refrigerant from the calculation result by the ninth calculating means. And a first calculating means for calculating a difference between a detection result obtained by the third temperature detecting means and a detection result obtained by the second temperature detecting means based on the judgment result obtained by the seventh judging means.
0, an eighth judging means for judging the temperature difference between the refrigerants based on the calculation result by the tenth calculating means, and a eighth judging means for judging the rotational speed of the compressor from the judgment result by the eighth judging means. Nineth determination means, tenth determination means for determining the opening degree of the second throttle means based on the determination result by the ninth determination means, and second determination means based on the determination result by the tenth determination means. An eleventh calculating means for calculating the opening degree and a seventh control means for controlling the opening degree of the second throttle means based on the calculation result by the eleventh calculating means are provided. In the above configuration, first, the saturation temperature of the refrigerant flowing through the inter-refrigerant heat exchanger and flowing into the refrigerant conveying means is calculated by the eighth calculating means from the pressure detected by the first pressure detecting means. The temperature difference between the saturation temperature obtained as a result and the refrigerant temperature detected by the second temperature detecting means is calculated by the ninth calculating means, and the sign of the calculation result is determined by the seventh determining means. If the calculation result by the ninth calculation means is negative, the temperature of the refrigerant in the portion flowing through the inter-refrigerant heat exchanger and flowing into the refrigerant conveyance means, detected by the second temperature detection means, The difference in the temperature of the refrigerant in the portion passing through the second restrictor and flowing into the inter-refrigerant heat exchanger, detected by the temperature detector of
Is calculated by the calculating means. Then, the positive / negative of the refrigerant temperature difference is determined by the fifth determining means from the result of the calculation by the tenth calculating means. If the result of the determination by the fifth determining means is negative, it is determined by the ninth determining means whether the rotational speed of the compressor is the maximum. If the result is that the rotational speed of the compressor is not the maximum, the second determination is made. The tenth determination means determines whether or not the opening degree of the throttle means is maximum. If the opening degree of the second throttle means is not maximum, the opening degree of the second throttle means is determined by the eleventh calculation means. And calculate the seventh from the calculation result.
Control means increases the opening of the second throttle means.
If the opening degree of the second throttle means is maximum, the rotation speed of the compressor is calculated by the seventh calculation means, and from the calculation result, the rotation speed of the compressor is increased by the sixth control means. If the rotational speed of the compressor is the maximum, the rotational speed of the refrigerant transporting means is calculated by the third arithmetic means, and the rotational speed of the refrigerant transporting means is reduced by the second control means from the calculation result. On the other hand, when the determination result of the fifth determination means is positive,
Alternatively, if the result of the determination by the seventh determining means is positive, the calculation returns to the detection by the first pressure detecting means, and the calculation of the saturation temperature of the refrigerant is started again by the eighth calculating means. The degree of supercooling of the refrigerant obtained by calculating the difference between the saturation temperature of the refrigerant flowing into the refrigerant conveying means calculated by the eighth calculating means and the temperature detected by the second temperature detecting means, The temperature difference between the temperature of the cooling refrigerant detected by the temperature detecting means and the temperature of the refrigerant to be cooled is determined, and the degree of supercooling of the refrigerant, but the degree of opening of the second restricting means to be positive, Since the number of revolutions of the compressor and the number of revolutions of the refrigerant conveying means can be increased or decreased, it is possible to prevent a decrease in the efficiency of the refrigerant conveying means. Further, the refrigerant transfer means is provided with an auxiliary power means for obtaining power using exhaust gas discharged from the heat engine. In the air-conditioning apparatus configured as described above, when performing the normal heating operation or the heating operation at a low load, the exhaust gas discharged from the heat engine drives the auxiliary power means connected to the refrigerant conveyance means to perform the refrigerant conveyance. The device discharges refrigerant by the power obtained by this auxiliary power means,
Circulate refrigerant. In this manner, when performing the normal heating operation or the heating operation at the time of a low load, the heating operation is performed by using the exhaust heat of the heat engine without driving the compressor, and the driving power of the refrigerant transfer unit is assisted. Since the driving load is reduced by using the exhaust of the heat engine by the power means to assist, the power consumption of the refrigerant conveying means can be suppressed.

【0051】また、冷却水回路に温水流量調整手段と、
温水搬送手段装置と、温水用熱交換器と、冷却用熱交換
器と、この冷却用熱交換器に送風する送風手段とを備え
た熱機関と、熱機関により駆動される発電機と、冷媒を
圧縮する圧縮機と、この圧縮機の吐出側と吸入側に配管
接続する四方弁と、この四方弁の一端に配管接続される
室外熱交換器と、この室外熱交換器の他端に配管接続さ
れる第1の絞り手段とを備えてなる室外ユニットと、一
端を四方弁に配管接続し他端を第1の絞り手段に配管接
続する室内熱交換器と、温水搬送手段から搬送される冷
却水の流れる室内温水熱交換器とを備えてなる室内ユニ
ットとから構成される。上記のように構成された空気調
和装置において、除湿運転を行なう場合、四方弁は圧縮
機の吐出側から室外熱交換器へ冷媒が流通し、また、室
内熱交換器から圧縮機の吸入側へ冷媒が流通するように
切り替わる。このような状態の冷媒回路で、圧縮機から
吐出された高温高圧冷媒は、四方弁を通過し室外熱交換
器へと流入し、室外熱交換器において外気と熱交換を行
い放熱し凝縮する。このように室外熱交換器で熱交換を
行った後に冷媒は、第1の絞り手段を通過し、この第1
の絞り手段を通過する際に低温低圧の冷媒となり室内熱
交換器に流入し、室内熱交換器において室内空気と熱交
換を行ない吸熱することで室内の空気を冷却する。この
冷却過程の際、空気は除湿される。室内熱交換器におい
て熱交換を行った後に冷媒は、四方弁を通過し、圧縮機
へ流入する。一方、温水搬送手段により吐出された熱機
関の熱を吸熱し高温となった冷却水は温水流量調整手段
を通過し、室内温水熱交換器へと流入し、室内熱交換器
を通過した冷却された空気と熱交換を行ない放熱するこ
とで、除湿過程で冷却された空気を暖める。室内温水熱
交換器で熱交換をおこなった後に冷却水は、熱機関へと
流入する。このようにして、ヒートポンプの蒸発器とし
ての室内熱交換器により吸熱および除湿された室内空気
を、熱機関の冷却回路中としての室外温水熱交換器にお
ける温水の放熱により加熱することができるので、室温
を低下させることなく除湿運転を行なうことができる。
Also, a hot water flow rate adjusting means is provided in the cooling water circuit,
A heat engine having a hot water conveying device, a heat exchanger for hot water, a heat exchanger for cooling, and blowing means for blowing air to the heat exchanger for cooling, a generator driven by the heat engine, and a refrigerant A four-way valve connected to the discharge and suction sides of the compressor, an outdoor heat exchanger connected to one end of the four-way valve, and a pipe connected to the other end of the outdoor heat exchanger. An outdoor unit having a first throttle unit connected thereto, an indoor heat exchanger having one end connected to the four-way valve by piping and the other end connected to the first throttle unit, and transported from the hot water transport unit. And an indoor unit including an indoor hot water heat exchanger through which the cooling water flows. In the air conditioner configured as described above, when performing the dehumidifying operation, the four-way valve allows the refrigerant to flow from the discharge side of the compressor to the outdoor heat exchanger, and from the indoor heat exchanger to the suction side of the compressor. It is switched so that the refrigerant flows. In the refrigerant circuit in such a state, the high-temperature and high-pressure refrigerant discharged from the compressor passes through the four-way valve, flows into the outdoor heat exchanger, exchanges heat with the outside air in the outdoor heat exchanger, releases heat, and condenses. After performing the heat exchange in the outdoor heat exchanger in this way, the refrigerant passes through the first throttle means,
When passing through the throttle means, the refrigerant becomes low-temperature and low-pressure refrigerant, flows into the indoor heat exchanger, exchanges heat with indoor air in the indoor heat exchanger, and absorbs heat to cool the indoor air. During this cooling process, the air is dehumidified. After performing heat exchange in the indoor heat exchanger, the refrigerant passes through the four-way valve and flows into the compressor. On the other hand, the high-temperature cooling water that has absorbed the heat of the heat engine discharged by the hot water conveying means and passed through the hot water flow rate adjusting means, flows into the indoor hot water heat exchanger, and is cooled by passing through the indoor heat exchanger. By exchanging heat with the heated air and radiating heat, the air cooled in the dehumidification process is warmed. After performing heat exchange in the indoor hot water heat exchanger, the cooling water flows into the heat engine. In this way, the indoor air that has absorbed and dehumidified by the indoor heat exchanger as the evaporator of the heat pump can be heated by radiating hot water in the outdoor hot water heat exchanger as a cooling circuit of the heat engine. The dehumidifying operation can be performed without lowering the room temperature.

【0052】また、室内の設定温度を記憶し出力する第
1の記憶手段と、室内ユニットに設けられ、室内温度を
検出する第1の温度検出手段と、第1の記憶手段による
検出値と第1の温度検出手段による検出値との差を演算
する第1の演算手段と、この第1の演算手段による演算
結果より温水流量調整手段の開度を演算する第4の演算
手段と、この第4の演算手段による演算結果より温水流
量調整手段の開度を制御する第3の制御手段とを備えた
構成としたものである。第1の記憶手段によって記憶し
た設定温度と第1の温度検出手段より検出した室内温度
との温度差を第1の演算手段により演算し、この演算結
果より温水流量調整手段の開度を第4の演算手段により
演算し、演算結果から温水流量調整手段の開度を第3の
制御手段により第1の演算結果が正の場合は温水流量調
整手段の開度を増大させ、負の場合は温水流量調整手段
の開度を減少するように制御する。このようにして第1
の記憶手段によって記憶した設定温度と第1の温度検出
手段より検出した室内温度との温度差を演算し、この温
度差にあわせて加熱能力が増減できるように温水流量調
整手段の開度を増減させることができるので、室内温度
の変化を抑制し除湿運転を行なうことができる。
Further, a first storage means for storing and outputting the indoor set temperature, a first temperature detection means provided in the indoor unit for detecting the indoor temperature, a value detected by the first storage means and A first calculating means for calculating a difference from a value detected by the first temperature detecting means, a fourth calculating means for calculating an opening degree of the hot water flow rate adjusting means based on a calculation result by the first calculating means, Third control means for controlling the degree of opening of the hot water flow rate adjusting means based on the calculation result of the calculating means of No. 4. The temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated by the first calculation means, and the degree of opening of the hot water flow rate adjustment means is calculated based on the calculation result. The opening degree of the hot water flow rate adjusting means is increased by the third control means if the first arithmetic result is positive, and the opening degree of the hot water flow rate adjusting means is increased if the first arithmetic result is negative by the third controlling means. Control is performed to decrease the opening of the flow rate adjusting means. Thus the first
Calculates the temperature difference between the set temperature stored by the storage means and the room temperature detected by the first temperature detection means, and increases or decreases the opening degree of the hot water flow rate adjustment means so that the heating capacity can be increased or decreased in accordance with this temperature difference. Therefore, it is possible to perform the dehumidifying operation while suppressing the change in the room temperature.

【0053】また、温水流量調整手段の開度を判定する
第4の判定手段と、この第4の判定手段による判定結果
より温水搬送手段の回転数を演算する第5の演算手段
と、この第5の演算手段による演算結果より温水搬送手
段の回転数を制御する第4の制御手段とを備えた構成と
したものである。第1の記憶手段によって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を第1の演算手段により演算し、第4の判定手段に
より温水流量調整手段の開度が最大であるかを判定し、
温水流量調整手段の開度が最大である場合は温水搬送手
段の回転数を第5の演算手段により演算し演算結果から
温水搬送手段の回転数を第4の制御手段により、第1の
演算結果が正の場合は温水搬送手段の回転数を増大さ
せ、負の場合は温水搬送手段の回転数を減少するように
制御し、冷媒流量調整手段の開度が最大でない場合は温
水流量調整手段の開度を第4の演算手段により演算し、
演算結果から温水流量調整手段の開度を第3の制御手段
により第1の演算結果が正の場合は温水流量調整手段の
開度を増大させ、負の場合は温水流量調整手段の開度を
減少するように制御する。このようにして第1の記憶手
段によって記憶した設定温度と第1の温度検出手段より
検出した室内温度との温度差を演算し、この温度差にあ
わせて加熱能力が増減できるように温水流量調整手段の
開度、及び、温水搬送手段の回転数を増減させることが
できるので、室内温度の変化を高精度で抑制し除湿運転
を行なうことができる。
Further, fourth determining means for determining the degree of opening of the hot water flow rate adjusting means, fifth calculating means for calculating the number of revolutions of the hot water conveying means based on the result of determination by the fourth determining means, And a fourth control means for controlling the number of revolutions of the hot water conveying means based on the calculation result of the calculation means of No. 5. The temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated by the first calculation means, and the opening degree of the hot water flow rate adjustment means is calculated by the fourth determination means. Judge whether it is the maximum,
When the opening degree of the hot water flow adjusting means is the maximum, the rotation speed of the hot water transport means is calculated by the fifth arithmetic means, and the rotation speed of the hot water transport means is calculated by the fourth control means from the calculation result. Is positive, the rotation speed of the hot water transport means is increased, and if negative, the rotation speed of the hot water transport means is controlled to decrease.If the opening degree of the refrigerant flow rate adjustment means is not the maximum, the hot water flow rate adjustment means The opening is calculated by a fourth calculating means,
The opening degree of the hot water flow rate adjusting means is increased by the third control means when the first arithmetic result is positive, and the opening degree of the hot water flow rate adjusting means is increased by the third control means when the first arithmetic result is negative. Control to decrease. The temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the hot water flow rate is adjusted so that the heating capacity can be increased or decreased in accordance with the temperature difference. Since the opening degree of the means and the number of revolutions of the hot water conveying means can be increased or decreased, the change in the room temperature can be suppressed with high accuracy and the dehumidifying operation can be performed.

【0054】また、複数の室内熱交換器と、複数の室内
温水熱交換器と、複数の第1の絞り手段と、複数の温水
流量調整弁とを備えた構成としたものである。上記のよ
うに構成された空気調和装置において、複数の室内ユニ
ット間において冷房と暖房を同時に運転する場合、冷房
運転を行なう室内ユニットに備えられた室内温水熱交換
器と接続されている温水流量調整手段は全閉し、暖房運
転を行なう室内ユニットに備えられた室内熱交換器と接
続されている第1の絞り手段は全閉し、四方弁は圧縮機
の吐出側から室外熱交換器へ冷媒が流通し、また、室内
熱交換器から圧縮機の吸入側へ冷媒が流通するように切
り替わる。このような状態の冷媒回路で、圧縮機から吐
出された高温高圧冷媒は、四方弁を通過し室外熱交換器
へと流入し、室外熱交換器において外気と熱交換を行い
放熱し凝縮する。このように室外熱交換器において熱交
換を行った後に冷媒は、冷房運転を行なう室内熱交換器
と接続された第1の絞り手段を通過し、この第1の絞り
手段を通過する際に低温低圧の冷媒となり室内熱交換器
に流入し、室内熱交換器において室内空気と熱交換を行
ない吸熱することで、室内を冷房する。このようにし
て、室内熱交換器において熱交換を行った後に冷媒は、
四方弁を通過し、圧縮機へ流入する。一方、温水搬送手
段により吐出された熱を吸熱し高温となった冷却水は暖
房運転を行なう室内温水熱交換器と接続された温水流量
調整手段を通過し、室内温水熱交換器へと流入し、室内
温水熱交換器において室内空気と熱交換を行い放熱する
ことで、室内を暖房する。室内温水熱交換器で熱交換を
おこなった後に冷却水は、熱機関へと流入する。このよ
うにして、圧縮機を利用したヒートポンプ回路と熱機関
の冷却水の放熱を利用した暖房回路とを独立させるの
で、2つの室内ユニット間において冷房と暖房を同時に
運転することができる
Further, the apparatus comprises a plurality of indoor heat exchangers, a plurality of indoor hot water heat exchangers, a plurality of first throttling means, and a plurality of hot water flow control valves. In the air conditioner configured as described above, when cooling and heating are simultaneously performed between a plurality of indoor units, the hot water flow rate adjustment connected to the indoor hot water heat exchanger provided in the indoor unit performing the cooling operation The means is fully closed, the first throttle means connected to the indoor heat exchanger provided in the indoor unit performing the heating operation is fully closed, and the four-way valve is connected to the outdoor heat exchanger from the discharge side of the compressor to the outdoor heat exchanger. And the refrigerant flows from the indoor heat exchanger to the suction side of the compressor. In the refrigerant circuit in such a state, the high-temperature and high-pressure refrigerant discharged from the compressor passes through the four-way valve, flows into the outdoor heat exchanger, exchanges heat with the outside air in the outdoor heat exchanger, releases heat, and condenses. After performing the heat exchange in the outdoor heat exchanger as described above, the refrigerant passes through the first throttle unit connected to the indoor heat exchanger that performs the cooling operation, and when passing through the first throttle unit, the refrigerant has a low temperature. The refrigerant becomes low-pressure refrigerant, flows into the indoor heat exchanger, exchanges heat with indoor air in the indoor heat exchanger, and absorbs heat, thereby cooling the room. Thus, the refrigerant after performing heat exchange in the indoor heat exchanger,
It passes through a four-way valve and flows into the compressor. On the other hand, the high-temperature cooling water that absorbs the heat discharged by the hot water conveying means passes through the hot water flow rate adjusting means connected to the indoor hot water heat exchanger performing the heating operation, and flows into the indoor hot water heat exchanger. In the indoor hot water heat exchanger, heat is exchanged with room air to radiate heat, thereby heating the room. After performing heat exchange in the indoor hot water heat exchanger, the cooling water flows into the heat engine. In this way, since the heat pump circuit using the compressor and the heating circuit using the heat radiation of the cooling water of the heat engine are made independent, cooling and heating can be simultaneously operated between the two indoor units.

【0055】[0055]

【実施例】【Example】

(実施例1)以下、本発明の第1実施例について図1を
参照しながら説明する。なお、従来例と同一部分は同一
番号とし、詳細な説明は省略する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The same parts as those in the conventional example are denoted by the same reference numerals, and detailed description is omitted.

【0056】図1に示すように、冷却水によって冷却さ
れる熱機関113、この熱機関により駆動される発電機
112と、冷媒を圧縮する圧縮機101と、この圧縮機
の吐出側に配管接続する第1の切替手段1と、圧縮機の
吸入側に配管接続する第2の流路切替手段2と、第1の
流路切替手段及び第2の流路切替手段の一端に配管接続
される四方弁3と、この四方弁3の一端に配管接続され
る室外熱交換器4と、この室外熱交換器4の他端に配管
接続される第1の絞り手段5と、第1の流路切替手段1
の他端と第2の流路切替手段2の他端との間に配管接続
される冷媒搬送手段6とを備えてなる室外ユニット7
と、一端を四方弁3に配管接続し他端を第1の絞り手段
1に配管接続する室内熱交換器8を備えてなる室内ユニ
ット9とから構成され、冷媒搬送手段6の吐出側の冷媒
と熱機関113の冷却水とを熱交換させる室外温水熱交
換器10を設けた構成とし、冷媒としてはR22、熱機
関113としてはディーゼルエンジン、第1の切替手段
1あるいは第2の切替手段としては三方弁、冷媒搬送手
段6としては液ポンプとしてのトロコイドポンプ、第1
の絞り手段5としては電動膨張弁、室外熱交換器4ある
いは室内熱交換器8としてはフィン・チューブ型の熱交
換器、室外温水熱交換器10としては二重管を用いた構
成とする。
As shown in FIG. 1, a heat engine 113 cooled by cooling water, a generator 112 driven by the heat engine, a compressor 101 for compressing refrigerant, and a pipe connection to the discharge side of the compressor First switching means 1 to be connected, second flow switching means 2 connected to the suction side of the compressor by piping, and piping connected to one end of the first flow switching means and the second flow switching means. A four-way valve 3, an outdoor heat exchanger 4 connected to one end of the four-way valve 3, a first throttle means 5 connected to the other end of the outdoor heat exchanger 4, and a first flow path Switching means 1
Outdoor unit 7 comprising a refrigerant transfer means 6 connected by piping between the other end of the second flow path switching means 2 and the other end of the second flow path switching means 2
And an indoor unit 9 having an indoor heat exchanger 8 having one end connected to the four-way valve 3 and the other end connected to the first throttle means 1. An outdoor hot water heat exchanger 10 for exchanging heat with the cooling water of the heat engine 113 is provided. The refrigerant is R22, the heat engine 113 is a diesel engine, and the first switching means 1 or the second switching means. Represents a three-way valve, a trochoid pump as a liquid pump as the refrigerant transfer means 6, a first
The expansion means 5 has an electric expansion valve, the outdoor heat exchanger 4 or the indoor heat exchanger 8 has a fin-tube type heat exchanger, and the outdoor hot water heat exchanger 10 has a double pipe structure.

【0057】上記のように構成された空気調和装置にお
いて通常の暖房運転もしくは低負荷時に暖房運転を行う
場合、圧縮機101は停止状態とし、次に冷媒の流通方
向として、第1の流路切替手段1は冷媒搬送手段6と室
外温水熱交換器10を冷媒が流通するように切り替わ
り、第2の流路切替手段2は四方弁3と冷媒搬送手段6
を冷媒が流通するように切り替わる。また、四方弁3は
図1の点線の向きに切り替わり、室外温水熱交換器10
と室内熱交換器8を冷媒が流通し、また室外熱交換器3
と第2の切替手段2を冷媒が流通するように切り替わ
る。この状態において、冷媒はまず冷媒搬送手段6から
吐出され、次に室外温水熱交換器10において、熱機関
113の冷却部分から受け取った排熱により高温となっ
た冷却水と熱交換を行い、高温冷媒となる。この高温冷
媒はその後室内熱交換器8に流入し、室内熱交換器にお
いて室内空気と熱交換を行ない放熱し、室内を暖房す
る。このようにして室内熱交換器8において熱交換を行
った後に、冷媒は室内熱交換器8から第1の絞り手段
5、室外熱交換器4、四方弁3、第2の流路切替手段2
を順次通過し、冷媒搬送手段6に再び流入して、上記動
作を繰り返す。また、寒冷地等、低温時もしくは高負荷
時に暖房運転を行う場合には、冷媒搬送手段6は停止状
態とし、次に冷媒の流通方向として、第1の流路切替手
段1は圧縮機101の吐出側から室外温水熱交換器10
へ冷媒が流通するように切り替わり、第2の流路切替手
段2は四方弁3から圧縮機101の吸入側へ冷媒が流通
するように切り替わる。この状態において、発電機によ
って蓄えられた電力、あるいは商用電源によって駆動す
る圧縮機101から冷媒はまず高温高圧状態で吐出さ
れ、次に室外温水熱交換器10において、熱機関113
の冷却部分から受け取った排熱により高温となった冷却
水と熱交換を行い、排熱回収を行う。この高温冷媒はそ
の後室内熱交換器8に流入し、室内熱交換器において室
内空気と熱交換を行ない放熱し、室内を暖房する。この
ようにして室内熱交換器8において熱交換を行った後
に、冷媒は室内熱交換器8から第1の絞り手段5、室外
熱交換器4、四方弁3、第2の流路切替手段2を順次通
過し、圧縮機101に再び流入して、上記動作を繰り返
す。
When the air-conditioning apparatus having the above-described configuration performs the normal heating operation or the heating operation at a low load, the compressor 101 is stopped, and then the first flow path switching is performed as the refrigerant flow direction. The means 1 is switched so that the refrigerant flows through the refrigerant conveying means 6 and the outdoor hot water heat exchanger 10, and the second flow path switching means 2 includes the four-way valve 3 and the refrigerant conveying means 6.
Is switched so that the refrigerant flows. The four-way valve 3 is switched in the direction of the dotted line in FIG.
The refrigerant flows through the indoor heat exchanger 8 and the outdoor heat exchanger 3.
And the second switching means 2 is switched so that the refrigerant flows. In this state, the refrigerant is first discharged from the refrigerant conveying means 6, and then in the outdoor hot water heat exchanger 10, heat exchange is performed with the cooling water, which has been heated by the exhaust heat received from the cooling portion of the heat engine 113, and It becomes a refrigerant. The high-temperature refrigerant then flows into the indoor heat exchanger 8, exchanges heat with the indoor air in the indoor heat exchanger, radiates heat, and heats the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant flows from the indoor heat exchanger 8 to the first throttle means 5, the outdoor heat exchanger 4, the four-way valve 3, the second flow path switching means 2
, Sequentially flow into the refrigerant conveying means 6, and the above operation is repeated. When the heating operation is performed at a low temperature or a high load, such as in a cold region, the refrigerant transporting unit 6 is in a stopped state, and then the first flow switching unit 1 Outdoor hot water heat exchanger 10 from discharge side
The second flow path switching means 2 switches so that the refrigerant flows from the four-way valve 3 to the suction side of the compressor 101. In this state, the refrigerant stored in the outdoor hot water heat exchanger 10 is first discharged at a high temperature and a high pressure from the electric power stored by the generator or the compressor 101 driven by the commercial power supply.
Heat exchange with the cooling water, which has become hot due to the exhaust heat received from the cooling part, recovers the exhaust heat. The high-temperature refrigerant then flows into the indoor heat exchanger 8, exchanges heat with the indoor air in the indoor heat exchanger, radiates heat, and heats the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant flows from the indoor heat exchanger 8 to the first throttle means 5, the outdoor heat exchanger 4, the four-way valve 3, the second flow path switching means 2 , Sequentially flow into the compressor 101 again, and the above operation is repeated.

【0058】一方、冷房運転を行う場合、第1の流路切
替手段1は圧縮機101の吐出側から室外温水熱交換器
10へ冷媒が流通するように切り替わり、第2の流路切
替手段2は四方弁3から圧縮機101の吸入側へ冷媒が
流通するように切り替わる。また、四方弁3は図1の実
線の向きに切り替わり、室外温水熱交換器10と室外熱
交換器4を冷媒が流通し、また室内熱交換器8と第2の
切替手段2を冷媒が流通するように切り替わる。発電機
112によって蓄えられた電力、あるいは商用電源によ
って駆動する圧縮機101から吐出された高温高圧の冷
媒は、室外温水熱交換器10を通った後四方弁3を経て
室外熱交換器4に流入する。ここで冷媒は室外空気と熱
交換することにより凝縮液化し、次に第1の絞り手段5
で減圧され、その後、室内熱交換器8へ流れ込み室内空
気と熱交換し、吸熱・蒸発気化することで室内を冷房す
る。その後、蒸発気化した冷媒は再び四方弁3を通っ
て、圧縮機101に戻る。
On the other hand, when performing the cooling operation, the first flow path switching means 1 switches so that the refrigerant flows from the discharge side of the compressor 101 to the outdoor hot water heat exchanger 10, and the second flow path switching means 2 Is switched so that the refrigerant flows from the four-way valve 3 to the suction side of the compressor 101. Further, the four-way valve 3 is switched in the direction of the solid line in FIG. 1 so that the refrigerant flows through the outdoor hot water heat exchanger 10 and the outdoor heat exchanger 4, and the refrigerant flows through the indoor heat exchanger 8 and the second switching means 2. Switch to The electric power stored by the generator 112 or the high-temperature and high-pressure refrigerant discharged from the compressor 101 driven by the commercial power supply passes through the outdoor hot water heat exchanger 10 and then flows into the outdoor heat exchanger 4 via the four-way valve 3. I do. Here, the refrigerant is condensed and liquefied by exchanging heat with outdoor air, and then the first throttling means 5
After that, it flows into the indoor heat exchanger 8, exchanges heat with the indoor air, and absorbs and evaporates to cool the room. Thereafter, the vaporized refrigerant returns to the compressor 101 through the four-way valve 3 again.

【0059】このように本発明によれば、暖房運転時、
圧縮機101を駆動させることなく熱機関113の排熱
を利用して暖房するので、消費電力を小さく抑えながら
も低能力暖房運転を行うことができる。
As described above, according to the present invention, during the heating operation,
Since heating is performed using the exhaust heat of the heat engine 113 without driving the compressor 101, a low-capacity heating operation can be performed while suppressing power consumption.

【0060】なお、本実施例では冷媒としてR22を用
いたが、これにかえてHFC系の非共沸混合冷媒のR4
07c等、同じく擬似共沸混合冷媒のR410A、R4
10B等や、HC系のプロパン(R290)等を用いて
も同様の作用効果が得られる。
In the present embodiment, R22 was used as the refrigerant.
07c, etc., and R410A, R4
Similar effects can be obtained by using 10B or the like, or HC-based propane (R290).

【0061】また、熱機関113にディーゼルエンジン
を用いたが、これにかえてガスエンジン、ガソリンエン
ジン等を用いても同様の作用効果が得られる。
Although a diesel engine is used as the heat engine 113, a similar effect can be obtained by using a gas engine, a gasoline engine or the like instead.

【0062】また、冷媒搬送手段としてトロコイドポン
プを用いたが、これにかえて液ポンプ等を用いても同様
の作用効果が得られる。
Although a trochoid pump is used as the refrigerant transport means, a similar effect can be obtained by using a liquid pump or the like instead.

【0063】また、第1の切替手段1と第2の切替手段
2として三方弁を用いたが、これにかえて電磁弁を用い
ても同様の作用効果が得られる。
Although a three-way valve is used as the first switching means 1 and the second switching means 2, the same operation and effect can be obtained by using an electromagnetic valve instead.

【0064】また、室外温水熱交換器10として二重管
を用いたが、これにかえてシェルアンドチューブ熱交換
器を用いても同様の作用効果が得られる。
Although a double tube is used as the outdoor hot water heat exchanger 10, a similar effect can be obtained by using a shell and tube heat exchanger instead.

【0065】また、圧縮機101の供給電力として発電
機113の駆動により発電機112に蓄えられた電力あ
るいは商用電力を利用したが、これにかえて太陽光発
電、水力発電、風力発電等による自家発電電力を用いて
も同様の効果が得られる。
The power stored in the generator 112 or the commercial power is used as the power supplied to the compressor 101 by driving the generator 113. The same effect can be obtained by using the generated power.

【0066】(実施例2)次に本発明の第2実施例につ
いて、図2を参照しながら説明する。なお、第1実施例
と同一部分は同一番号とし、詳細な説明は省略する。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0067】図2に示すように、室外温水熱交換器10
を冷媒搬送手段6の吐出側に配し、第1の流路切替手段
1を四方弁3と室内熱交換器4との間に配し、第2の流
路切替手段2を四方弁3と室外熱交換器4との間に配
し、室外温水熱交換器10と冷媒搬送手段6を第1の流
路切替手段1の他端と第2の流路切替手段2の他端との
間に設けた構成としたものである。
As shown in FIG. 2, the outdoor hot water heat exchanger 10
Is disposed on the discharge side of the refrigerant conveying means 6, the first flow path switching means 1 is disposed between the four-way valve 3 and the indoor heat exchanger 4, and the second flow path switching means 2 is disposed with the four-way valve 3. It is arranged between the outdoor heat exchanger 4 and the outdoor hot water heat exchanger 10 and the refrigerant conveying means 6 between the other end of the first flow path switching means 1 and the other end of the second flow path switching means 2. Is provided.

【0068】上記のように構成された空気調和装置にお
いて通常の暖房運転もしくは低負荷時に暖房運転を行う
場合、圧縮機101は停止状態とし、次に冷媒の流通方
向として、第1の流路切替手段1は室外温水熱交換器1
0から室内熱交換器8へ冷媒が流通するように切り替わ
り、第2の流路切替手段2は室外熱交換器4から四方弁
3へ冷媒が流通するように切り替わる。これにより、冷
媒は圧力損失の原因となる曲がり配管を多用してつくら
れた四方弁3を通らないことになる。この状態におい
て、冷媒はまず冷媒搬送手段6から吐出され、次に室外
温水熱交換器10において、熱機関113の冷却部分か
ら受け取った排熱により高温となった冷却水と熱交換を
行い、高温冷媒となる。この高温冷媒は次に室内熱交換
器8に流入し、その室内熱交換器8において室内空気と
熱交換を行ない熱を放出し、室内を暖房する。このよう
にして室内熱交換器8において熱交換を行った後に、冷
媒は室内熱交換器8から第1の絞り手段5、室外熱交換
器4、第2の流路切替手段2を順次通過し、冷媒搬送手
段6に再び流入して、上記動作を繰り返す。また、寒冷
地等、低温時もしくは高負荷時に暖房運転を行う場合に
は、冷媒搬送手段6は停止状態とし、次に冷媒の流通方
向として、第1の流路切替手段1は四方弁3から室内温
水熱交換器8へ冷媒が流通するように切り替わり、第2
の流路切替手段2は室外熱交換器4から四方弁3へ冷媒
が流通するように切り替わる。また、四方弁3は図2の
点線の向きに切り替わる。この状態において、発電機に
よって蓄えられた電力、あるいは商用電源によって駆動
する圧縮機101から冷媒はまず高温高圧状態で吐出さ
れ、次に四方弁3を経てからこの室内熱交換器8に流入
し、室内熱交換器8において室内空気と熱交換を行ない
放熱し、室内を暖房する。このようにして室内熱交換器
8において熱交換を行った後に、冷媒は室内熱交換器8
から第1の絞り手段5において減圧され、ついで室外熱
交換器4において室外空気と熱交換し、ここで蒸発気化
する。そして蒸発気化した冷媒は四方弁3、第2の流路
切替手段2を順次通過し、圧縮機101に再び流入し
て、上記動作を繰り返す。
When the air-conditioning apparatus configured as described above performs the normal heating operation or the heating operation at a low load, the compressor 101 is stopped and then the first flow switching is performed as the refrigerant flow direction. Means 1 is an outdoor hot water heat exchanger 1
From 0, the refrigerant is switched to flow to the indoor heat exchanger 8, and the second flow path switching means 2 is switched to flow the refrigerant from the outdoor heat exchanger 4 to the four-way valve 3. As a result, the refrigerant does not pass through the four-way valve 3 formed by using many bent pipes that cause a pressure loss. In this state, the refrigerant is first discharged from the refrigerant conveying means 6, and then in the outdoor hot water heat exchanger 10, heat exchange is performed with the cooling water, which has been heated by the exhaust heat received from the cooling portion of the heat engine 113, and It becomes a refrigerant. The high-temperature refrigerant then flows into the indoor heat exchanger 8, where it exchanges heat with indoor air to release heat and heat the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant sequentially passes from the indoor heat exchanger 8 through the first throttle means 5, the outdoor heat exchanger 4, and the second flow path switching means 2. Then, the refrigerant flows into the refrigerant conveying means 6 again, and the above operation is repeated. When the heating operation is performed at a low temperature or a high load, such as in a cold region, the refrigerant transporting means 6 is stopped, and then the first flow path switching means 1 moves from the four-way valve 3 as the refrigerant flowing direction. The refrigerant is switched to the indoor hot water heat exchanger 8 so that the refrigerant flows therethrough.
Is switched so that the refrigerant flows from the outdoor heat exchanger 4 to the four-way valve 3. Further, the four-way valve 3 switches in the direction of the dotted line in FIG. In this state, the electric power stored by the generator or the refrigerant from the compressor 101 driven by the commercial power supply is first discharged in a high-temperature and high-pressure state, and then flows into the indoor heat exchanger 8 through the four-way valve 3, The indoor heat exchanger 8 exchanges heat with room air to radiate heat and heat the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant flows into the indoor heat exchanger 8.
Then, the pressure is reduced in the first throttle means 5, and then the heat is exchanged with the outdoor air in the outdoor heat exchanger 4, where it is evaporated and vaporized. Then, the evaporated and vaporized refrigerant sequentially passes through the four-way valve 3 and the second flow path switching means 2, flows into the compressor 101 again, and repeats the above operation.

【0069】一方、冷房運転を行う場合、冷媒の流通方
向として第1の流路切替手段1は、四方弁3から室外熱
交換器4へ冷媒が流通するように切り替わり、第2の流
路切替手段2は室内熱交換器8から四方弁3へ冷媒が流
通するように切り替わる。また、四方弁3は図2の実線
の向きに切り替わり、圧縮機101の吐出側から室外熱
交換器4へ冷媒が流通し、また室内熱交換器8から圧縮
機101の吸入側へ冷媒が流通するように切り替わる。
この状態において、発電機によって蓄えられた電力、あ
るいは商用電源によって駆動する圧縮機101から吐出
された高温高圧の冷媒は、四方弁3を経て室外熱交換器
4に流入する。ここで冷媒は室外空気と熱交換すること
により凝縮液化し、次に第1の絞り手段5で減圧され、
その後、室内熱交換器8へ流れ込み室内空気と熱交換
し、吸熱・蒸発気化することで室内を冷房する。その
後、蒸発気化した冷媒は再び四方弁3を通って、圧縮機
101に再び戻り、上記動作を繰り返す。
On the other hand, when performing the cooling operation, the first flow path switching means 1 switches the flow direction of the refrigerant so that the refrigerant flows from the four-way valve 3 to the outdoor heat exchanger 4, and the second flow path is switched. The means 2 is switched so that the refrigerant flows from the indoor heat exchanger 8 to the four-way valve 3. Further, the four-way valve 3 is switched in the direction of the solid line in FIG. 2, and the refrigerant flows from the discharge side of the compressor 101 to the outdoor heat exchanger 4 and the refrigerant flows from the indoor heat exchanger 8 to the suction side of the compressor 101. Switch to
In this state, the electric power stored by the generator or the high-temperature and high-pressure refrigerant discharged from the compressor 101 driven by the commercial power supply flows into the outdoor heat exchanger 4 through the four-way valve 3. Here, the refrigerant is condensed and liquefied by exchanging heat with outdoor air, and then decompressed by the first throttle means 5,
After that, it flows into the indoor heat exchanger 8, exchanges heat with the indoor air, and absorbs and evaporates to cool the room. Thereafter, the vaporized refrigerant returns to the compressor 101 again through the four-way valve 3 and repeats the above operation.

【0070】このように本発明によれば、暖房運転時、
圧縮機101を駆動させることなく熱機関113の排熱
を利用して室内を暖房することができ、かつ冷媒は四方
弁3を通らずに循環するので、サイクルの圧力損失と消
費電力を小さく抑えながら、低能力暖房運転を行うこと
ができる。
As described above, according to the present invention, during the heating operation,
The interior of the room can be heated using the exhaust heat of the heat engine 113 without driving the compressor 101, and the refrigerant circulates without passing through the four-way valve 3, so that the pressure loss and power consumption of the cycle are suppressed to a small value. While performing the low-capacity heating operation.

【0071】(実施例3)次に本発明の第3実施例につ
いて、図3を参照しながら説明する。なお、第1実施例
および第2実施例と同一部分は同一番号とし、詳細な説
明は省略する。
(Embodiment 3) Next, a third embodiment of the present invention will be described with reference to FIG. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.

【0072】図3は、室外温水熱交換器10を冷媒搬送
手段6の吐出側に配し、第1の流路切替手段1を四方弁
3と室内熱交換器8との間に配し、第2の流路切替手段
2を室外熱交換器4と第1の絞り手段5との間に配し、
室外温水熱交換器10と冷媒搬送手段6を第1の流路切
替手段1の他端と第2の流路切替手段2の他端との間に
設けた構成とした空気調和装置である。
FIG. 3 shows that the outdoor hot water heat exchanger 10 is arranged on the discharge side of the refrigerant conveying means 6, the first flow path switching means 1 is arranged between the four-way valve 3 and the indoor heat exchanger 8, The second flow path switching means 2 is disposed between the outdoor heat exchanger 4 and the first throttle means 5,
This is an air conditioner in which the outdoor hot water heat exchanger 10 and the refrigerant conveying means 6 are provided between the other end of the first flow path switching means 1 and the other end of the second flow path switching means 2.

【0073】上記のように構成された空気調和装置にお
いて、通常の暖房運転もしくは、低負荷時に暖房運転を
行う場合、圧縮機101は停止状態とし、まず、第1の
流路切替手段1は室外温水熱交換器10から室内熱交換
器8へ冷媒が流通するように切り替わり、第2の流路切
替手段2は第1の絞り手段5から冷媒搬送手段6へ冷媒
が流通するように切り替わる。これにより冷媒は、圧力
損失の原因となる曲がり配管を多用してつくられる四方
弁3及び、室外交換機4を通過しなくなる。このような
状態で冷媒は、まず冷媒搬送手段6から吐出され、次に
室外温水熱交換器10において、熱機関113から流出
した温水と熱交換を行い温水の熱を吸熱し高温冷媒とな
る。この高温冷媒は室内熱交換器8に流入し、室内熱交
換器8において室内空気と熱交換を行ない放熱すること
で室内を暖房する。このようにして室内熱交換器8にお
いて熱交換を行った後に冷媒は、室内熱交換器8から第
1の絞り手段5、第2の流路切替手段2を順次通過し、
冷媒搬送手段6に再び流入して上記動作を繰り返す。
In the air conditioner configured as described above, when performing the normal heating operation or the heating operation at a low load, the compressor 101 is stopped, and the first flow path switching means 1 The refrigerant is switched so that the refrigerant flows from the hot water heat exchanger 10 to the indoor heat exchanger 8, and the second flow path switching unit 2 switches so that the refrigerant flows from the first throttle unit 5 to the refrigerant transport unit 6. As a result, the refrigerant does not pass through the four-way valve 3 and the outdoor exchanger 4 that are formed by using many bent pipes that cause pressure loss. In such a state, the refrigerant is first discharged from the refrigerant conveying means 6, and then exchanges heat with the hot water flowing out of the heat engine 113 in the outdoor hot water heat exchanger 10 to absorb the heat of the hot water to become a high-temperature refrigerant. The high-temperature refrigerant flows into the indoor heat exchanger 8 and exchanges heat with indoor air in the indoor heat exchanger 8 to radiate heat, thereby heating the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant sequentially passes from the indoor heat exchanger 8 through the first throttle means 5 and the second flow path switching means 2,
The refrigerant flows into the refrigerant conveying means 6 again, and the above operation is repeated.

【0074】また、寒冷地等、低温時もしくは高負荷時
に暖房運転を行う場合、冷媒搬送手段6は停止状態にあ
り、まず第1の流路切替手段1は四方弁3から室内熱交
換器8へ冷媒が流通するように切り替わり、第2の流路
切替手段2は第1の絞り手段5から室外熱交換器4へ冷
媒が流通するように切り替わり、四方弁3は破線で示す
回路に切り替わる。次に圧縮機101が起動され、冷媒
はまず圧縮機101から吐出され、次に第1の流路切替
手段1を通過し室内熱交換器8へ流入し、室内熱交換器
8において室内空気と熱交換を行い放熱することで室内
を暖房する。このようにして室内熱交換器8において熱
交換を行った後に冷媒は、室内熱交換器8から第1の絞
り手段5、第2の流路切替手段2を順次通過し、室外熱
交換器4へ流入し、室外熱交換器4において外気と熱交
換を行い吸熱し蒸発する。このようにして室外熱交換器
4において熱交換を行った後に冷媒は、四方弁3を通過
し圧縮機101に再び流入して上記動作を繰り返す。
When the heating operation is performed at a low temperature or a high load in a cold region or the like, the refrigerant transporting means 6 is in a stopped state. The second flow switching means 2 is switched so that the refrigerant flows from the first throttle means 5 to the outdoor heat exchanger 4, and the four-way valve 3 is switched to a circuit indicated by a broken line. Next, the compressor 101 is started, and the refrigerant is first discharged from the compressor 101, then passes through the first flow path switching means 1, flows into the indoor heat exchanger 8, and in the indoor heat exchanger 8, The room is heated by heat exchange and heat dissipation. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant sequentially passes from the indoor heat exchanger 8 through the first throttle means 5 and the second flow path switching means 2, and passes through the outdoor heat exchanger 4. And heat exchanges with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes through the four-way valve 3 and flows into the compressor 101 again to repeat the above operation.

【0075】一方、冷房運転を行なう場合、まず、第1
の流路切替手段1は室内熱交換器8から四方弁3へ冷媒
が流通するように切り替わり、第2の流路切替手段2は
室外熱交換器4から第1の絞り手段5へ冷媒が流通する
ように切り替わり、四方弁3は実線で示す回路に切り替
わる。次に、圧縮機101は熱機関113により駆動す
る発電機112により供給される電力あるいは商用電力
により駆動し、圧縮機101から吐出された高温高圧の
冷媒は四方弁3を通過し、室外熱交換器4に流入し、外
気と熱交換を行い放熱することにより凝縮する。このよ
うに室外熱交換器4で熱交換を行った後に、冷媒は第2
の流路切替手段2を通過し、次に第1の絞り手段5を通
過し、この第1の絞り手段を通過する際に低温低圧の冷
媒へと変化し、続いて室内熱交換器8に流入する。室内
熱交換器8に流入した冷媒は室内熱交換器8において、
室内空気と熱交換を行い吸熱することで室内を冷房す
る。このように室内熱交換器8において熱交換を行った
後に冷媒は第1の流路切替手段1、四方弁3を順次通過
し、圧縮機101に再び吸入され、上記動作を繰り返
す。
On the other hand, when performing the cooling operation, first, the first
Is switched so that the refrigerant flows from the indoor heat exchanger 8 to the four-way valve 3, and the second flow path switching means 2 flows the refrigerant from the outdoor heat exchanger 4 to the first throttle means 5. And the four-way valve 3 switches to the circuit shown by the solid line. Next, the compressor 101 is driven by electric power or commercial electric power supplied from a generator 112 driven by a heat engine 113, and the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3 to perform outdoor heat exchange. It flows into the vessel 4, exchanges heat with the outside air, and condenses by releasing heat. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant
, And then passes through the first throttle means 5, changes into a low-temperature low-pressure refrigerant when passing through the first throttle means, and then passes through the indoor heat exchanger 8. Inflow. The refrigerant flowing into the indoor heat exchanger 8 is
The room is cooled by exchanging heat with indoor air and absorbing heat. After the heat exchange in the indoor heat exchanger 8 as described above, the refrigerant sequentially passes through the first flow path switching means 1 and the four-way valve 3, is sucked into the compressor 101 again, and repeats the above operation.

【0076】このように本発明によれば、通常の暖房運
転もしくは低負荷時に暖房運転を行う場合、圧縮機10
1を駆動させることなく熱機関113の排熱を利用して
暖房運転を行ない、また、冷媒が四方弁3及び、室外熱
交換器4を通過しないため、四方弁3及び、室外熱交換
器4の圧力損失の影響を受けずに消費電力を抑えながら
も低能力暖房運転を行なうことができる。
As described above, according to the present invention, when performing the normal heating operation or the heating operation at a low load, the compressor 10
1 is driven without using the exhaust heat of the heat engine 113, and the refrigerant does not pass through the four-way valve 3 and the outdoor heat exchanger 4, so that the four-way valve 3 and the outdoor heat exchanger 4 The low-capacity heating operation can be performed while suppressing power consumption without being affected by the pressure loss.

【0077】(実施例4)次に本発明の第4実施例につ
いて、図4を参照しながら説明する。なお、第1、第2
および第3実施例と同一部分は同一番号とし、詳細な説
明は省略する。
(Embodiment 4) Next, a fourth embodiment of the present invention will be described with reference to FIG. Note that the first and second
The same parts as those of the third embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0078】図4は、室外熱交換器4と第2の流路切替
手段2との間に第3の流路切替手段11を備え、四方弁
3と第1の流路切替手段1との間に第4の流路切替手段
12を備え、第2の流路切替手段2と冷媒搬送手段6と
の間を流れる冷媒と、第3の流路切替手段11と第4の
流路切替手段12との間を流れる冷媒とを熱交換させる
冷媒間熱交換器13を備え、この冷媒間熱交換器13と
第3の流路切替手段11との間に第2の絞り手段14と
を設けた構成とした空気調和装置であり、冷媒間熱交換
器13として二重管を用いた構成とする。
FIG. 4 shows that a third flow path switching means 11 is provided between the outdoor heat exchanger 4 and the second flow path switching means 2 so that the four-way valve 3 and the first flow path switching means 1 can be connected to each other. A fourth flow path switching means 12 is provided therebetween, and a refrigerant flowing between the second flow path switching means 2 and the refrigerant conveying means 6; a third flow path switching means 11 and a fourth flow path switching means. A heat exchanger 13 for exchanging heat with the refrigerant flowing between the heat exchanger 12 and the second flow restrictor 14 between the heat exchanger 13 for refrigerant and the third flow path switching means 11. The air conditioner has a configuration using a double pipe as the heat exchanger between refrigerants 13.

【0079】上記のように構成された空気調和装置にお
いて、通常の暖房運転もしくは、低負荷時に暖房運転を
行う場合、圧縮機101は停止状態とし、まず、第1の
流路切替手段1は室外温水熱交換器10から室内熱交換
器8へ冷媒が流通するように切り替わり、第2の流路切
替手段2は第1の絞り手段5から冷媒間熱交換器13へ
冷媒が流通するように切り替わり、第3の流路切替手段
11は室外熱交換器4から第2の絞り手段14へ冷媒が
流通するように切り替わり、第4の流路切替手段12は
冷媒間熱交換器13から四方弁3を冷媒が流通するよう
に切り替わり、四方弁3は実線で示される回路に切り替
わる。このような状態で冷媒は冷媒搬送手段6から吐出
され、次に室外温水熱交換器10において、熱機関から
流出した温水と熱交換を行い温水の熱を吸熱し高温冷媒
となる。この高温冷媒は第1の流路切替手段1を通過し
室内熱交換器8に流入し、室内熱交換器8において室内
空気と熱交換を行い放熱することで室内を暖房する。こ
のようにして室内熱交換器8において熱交換を行った後
に冷媒は、室内熱交換器8から第1の絞り手段5、第2
の流路切替手段2を順次通過し、冷媒間熱交換器13へ
と流入する。
In the air conditioner configured as described above, when performing the normal heating operation or the heating operation at a low load, the compressor 101 is stopped, and first, the first flow path switching means 1 is set to the outdoor state. The refrigerant is switched so that the refrigerant flows from the hot water heat exchanger 10 to the indoor heat exchanger 8, and the second flow path switching unit 2 is switched so that the refrigerant flows from the first throttle unit 5 to the inter-refrigerant heat exchanger 13. The third flow path switching means 11 switches so that the refrigerant flows from the outdoor heat exchanger 4 to the second throttle means 14, and the fourth flow path switching means 12 switches from the inter-refrigerant heat exchanger 13 to the four-way valve 3. , And the four-way valve 3 switches to the circuit indicated by the solid line. In such a state, the refrigerant is discharged from the refrigerant conveying means 6, and then exchanges heat with the hot water flowing out of the heat engine in the outdoor hot water heat exchanger 10 to absorb the heat of the hot water to become a high-temperature refrigerant. The high-temperature refrigerant passes through the first flow path switching means 1, flows into the indoor heat exchanger 8, and exchanges heat with indoor air in the indoor heat exchanger 8 to radiate heat, thereby heating the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant flows from the indoor heat exchanger 8 to the first throttling unit 5 and the second
, And flows into the inter-refrigerant heat exchanger 13.

【0080】また、圧縮機101は熱機関113により
駆動する発電機112により供給される電力あるいは商
用電力により駆動し、圧縮機101から吐出された高温
高圧の冷媒は、四方弁3を通過し、次に室外熱交換器4
へと流入し、室外熱交換器4において外気と熱交換を行
い放熱し凝縮する。次にこの冷媒は、室外熱交換器4か
ら第3の流路切替手段11を通過し、次に第2の絞り手
段4を通過する。この第2の絞り手段14を通過する際
に、低温低圧の冷媒となり冷媒間熱交換器13へ流入す
る。そして、第2の流路切替手段2から冷媒間熱交換器
13へ流入した冷媒と第2の絞り手段から冷媒間熱交換
器13へ流入した冷媒は、冷媒間熱交換器13において
熱交換を行い、第2の流路切替手段2から冷媒間熱交換
器13へ流入した冷媒は第2の絞り手段から冷媒間熱交
換器13へ流入した冷媒に熱を放熱することにより冷却
され再び冷媒搬送手段6に流入する。また、第2の絞り
手段14から冷媒間熱交換器13へ流入した冷媒は、冷
媒間熱交換器13で熱交換を行った後、第4の流路切替
手段12、四方弁3を順次通過し、圧縮機101へ再び
流入する。冷媒搬送手段6及び、圧縮機101へ再び流
入した冷媒は上記動作を繰り返す。
The compressor 101 is driven by electric power or commercial electric power supplied from a generator 112 driven by a heat engine 113. The high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3, Next, the outdoor heat exchanger 4
And exchanges heat with the outside air in the outdoor heat exchanger 4 to dissipate heat and condense. Next, the refrigerant passes from the outdoor heat exchanger 4 through the third flow path switching unit 11 and then passes through the second throttle unit 4. When passing through the second throttle means 14, it becomes a low-temperature low-pressure refrigerant and flows into the inter-refrigerant heat exchanger 13. The refrigerant flowing from the second flow path switching means 2 into the inter-refrigerant heat exchanger 13 and the refrigerant flowing from the second throttle means into the inter-refrigerant heat exchanger 13 exchange heat in the inter-refrigerant heat exchanger 13. The refrigerant flowing from the second flow path switching means 2 into the inter-refrigerant heat exchanger 13 is cooled by radiating heat to the refrigerant flowing into the inter-refrigerant heat exchanger 13 from the second throttle means, and the refrigerant is conveyed again. It flows into the means 6. Further, the refrigerant that has flowed into the inter-refrigerant heat exchanger 13 from the second throttle means 14 performs heat exchange in the inter-refrigerant heat exchanger 13 and then sequentially passes through the fourth flow path switching means 12 and the four-way valve 3. Then, it flows into the compressor 101 again. The refrigerant flowing into the refrigerant conveying means 6 and the compressor 101 again repeats the above operation.

【0081】また、寒冷地等、低温時もしくは高負荷時
に暖房運転を行う場合は、冷媒搬送手段6は停止状態に
あり、まず第1の流路切替手段1は第4の流路切替手段
12から室内熱交換機8へ冷媒が流通するように切り替
わり、第2の流路切替手段2は第1絞り手段5から第3
の流路切替手段11へ冷媒が流通するように切り替わ
り、第3の流路切替手段11は第2の流路切替手段2か
ら室外熱交換器4を冷媒が流通するように切り替わり、
第4の流路切替手段12は四方弁3から第1の流路切替
手段1を冷媒が流通するように切り替わり、四方弁3は
破線で示す回路に切り替わる。次に圧縮機101が起動
され、冷媒はまず圧縮機101から吐出され、次に四方
弁3、第4の流路切替手段12、第1の流路切替手段1
を順次通過し、室内熱交換器8へ流入し、室内熱交換器
8において室内空気と熱交換を行い放熱することで室内
を暖房する。このようにして室内熱交換器8において熱
交換を行った後に冷媒は、室内熱交換器8から第1の絞
り手段5、第2の流路切替手段2、第3の流路切替手段
11を順次通過し、室外熱交換器4へ流入し、室外熱交
換器4において外気と熱交換を行い吸熱し蒸発する。こ
のようにして室外熱交換器4において熱交換を行った後
に冷媒は、四方弁3を通過し圧縮機101に再び流入し
て上記動作を繰り返す。
When the heating operation is performed at a low temperature or a high load, such as in a cold region, the refrigerant transporting means 6 is in a stopped state, and the first flow switching means 1 is first switched to the fourth flow switching means 12. Is switched so that the refrigerant flows from the first heat exchanger to the indoor heat exchanger 8.
The third flow path switching means 11 is switched from the second flow path switching means 2 to the outdoor heat exchanger 4 so that the refrigerant flows through the third flow path switching means 11,
The fourth flow path switching means 12 switches from the four-way valve 3 to the first flow path switching means 1 so that the refrigerant flows, and the four-way valve 3 switches to a circuit indicated by a broken line. Next, the compressor 101 is started, the refrigerant is first discharged from the compressor 101, and then the four-way valve 3, the fourth flow path switching means 12, the first flow path switching means 1
, And flows into the indoor heat exchanger 8, where the indoor heat exchanger 8 exchanges heat with indoor air to radiate heat and heat the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant passes from the indoor heat exchanger 8 to the first throttle unit 5, the second channel switching unit 2, and the third channel switching unit 11. After passing through sequentially, it flows into the outdoor heat exchanger 4 and exchanges heat with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes through the four-way valve 3 and flows into the compressor 101 again to repeat the above operation.

【0082】一方、冷房運転を行なう場合、第1の流路
切替手段1は室内熱交換器8から第4の流路切替手段1
2へ冷媒が流通するように切り替わり、第2の流路切替
手段2は第3の流路切替手段11から第1の絞り手段5
へ冷媒が流通するように切り替わり、第3の流路切替手
段11は室外熱交換器4から第2の流路切替手段2へ冷
媒が流通するように切り替わり、第4の流路切替手段1
2は第1の流路切替手段1から四方弁3へ冷媒が流通す
るように切り替わり、四方弁3は実線で示す回路に切り
替わる。次に圧縮機101は熱機関113により駆動す
る発電機112により供給される電力により駆動し、圧
縮機101から吐出された高温高圧の冷媒は四方弁3を
通過し、室外熱交換器4に流入し、外気と熱交換を行い
放熱することにより凝縮する。このように室外熱交換器
4で熱交換を行った後に冷媒は、第3の流路切替手段1
1、第2の流路切替手段2を順次通過し、第1の絞り手
段5を通過し、第1の絞り手段5を通過する際に低温低
圧の冷媒へと変化し、室内熱交換器8に流入する。室内
熱交換器8に流入した冷媒は室内熱交換器8において、
室内空気と熱交換を行い吸熱することで室内を冷房す
る。室内熱交換器8において熱交換を行った後に、冷媒
は第1の流路切替手段1、第4の流路切替手段12、四
方弁3を順次通過し、圧縮機101へと再び吸入され上
記動作を繰り返す。
On the other hand, when performing the cooling operation, the first flow path switching means 1 is connected to the fourth flow path switching means 1 by the indoor heat exchanger 8.
The second flow path switching means 2 is switched from the third flow path switching means 11 to the first throttle means 5.
The third flow path switching means 11 is switched so that the refrigerant flows from the outdoor heat exchanger 4 to the second flow path switching means 2, and the fourth flow path switching means 1
2 switches so that the refrigerant flows from the first flow path switching means 1 to the four-way valve 3, and the four-way valve 3 switches to a circuit indicated by a solid line. Next, the compressor 101 is driven by electric power supplied from a generator 112 driven by a heat engine 113, and the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3 and flows into the outdoor heat exchanger 4. Then, it condenses by exchanging heat with the outside air and releasing heat. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant flows into the third flow path switching unit 1.
First, the refrigerant passes through the second flow path switching means 2 sequentially, passes through the first throttle means 5, changes into a low-temperature and low-pressure refrigerant when passing through the first throttle means 5, and changes into the indoor heat exchanger 8. Flows into. The refrigerant flowing into the indoor heat exchanger 8 is
The room is cooled by exchanging heat with indoor air and absorbing heat. After performing the heat exchange in the indoor heat exchanger 8, the refrigerant sequentially passes through the first flow path switching means 1, the fourth flow path switching means 12, and the four-way valve 3, and is sucked into the compressor 101 again, and Repeat the operation.

【0083】このように本発明によれば、通常の暖房運
転もしくは低負荷時に暖房運転を行う場合、冷媒搬送手
段6の吸入側冷媒を冷却し常に液冷媒となるようにする
ので、冷媒搬送手段6の効率低下を抑制することができ
る。
As described above, according to the present invention, when performing the normal heating operation or the heating operation at a low load, the refrigerant on the suction side of the refrigerant conveying means 6 is cooled so as to always become the liquid refrigerant. 6 can be reduced.

【0084】なお、本実施例では冷媒間熱交換器13と
して二重管を用いたが、シェルアンドチューブ型熱交換
器を用いても同様の作用効果が得られる。
Although a double tube is used as the heat exchanger 13 between refrigerants in the present embodiment, a similar effect can be obtained by using a shell-and-tube heat exchanger.

【0085】(実施例5)次に本発明の第5実施例につ
いて、図5を参照しながら説明する。なお、第1、第
2、第3および第4実施例と同一部分は同一番号とし、
詳細な説明は省略する。
(Embodiment 5) Next, a fifth embodiment of the present invention will be described with reference to FIG. The same parts as those in the first, second, third and fourth embodiments are designated by the same reference numerals,
Detailed description is omitted.

【0086】図5は、熱機関としてターボエンジン15
を備え、このターボエンジンの吸気側空気と、第3の流
路切替手段11と第4の流路切替手段12との間を流れ
る冷媒とを熱交換させる吸気冷却熱交換器16を設けた
構成とした空気調和装置であり、吸気冷却熱交換器16
として、第2の流路切替手段2から吸気冷却熱交換器1
6へ流入した冷媒と第2の絞り手段14から吸気冷却熱
交換器16へ流入した冷媒との熱交換を行なう二重管と
ターボエンジン15の吸気側空気と、第2の流路切替手
段2から吸気冷却熱交換器16へ流入した冷媒と熱交換
を行った第2の絞り手段14から吸気冷却熱交換器16
へ流入した冷媒と熱交換を行う二重管を直列に接続させ
た構成の熱交換器を用いる。
FIG. 5 shows a turbo engine 15 as a heat engine.
And a configuration in which an intake cooling heat exchanger 16 for exchanging heat between the intake side air of the turbo engine and the refrigerant flowing between the third flow path switching means 11 and the fourth flow path switching means 12 is provided. The air-conditioning apparatus has an intake cooling heat exchanger 16
From the second flow path switching means 2 to the intake cooling heat exchanger 1
6, a double pipe for performing heat exchange between the refrigerant flowing into the intake cooling heat exchanger 16 from the second throttle means 14 and the intake air of the turbo engine 15, and the second flow path switching means 2. From the second throttle means 14 which has exchanged heat with the refrigerant flowing into the intake cooling heat exchanger 16 from the intake cooling heat exchanger 16
A heat exchanger having a structure in which double tubes that exchange heat with the refrigerant flowing into the heat exchanger is connected in series.

【0087】上記のように構成された空気調和装置にお
いて、通常の暖房運転もしくは低負荷時に暖房運転を行
う場合、圧縮機101は停止状態とし、まず第1の流路
切替手段1は室外温水熱交換器10から室内熱交換器8
へ冷媒が流通するように切り替わり、第2の流路切替手
段2は第1の絞り手段5から吸気冷却熱交換器16へ冷
媒が流通するように切り替わり、第3の流路切替手段1
1は室外熱交換器4から第2の絞り手段14へ冷媒が流
通するように切り替わり、第4の流路切替手段12は冷
媒間熱交換器13から四方弁3へ冷媒が流通するように
切り替わり、四方弁は実線で示される回路に切り替わ
る。このような状態で、冷媒は冷媒搬送手段6から吐出
され、次に室外温水熱交換器10において、ターボエン
ジン15から流出した温水と熱交換を行い温水の熱を吸
熱して高温冷媒となる。この高温冷媒は第1の流路切替
手段を通過し、室内熱交換器8に流入し、室内熱交換器
8において室内空気と熱交換を行い放熱し室内を暖房す
る。室内熱交換器8において熱交換を行った後の冷媒
は、室内熱交換器8から第1の絞り手段5、第2の流路
切替手段2を順次通過し、吸気冷却熱交換器16へと流
入する。また、圧縮機101はターボエンジン15によ
り駆動する発電機112により供給される電力あるいは
商用電力により駆動し、圧縮機101から吐出された高
温高圧冷媒は、四方弁3を通過し次に室外熱交換器4へ
と流入し、室外熱交換器4において外気と熱交換を行い
凝縮する。このように室外熱交換器4において熱交換を
行った後に冷媒は、室外熱交換器4から第3の流路切替
手段11を通過し、第2の絞り手段14を通過し、第2
の絞り手段14を通過する際に、低温低圧の冷媒となり
吸気冷却熱交換器16へ流入する。また、ターボエンジ
ン15の吸気側空気は吸気冷却熱交換器16を通過しタ
ーボエンジン15へと流入する。そして、吸気冷却熱交
換器16において、第2の流路切替手段2から吸気冷却
熱交換器16へ流入した冷媒は第2の絞り手段14から
吸気冷却熱交換器16へ流入した冷媒と熱交換を行い放
熱し冷却され冷媒搬送手段6に流入し、ターボエンジン
15の吸気側空気は、第2の流路切替手段2から吸気冷
却熱交換器16へ流入した冷媒と熱交換を行った後の第
2の絞り手段14から吸気冷却熱交換器16へ流入した
冷媒と熱交換を行い放熱し冷却され、比重量がより大き
な空気となりターボエンジン15に吸入されることにな
る。また、第2の絞り手段14から吸気冷却熱交換器1
6へ流入した冷媒は、第4の流路切替手段12、四方弁
3を順次通過し、圧縮機101へ流入する。
In the air conditioner configured as described above, when performing the normal heating operation or the heating operation at a low load, the compressor 101 is stopped, and the first flow path switching means 1 first sets the outdoor hot water heat Heat exchanger 8 to indoor heat exchanger 8
The second flow path switching means 2 switches so that the refrigerant flows from the first throttle means 5 to the intake cooling heat exchanger 16, and the third flow path switching means 1
1 is switched so that the refrigerant flows from the outdoor heat exchanger 4 to the second throttle means 14, and the fourth flow path switching means 12 is switched so that the refrigerant flows from the inter-refrigerant heat exchanger 13 to the four-way valve 3. , The four-way valve switches to the circuit shown by the solid line. In such a state, the refrigerant is discharged from the refrigerant conveying means 6 and then exchanges heat with the hot water flowing out of the turbo engine 15 in the outdoor hot water heat exchanger 10 to absorb the heat of the hot water to become a high-temperature refrigerant. This high-temperature refrigerant passes through the first flow path switching means, flows into the indoor heat exchanger 8, exchanges heat with the indoor air in the indoor heat exchanger 8, and releases heat to heat the room. The refrigerant after performing the heat exchange in the indoor heat exchanger 8 sequentially passes from the indoor heat exchanger 8 through the first throttle means 5 and the second flow path switching means 2 to the intake cooling heat exchanger 16. Inflow. The compressor 101 is driven by electric power supplied from a generator 112 driven by the turbo engine 15 or commercial electric power, and the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3 and then exchanges outdoor heat. It flows into the vessel 4 and exchanges heat with the outside air in the outdoor heat exchanger 4 to be condensed. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes from the outdoor heat exchanger 4 through the third flow path switching unit 11, passes through the second throttle unit 14, and passes through the second throttle unit 14.
When passing through the throttle means 14, the refrigerant becomes a low-temperature and low-pressure refrigerant and flows into the intake cooling heat exchanger 16. In addition, the intake side air of the turbo engine 15 passes through the intake cooling heat exchanger 16 and flows into the turbo engine 15. Then, in the intake cooling heat exchanger 16, the refrigerant flowing from the second flow path switching means 2 into the intake cooling heat exchanger 16 exchanges heat with the refrigerant flowing from the second throttle means 14 into the intake cooling heat exchanger 16. After the heat is released and cooled, the refrigerant flows into the refrigerant conveying means 6, and the air on the intake side of the turbo engine 15 exchanges heat with the refrigerant flowing from the second flow path switching means 2 into the intake cooling heat exchanger 16. The refrigerant exchanges heat with the refrigerant flowing into the intake cooling heat exchanger 16 from the second throttle means 14, radiates heat and is cooled, and becomes air having a larger specific weight and is sucked into the turbo engine 15. Further, the second cooling means 14 supplies the heat to the intake cooling heat exchanger 1.
The refrigerant that has flowed into 6 passes through the fourth flow path switching means 12 and the four-way valve 3 sequentially and flows into the compressor 101.

【0088】また、寒冷地等、低温時もしくは高負荷時
に暖房運転を行う場合は、冷媒搬送手段6は停止状態に
あり、まず第1の流路切替手段1は第4の流路切替手段
12から室内熱交換機8へ冷媒が流通するように切り替
わり、第2の流路切替手段2は第1絞り手段5から第3
の流路切替手段11へ冷媒が流通するように切り替わ
り、第3の流路切替手段11は第2の流路切替手段2か
ら室外熱交換器4を冷媒が流通するように切り替わり、
第4の流路切替手段12は四方弁3から第1の流路切替
手段1を冷媒が流通するように切り替わり、四方弁3は
破線で示す回路に切り替わる。次に圧縮機101が起動
され、冷媒はまず圧縮機101から吐出され、次に四方
弁3、第4の流路切替手段12、第1の流路切替手段1
を順次通過し、室内熱交換器8へ流入し、室内熱交換器
8において室内空気と熱交換を行い放熱することで室内
を暖房する。このようにして室内熱交換器8において熱
交換を行った後に冷媒は、室内熱交換器8から第1の絞
り手段5、第2の流路切替手段2、第3の流路切替手段
11を順次通過し、室外熱交換器4へ流入し、室外熱交
換器4において外気と熱交換を行い吸熱し蒸発する。こ
のようにして室外熱交換器4において熱交換を行った後
に冷媒は、四方弁3を通過し圧縮機101に再び流入し
て上記動作を繰り返す。
When the heating operation is performed at a low temperature or a high load, such as in a cold region, the refrigerant transporting means 6 is in a stopped state, and the first flow switching means 1 is first switched to the fourth flow switching means 12. Is switched so that the refrigerant flows from the first heat exchanger to the indoor heat exchanger 8.
The third flow path switching means 11 is switched from the second flow path switching means 2 to the outdoor heat exchanger 4 so that the refrigerant flows through the third flow path switching means 11,
The fourth flow path switching means 12 switches from the four-way valve 3 to the first flow path switching means 1 so that the refrigerant flows, and the four-way valve 3 switches to a circuit indicated by a broken line. Next, the compressor 101 is started, the refrigerant is first discharged from the compressor 101, and then the four-way valve 3, the fourth flow path switching means 12, the first flow path switching means 1
, And flows into the indoor heat exchanger 8, where the indoor heat exchanger 8 exchanges heat with indoor air to radiate heat and heat the room. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant passes from the indoor heat exchanger 8 to the first throttle unit 5, the second channel switching unit 2, and the third channel switching unit 11. After passing through sequentially, it flows into the outdoor heat exchanger 4 and exchanges heat with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes through the four-way valve 3 and flows into the compressor 101 again to repeat the above operation.

【0089】また冷房運転を行なう場合、第1の流路切
替手段1は室内熱交換器8から第4の流路切替手段12
へ冷媒が流通するように切り替わり、第2の流路切替手
段2は第3の流路切替手段11から第1の絞り手段5へ
冷媒が流通するように切り替わり、第3の流路切替手段
11は室外熱交換器4から第2の流路切替手段へ冷媒が
流通するように切り替わり、第4の流路切替手段12は
第1の流路切替手段1から四方弁3へ冷媒が流通するよ
うに切り替わり、四方弁3は実線で示す回路に切り替わ
る。次に圧縮機101はターボエンジン15により駆動
する発電機112により供給される電力により駆動し、
圧縮機101から吐出された高温高圧の冷媒は四方弁3
を通過し、室外熱交換器4に流入し、外気と熱交換を行
い放熱することにより凝縮する。このように室外熱交換
器4において熱交換を行った後に冷媒は第3の流路切替
手段11、第2の流路切替手段2を順次通過し、第1の
絞り手段5を通過し、この第1の絞り手段5を通過する
際に低温低圧の冷媒へと変化し、室内熱交換器8に流入
する。室内熱交換器8に流入した冷媒は室内熱交換器8
において、室内空気と熱交換を行い吸熱し室内を冷房す
る。このように室内熱交換器8において熱交換を行った
後に冷媒は第1の流路切替手段1、第4の流路切替手段
12、四方弁3を順次通過し、圧縮機101へ再び吸入
され、上記動作を繰り返す。
When the cooling operation is performed, the first flow switching means 1 is connected to the fourth flow switching means 12 from the indoor heat exchanger 8.
The second flow path switching means 2 is switched so that the refrigerant flows from the third flow path switching means 11 to the first throttle means 5, and the third flow path switching means 11 Is switched so that the refrigerant flows from the outdoor heat exchanger 4 to the second flow path switching means, and the fourth flow path switching means 12 causes the refrigerant to flow from the first flow path switching means 1 to the four-way valve 3. , And the four-way valve 3 switches to the circuit indicated by the solid line. Next, the compressor 101 is driven by electric power supplied by a generator 112 driven by the turbo engine 15,
The high-temperature and high-pressure refrigerant discharged from the compressor 101 is supplied to the four-way valve 3
, Flows into the outdoor heat exchanger 4, exchanges heat with the outside air, and condenses by radiating heat. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant sequentially passes through the third flow path switching means 11 and the second flow path switching means 2 and then passes through the first throttle means 5. When passing through the first throttle means 5, the refrigerant changes into a low-temperature low-pressure refrigerant and flows into the indoor heat exchanger 8. The refrigerant flowing into the indoor heat exchanger 8 is
In, heat exchange is performed with room air to absorb heat and cool the room. After the heat exchange in the indoor heat exchanger 8 as described above, the refrigerant sequentially passes through the first flow path switching means 1, the fourth flow path switching means 12, and the four-way valve 3, and is sucked into the compressor 101 again. The above operation is repeated.

【0090】このように本発明によれば、ターボエンジ
ン15の吸気側空気を冷媒と熱交換させ冷媒の蒸発熱を
利用して冷却することにより、ターボエンジン15の吸
気側空気の比重量を増加させることにより、ターボエン
ジン15の効率を向上することができる。
As described above, according to the present invention, the specific weight of the air on the intake side of the turbo engine 15 is increased by exchanging heat with the refrigerant on the air on the intake side of the turbo engine 15 and utilizing the heat of evaporation of the refrigerant. By doing so, the efficiency of the turbo engine 15 can be improved.

【0091】なお、本実施例では吸気冷却熱交換器16
として、第2の流路切替手段2から吸気冷却熱交換器1
6へ流入した冷媒と第2の絞り手段14から吸気冷却熱
交換器16へ流入した冷媒との熱交換を行なう二重管と
ターボエンジン15の吸気側空気と、第2の流路切替手
段2から吸気冷却熱交換器16へ流入した冷媒と熱交換
を行った第2の絞り手段14から吸気冷却熱交換器16
へ流入した冷媒と熱交換を行う二重管を直列に接続させ
た構成の熱交換器を用いたが、二重管の配置を入れ替え
た構成、二重管を並列に接続した構成、または、二重管
をシェルアンドチューブ型熱交換器とした構成としても
同様の作用効果が得られる。
In this embodiment, the intake cooling heat exchanger 16
From the second flow path switching means 2 to the intake cooling heat exchanger 1
6, a double pipe for performing heat exchange between the refrigerant flowing into the intake cooling heat exchanger 16 from the second throttle means 14 and the intake air of the turbo engine 15, and the second flow path switching means 2. From the second throttle means 14 which has exchanged heat with the refrigerant flowing into the intake cooling heat exchanger 16 from the intake cooling heat exchanger 16
Although the heat exchanger having a configuration in which the double tubes that perform heat exchange with the refrigerant flowing into the heat exchanger were used in series was used, a configuration in which the arrangement of the double tubes was replaced, a configuration in which the double tubes were connected in parallel, or The same operation and effect can be obtained even when the double tube is configured as a shell-and-tube heat exchanger.

【0092】(実施例6)次に本発明の第6実施例につ
いて、図6を参照しながら説明する。なお、第1、第
2、第3、第4および第5実施例と同一部分は同一番号
とし、詳細な説明は省略する。
Embodiment 6 Next, a sixth embodiment of the present invention will be described with reference to FIG. The same parts as those of the first, second, third, fourth and fifth embodiments are designated by the same reference numerals, and the detailed description is omitted.

【0093】図6は、第1の絞り手段5a、5bと室内
熱交換器8a、8bを備え、第1の絞り手段5a、5b
と第2の流路切替手段2との間に第5の流路切替手段1
7a、17bを備え、室内熱交換器8a、8bと第1の
流路切替手段1との間に第6の流路切替手段18a、1
8bを備え、室外熱交換器4と第2の流路切替手段2と
の間の配管を第5の流路切替手段17a、17bに分岐
接続し、かつ第1の流路切替手段1と四方弁3との間の
配管を第6の流路切替手段18a、18bに分岐接続さ
せる構成とした空気調和装置であり、第5の切替手段1
7a、17b及び、第6の流路切替手段として三方弁を
用いた構成とする。
FIG. 6 includes first throttling means 5a, 5b and indoor heat exchangers 8a, 8b.
Fifth flow path switching means 1 between the first flow path switching means 2 and the second flow path switching means 2
7a, 17b, and between the indoor heat exchangers 8a, 8b and the first flow path switching means 1, sixth flow path switching means 18a, 1b.
8b, the pipe between the outdoor heat exchanger 4 and the second flow path switching means 2 is branched and connected to the fifth flow path switching means 17a and 17b, and the first flow path switching means 1 and the four-way This is an air conditioner configured to branch and connect a pipe between the valve 3 and the sixth flow path switching means 18a and 18b.
7a, 17b and a configuration using a three-way valve as the sixth flow path switching means.

【0094】上記のように構成された空気調和装置にお
いて、室内ユニット9aが冷房運転を行い室内ユニット
9bが暖房運転を行う場合、まず第1の流路切替手段1
は室外温水熱交換器10から第6の流路切替手段18
a、18bへ冷媒が流通するように切り替わり、第2の
流路切替手段2は第5の流路切替手段17a、17bか
ら冷媒搬送手段6へ冷媒が流通するように切り替わり、
冷房運転を行う室内ユニット9aと第1の絞り手段5a
を介して接続されている第5の流路切替手段17aは、
室外熱交換器4と第1の絞り手段5aを冷媒が流通する
ように切り替わり、暖房運転を行う室内ユニット9bと
第1の絞り手段5bを介して接続されている第5の流路
切替手段17bは、第1の絞り手段5bと第2の流路切
替手段2を冷媒が流通するように切り替わり、冷房運転
を行う室内ユニット9aと接続されている第6の流路切
替手段18aは室内ユニット9aと四方弁3を冷媒が流
通するように切り替わり、暖房運転を行う室内ユニット
9bと接続されている第6の流路切替手段18bは第1
の流路切替手段1と室内ユニット9bを冷媒が流通する
ように切り替わり、四方弁3は実線で示す回路に切り替
わる。このような状態において、冷媒搬送手段6から吐
出された冷媒は室外温水熱交換器10において、熱機関
113から流出した温水と熱交換を行い温水の熱を吸熱
し高温冷媒となる。この高温冷媒は、第1の流路切替手
段1を通過し暖房運転を行う室内ユニット8b側に流路
の切り替えられた第6の流路切替手段18bを通過し室
内熱交換器8bに流入し、室内熱交換器8bにおいて室
内空気と熱交換を行ない放熱することで室内を暖房す
る。室内熱交換器8bにおいて熱交換を行った後に、冷
媒は室内熱交換器8bから第1の絞り手段5、第5の流
路切替手段17b、第2の流路切替手段2を順次通過
し、冷媒搬送手段6に再び流入し、上記動作を繰り返
す。また、圧縮機101は熱機関113により駆動する
発電機112により供給される電力あるいは商用電力に
より駆動し、圧縮機101から吐出された高温高圧冷媒
は、四方弁3を通過し室外熱交換器4へと流入し、室外
熱交換器4において外気と熱交換を行い放熱し凝縮す
る。このように室外熱交換器4において熱交換を行った
後に冷媒は、室外熱交換器4から冷房運転を行う室内ユ
ニット8a側に切り替えられた第5の流路切替手段17
aを通過し、第1の絞り手段5aを通過し、この第1の
絞り手段5aを通過する際に低温低圧の冷媒となり、次
に室内熱交換器8aに流入し、室内熱交換器8aにおい
て室内空気と熱交換を行ない吸熱することで室内を冷房
する。室内熱交換器8aにおいて熱交換を行った後に冷
媒は、第6の流路切替手段18a、四方弁3を順次通過
し、圧縮機101へ再び流入し上記動作を繰り返す。
In the air conditioner configured as described above, when the indoor unit 9a performs the cooling operation and the indoor unit 9b performs the heating operation, first, the first flow path switching means 1
Is the outdoor hot water heat exchanger 10 to the sixth flow path switching means 18
a, 18b, so that the refrigerant flows to the refrigerant flow means 6 from the fifth flow path switching means 17a, 17b.
Indoor unit 9a for performing cooling operation and first throttle means 5a
The fifth flow path switching means 17a connected via
The outdoor heat exchanger 4 and the first throttle unit 5a are switched so that the refrigerant flows therethrough, and the indoor unit 9b for performing the heating operation is connected to the fifth channel switching unit 17b via the first throttle unit 5b. Is switched so that the refrigerant flows through the first throttle means 5b and the second flow path switching means 2, and the sixth flow path switching means 18a connected to the indoor unit 9a performing the cooling operation is the indoor unit 9a. And the four-way valve 3 is switched so that the refrigerant flows, and the sixth flow path switching unit 18b connected to the indoor unit 9b that performs the heating operation is the first
Is switched so that the refrigerant flows through the flow path switching means 1 and the indoor unit 9b, and the four-way valve 3 switches to the circuit indicated by the solid line. In such a state, the refrigerant discharged from the refrigerant conveying means 6 exchanges heat with the hot water flowing out of the heat engine 113 in the outdoor hot water heat exchanger 10 to absorb the heat of the hot water to become a high-temperature refrigerant. The high-temperature refrigerant passes through the first flow path switching means 1, passes through the sixth flow path switching means 18b whose flow path is switched to the indoor unit 8b that performs the heating operation, and flows into the indoor heat exchanger 8b. In the indoor heat exchanger 8b, heat is exchanged with indoor air to radiate heat to heat the room. After performing heat exchange in the indoor heat exchanger 8b, the refrigerant sequentially passes from the indoor heat exchanger 8b through the first throttle means 5, the fifth flow path switching means 17b, and the second flow path switching means 2, The refrigerant flows into the refrigerant conveying means 6 again, and the above operation is repeated. The compressor 101 is driven by electric power or commercial electric power supplied from a generator 112 driven by a heat engine 113. The high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3 and passes through the outdoor heat exchanger 4 And exchanges heat with the outside air in the outdoor heat exchanger 4 to dissipate heat and condense. After performing the heat exchange in the outdoor heat exchanger 4 as described above, the refrigerant flows from the outdoor heat exchanger 4 to the fifth flow path switching unit 17 switched to the indoor unit 8a that performs the cooling operation.
a, passes through the first throttle means 5a, becomes a low-temperature and low-pressure refrigerant when passing through the first throttle means 5a, and then flows into the indoor heat exchanger 8a. The room is cooled by exchanging heat with indoor air and absorbing heat. After performing heat exchange in the indoor heat exchanger 8a, the refrigerant sequentially passes through the sixth flow path switching means 18a and the four-way valve 3, flows into the compressor 101 again, and repeats the above operation.

【0095】また、室内ユニット9aが暖房運転を行
い、室内ユニット9bが冷房運転を行なう場合は、冷房
運転を行う室内ユニット9bと第1の絞り手段5bを介
して接続されている第5の流路切替手段17bは、室外
熱交換器4と第1の絞り手段5bを冷媒が流通するよう
に切り替わり、暖房運転を行う室内ユニット9aと第1
の絞り手段5aを介して接続されている第5の流路切替
手段17aは、第1の絞り手段5aと第2の流路切替手
段2を冷媒が流通するように切り替わり、冷房運転を行
う室内ユニット9bと接続されている第6の流路切替手
段18bは室内ユニット9bと四方弁3を冷媒が流通す
るように切り替わり、暖房運転を行う室内ユニット9a
と接続されている第6の流路切替手段18aは第1の流
路切替手段1と室内ユニット9aを冷媒が流通するよう
に切り替わり、上記と同様に冷媒搬送手段6及び圧縮機
101の駆動により冷媒は循環され室内ユニット9aは
暖房運転を行い室内ユニット9bは冷房運転を行う。
When the indoor unit 9a performs the heating operation and the indoor unit 9b performs the cooling operation, the fifth flow unit connected to the indoor unit 9b performing the cooling operation via the first throttle unit 5b is used. The path switching unit 17b switches between the outdoor heat exchanger 4 and the first throttle unit 5b so that the refrigerant flows, and the indoor unit 9a that performs the heating operation and the first unit
The fifth flow path switching means 17a connected via the first expansion means 5a switches the first expansion means 5a and the second flow path switching means 2 so that the refrigerant flows, and performs the cooling operation. The sixth channel switching means 18b connected to the unit 9b switches between the indoor unit 9b and the four-way valve 3 so that the refrigerant flows, and performs the heating operation on the indoor unit 9a.
The sixth flow path switching means 18a connected to the first flow path switching means 1 and the indoor unit 9a are switched so that the refrigerant flows through the first flow path switching means 1 and the indoor unit 9a. The refrigerant is circulated and the indoor unit 9a performs a heating operation, and the indoor unit 9b performs a cooling operation.

【0096】また、室内ユニット9a、9bがともに冷
房運転を行なう場合は、冷媒搬送手段6は停止状態にあ
り、第1の流路切替手段1は第6の流路切替手段18
a、18bから四方弁へ冷媒が流通するように切り替わ
り、第2の流路切替手段2は室外熱交換器から第5の流
路切替手段17a、17bへ冷媒が流通するように切り
替わり、第5の流路切替手段17a、17bは、第2の
流路切替手段2から第1の絞り手段5a、5bへ冷媒が
流通するように切り替わり、第6の流路切替手段18
a、18bは室内熱交換器8a、8bから第1の流路切
替手段へを冷媒が流通するように切り替わり、圧縮機1
01の駆動により冷媒は循環され冷房運転を行う。
When both the indoor units 9a and 9b perform the cooling operation, the refrigerant conveying means 6 is in a stopped state, and the first flow path switching means 1 is switched to the sixth flow path switching means 18
a, 18b, so that the refrigerant flows from the outdoor heat exchanger to the four-way valve, the second flow path switching means 2 switches so that the refrigerant flows from the outdoor heat exchanger to the fifth flow path switching means 17a, 17b. The flow switching means 17a, 17b are switched so that the refrigerant flows from the second flow switching means 2 to the first throttle means 5a, 5b.
a and 18b are switched so that the refrigerant flows from the indoor heat exchangers 8a and 8b to the first flow path switching means.
The refrigerant is circulated by the driving of 01 to perform the cooling operation.

【0097】また、室内ユニット9a、9bが共に通常
の暖房運転及び低負荷時に暖房運転を行う場合は、圧縮
機101は停止状態にあり、まず第1の流路切替手段1
は室外温水熱交換器10から第6の流路切替手段18
a、18bへ冷媒が流通するように切り替わり、第2の
流路切替手段2は第5の流路切替手段17a、17bか
ら冷媒搬送手段6へ冷媒が流通するように切り替わり、
第5の流路切替手段17a、17bは、第1の絞り手段
5a、5からと第2の流路切替手段2へ冷媒が流通する
ように切り替わり、第6の流路切替手段18a、18b
は第1の流路切替手段1から室内熱交換器8a、8bへ
冷媒が流通するように切り替わり、冷媒搬送手段6によ
る冷媒の循環と室外温水熱交換器10での吸熱と室内熱
交換器8a、8bにおける放熱により暖房運転を行う。
When both the indoor units 9a and 9b perform the normal heating operation and the heating operation at a low load, the compressor 101 is in the stopped state, and the first flow path switching means 1
Is the outdoor hot water heat exchanger 10 to the sixth flow path switching means 18
a, 18b, so that the refrigerant flows to the refrigerant flow means 6 from the fifth flow path switching means 17a, 17b.
The fifth flow path switching means 17a, 17b are switched so that the refrigerant flows from the first throttle means 5a, 5 to the second flow path switching means 2, and the sixth flow path switching means 18a, 18b.
Is switched so that the refrigerant flows from the first flow path switching means 1 to the indoor heat exchangers 8a and 8b, the refrigerant is circulated by the refrigerant transport means 6, heat absorption in the outdoor hot water heat exchanger 10, and the indoor heat exchanger 8a , 8b to perform the heating operation.

【0098】また、室内ユニット9a、9bが共に寒冷
地等、低温時もしくは高負荷時に暖房運転を行う場合
は、冷媒搬送手段6は停止状態にあり、まず第1の流路
切替手段は四方弁3から第6の流路切替手段18a、1
8bへ冷媒が流通するように切り替わり、第2の流路切
替手段2は第5の流路切替手段17a、17bから室外
熱交換器4へ冷媒が流通するように切り替わり、第5の
流路切替手段17a、17bは、第1の絞り手段5a、
5からと第2の流路切替手段2へ冷媒が流通するように
切り替わり、第6の流路切替手段18a、18bは第1
の流路切替手段1から室内熱交換器8a、8bへ冷媒が
流通するように切り替わり、圧縮機101の駆動によ
り、冷媒は循環され、室内熱交換器8a、8bにおける
放熱により暖房運転を行う。
When both the indoor units 9a and 9b perform the heating operation at the time of low temperature or high load in a cold district or the like, the refrigerant conveying means 6 is in a stopped state, and first the first flow path switching means is a four-way valve. Third to sixth channel switching means 18a, 1
8b, the second flow path switching means 2 switches so that the refrigerant flows from the fifth flow path switching means 17a, 17b to the outdoor heat exchanger 4, and the fifth flow path switching is performed. The means 17a, 17b are provided with the first throttle means 5a,
5 so that the refrigerant flows to the second flow path switching means 2 and the sixth flow path switching means 18a and 18b
The flow is switched from the flow path switching means 1 to the indoor heat exchangers 8a and 8b so that the refrigerant is circulated by driving the compressor 101, and the heating operation is performed by the heat radiation in the indoor heat exchangers 8a and 8b.

【0099】このように本発明によれば、熱機関113
の排熱利用による暖房回路と通常のヒートポンプとして
の冷房回路とを第1の流路切替1、第2の流路切替手段
2、第5の流路切替手段17a、17b、第6の流路切
替手段18a、18bの切り替えにより独立させるの
で、2つの室内ユニット間において冷房と暖房を同時に
運転することができる。
As described above, according to the present invention, the heat engine 113
The first flow path switching 1, the second flow path switching means 2, the fifth flow path switching means 17a, 17b, the sixth flow path Since the switching units 18a and 18b are switched independently, cooling and heating can be simultaneously operated between the two indoor units.

【0100】なお、本実施例では第5の切替手段17
a、17b及び、第6の流路切替手段18a、18bと
して三方弁を用いたが、電磁弁を用いた構成としても同
様の作用効果が得られる。 また、第5の流路切替手段
7a、17b及び第6の流路切替手段18a、18bの
切替は手動または自動のどちらでも良い。
In this embodiment, the fifth switching means 17
Although a three-way valve is used as a and 17b and the sixth flow path switching means 18a and 18b, the same operation and effect can be obtained by using an electromagnetic valve. The switching of the fifth flow path switching means 7a, 17b and the sixth flow path switching means 18a, 18b may be either manual or automatic.

【0101】また、室内ユニット8a、8b、第5の流
路切替手段17a、17b及び、第6の流路切替手段1
8a18bをそれぞれ2つずつ備えた構成としたが、2
つ以上の構成としても同様の作用効果が得られる。
The indoor units 8a and 8b, the fifth flow path switching means 17a and 17b, and the sixth flow path switching means 1
8a18b are provided two each.
The same operation and effect can be obtained with more than one configuration.

【0102】(実施例7)次に本発明の第7実施例につ
いて、図7〜図10を参照しながら説明する。なお、第
1、第2、第3、第4、第5および第6実施例と同一部
分は同一番号とし、詳細な説明は省略する。
(Embodiment 7) Next, a seventh embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first, second, third, fourth, fifth and sixth embodiments are designated by the same reference numerals, and detailed description is omitted.

【0103】図7は、本実施例の空気調和装置の制御ブ
ロック図であり、室内の設定温度を記憶し出力する第1
の記憶手段19と、室内ユニット9に設けられ室内温度
を検出する第1の温度検出手段20と、第1の記憶手段
19による検出値と第1の温度検出手段20による検出
値との差を演算する第1の演算手段21と、この第1の
演算手段21による演算結果を判定する第1の判定手段
22と、この第1の判定手段22による判定結果より第
1の絞り手段5の絞り開度を判定する第2の判定手段2
3と、この第2の判定手段23による判定結果より第1
の絞り手段5の絞り開度を演算する第2の演算手段24
と、この第2の演算手段24による演算結果より第1の
絞り手段5の絞り開度を制御する第1の制御手段25
と、第2の判定手段23による判定結果より冷媒搬送手
段6の回転数を演算する第3の演算手段26と、この第
3の演算手段26による演算結果より冷媒搬送手段6の
回転数を制御する第2の制御手段27とを備えた構成と
なっており、第1の記憶手段19は半導体によるメモリ
ー回路として室内ユニット9内に内蔵され、第1の温度
検出手段としては温度センサーを室内ユニット9内の室
内熱交換器8の室内空気吸込側に取り付けられ、第1の
演算手段21、第1の判定手段22、第2の判定手段2
3、第2の演算手段24、第1の制御手段25、第3の
演算手段26、第2の制御手段27にはマイコンを用い
た構成としている。
FIG. 7 is a control block diagram of the air conditioner of the present embodiment.
Storage means 19, a first temperature detection means 20 provided in the indoor unit 9 for detecting the indoor temperature, and a difference between a detection value by the first storage means 19 and a detection value by the first temperature detection means 20. First calculating means 21 for calculating, first determining means 22 for determining the result of calculation by the first calculating means 21, and the aperture of the first aperture means 5 based on the determination result by the first determining means 22. Second determination means 2 for determining the opening degree
3 and the first determination result obtained by the second determination means 23
Calculating means 24 for calculating the aperture of the throttle means 5
And first control means 25 for controlling the degree of opening of the first throttle means 5 based on the result of calculation by the second calculation means 24.
A third calculating means 26 for calculating the number of revolutions of the refrigerant conveying means 6 based on the result of the determination by the second determining means 23; The first storage means 19 is built in the indoor unit 9 as a memory circuit made of a semiconductor, and a temperature sensor is used as the first temperature detecting means in the indoor unit 9. 9, a first calculating means 21, a first determining means 22, and a second determining means 2.
3, the second arithmetic means 24, the first control means 25, the third arithmetic means 26, and the second control means 27 use a microcomputer.

【0104】上記構成において図8を参照しながら運転
動作を説明する。図8は本発明の第7実施例の空気調和
装置の制御フローチャートであり、その流れに沿って詳
細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 8 is a control flowchart of the air conditioner of the seventh embodiment of the present invention, and details will be described along the flow.

【0105】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、第1の判定手段22により演算結果Δ
Tの正負を判定し、ΔTが正の場合は暖房能力が不足し
ているということなので、第1の絞り手段5の絞り開度
Re1が最大であるかを第2の判定手段23により判定
し、第1の絞り手段5の絞り開度Re1が最大である場
合はさらに冷媒循環量を増やすように冷媒搬送手段6の
回転数増減量ΔNrを第3の演算手段26により図10
のように演算し、この演算結果から冷媒搬送手段6の回
転数Nrを第2の制御手段27により増大させる。ま
た、第1の絞り手段5の絞り開度Re1が最大でない場
合は、冷媒流量を増やすように第1の絞り手段5の絞り
開度増減量ΔRe1を第2の演算手段24により図9の
ように演算し、この演算結果から第1の絞り手段5の絞
り開度Re1を第1の制御手段25により増大させる。
一方、第1の演算手段21による演算結果であるΔTの
判定が負の場合は、暖房能力が過多であるということな
ので、第1の絞り手段5の絞り開度Re1が最少である
かを第2の判定手段23により判定し、第1の絞り手段
5の絞り開度Re1が最少である場合は、さらに冷媒流
量を減らすように冷媒搬送手段6の回転数増減量ΔNr
を第3の演算手段26により図10のように演算し、こ
の演算結果から冷媒搬送手段6の回転数Nrを第2の制
御手段27により減少させる。また、第1の絞り手段5
の絞り開度Re1が最少でない場合は、同じく冷媒流量
を減らすように第1の絞り手段5の絞り開度増減量ΔR
e1を第2の演算手段24により図9のように演算し、
この演算結果から第1の絞り手段5の絞り開度Re1を
第1の制御手段25により減少させる。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2.
1 and the first determination means 22 calculates the calculation result Δ
It is determined whether T is positive or negative. If ΔT is positive, it means that the heating capacity is insufficient. Therefore, it is determined by the second determination unit 23 whether the throttle opening Re1 of the first throttle unit 5 is the maximum. In the case where the throttle opening Re1 of the first throttle means 5 is the maximum, the rotational speed increase / decrease amount ΔNr of the refrigerant transport means 6 is increased by the third arithmetic means 26 as shown in FIG.
The second control means 27 increases the rotational speed Nr of the refrigerant transport means 6 from the result of the calculation. When the throttle opening Re1 of the first throttle unit 5 is not the maximum, the throttle opening change ΔRe1 of the first throttle unit 5 is increased by the second calculating unit 24 as shown in FIG. The first control means 25 increases the throttle opening Re1 of the first throttle means 5 from the calculation result.
On the other hand, if the determination of ΔT, which is the calculation result by the first calculation means 21, is negative, it means that the heating capacity is excessive, and it is determined whether the throttle opening Re1 of the first throttle means 5 is the minimum. When the throttle opening Re1 of the first throttle unit 5 is the minimum, the rotation speed increase / decrease amount ΔNr of the refrigerant transport unit 6 is further reduced so as to further reduce the refrigerant flow rate.
Is calculated by the third calculating means 26 as shown in FIG. 10, and the rotational speed Nr of the refrigerant conveying means 6 is reduced by the second control means 27 from the result of the calculation. Also, the first aperture means 5
When the throttle opening Re1 of the first throttle means 5 is not the minimum, the throttle opening increase / decrease amount ΔR
e1 is calculated by the second calculating means 24 as shown in FIG.
From this calculation result, the first control means 25 reduces the throttle opening Re1 of the first throttle means 5.

【0106】このように本発明によれば、第1の記憶手
段19よって記憶した設定温度Tmと第1の温度検出手
段20より検出した室内温度Tsとの温度差△Tを演算
し、この温度差△Tにあわせて暖房能力が増減できるよ
うに、第1の絞り手段5の絞り開度Re1および冷媒搬
送手段6の回転数Nrを増減させることができるので、
適確に室内の設定温度による負荷に応じた暖房運転を行
うことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated, and this temperature is calculated. Since the throttle opening Re1 of the first throttle unit 5 and the rotation speed Nr of the refrigerant conveying unit 6 can be increased or decreased so that the heating capacity can be increased or decreased in accordance with the difference ΔT,
The heating operation according to the load based on the set temperature in the room can be appropriately performed.

【0107】(実施例8)次に本発明の第8実施例につ
いて、図11〜図14を参照しながら説明する。なお、
第1、第2、第3、第4、第5、第6および第7実施例
と同一部分は同一番号とし、詳細な説明は省略する。
Embodiment 8 Next, an eighth embodiment of the present invention will be described with reference to FIGS. In addition,
The same parts as those in the first, second, third, fourth, fifth, sixth, and seventh embodiments are designated by the same reference numerals, and detailed description is omitted.

【0108】図11は、本実施例の空気調和装置のサイ
クル図であり、熱機関113の冷却水回路に温水搬送手
段28と、温水流量調整手段29と、温水用熱交換器1
0と、冷却用熱交換器30と、この冷却用熱交換器30
に送風する送風手段31とを備えた構成になっており、
温水搬送手段28として液ポンプ、温水流量調整手段2
9として電動弁、冷却用熱交換器30としてフィン・チ
ューブ型熱交換器、送風手段31としてモーター駆動プ
ロペラファンを用いた構成となっている。
FIG. 11 is a cycle diagram of the air conditioner of this embodiment. In the cooling water circuit of the heat engine 113, the hot water conveying means 28, the hot water flow adjusting means 29, and the hot water heat exchanger 1 are shown.
0, the cooling heat exchanger 30 and the cooling heat exchanger 30
And a blowing means 31 for blowing air to the
A liquid pump as the hot water conveying means 28, and a hot water flow rate adjusting means 2
9 is an electric valve, a cooling heat exchanger 30 is a fin-tube heat exchanger, and a blower means 31 is a motor-driven propeller fan.

【0109】図12は本実施例の空気調和装置の制御フ
ローチャートであり、第2の判定手段23による判定結
果より冷媒搬送手段6の回転数を判定する第3の判定手
段32と、この第3の判定手段32による判定結果より
温水流量調整手段29の開度を演算する第4の演算手段
33と、この第4の演算手段33による演算結果より温
水流量調整手段29の開度を制御する第3の制御手段3
4とを備えた構成になっており、第3の判定手段32、
第4の演算手段33、第3の制御手段34にはマイコン
を用いた構成としている。
FIG. 12 is a control flow chart of the air conditioner of this embodiment, in which the third judgment means 32 for judging the rotation speed of the refrigerant conveying means 6 based on the judgment result by the second judgment means 23, and the third judgment means. A fourth calculating means 33 for calculating the opening degree of the hot water flow rate adjusting means 29 from the determination result by the determining means 32, and a fourth calculating means for controlling the opening degree of the hot water flow rate adjusting means 29 based on the calculation result by the fourth calculating means 33. 3 control means 3
4 and the third determination means 32,
The fourth arithmetic unit 33 and the third control unit 34 are configured using a microcomputer.

【0110】上記構成において図13を参照しながら運
転動作を説明する。図13は本発明の第8実施例の空気
調和装置の制御フローチャートであり、その流れに沿っ
て詳細を説明する。第1の記憶手段19によって記憶し
た設定温度Tmと第1の温度検出手段20より検出した
室内温度Tsとの温度差ΔT=Tm−Tsを第1の演算
手段21により演算し、第1の判定手段22によりΔT
の正負を判定し、もしΔTが正の場合は暖房能力不足な
ので、第1の絞り手段5の絞り開度Re1が最大である
かを第2の判定手段23により判定し、第1の絞り手段
5の絞り開度Re1が最大である場合は冷媒搬送手段6
の回転数Nrが最大であるかを第3の判定手段32によ
り判定し、さらに冷媒搬送手段6の回転数Nrが最大で
ある場合は温水流量調整手段29の開度増減量ΔRhを
第4の演算手段33により図14のように演算し、この
演算結果から温水流量調整手段29の開度Rhを第3の
制御手段34により増大させ、温水流量を増大させるこ
とで冷媒との熱交換量を増大させ暖房能力を増大させ
る。冷媒搬送手段6の回転数Nrが最大でない場合は冷
媒搬送手段6の回転数増減量ΔNrを第3の演算手段2
6により図10のように演算し、この演算結果から冷媒
搬送手段6の回転数Nrを第2の制御手段27により増
大させ、冷媒流量を増加させることで暖房能力を増大さ
せる。また、第1の絞り手段5の絞り開度Re1が最大
でない場合は、第1の絞り手段5の絞り開度増減量ΔR
e1を第2の演算手段24により図9のように演算し、
この演算結果から第1の絞り手段5の絞り開度Re1を
第1の制御手段25により増大させ、冷媒流量を増加さ
せることで暖房能力を増大させる。一方、第1の演算手
段21による演算結果であるΔTの判定が負の場合に
は、暖房能力が過多であるので、第1の絞り手段5の絞
り開度Re1が最少であるかを第2の判定手段23によ
り判定し、第1の絞り手段5の絞り開度Re1が最少で
ある場合は冷媒搬送手段6の回転数Nrが最少であるか
を第3の判定手段32により判定し、冷媒搬送手段6の
回転数Nrが最少である場合は温水流量調整手段29の
開度増減量ΔRhを第4の演算手段33により図14の
ように演算し、この演算結果から温水流量調整手段29
の開度Rhを第3の制御手段34により減少させ、室外
温水熱交換器10に流れ込む温水流量を減らすことで冷
媒との熱交換量を減少させ、暖房能力を低下させる。冷
媒搬送手段6の回転数Nrが最少でない場合は冷媒搬送
手段6の回転数増減量ΔNrを第3の演算手段26によ
り図10のように演算し、この演算結果から冷媒搬送手
段6の回転数Nrを第2の制御手段27により減少さ
せ、冷媒流量を減少させることで暖房能力を低下させ
る。第1の絞り手段5の絞り開度Re1が最少でない場
合は、第1の絞り手段5の絞り開度増減量ΔRe1を第
2の演算手段24により図9のように演算し、この演算
結果から第1の絞り手段5の絞り開度Re1を第1の制
御手段25により減少させる。
The operation of the above configuration will be described with reference to FIG. FIG. 13 is a control flowchart of the air conditioner according to the eighth embodiment of the present invention, and details will be described along the flow. The first calculating means 21 calculates a temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storing means 19 and the room temperature Ts detected by the first temperature detecting means 20, and makes a first determination. ΔT by means 22
If ΔT is positive, the heating capacity is insufficient, so the second determination means 23 determines whether the throttle opening Re1 of the first throttle means 5 is the maximum, and the first throttle means 5 when the throttle opening Re1 is the maximum.
The third determining means 32 determines whether the rotational speed Nr of the refrigerant is the maximum, and furthermore, if the rotational speed Nr of the refrigerant conveying means 6 is the maximum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is determined by the fourth determining means 32. As shown in FIG. 14 by the calculating means 33, the opening degree Rh of the hot water flow rate adjusting means 29 is increased by the third control means 34 from the calculation result, and the amount of heat exchange with the refrigerant is increased by increasing the hot water flow rate. Increase the heating capacity. If the rotation speed Nr of the refrigerant transfer means 6 is not the maximum, the rotation speed increase / decrease amount ΔNr of the refrigerant transfer means 6 is calculated by the third calculation means 2.
As shown in FIG. 10, the second control means 27 increases the rotation speed Nr of the refrigerant conveying means 6 from this calculation result, and increases the flow rate of the refrigerant to increase the heating capacity. If the throttle opening Re1 of the first throttle unit 5 is not the maximum, the throttle opening increase / decrease ΔR of the first throttle unit 5
e1 is calculated by the second calculating means 24 as shown in FIG.
From this calculation result, the throttle opening Re1 of the first throttle unit 5 is increased by the first control unit 25, and the heating capacity is increased by increasing the refrigerant flow rate. On the other hand, when the determination of ΔT, which is the calculation result by the first calculation unit 21, is negative, the heating capacity is excessive, and it is determined whether the throttle opening Re1 of the first throttle unit 5 is the minimum. When the throttle opening Re1 of the first throttle unit 5 is the minimum, the third determination unit 32 determines whether the rotation speed Nr of the refrigerant conveying unit 6 is the minimum. When the rotation speed Nr of the conveying means 6 is the minimum, the opening / closing amount ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG.
Is decreased by the third control means 34 and the flow rate of hot water flowing into the outdoor hot water heat exchanger 10 is reduced, thereby reducing the amount of heat exchange with the refrigerant and lowering the heating capacity. If the rotation speed Nr of the refrigerant transfer means 6 is not the minimum, the rotation speed increase / decrease ΔNr of the refrigerant transfer means 6 is calculated by the third calculation means 26 as shown in FIG. Nr is reduced by the second control means 27, and the heating capacity is reduced by reducing the flow rate of the refrigerant. If the throttle opening Re1 of the first throttle means 5 is not the minimum, the throttle opening increase / decrease ΔRe1 of the first throttle means 5 is calculated by the second calculating means 24 as shown in FIG. The throttle opening Re1 of the first throttle unit 5 is reduced by the first control unit 25.

【0111】このように本発明によれば、第1の記憶手
段19よって記憶した設定温度Tmと第1の温度検出手
段20より検出した室内温度Tsとの温度差△Tを演算
し、この温度差△Tにあわせて暖房能力が増減できるよ
うに、第1の絞り手段5の絞り開度Re1、冷媒搬送手
段6の回転数Nrおよび温水流量調整手段29の開度R
hを増減させることができるので、適確に室内の設定温
度による負荷に応じた暖房運転を行うことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated, and this temperature is calculated. In order to increase or decrease the heating capacity in accordance with the difference ΔT, the throttle opening Re1 of the first throttle means 5, the rotation speed Nr of the refrigerant conveying means 6, and the opening R of the hot water flow rate adjusting means 29 are set.
Since h can be increased or decreased, it is possible to appropriately perform the heating operation according to the load based on the indoor set temperature.

【0112】(実施例9)次に本発明の第9実施例につ
いて、図15〜図17を参照しながら説明する。なお、
第1、第2、第3、第4、第5、第6、第7および第8
実施例と同一部分は同一番号とし、詳細な説明は省略す
る。
(Embodiment 9) Next, a ninth embodiment of the present invention will be described with reference to FIGS. In addition,
First, second, third, fourth, fifth, sixth, seventh and eighth
The same parts as those of the embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0113】図15は、本実施例の空気調和装置の制御
ブロック図であり、第3の判定手段32による判定結果
より温水流量調整手段29の開度を判定する第4の判定
手段35と、この第4の判定手段35による判定結果よ
り温水搬送手段28の回転数を演算する第5の演算手段
36と、この第5の演算手段36による演算結果より温
水搬送手段28の回転数を制御する第4の制御手段37
とを備えた構成になっており、第4の判定手段35、第
5の演算手段36、第4の制御手段37にはマイコンを
用いた構成としている。
FIG. 15 is a control block diagram of the air conditioner of the present embodiment, in which a fourth judging means 35 for judging the opening of the hot water flow rate adjusting means 29 based on the judgment result by the third judging means 32, Fifth calculating means 36 for calculating the number of rotations of the hot water transport means 28 based on the determination result by the fourth determining means 35, and controlling the number of rotations of the hot water transport means 28 based on the calculation result of the fifth calculating means 36. Fourth control means 37
The fourth determination means 35, the fifth calculation means 36, and the fourth control means 37 use a microcomputer.

【0114】上記構成において図16を参照しながら運
転動作を説明する。図16は本発明の第9実施例の空気
調和装置の制御フローチャートであり、その流れに沿っ
て詳細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 16 is a control flowchart of the air conditioner of the ninth embodiment of the present invention, and details will be described along the flow.

【0115】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、第1の判定手段22により第1の演算
手段21による演算結果であるΔTの正負を判定する。
ΔTが正の場合は、暖房能力が不足であり、第1の絞り
手段5の絞り開度Re1が最大であるかを第2の判定手
段23により判定し、第1の絞り手段5の絞り開度Re
1が最大である場合は冷媒搬送手段6の回転数Nrが最
大であるかを第3の判定手段34により判定し、冷媒搬
送手段6の回転数Nrが最大である場合は、温水流量調
整手段29の開度Rhが最大であるかを第4の判定手段
35により判定し、温水流量調整手段29の開度Rhが
最大である場合は、温水搬送手段28の回転数増減量Δ
Nhを第5の演算手段36により図17のように演算
し、この演算結果から温水搬送手段28の回転数Nhを
第4の制御手段37により増大させ、温水用熱交換器1
0に流れる温水の流量を増大させることで冷媒との熱交
換量を増加させ、暖房能力を増大させる。温水流量調整
手段29の開度Rhが最大でない場合は温水流量調整手
段29の開度増減量ΔRhを第4の演算手段33により
図14のように演算し、この演算結果から温水流量調整
手段29の開度Rhを第3の制御手段34により増大さ
せ、温水用熱交換器10に流れる温水の流量を増大させ
ることで冷媒との熱交換量を増加させ、暖房能力を増大
させる。冷媒搬送手段6の回転数Nrが最大でない場合
は、冷媒搬送手段6の回転数増減量ΔNrを第3の演算
手段26により図10のように演算し、この演算結果か
ら冷媒搬送手段6の回転数Nrを第2の制御手段27に
より増大させ、冷媒流量を増加させることで暖房能力を
増大させる。第1の絞り手段5の絞り開度Re1が最大
でない場合は、第1の絞り手段5の絞り開度増減量ΔR
e1を第2の演算手段24により図9のように演算し、
この演算結果から第1の絞り手段5の絞り開度Re1を
第1の制御手段25により増大させ、冷媒流量を増加さ
せることで暖房能力を増大させる。一方、第1の演算手
段21による演算結果であるΔTが負の場合は、能力が
過多であるので、第1の絞り手段5の絞り開度Re1が
最少であるかを第2の判定手段23により判定し、第1
の絞り手段5の絞り開度Re1が最少である場合は冷媒
搬送手段6の回転数Nrが最少であるかを第3の判定手
段32により判定し、冷媒搬送手段6の回転数Nrが最
少である場合は温水流量調整手段29の開度Rhが最少
であるかを第4の判定手段35により判定し、温水流量
調整手段29の開度Rhが最少である場合は、温水搬送
手段28の回転数増減量ΔNhを第5の演算手段36に
より図17のように演算し、この演算結果から温水搬送
手段28の回転数Nhを第4の制御手段37により減少
させ、温水用熱交換器10に流れる温水の流量を減少さ
せることで冷媒との熱交換量を減少させ、暖房能力を低
下させる。温水流量調整手段29の開度が最少でない場
合は温水流量調整手段29の開度増減量ΔRhを第4の
演算手段33により図14のように演算し、この演算結
果から温水流量調整手段29の開度Rhを第3の制御手
段34により減少させ、温水用熱交換器10に流れる温
水の流量を減少させることで冷媒との熱交換量を減少さ
せ、暖房能力を低下させる。冷媒搬送手段6の回転数N
rが最少でない場合は冷媒搬送手段6の回転数増減量Δ
Nrを第3の演算手段26により図10のように演算
し、この演算結果から冷媒搬送手段6の回転数Nrを第
2の制御手段27により減少させ、冷媒流量を減少させ
ることで暖房能力を低下させる。第1の絞り手段5の絞
り開度Re1が最少でない場合は、第1の絞り手段5の
絞り開度増減量ΔRe1を第2の演算手段24により図
9のように演算し、この演算結果から第1の絞り手段5
の絞り開度Re1を第1の制御手段25により減少させ
る。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2.
1 and the first determining means 22 determines whether ΔT, which is the result of the calculation by the first calculating means 21, is positive or negative.
If ΔT is positive, the heating capacity is insufficient, and the second determination unit 23 determines whether the throttle opening Re1 of the first throttle unit 5 is the maximum, and the throttle opening of the first throttle unit 5 is determined. Degree Re
If 1 is the maximum, the third determination means 34 determines whether the rotation speed Nr of the refrigerant transporting means 6 is the maximum. If the rotation speed Nr of the refrigerant transporting means 6 is the maximum, the hot water flow rate adjusting means is determined. The fourth determination means 35 determines whether or not the opening Rh of the hot water 29 is the maximum, and when the opening Rh of the hot water flow rate adjusting means 29 is the maximum, the rotation speed change Δ
17 is calculated by the fifth calculating means 36 as shown in FIG. 17, and from this calculation result, the rotation speed Nh of the hot water conveying means 28 is increased by the fourth control means 37, and the heat exchanger 1 for hot water is
By increasing the flow rate of the hot water flowing to zero, the amount of heat exchange with the refrigerant is increased, and the heating capacity is increased. When the opening Rh of the hot water flow rate adjusting means 29 is not the maximum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. Is increased by the third control means 34 and the flow rate of hot water flowing through the hot water heat exchanger 10 is increased to increase the amount of heat exchange with the refrigerant and increase the heating capacity. If the rotational speed Nr of the refrigerant transporting means 6 is not the maximum, the rotation speed increase / decrease amount ΔNr of the refrigerant transporting means 6 is calculated by the third calculating means 26 as shown in FIG. The heating capacity is increased by increasing the number Nr by the second control means 27 and increasing the flow rate of the refrigerant. If the throttle opening Re1 of the first throttle unit 5 is not the maximum, the throttle opening change ΔR of the first throttle unit 5
e1 is calculated by the second calculating means 24 as shown in FIG.
From this calculation result, the throttle opening Re1 of the first throttle unit 5 is increased by the first control unit 25, and the heating capacity is increased by increasing the refrigerant flow rate. On the other hand, when ΔT, which is the result of the calculation by the first calculating means 21, is negative, the capability is excessive, and it is determined whether the aperture opening Re1 of the first throttle means 5 is the minimum. And the first
When the throttle opening Re1 of the throttle means 5 is the minimum, the third determination means 32 determines whether the rotation speed Nr of the refrigerant conveyance means 6 is the minimum, and determines whether the rotation speed Nr of the refrigerant conveyance means 6 is the minimum. In some cases, the fourth determining means 35 determines whether or not the opening Rh of the hot water flow rate adjusting means 29 is the minimum. If the opening degree Rh of the hot water flow rate adjusting means 29 is the minimum, the rotation of the hot water conveying means 28 The number increase / decrease amount ΔNh is calculated by the fifth calculating means 36 as shown in FIG. 17, and the rotation speed Nh of the hot water conveying means 28 is reduced by the fourth control means 37 from the calculation result. By reducing the flow rate of the flowing hot water, the amount of heat exchange with the refrigerant is reduced, and the heating capacity is reduced. If the opening degree of the hot water flow rate adjusting means 29 is not the minimum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. The opening degree Rh is reduced by the third control means 34, and the amount of heat exchange with the refrigerant is reduced by decreasing the flow rate of the hot water flowing through the hot water heat exchanger 10, thereby lowering the heating capacity. Number of rotations N of refrigerant conveying means 6
If r is not the minimum, the rotation speed increase / decrease amount Δ of the refrigerant conveying means 6
Nr is calculated by the third calculating means 26 as shown in FIG. 10, and from this calculation result, the rotation speed Nr of the refrigerant conveying means 6 is reduced by the second control means 27, and the heating capacity is reduced by reducing the refrigerant flow rate. Lower. If the throttle opening Re1 of the first throttle means 5 is not the minimum, the throttle opening increase / decrease ΔRe1 of the first throttle means 5 is calculated by the second calculating means 24 as shown in FIG. First throttle means 5
Is reduced by the first control means 25.

【0116】このように本発明によれば、第1の記憶手
段19よって記憶した設定温度Tmと第1の温度検出手
段20より検出した室内温度Tsとの温度差△Tを演算
し、この温度差△Tにあわせて暖房能力が増減できるよ
うに、第1の絞り手段5の絞り開度Re1、冷媒搬送手
段6の回転数Nr、温水流量調整手段29の開度Rhお
よび温水搬送手段28の回転数Nhを増減させることが
できるので、適確に室内の設定温度による負荷に応じた
暖房運転を行うことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated. In order to increase or decrease the heating capacity in accordance with the difference ΔT, the throttle opening Re1 of the first throttle 5, the rotation speed Nr of the refrigerant conveying means 6, the opening Rh of the hot water flow rate adjusting means 29, and the opening degree Rh of the hot water conveying means 28. Since the number of revolutions Nh can be increased or decreased, the heating operation can be accurately performed according to the load based on the indoor set temperature.

【0117】(実施例10)次に本発明の第10実施例
について、図18〜図20を参照しながら説明する。な
お、第1、第2、第3、第4、第5、第6、第7、第8
および第9実施例と同一部分は同一番号とし、詳細な説
明は省略する。
Embodiment 10 Next, a tenth embodiment of the present invention will be described with reference to FIGS. The first, second, third, fourth, fifth, sixth, seventh, eighth
The same parts as those of the ninth embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0118】図18は、本実施例の空気調和装置の制御
ブロック図であり、第4の判定手段35による判定結果
より温水搬送手段28の回転数を判定する第5の判定手
段38と、この第5の判定手段38による判定結果より
熱機関113の回転数を演算する第6の演算手段39
と、この第6の演算手段39による演算結果より熱機関
113の回転数を制御する第5の制御手段40とを備え
た構成になっており、第5の判定手段38、第6の演算
手段39、第5の制御手段40にはマイコンを用いた構
成としている。
FIG. 18 is a control block diagram of the air-conditioning apparatus of the present embodiment. Sixth calculating means 39 for calculating the number of revolutions of heat engine 113 from the result of determination by fifth determining means 38
And a fifth control means 40 for controlling the number of revolutions of the heat engine 113 based on the calculation result by the sixth calculation means 39. The fifth determination means 38, the sixth calculation means 39, the fifth control means 40 is configured using a microcomputer.

【0119】上記構成において図19を参照しながら運
転動作を説明する。図19は本発明の第10実施例の空
気調和装置の制御フローチャートであり、その流れに沿
って詳細を説明する。
The driving operation in the above configuration will be described with reference to FIG. FIG. 19 is a control flowchart of the air conditioner of the tenth embodiment of the present invention, and details will be described along the flow.

【0120】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、第1の判定手段22により第1の演算
手段21による演算結果であるΔTの正負を判定する。
ΔTが正の場合は、暖房能力が不足しており、第1の絞
り手段5の絞り開度Re1が最大であるかを第2の判定
手段23により判定し、第1の絞り手段5の絞り開度R
e1が最大である場合は冷媒搬送手段6の回転数Nrが
最大であるかを第3の判定手段32により判定し、冷媒
搬送手段6の回転数Nrが最大である場合は温水流量調
整手段29の開度Rhが最大であるかを第4の判定手段
35により判定し、温水流量調整手段29の開度Rhが
最大である場合は、温水搬送手段28の回転数Nhが最
大であるかを第5の判定手段38により判定し、温水搬
送手段28の回転数Nhが最大である場合は熱機関11
3の回転数増減量ΔNeを第6の演算手段39により図
20のように演算し、この演算結果から熱機関113の
回転数を第5の制御手段40により増大させ、熱機関1
13から排出される排熱を増大させることで温水用熱交
換器10に流れる温水の熱量を増大させ、さらには冷媒
との熱交換量を増加させ、暖房能力を増大させる。温水
搬送手段28の回転数Nhが最大でない場合は、第5の
演算手段36により温水搬送手段28の回転数増減量Δ
Nhを図17のように演算し、この演算結果から温水搬
送手段28の回転数Nhを第4の制御手段37により増
大させ、温水用熱交換器10に流れる温水の流量を増大
させることで冷媒との熱交換量を増加させ、暖房能力を
増大させる。温水流量調整手段29の開度Rhが最大で
ない場合は温水流量調整手段29の開度増減量ΔRhを
第4の演算手段33により図14のように演算し、この
演算結果から温水流量調整手段29の開度Rhを第3の
制御手段34により増大させ、温水用熱交換器10に流
れる温水の流量を増大させることで冷媒との熱交換量を
増加させ、暖房能力を増大させる。冷媒搬送手段6の回
転数Nrが最大でない場合は、冷媒搬送手段6の回転数
増減量ΔNrを第3の演算手段26により図10のよう
に演算し、この演算結果から冷媒搬送手段6の回転数N
rを第2の制御手段27により増大させ、冷媒流量を増
加させることで暖房能力を増大させる。第1の絞り手段
5の絞り開度Re1が最大でない場合は、第1の絞り手
段5の絞り開度増減量ΔRe1を第2の演算手段24に
より図9のように演算し、この演算結果から第1の絞り
手段5の絞り開度Re1を第1の制御手段25により増
大させ、冷媒流量を増加させることで暖房能力を増大さ
せる。一方、第1の演算手段21の演算結果であるΔT
の判定が負の場合は、第1の絞り手段5の絞り開度Re
1が最少であるかを第2の判定手段23により判定し、
第1の絞り手段5の絞り開度Re1が最少である場合は
冷媒搬送手段6の回転数Nrが最少であるかを第3の判
定手段32により判定し、冷媒搬送手段6の回転数Nr
が最少である場合は温水流量調整手段29の開度Rhが
最少であるかを第4の判定手段35により判定し、温水
流量調整手段29の開度Rhが最少である場合は、温水
搬送手段28の回転数Nhが最少であるかを第5の判定
手段38により判定し、温水搬送手段28の回転数Nh
が最少である場合は熱機関113の回転数増減量ΔNe
を第6の演算手段39により図20のように演算し、こ
の演算結果から熱機関113の回転数Neを第5の制御
手段40により減少させ、熱機関113から排出される
排熱を減少させることで温水用熱交換器10に流れる温
水の熱量を減少させ、さらには冷媒との熱交換量を減少
させ、暖房能力を低下させる。温水搬送手段28の回転
数Nhが最少でない場合は、温水搬送手段28の回転数
増減量ΔNhを第5の演算手段36により図17のよう
に演算し、この演算結果から温水搬送手段28の回転数
Nhを第4の制御手段37により減少させ、温水用熱交
換器10に流れる温水の流量を減少させることで冷媒と
の熱交換量を減少させ、暖房能力を低下させる。温水流
量調整手段29の開度が最少でない場合は温水流量調整
手段29の開度増減量ΔRhを第4の演算手段33によ
り図14のように演算し、この演算結果から温水流量調
整手段29の開度Rhを第3の制御手段34により減少
させ、温水用熱交換器10に流れる温水の流量を減少さ
せることで冷媒との熱交換量を減少させ、暖房能力を低
下させる。冷媒搬送手段6の回転数Nrが最少でない場
合は冷媒搬送手段6の回転数増減量ΔNrを第3の演算
手段26により図10のように演算し、この演算結果か
ら冷媒搬送手段6の回転数Nrを第2の制御手段27に
より減少させ、冷媒流量を減少させることで暖房能力を
低下させる。第1の絞り手段5の絞り開度Re1が最少
でない場合は、第1の絞り手段5の絞り開度増減量ΔR
e1を第2の演算手段24により図9のように演算し、
この演算結果から第1の絞り手段5の絞り開度Re1を
第1の制御手段25により減少させる。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2.
1 and the first determining means 22 determines whether ΔT, which is the result of the calculation by the first calculating means 21, is positive or negative.
When ΔT is positive, the heating capacity is insufficient, and the second determination unit 23 determines whether the throttle opening Re1 of the first throttle unit 5 is the maximum. Opening R
If e1 is the maximum, the third determining means 32 determines whether the rotational speed Nr of the refrigerant transporting means 6 is the maximum. If the rotational speed Nr of the refrigerant transporting means 6 is the maximum, the hot water flow rate adjusting means 29 is determined. Is determined by the fourth determination means 35. If the opening Rh of the hot water flow rate adjusting means 29 is maximum, it is determined whether the rotation speed Nh of the hot water transport means 28 is maximum. When the rotation speed Nh of the hot water conveying means 28 is the maximum, the heat engine 11
The rotation speed increase / decrease ΔNe of the third engine 3 is calculated by the sixth calculation means 39 as shown in FIG. 20, and the rotation speed of the heat engine 113 is increased by the fifth control means 40 based on the calculation result.
By increasing the amount of exhaust heat discharged from the heat exchanger 13, the amount of heat of the hot water flowing through the hot water heat exchanger 10 is increased, and further, the amount of heat exchange with the refrigerant is increased, thereby increasing the heating capacity. If the rotation speed Nh of the hot water transport means 28 is not the maximum, the fifth arithmetic means 36 calculates the rotation speed increase / decrease Δ
Nh is calculated as shown in FIG. 17, and from this calculation result, the rotation speed Nh of the hot water conveying means 28 is increased by the fourth control means 37, and the flow rate of the hot water flowing through the hot water heat exchanger 10 is increased. To increase the amount of heat exchanged with the heater, thereby increasing the heating capacity. When the opening Rh of the hot water flow rate adjusting means 29 is not the maximum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. Is increased by the third control means 34 and the flow rate of hot water flowing through the hot water heat exchanger 10 is increased to increase the amount of heat exchange with the refrigerant and increase the heating capacity. If the rotational speed Nr of the refrigerant transporting means 6 is not the maximum, the rotation speed increase / decrease amount ΔNr of the refrigerant transporting means 6 is calculated by the third calculating means 26 as shown in FIG. Number N
r is increased by the second control means 27, and the heating capacity is increased by increasing the refrigerant flow rate. When the throttle opening Re1 of the first throttle means 5 is not the maximum, the throttle opening increase / decrease ΔRe1 of the first throttle means 5 is calculated by the second calculating means 24 as shown in FIG. The heating capacity is increased by increasing the throttle opening Re1 of the first throttle unit 5 by the first control unit 25 and increasing the refrigerant flow rate. On the other hand, ΔT which is the calculation result of the first calculation means 21
Is negative, the throttle opening Re of the first throttle means 5 is determined.
It is determined by the second determination means 23 whether 1 is the minimum,
When the throttle opening Re1 of the first throttle unit 5 is the minimum, the third determination unit 32 determines whether the rotation speed Nr of the refrigerant conveyance unit 6 is the minimum, and the rotation speed Nr of the refrigerant conveyance unit 6 is determined.
When the opening degree Rh of the hot water flow rate adjusting means 29 is the minimum, the fourth determining means 35 determines whether the opening degree Rh of the hot water flow rate adjusting means 29 is the minimum. The rotation speed Nh of the hot water conveying unit 28 is determined by the fifth determination unit 38 whether the rotation speed Nh of the
Is minimum, the rotational speed increase / decrease ΔNe of the heat engine 113
Is calculated by the sixth calculating means 39 as shown in FIG. 20, and the rotational speed Ne of the heat engine 113 is reduced by the fifth control means 40 from the result of this calculation, so that the exhaust heat discharged from the heat engine 113 is reduced. This reduces the amount of heat of the hot water flowing through the hot water heat exchanger 10, further reduces the amount of heat exchange with the refrigerant, and lowers the heating capacity. If the rotation speed Nh of the hot water transfer means 28 is not the minimum, the rotation speed increase / decrease ΔNh of the hot water transfer means 28 is calculated by the fifth calculation means 36 as shown in FIG. The number Nh is reduced by the fourth control means 37, and the amount of heat exchange with the refrigerant is reduced by reducing the flow rate of the hot water flowing through the hot water heat exchanger 10, thereby lowering the heating capacity. If the opening degree of the hot water flow rate adjusting means 29 is not the minimum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. The opening degree Rh is reduced by the third control means 34, and the amount of heat exchange with the refrigerant is reduced by decreasing the flow rate of the hot water flowing through the hot water heat exchanger 10, thereby lowering the heating capacity. If the rotation speed Nr of the refrigerant transfer means 6 is not the minimum, the rotation speed increase / decrease ΔNr of the refrigerant transfer means 6 is calculated by the third calculation means 26 as shown in FIG. Nr is reduced by the second control means 27, and the heating capacity is reduced by reducing the flow rate of the refrigerant. If the throttle opening Re1 of the first throttle means 5 is not the minimum, the change ΔR in the throttle opening of the first throttle means 5
e1 is calculated by the second calculating means 24 as shown in FIG.
From this calculation result, the first control means 25 reduces the throttle opening Re1 of the first throttle means 5.

【0121】このように本発明によれば、第1の記憶手
段19よって記憶した設定温度Tmと第1の温度検出手
段20より検出した室内温度Tsとの温度差△Tを演算
し、この温度差△Tにあわせて暖房能力が増減できるよ
うに、第1の絞り手段5の絞り開度Re1、冷媒搬送手
段6の回転数Nr、温水流量調整手段29の開度Rh、
温水搬送手段28の回転数Nhおよび熱機関113の回
転数Neを増減させることができるので、適確に室内の
設定温度による負荷に応じた暖房運転を行うことができ
る。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated, and this temperature is calculated. In order to increase or decrease the heating capacity according to the difference ΔT, the throttle opening Re1 of the first throttle means 5, the rotation speed Nr of the refrigerant conveying means 6, the opening Rh of the hot water flow rate adjusting means 29,
Since the number of revolutions Nh of the hot water conveying means 28 and the number of revolutions Ne of the heat engine 113 can be increased or decreased, the heating operation can be accurately performed according to the load based on the set temperature in the room.

【0122】(実施例11)次に本発明の第11実施例
について、図21〜図23を参照しながら説明する。な
お、第1、第2、第3、第4、第5、第6、第7、第
8、第9および第10実施例と同一部分は同一番号と
し、詳細な説明は省略する。
Embodiment 11 Next, an eleventh embodiment of the present invention will be described with reference to FIGS. Note that the same parts as those in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth embodiments have the same reference numerals, and a detailed description thereof will be omitted.

【0123】図21は、本実施例の空気調和装置の制御
ブロック図であり、第5の判定手段38による判定結果
より熱機関113の回転数を判定する第6の判定手段4
1と、この第6の判定手段41による判定結果より圧縮
機101の回転数Ncを演算する第7の演算手段42
と、この第7の演算手段42による演算結果より圧縮機
101の回転数Ncを制御する第6の制御手段43とを
備えた構成になっており、第6の判定手段41、第7の
演算手段42、第6の制御手段43にはマイコンを用い
た構成としている。
FIG. 21 is a control block diagram of the air conditioner of the present embodiment. The sixth judgment means 4 for judging the rotation speed of the heat engine 113 based on the judgment result by the fifth judgment means 38.
7 and a seventh calculating means 42 for calculating the rotational speed Nc of the compressor 101 from the result of the determination by the sixth determining means 41.
And a sixth control means 43 for controlling the rotation speed Nc of the compressor 101 based on the calculation result by the seventh calculation means 42. The sixth determination means 41 and the seventh calculation The means 42 and the sixth control means 43 use a microcomputer.

【0124】上記構成において図22を参照しながら運
転動作を説明する。図22は本発明の第11実施例の空
気調和装置の制御フローチャートであり、その流れに沿
って詳細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 22 is a control flowchart of the air conditioner according to the eleventh embodiment of the present invention, and details will be described along the flow.

【0125】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、第1の判定手段22により第1の演算
手段21による演算結果であるΔTの正負を判定する。
ΔTが正の場合は、暖房能力が不足しており、第1の絞
り手段5の絞り開度Re1が最大であるかを第2の判定
手段23により判定し、第1の絞り手段5の絞り開度R
e1が最大である場合は冷媒搬送手段6の回転数Nrが
最大であるかを第3の判定手段32により判定し、冷媒
搬送手段6の回転数Nrが最大である場合は温水流量調
整手段29の開度Rhが最大であるかを第4の判定手段
35により判定し、温水流量調整手段29の開度Rhが
最大である場合は、温水搬送手段28の回転数Nhが最
大であるかを第5の判定手段38により判定し、温水搬
送手段28の回転数Nhが最大である場合は、熱機関1
13の回転数Neが最大であるかどうかを第6の判定手
段42により判定し、熱機関113の回転数Neが最大
である場合は冷媒搬送手段6を停止させ、圧縮機101
を駆動し、圧縮機101の回転数増減量ΔNcを第7の
演算手段42により図23のように演算し、この演算結
果から圧縮機101の回転数Ncを第6の制御手段43
により増大させ、熱機関113の排熱利用だけでなく圧
縮機101を使用したヒートポンプ運転を行うことによ
り、冷媒流量を増大させ、暖房能力を増大させる。熱機
関113の回転数Neが最大でない場合は、熱機関11
3の回転数増減量ΔNeを第6の演算手段39により図
20のように演算し、この演算結果から熱機関113の
回転数Neを第5の制御手段40により増大させ、熱機
関113から排出される排熱を増大させることで温水用
熱交換器10に流れる温水の熱量を増大させ、さらには
冷媒との熱交換量を増加させ、暖房能力を増大させる。
温水搬送手段28の回転数Nhが最大でない場合は、第
5の演算手段36により温水搬送手段28の回転数増減
量ΔNhを図17のように演算し、この演算結果から温
水搬送手段28の回転数Nhを第4の制御手段37によ
り増大させ、温水用熱交換器10に流れる温水の流量を
増大させることで冷媒との熱交換量を増加させ、暖房能
力を増大させる。温水流量調整手段29の開度Rhが最
大でない場合は温水流量調整手段29の開度増減量ΔR
hを第4の演算手段33により図14のように演算し、
この演算結果から温水流量調整手段29の開度Rhを第
3の制御手段34により増大させ、温水用熱交換器10
に流れる温水の流量を増大させることで冷媒との熱交換
量を増加させ、暖房能力を増大させる。冷媒搬送手段6
の回転数Nrが最大でない場合は、冷媒搬送手段6の回
転数増減量ΔNrを第3の演算手段26により図10の
ように演算し、この演算結果から冷媒搬送手段6の回転
数Nrを第2の制御手段27により増大させ、冷媒流量
を増加させることで暖房能力を増大させる。第1の絞り
手段5の絞り開度Re1が最大でない場合は、第1の絞
り手段5の絞り開度増減量ΔRe1を第2の演算手段2
4により図9のように演算し、この演算結果から第1の
絞り手段5の絞り開度Re1を第1の制御手段25によ
り増大させ、冷媒流量を増加させることで暖房能力を増
大させる。一方、第1の演算手段21の演算結果である
ΔTの判定が負の場合は、暖房能力が過多であり、第1
の絞り手段5の絞り開度Re1が最少であるかを第2の
判定手段23により判定し、第1の絞り手段5の絞り開
度Re1が最少である場合は冷媒搬送手段6の回転数N
rが最少であるかを第3の判定手段32により判定し、
冷媒搬送手段6の回転数Nrが最少である場合は温水流
量調整手段29の開度Rhが最少であるかを第4の判定
手段35により判定し、温水流量調整手段29の開度R
hが最少である場合は、温水搬送手段28の回転数Nh
が最少であるかを第5の判定手段38により判定し、温
水搬送手段28の回転数Nhが最少である場合は圧縮機
101の回転数増減量ΔNcを第7の演算手段42によ
り図23のように演算し、この演算結果から圧縮機10
1の回転数Ncを第6の制御手段43により減少させ回
転数Ncが0になったときは圧縮機101を停止させる
ようにし、圧縮機101を使用したヒートポンプ運転に
よる冷媒流量を減少させ、暖房能力を増大させる。熱機
関113の回転数Neが最小でない場合は、熱機関11
3の回転数Neを第6の演算手段39により図20のよ
うに演算し、この演算結果から熱機関113の回転数N
eを第5の制御手段40により減少させ、温水搬送手段
28の回転数Nhが最少でない場合は、温水搬送手段2
8の回転数増減量ΔNhを第5の演算手段36により図
17のように演算し、この演算結果から温水搬送手段2
8の回転数Nhを第4の制御手段37により減少させ、
温水用熱交換器10に流れる温水の流量を減少させるこ
とで冷媒との熱交換量を減少させ、暖房能力を低下させ
る。温水流量調整手段29の開度が最少でない場合は温
水流量調整手段29の開度増減量ΔRhを第4の演算手
段33により図14のように演算し、この演算結果から
温水流量調整手段29の開度Rhを第3の制御手段34
により減少させ、温水用熱交換器10に流れる温水の流
量を減少させることで冷媒との熱交換量を減少させ、暖
房能力を低下させる。冷媒搬送手段6の回転数Nrが最
少でない場合は冷媒搬送手段6の回転数増減量ΔNrを
第3の演算手段26により図10のように演算し、この
演算結果から冷媒搬送手段6の回転数Nrを第2の制御
手段27により減少させ、冷媒流量を減少させることで
暖房能力を低下させる。第1の絞り手段5の絞り開度R
e1が最少でない場合は、第1の絞り手段5の絞り開度
増減量ΔRe1を第2の演算手段24により図9のよう
に演算し、この演算結果から第1の絞り手段5の絞り開
度Re1を第1の制御手段25により減少させる。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2.
1 and the first determining means 22 determines whether ΔT, which is the result of the calculation by the first calculating means 21, is positive or negative.
When ΔT is positive, the heating capacity is insufficient, and the second determination unit 23 determines whether the throttle opening Re1 of the first throttle unit 5 is the maximum. Opening R
If e1 is the maximum, the third determining means 32 determines whether the rotational speed Nr of the refrigerant transporting means 6 is the maximum. If the rotational speed Nr of the refrigerant transporting means 6 is the maximum, the hot water flow rate adjusting means 29 is determined. Is determined by the fourth determination means 35. If the opening Rh of the hot water flow rate adjusting means 29 is maximum, it is determined whether the rotation speed Nh of the hot water transport means 28 is maximum. If the rotation speed Nh of the hot water conveying means 28 is the maximum, as determined by the fifth determining means 38, the heat engine 1
The rotation speed Ne of the heat engine 113 is determined by the sixth determination unit 42 to determine whether or not the rotation speed Ne of the heat engine 113 is the maximum.
, And the rotation speed increase / decrease ΔNc of the compressor 101 is calculated by the seventh calculation means 42 as shown in FIG. 23, and from this calculation result, the rotation speed Nc of the compressor 101 is calculated by the sixth control means 43.
By performing the heat pump operation using the compressor 101 as well as utilizing the exhaust heat of the heat engine 113, the flow rate of the refrigerant is increased, and the heating capacity is increased. If the rotation speed Ne of the heat engine 113 is not the maximum,
The rotation speed increase / decrease ΔNe of No. 3 is calculated by the sixth calculation means 39 as shown in FIG. 20, and from this calculation result, the rotation speed Ne of the heat engine 113 is increased by the fifth control means 40 and discharged from the heat engine 113. The amount of heat discharged from the hot water heat exchanger 10 is increased by increasing the amount of exhaust heat to be discharged, and the amount of heat exchange with the refrigerant is increased, thereby increasing the heating capacity.
If the rotation speed Nh of the hot water transfer means 28 is not the maximum, the rotation speed increase / decrease ΔNh of the hot water transfer means 28 is calculated by the fifth calculation means 36 as shown in FIG. The number Nh is increased by the fourth control means 37, and the amount of heat exchange with the refrigerant is increased by increasing the flow rate of the hot water flowing through the hot water heat exchanger 10, thereby increasing the heating capacity. If the opening degree Rh of the hot water flow rate adjusting means 29 is not the maximum, the opening degree increase / decrease ΔR of the hot water flow rate adjusting means 29
h is calculated by the fourth calculating means 33 as shown in FIG.
From this calculation result, the opening degree Rh of the hot water flow rate adjusting means 29 is increased by the third control means 34, and the hot water heat exchanger 10
The amount of heat exchange with the refrigerant is increased by increasing the flow rate of the warm water flowing through the heater, thereby increasing the heating capacity. Refrigerant conveying means 6
If the rotation speed Nr of the refrigerant conveyance device 6 is not the maximum, the rotation speed change amount ΔNr of the refrigerant conveyance device 6 is calculated by the third calculation device 26 as shown in FIG. The heating capacity is increased by increasing the refrigerant flow rate by the second control means 27 and increasing the refrigerant flow rate. If the throttle opening Re1 of the first throttle means 5 is not the maximum, the increase / decrease amount ΔRe1 of the throttle opening of the first throttle means 5 is calculated by the second calculating means 2.
4 as shown in FIG. 9, and from this calculation result, the throttle opening Re1 of the first throttle means 5 is increased by the first control means 25, and the refrigerant flow rate is increased to increase the heating capacity. On the other hand, when the determination of ΔT, which is the calculation result of the first calculation means 21, is negative, the heating capacity is excessive,
The second determining means 23 determines whether or not the throttle opening Re1 of the throttle means 5 is the minimum. If the throttle opening Re1 of the first throttle means 5 is the minimum, the rotation speed N of the refrigerant conveying means 6 is determined.
The third determining means 32 determines whether or not r is the minimum.
When the rotation speed Nr of the refrigerant conveying means 6 is the minimum, the fourth determining means 35 determines whether or not the opening Rh of the hot water flow adjusting means 29 is the minimum, and the opening R of the hot water flow adjusting means 29 is determined.
When h is the minimum, the rotation speed Nh of the hot water conveying means 28
Is determined by the fifth determination means 38, and when the rotation speed Nh of the hot water transport means 28 is the minimum, the rotation speed increase / decrease ΔNc of the compressor 101 is determined by the seventh calculation means 42 in FIG. From the result of this operation.
The rotation speed Nc of 1 is reduced by the sixth control means 43, and when the rotation speed Nc becomes 0, the compressor 101 is stopped, the refrigerant flow rate by the heat pump operation using the compressor 101 is reduced, and the heating is performed. Increase ability. If the rotation speed Ne of the heat engine 113 is not the minimum,
The rotation speed Ne of the heat engine 113 is calculated by the sixth calculation means 39 as shown in FIG.
e is reduced by the fifth control means 40, and if the rotation speed Nh of the hot water transport means 28 is not the minimum, the hot water transport means 2
8 is calculated by the fifth calculating means 36 as shown in FIG.
8 is decreased by the fourth control means 37,
By reducing the flow rate of the hot water flowing through the hot water heat exchanger 10, the amount of heat exchange with the refrigerant is reduced, and the heating capacity is reduced. If the opening degree of the hot water flow rate adjusting means 29 is not the minimum, the opening degree increase / decrease ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. The opening degree Rh is controlled by the third control
By reducing the flow rate of hot water flowing through the hot water heat exchanger 10, the amount of heat exchange with the refrigerant is reduced, and the heating capacity is reduced. If the rotation speed Nr of the refrigerant transfer means 6 is not the minimum, the rotation speed increase / decrease ΔNr of the refrigerant transfer means 6 is calculated by the third calculation means 26 as shown in FIG. Nr is reduced by the second control means 27, and the heating capacity is reduced by reducing the flow rate of the refrigerant. The throttle opening R of the first throttle means 5
If e1 is not the minimum, the amount of increase or decrease ΔRe1 in the aperture of the first aperture means 5 is calculated by the second calculating means 24 as shown in FIG. Re1 is reduced by the first control means 25.

【0126】このように本発明によれば、第1の記憶手
段19よって記憶した設定温度Tmと第1の温度検出手
段20より検出した室内温度Tsとの温度差△Tを演算
し、この温度差△Tにあわせて暖房能力が増減できるよ
うに、第1の絞り手段5の絞り開度Re1、冷媒搬送手
段6の回転数Nr、温水流量調整手段29の開度Rh、
温水搬送手段28の回転数Nh、熱機関113の回転数
Neおよび圧縮機101の回転数Ncを増減させること
ができるので、適確に室内の設定温度による負荷に応じ
た暖房運転を行うことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated. In order to increase or decrease the heating capacity in accordance with the difference ΔT, the throttle opening Re1 of the first throttle unit 5, the rotation speed Nr of the refrigerant conveying unit 6, the opening Rh of the hot water flow rate adjusting unit 29,
Since the number of revolutions Nh of the hot water conveying means 28, the number of revolutions Ne of the heat engine 113, and the number of revolutions Nc of the compressor 101 can be increased or decreased, it is possible to appropriately perform the heating operation according to the load based on the set temperature in the room. it can.

【0127】(実施例12)次に本発明の第12実施例
について、図24〜図28を参照しながら説明する。な
お、第1、第2、第3、第4、第5、第6、第7、第
8、第9、第10および第11実施例と同一部分は同一
番号とし、詳細な説明は省略する。
(Embodiment 12) Next, a twelfth embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, and eleventh embodiments are denoted by the same reference numerals, and detailed description is omitted. .

【0128】図24は、本実施例の空気調和装置の制御
ブロック図であり、第2の流路切替手段2と冷媒間熱交
換器13との間に冷媒温度を検出する第2の温度検出手
段44手段43と冷媒圧力を検出する第1の圧力検出手
段45を備え、第2の絞り手段14と冷媒間熱交換器1
3との間に冷媒温度を検出する第3の温度検出手段46
手段45とを備え、第1の圧力検出手段45による検出
結果より冷媒の飽和温度を演算する第8の演算手段47
と、この第8の演算手段47による演算結果と第2の温
度検出手段44による検出結果との差を演算する第9の
演算手段48と、この第9の演算手段48による演算結
果より冷媒の状態を判定する第7の判定手段54と、こ
の第7の判定手段54による判定結果より第3の温度検
出手段46手段45による検出結果と第2の温度検出手
段44手段43による検出結果との差を演算する第10
の演算手段50と、この第10の演算手段50による演
算結果より冷媒間の温度差を判定する第8の判定手段5
1と、この第8の判定手段51による判定結果より圧縮
機101の回転数を判定する第9の判定手段47と、こ
の第9の判定手段47による判定結果より第2の絞り手
段14の開度を判定する第10の判定手段53と、この
第10の判定手段53による判定結果より第2の絞り手
段14の開度を演算する第11の演算手段54と、この
第11の演算手段54による演算結果より第2の絞り手
段14の開度を制御する第7の制御手段55とを備えた
構成としたものであり、第2の温度検出手段44および
第3の温度検出手段46として温度センサー、第1の圧
力検出手段45として圧力センサー、第2の温度検出手
段44、第1の圧力検出手段45、第3の温度検出手段
46、第8の演算手段47、第9の演算手段48、第7
の判定手段49、第10の演算手段50、第8の判定手
段51、第9の判定手段52、第10の判定手段53、
第11の演算手段54、第7の制御手段55にはマイコ
ンを用いた構成としている。
FIG. 24 is a control block diagram of the air conditioner of the present embodiment, in which a second temperature detection for detecting the refrigerant temperature between the second flow path switching means 2 and the refrigerant heat exchanger 13 is performed. Means 44 means 43 and first pressure detecting means 45 for detecting the refrigerant pressure, the second throttling means 14 and the refrigerant heat exchanger 1
Temperature detecting means 46 for detecting the refrigerant temperature between the third temperature detecting means 46 and the third temperature detecting means 46.
Means 45 for calculating the saturation temperature of the refrigerant from the result of detection by the first pressure detecting means 45.
A ninth calculating means 48 for calculating a difference between a calculation result obtained by the eighth calculating means 47 and a detection result obtained by the second temperature detecting means 44; A seventh determining means 54 for determining the state, and a determination result of the third temperature detecting means 46 means 45 and a detection result of the second temperature detecting means 44 means 43 based on the determination result by the seventh determining means 54. The tenth to calculate the difference
Calculation means 50 and an eighth determination means 5 for determining a temperature difference between refrigerants based on a calculation result by the tenth calculation means 50.
1, a ninth determining means 47 for determining the rotational speed of the compressor 101 based on the determination result by the eighth determining means 51, and an opening of the second throttle means 14 based on the determination result by the ninth determining means 47. A tenth determining means 53 for determining the degree, an eleventh calculating means 54 for calculating the degree of opening of the second throttle means 14 based on the determination result by the tenth determining means 53, and an eleventh calculating means 54 And a seventh control means 55 for controlling the degree of opening of the second throttle means 14 based on the result of the calculation by the second temperature detecting means 44 and the third temperature detecting means 46. Sensor, pressure sensor as first pressure detecting means 45, second temperature detecting means 44, first pressure detecting means 45, third temperature detecting means 46, eighth calculating means 47, ninth calculating means 48 , Seventh
Determination means 49, tenth calculation means 50, eighth determination means 51, ninth determination means 52, tenth determination means 53,
The eleventh arithmetic means 54 and the seventh control means 55 are configured using a microcomputer.

【0129】上記構成において図25を参照しながら運
転動作を説明する。図25は本発明の第12実施例の空
気調和装置の制御フローチャートであり、その流れに沿
って詳細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 25 is a control flowchart of the air conditioner of the twelfth embodiment of the present invention, and details will be described along the flow.

【0130】冷媒間熱交換器13を通過して冷媒搬送手
段6に流入する冷媒の飽和温度Tsatを第1の圧力検
出手段45により検出された圧力から第8の演算手段4
7により演算する。Tsatの計算は、マイコンに内蔵
された近似式もしくは記憶された飽和温度のテーブルの
数値から導出される。冷媒間熱交換器13に流れ込む冷
媒の飽和温度であるTsatと第2の温度検出手段44
により検出された同じく冷媒間熱交換器13に流れ込む
冷媒温度Tr1との温度差であるΔTref=Tsat
−Tr1を第9の演算手段48により演算し、この演算
結果の正負を第7の判定手段49により判定する。ΔT
refが負の場合は、冷媒の過冷却度がとれていない気
液混合の2相状態であり、冷媒搬送手段6の効率が低下
するので、冷媒を過冷却度のとれた液状体にする必要が
あると判定する。そこで第2の温度検出手段44により
検出された冷媒間熱交換器13を通過して冷媒搬送手段
6に流入する冷媒の温度Tr1と、第3の温度検出手段
46により検出された第2の絞り手段14を通過し冷媒
間熱交換器13へ流入する冷媒の温度Tr2の温度差で
あるΔTr12=Tr1−Tr2を第10の演算手段5
0により演算し、この冷媒の温度差ΔTr12の正負を
第8の判定手段51により判定する。ΔTr12が負の
場合は、冷却冷媒Tr2の温度が被冷却冷媒Tr1の温
度よりも高いということであり、冷却冷媒Tr2の温度
を下げる必要があると判定する。次に圧縮機101の回
転数Ncが最大であるかを第9の判定手段52により判
定し、圧縮機101の回転数Ncが最大でない場合は第
2の絞り手段14の開度Re2が最大であるかを第10
の判定手段53により判定し、第2の絞り手段14の開
度Re2が最大でない場合は第2の絞り手段14の開度
増減量ΔRe2を第11の演算手段54により図26の
ように演算し、この演算結果から第7の制御手段55に
より第2の絞り手段14の開度Re2を増大させ、第2
の絞り手段14の開度が最大の場合は、圧縮機101の
回転数Ncを第7の演算手段42により図27のように
演算し、この第7の演算手段42による演算結果から第
6の制御手段54により圧縮機101の回転数Ncを増
大させ、冷媒流量を増大させることで冷却冷媒Tr2の
温度を低下させる。また一方で、第2の絞り手段14の
開度Re2は、圧縮機101の吸入側の冷媒の過熱度に
より、過熱度がとれていればΔRe2の値として0を第
7の制御手段55に返し、過熱度がとれていない場合は
冷媒流量を減らすことで過熱度をとるようにするためΔ
Re2として負の値を第7の制御手段55に返す。圧縮
機101の過熱度制御が適切である結果、圧縮機101
の効率が向上し、Tr2の温度は低下する。また、圧縮
機101の回転数Ncが最大の場合は冷却冷媒による被
加熱冷媒の冷却は限界であり、被冷却冷媒側の冷媒流量
を落とすことで被冷却冷媒の過冷却度をとれるようにす
るので、冷媒搬送手段6の回転数増減量ΔNrを第3の
演算手段26により図28のように演算し、演算結果か
ら第2の制御手段27により冷媒搬送手段6の回転数N
rを減少させる。第7の判定手段49の判定内容である
ΔTrefが正の場合、及び、第8の判定手段51の判
定内容であるΔTr12が正の場合は、ルーチンは第8
の演算手段に戻る。
The saturation temperature Tsat of the refrigerant flowing into the refrigerant conveying means 6 after passing through the inter-refrigerant heat exchanger 13 is calculated from the pressure detected by the first pressure detecting means 45 to the eighth calculating means 4.
7 is calculated. The calculation of Tsat is derived from an approximate expression built in the microcomputer or a numerical value of a stored saturation temperature table. Tsat, which is the saturation temperature of the refrigerant flowing into the inter-refrigerant heat exchanger 13, and the second temperature detecting means 44
ΔTref = Tsat, which is the temperature difference from the refrigerant temperature Tr1 also flowing into the inter-refrigerant heat exchanger 13 detected by
-Tr1 is calculated by the ninth calculating means 48, and the positive or negative of the calculation result is determined by the seventh determining means 49. ΔT
When ref is negative, the refrigerant is in a two-phase state of gas-liquid mixing in which the degree of supercooling of the refrigerant is not sufficient, and the efficiency of the refrigerant conveying means 6 is reduced. It is determined that there is. Therefore, the temperature Tr1 of the refrigerant flowing into the refrigerant conveying means 6 through the inter-refrigerant heat exchanger 13 detected by the second temperature detecting means 44 and the second throttle detected by the third temperature detecting means 46 ΔTr12 = Tr1-Tr2, which is the temperature difference between the temperatures Tr2 of the refrigerant flowing through the means 14 and flowing into the inter-refrigerant heat exchanger 13, is calculated by the tenth calculating means 5.
The positive and negative of the temperature difference ΔTr12 of the refrigerant are determined by an eighth determining means 51. If ΔTr12 is negative, it means that the temperature of the cooling refrigerant Tr2 is higher than the temperature of the cooling target Tr1, and it is determined that the temperature of the cooling refrigerant Tr2 needs to be lowered. Next, the ninth determination unit 52 determines whether the rotation speed Nc of the compressor 101 is the maximum. If the rotation speed Nc of the compressor 101 is not the maximum, the opening Re2 of the second expansion unit 14 is the maximum. Is there a tenth
If the opening degree Re2 of the second throttle means 14 is not the maximum, the opening increase / decrease ΔRe2 of the second throttle means 14 is calculated by the eleventh calculation means 54 as shown in FIG. From the calculation result, the opening degree Re2 of the second throttle means 14 is increased by the seventh control means 55,
When the opening degree of the throttle means 14 is the maximum, the rotation speed Nc of the compressor 101 is calculated by the seventh calculation means 42 as shown in FIG. The control unit 54 increases the rotation speed Nc of the compressor 101 and increases the flow rate of the refrigerant, thereby lowering the temperature of the cooling refrigerant Tr2. On the other hand, the degree of opening Re2 of the second expansion means 14 is returned to the seventh control means 55 as a value of ΔRe2 if the degree of superheating is obtained, due to the degree of superheating of the refrigerant on the suction side of the compressor 101. If the degree of superheat is not obtained, Δ
A negative value is returned to the seventh control means 55 as Re2. As a result of appropriate superheat control of the compressor 101, the compressor 101
Is improved, and the temperature of Tr2 decreases. When the rotation speed Nc of the compressor 101 is the maximum, the cooling of the refrigerant to be heated by the cooling refrigerant is at a limit, and the degree of supercooling of the refrigerant to be cooled can be obtained by reducing the flow rate of the refrigerant on the refrigerant to be cooled. Therefore, the rotation speed increase / decrease amount ΔNr of the refrigerant conveying means 6 is calculated by the third calculating means 26 as shown in FIG.
decrease r. When ΔTref, which is the determination content of the seventh determination means 49, is positive, and when ΔTr12, which is the determination content of the eighth determination means 51, is positive, the routine proceeds to the eighth routine.
Return to the calculation means.

【0131】このように本発明によれば、第8の演算手
段47により計算される冷媒搬送手段6に流れ込む冷媒
の飽和温度Tsatと第2の温度検出手段44により検
出されるTr1の差を演算して得られる冷媒の過冷却度
ΔTrefと、第3の温度検出手段46により検出され
る冷却冷媒の温度Tr2と被冷却冷媒の温度Tr1との
温度差ΔTr12を判定して、冷媒の過冷却度であるΔ
Trefが正になるように第2の絞り手段14の絞り開
度Re2、圧縮機101の回転数Ncおよび冷媒搬送手
段6の回転数Nrを増減させることができるので、冷媒
搬送手段6の効率低下を防ぐことができる。
As described above, according to the present invention, the difference between the saturation temperature Tsat of the refrigerant flowing into the refrigerant conveying means 6 calculated by the eighth calculating means 47 and Tr1 detected by the second temperature detecting means 44 is calculated. And the temperature difference ΔTr12 between the temperature Tr2 of the cooling refrigerant and the temperature Tr1 of the refrigerant to be cooled detected by the third temperature detecting means 46, and determine the degree of supercooling of the refrigerant. Δ
Since the throttle opening Re2 of the second throttle means 14, the rotation speed Nc of the compressor 101, and the rotation speed Nr of the refrigerant conveying means 6 can be increased or decreased so that Tref becomes positive, the efficiency of the refrigerant conveying means 6 decreases. Can be prevented.

【0132】(実施例13)次に本発明の第13実施例
について、図29を参照しながら説明する。なお、第
1、第2、第3、第4、第5、第6、第7、第8、第
9、第10、第11および第12実施例と同一部分は同
一番号とし、詳細な説明は省略する。
(Thirteenth Embodiment) Next, a thirteenth embodiment of the present invention will be described with reference to FIG. The same parts as those of the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and twelfth embodiments are designated by the same reference numerals, and detailed description will be given. Is omitted.

【0133】図29は、冷媒搬送手段6に、熱機関11
3より排出される排気を利用して動力を得る補助動力手
段56を備えた構成とした空気調和装置であり、補助動
力手段56としてタービンを用いた構成とする。
FIG. 29 shows that the cooling medium transport means 6 includes the heat engine 11.
The air conditioner has an auxiliary power unit 56 that obtains power using exhaust gas discharged from the air conditioner 3, and uses a turbine as the auxiliary power unit 56.

【0134】上記のように構成された空気調和装置にお
いて、通常の暖房運転もしくは低負荷時に暖房運転を行
う場合、圧縮機101は停止状態にあり、まず第1の流
路切替手段1は冷媒搬送手段6から室外温水熱交換器1
0へ冷媒が流通するように切り替わり、第2の流路切替
手段2は四方弁3から冷媒搬送手段6へ冷媒が流通する
ように切り替わり、四方弁3は破線で示される回路に切
り替わる。熱機関113より排出された排気は冷媒搬送
手段6と接続された補助動力手段56の冷媒搬送側のタ
ービンの反対側に設けられたタービンに衝突し、両ター
ビンを接続する軸を介して冷媒搬送側のタービンを駆動
させ、熱機関113の駆動による発電機112から供給
される電力で駆動もしくは商用電力で駆動する冷媒搬送
装置6はこの補助動力手段56により得られる動力を補
助として受けながら冷媒を吐出する。このような状態で
冷媒は、冷媒搬送手段6から吐出され、次に室外温水熱
交換器10において、熱機関113から流出した温水と
熱交換を行い温水の熱を吸熱し高温冷媒となる。この高
温冷媒は四方弁3を通過し、室内熱交換器8に流入し、
室内熱交換器8において室内空気と熱交換を行ない放熱
することで室内を暖房する。室内熱交換器8において熱
交換を行った後に冷媒は、室内熱交換器8から第1の絞
り手段5、室外熱交換器4、四方弁3、第2の流路切替
手段2を順次通過し、冷媒搬送手段6に再び流入し、上
記動作を繰り返す。
In the air-conditioning apparatus configured as described above, when performing the normal heating operation or the heating operation at a low load, the compressor 101 is in the stopped state, and the first flow path switching means 1 first operates the refrigerant transfer device. Means 6 to outdoor hot water heat exchanger 1
The refrigerant is switched to zero so that the refrigerant flows, the second flow path switching means 2 switches so that the refrigerant flows from the four-way valve 3 to the refrigerant conveying means 6, and the four-way valve 3 switches to the circuit indicated by the broken line. The exhaust gas discharged from the heat engine 113 collides with a turbine provided on the side opposite to the turbine on the refrigerant transport side of the auxiliary power means 56 connected to the refrigerant transport means 6 and transports the refrigerant via a shaft connecting the two turbines. The refrigerant transporting device 6 that drives the turbine on the side and is driven by electric power supplied from the generator 112 by driving of the heat engine 113 or driven by commercial electric power receives the refrigerant while assisting the power obtained by the auxiliary power means 56 as auxiliary. Discharge. In such a state, the refrigerant is discharged from the refrigerant conveying means 6 and then exchanges heat with the hot water flowing out of the heat engine 113 in the outdoor hot water heat exchanger 10 to absorb the heat of the hot water to become a high-temperature refrigerant. This high-temperature refrigerant passes through the four-way valve 3 and flows into the indoor heat exchanger 8,
The indoor heat exchanger 8 exchanges heat with room air to radiate heat, thereby heating the room. After performing the heat exchange in the indoor heat exchanger 8, the refrigerant sequentially passes from the indoor heat exchanger 8 through the first throttle means 5, the outdoor heat exchanger 4, the four-way valve 3, and the second flow path switching means 2. Flows into the refrigerant conveying means 6 again, and repeats the above operation.

【0135】また寒冷地等、低温時もしくは高負荷時に
暖房運転を行う場合、冷媒搬送手段6は停止状態にあ
り、まず第1の流路切替手段1は圧縮機101から室外
温水熱交換器10へ冷媒が流通するように切り替わり、
第2の流路切替手段2は四方弁3から圧縮機101へ冷
媒が流通するように切り替わり、四方弁3は破線で示す
回路に切り替わる。次に圧縮機101が起動され、冷媒
はまず圧縮機101から吐出され高温高圧となり、次に
第1の流路切替手段1を通過し室外温水熱交換器10へ
流入し、室外温水熱交換器10において、熱機関113
から流出した温水と熱交換を行い温水の熱を吸熱し更に
高温冷媒となる。室外温水熱交換器10で熱交換を行っ
た後に、冷媒は四方弁3を通過し、室内熱交換器8に流
入し、室内熱交換器8において室内空気と熱交換を行い
放熱することで室内を暖房する。このようにして室内熱
交換器8において熱交換を行った後に冷媒は、室内熱交
換器8から第1の絞り手段5を通過し、室外熱交換器4
へ流入し、室外熱交換器4において外気と熱交換を行い
吸熱し蒸発する。このようにして室外熱交換器4におい
て熱交換を行った後に冷媒は、四方弁3、第2の流路切
替手段2を順次通過し、圧縮機101に再び流入して上
記動作を繰り返す。
When the heating operation is performed at a low temperature or a high load in a cold region or the like, the refrigerant transfer means 6 is in a stopped state, and the first flow path switching means 1 first sends the compressor 101 a signal from the outdoor hot water heat exchanger 10. The refrigerant is switched to flow to
The second flow path switching means 2 switches so that the refrigerant flows from the four-way valve 3 to the compressor 101, and the four-way valve 3 switches to a circuit indicated by a broken line. Next, the compressor 101 is started, and the refrigerant is first discharged from the compressor 101 to have a high temperature and a high pressure, and then passes through the first flow path switching means 1 and flows into the outdoor hot water heat exchanger 10, where the outdoor hot water heat exchanger At 10, the heat engine 113
It exchanges heat with the warm water flowing out of the furnace, absorbs the heat of the warm water, and becomes a high-temperature refrigerant. After performing heat exchange in the outdoor hot water heat exchanger 10, the refrigerant passes through the four-way valve 3, flows into the indoor heat exchanger 8, and exchanges heat with indoor air in the indoor heat exchanger 8 to radiate heat. To heat. After performing the heat exchange in the indoor heat exchanger 8 in this manner, the refrigerant passes from the indoor heat exchanger 8 through the first throttle means 5 and is passed through the outdoor heat exchanger 4.
And heat exchanges with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant sequentially passes through the four-way valve 3 and the second flow path switching means 2, flows into the compressor 101 again, and repeats the above operation.

【0136】一方、冷房運転を行なう場合、冷媒搬送手
段6は停止状態にあり、まず第1の流路切替手段1は圧
縮機101から四方弁3へ冷媒が流通するように切り替
わり、第2の流路切替手段2は四方弁3から圧縮機10
1へ冷媒が流通するように切り替わり、四方弁3は実線
で示す回路に切り替わる。このような状態において、圧
縮機101は熱機関113により駆動する発電機112
により供給される電力あるいは商用電力により駆動し、
圧縮機101から吐出された高温高圧の冷媒は室外温水
熱交換器10、四方弁3を順次通過し、室外熱交換器4
に流入し、外気と熱交換を行い放熱することにより凝縮
する。凝縮した冷媒は第1の絞り手段5を通過する際に
低温低圧の冷媒へと変化し、室内熱交換器8に流入す
る。室内熱交換器8に流入した冷媒は室内熱交換器8に
おいて、室内空気と熱交換を行い吸熱することで室内を
冷房することとなる。室内熱交換器8において熱交換を
行った後に冷媒は四方弁3、第2の流路切替手段2を順
次通過し、圧縮機101へと再び吸入され、上記動作を
切り返す。
On the other hand, when performing the cooling operation, the refrigerant conveying means 6 is in a stopped state, and the first flow path switching means 1 is switched so that the refrigerant flows from the compressor 101 to the four-way valve 3, and The flow switching means 2 is connected to the compressor 10 from the four-way valve 3.
1 so that the refrigerant circulates, and the four-way valve 3 switches to the circuit indicated by the solid line. In such a state, the compressor 101 is driven by the generator 112 driven by the heat engine 113.
Driven by electric power or commercial power supplied by
The high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the outdoor hot-water heat exchanger 10 and the four-way valve 3 sequentially, and
And condenses by exchanging heat with the outside air and releasing heat. The condensed refrigerant changes to low-temperature and low-pressure refrigerant when passing through the first throttle means 5 and flows into the indoor heat exchanger 8. The refrigerant that has flowed into the indoor heat exchanger 8 exchanges heat with indoor air in the indoor heat exchanger 8 to absorb heat, thereby cooling the room. After performing heat exchange in the indoor heat exchanger 8, the refrigerant sequentially passes through the four-way valve 3 and the second flow path switching means 2, is sucked into the compressor 101 again, and repeats the above operation.

【0137】このように本発明によれば、通常の暖房運
転もしくは低負荷時に暖房運転を行う場合、圧縮機10
1を駆動させることなく熱機関113の排熱を利用して
暖房運転を行ない、また、冷媒搬送手段6の駆動動力を
補助動力手段56により熱機関113の排気を利用して
補助することで駆動負荷を低減するので、冷媒搬送手段
6の消費電力を抑えることができる。
As described above, according to the present invention, when performing the normal heating operation or the heating operation at a low load, the compressor 10
1 is driven by utilizing the exhaust heat of the heat engine 113 without driving the heating engine 1, and the driving power of the refrigerant conveying means 6 is assisted by the auxiliary power means 56 using the exhaust of the heat engine 113. Since the load is reduced, the power consumption of the refrigerant conveying means 6 can be suppressed.

【0138】(実施例14)次に本発明の第14実施例
について、図30を参照しながら説明する。なお、第
1、第2、第3、第4、第5、第6、第7、第8、第
9、第10、第11、第12および第13実施例と同一
部分は同一番号とし、詳細な説明は省略する。
(Embodiment 14) Next, a fourteenth embodiment of the present invention will be described with reference to FIG. The same parts as those in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, and thirteenth embodiments have the same numbers, Detailed description is omitted.

【0139】図30は、冷却水回路に温水流量調整手段
29と、温水搬送手段28と、室内温水熱交換器57
と、冷却用熱交換器30と、この冷却用熱交換器30に
送風する送風装置31とを備えた熱機関113と、熱機
関113により駆動される発電機112と、冷媒を圧縮
する圧縮機101と、この圧縮機101の吐出側と吸入
側に配管接続する四方弁3と、この四方弁3の一端に配
管接続される室外熱交換器4と、この室外熱交換器4の
他端に配管接続される第1の絞り手段5とを備えてなる
室外ユニット7と、一端を四方弁3に配管接続し他端を
第1の絞り手段に配管接続する室内熱交換器8と、温水
搬送手段28から搬送される冷却水の流れる室内温水熱
交換器57とを備えてなる室内ユニット8とから構成さ
れる空気調和装置であり、室内熱交換器8は室内空気の
流通方向に対し、室内温水熱交換器57よりも前方に配
置されている。
FIG. 30 shows that the hot water flow rate adjusting means 29, the hot water conveying means 28, and the indoor hot water heat exchanger 57 are provided in the cooling water circuit.
, A heat engine 113 including a cooling heat exchanger 30, and a blower 31 for blowing air to the cooling heat exchanger 30, a generator 112 driven by the heat engine 113, and a compressor for compressing the refrigerant 101, a four-way valve 3 connected to the discharge side and the suction side of the compressor 101, an outdoor heat exchanger 4 connected to one end of the four-way valve 3 and a second end of the outdoor heat exchanger 4. An outdoor unit 7 including a first throttle means 5 connected by piping, an indoor heat exchanger 8 having one end connected to the four-way valve 3 and the other end connected to the first throttle means, and a hot water transporter And an indoor unit 8 including an indoor hot water heat exchanger 57 through which cooling water conveyed from the means 28 flows. The indoor heat exchanger 8 It is arranged ahead of the hot water heat exchanger 57.

【0140】上記のように構成された空気調和装置にお
いて、除湿運転を行なう場合、まず四方弁3は実線で示
す回路に切り替わる。次に圧縮機101は熱機関113
により駆動する発電機112により供給される電力によ
り駆動し、圧縮機101から吐出された高温高圧冷媒
は、四方弁3を通過し室外熱交換器4へと流入し、室外
熱交換器4において外気と熱交換を行い凝縮する。凝縮
した冷媒は、第1の絞り手段5を通過し、この第1の絞
り手段5を通過する際に低温低圧の冷媒へと変化し、続
いて室内熱交換器8に流入し、室内熱交換器8において
室内空気と熱交換を行ない、室内の空気を除湿する。こ
の除湿過程の際、空気は露点以下に冷却されることとな
る。室内熱交換器8において熱交換を行った後に冷媒
は、四方弁3を通過し、圧縮機101へ再び流入し上記
動作を切り返す。
In the air conditioner configured as described above, when performing the dehumidifying operation, first, the four-way valve 3 switches to the circuit shown by the solid line. Next, the compressor 101 is connected to the heat engine 113.
The high-temperature and high-pressure refrigerant discharged from the compressor 101 is driven by the electric power supplied by the generator 112 driven by the compressor, flows into the outdoor heat exchanger 4 through the four-way valve 3, And heat exchange to condense. The condensed refrigerant passes through the first throttle means 5, changes into a low-temperature and low-pressure refrigerant when passing through the first throttle means 5, subsequently flows into the indoor heat exchanger 8, and exchanges indoor heat. The unit 8 exchanges heat with the room air to dehumidify the room air. During this dehumidification process, the air is cooled below the dew point. After performing heat exchange in the indoor heat exchanger 8, the refrigerant passes through the four-way valve 3, flows into the compressor 101 again, and repeats the above operation.

【0141】一方、温水搬送手段28により吐出された
熱機関113の熱を吸熱し高温となった冷却水は温水流
量調整手段29を通過し、室内温水熱交換器57へと流
入し、室内熱交換器8を通過した後の冷却された空気と
熱交換を行ない、除湿過程で冷却された空気を暖める。
室内温水熱交換器57で熱交換をおこなった後に温水
は、熱機関113へと再び流入し、上記動作を繰り返
す。
On the other hand, the cooling water which has absorbed the heat of the heat engine 113 discharged by the hot water conveying means 28 and has become high temperature passes through the hot water flow rate adjusting means 29, flows into the indoor hot water heat exchanger 57, and Heat exchange is performed with the cooled air after passing through the exchanger 8 to warm the cooled air in the dehumidification process.
After performing heat exchange in the indoor hot water heat exchanger 57, the hot water flows into the heat engine 113 again, and the above operation is repeated.

【0142】また、冷房運転を行なう場合、温水流量調
整手段29は全閉の状態となり、熱機関113の熱を吸
熱し高温となった冷却水は室内温水熱交換器57へは流
入せず、冷却用熱交換器30へ流入し、冷却用熱交換器
30において放熱することで冷却され、熱機関113へ
再び流入し上記動作を繰り返す。そして、四方弁3は実
線で示される回路に切り替わり、圧縮機101は熱機関
113により駆動する発電機112により供給される電
力あるいは商用電力により駆動し、圧縮機101から吐
出された高温高圧の冷媒は四方弁3を通過し、室外熱交
換器4に流入し、外気と熱交換を行い放熱することによ
り凝縮する。このように室外熱交換器4において熱交換
を行った後に、冷媒は第1の絞り手段5を通過し、この
第1の絞り手段5を通過する際に低温低圧の冷媒へと変
化し、室内熱交換器8に流入する。室内熱交換器8に流
入した冷媒は室内熱交換器8において、室内空気と熱交
換を行い吸熱することにより室内を冷房する。室内熱交
換器8において熱交換を行った後に冷媒は、四方弁3を
通過し、圧縮機101へと再び吸入され、上記動作を繰
り返す。
When the cooling operation is performed, the hot water flow rate adjusting means 29 is fully closed, and the high-temperature cooling water that has absorbed the heat of the heat engine 113 does not flow into the indoor hot-water heat exchanger 57. It flows into the cooling heat exchanger 30 and is cooled by radiating heat in the cooling heat exchanger 30, flows into the heat engine 113 again, and repeats the above operation. Then, the four-way valve 3 is switched to a circuit shown by a solid line, and the compressor 101 is driven by electric power or commercial electric power supplied from a generator 112 driven by a heat engine 113, and is a high-temperature and high-pressure refrigerant discharged from the compressor 101. Passes through the four-way valve 3, flows into the outdoor heat exchanger 4, exchanges heat with the outside air, and condenses by radiating heat. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes through the first throttle unit 5, and when passing through the first throttle unit 5, changes into a low-temperature low-pressure refrigerant. It flows into the heat exchanger 8. The refrigerant that has flowed into the indoor heat exchanger 8 exchanges heat with indoor air in the indoor heat exchanger 8 and absorbs heat to cool the room. After performing heat exchange in the indoor heat exchanger 8, the refrigerant passes through the four-way valve 3, is sucked into the compressor 101 again, and repeats the above operation.

【0143】また、通常の暖房運転もしくは低負荷時に
暖房運転を行う場合、圧縮機101は停止状態にあり、
温水搬送手段28により吐出された熱機関113の熱を
吸熱し高温となった冷却水は温水流量調整手段29を通
過し、室内温水熱交換器57へと流入し、室内温水熱交
換器57において室内空気と熱交換を行い放熱すること
で室内を暖房する。室内温水熱交換器57で熱交換をお
こなった後に温水は、熱機関113へと再び流入し、上
記動作を繰り返す。
When performing the normal heating operation or the heating operation at a low load, the compressor 101 is in a stopped state,
The high-temperature cooling water that has absorbed the heat of the heat engine 113 discharged by the hot water conveying means 28 and passed through the hot water flow rate adjusting means 29, flows into the indoor hot water heat exchanger 57, and Heats the room by exchanging heat with room air and releasing heat. After performing heat exchange in the indoor hot water heat exchanger 57, the hot water flows into the heat engine 113 again, and the above operation is repeated.

【0144】また、寒冷地等、低温時もしくは高負荷時
に暖房運転を行なう場合、まず、四方弁3は破線で示さ
れる回路に切り替わる。次に圧縮機101は熱機関11
3により駆動する発電機112により供給される電力に
より駆動し、圧縮機101から吐出された高温高圧の冷
媒は四方弁3を通過し、室内熱交換器8に流入し、室内
空気と熱交換を行い放熱することにより室内を暖房す
る。このように室内熱交換器8において熱交換を行った
後の冷媒は、第1の絞り手段5を通過し、この第1の絞
り手段5を通過する際に低温低圧の冷媒へと変化し、室
外熱交換器4に流入する。室外熱交換器4に流入した冷
媒は室外熱交換器4において、外気と熱交換を行い吸熱
し蒸発しする。室外熱交換器4において熱交換を行った
後の冷媒は、四方弁3を通過し、圧縮機101へと再び
吸入され、上記動作を切り返す。
When the heating operation is performed at a low temperature or a high load in a cold region or the like, first, the four-way valve 3 is switched to a circuit indicated by a broken line. Next, the compressor 101 is connected to the heat engine 11.
The high-temperature and high-pressure refrigerant discharged from the compressor 101 is driven by the electric power supplied by the generator 112 driven by the compressor 3, passes through the four-way valve 3, flows into the indoor heat exchanger 8, and exchanges heat with indoor air. The room is heated by radiating heat. The refrigerant after performing the heat exchange in the indoor heat exchanger 8 as described above passes through the first throttle unit 5, and changes into a low-temperature and low-pressure refrigerant when passing through the first throttle unit 5, It flows into the outdoor heat exchanger 4. The refrigerant flowing into the outdoor heat exchanger 4 exchanges heat with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. The refrigerant having undergone heat exchange in the outdoor heat exchanger 4 passes through the four-way valve 3 and is sucked into the compressor 101 again, and the above operation is repeated.

【0145】上記の暖房運転でも暖房能力が不足してい
る場合は、温水搬送手段28により吐出される、熱機関
113の排熱を吸熱し高温となった冷却水を温水流量調
整手段29により適当な流量に調整した後、室内温水熱
交換器57へと流入させ、ここで冷却水の持つ排熱を室
内熱交換器8を通過した空気に放熱させることで空気を
さらに暖め、暖房能力を確保する。このようにして室内
温水熱交換器57で熱交換をおこなった冷却水は、熱機
関113へと再び流入し、上記動作を繰り返す。
If the heating capacity is still insufficient even in the above-mentioned heating operation, the hot water discharged from the hot water conveying means 28 and absorbing the exhaust heat of the heat engine 113 and heated to a high temperature is appropriately cooled by the hot water flow rate adjusting means 29. After the flow rate is adjusted to a suitable value, the air flows into the indoor hot water heat exchanger 57, where the exhaust heat of the cooling water is radiated to the air passing through the indoor heat exchanger 8 to further warm the air and secure the heating capacity. I do. The cooling water that has exchanged heat in the indoor hot water heat exchanger 57 in this way flows into the heat engine 113 again, and repeats the above operation.

【0146】このように本発明によれば、ヒートポンプ
の蒸発器としての室内熱交換器8により吸熱および除湿
された室内空気を、熱機関113の冷却回路中としての
室外温水熱交換器における温水の放熱により加熱するこ
とができるので、室温を低下させることなく除湿運転を
行なうことができる。
As described above, according to the present invention, the indoor air absorbed and dehumidified by the indoor heat exchanger 8 as the evaporator of the heat pump is converted into the hot water in the outdoor hot water heat exchanger as the cooling circuit of the heat engine 113. Since heating can be performed by heat radiation, the dehumidifying operation can be performed without lowering the room temperature.

【0147】(実施例15)次に本発明の第15実施例
について、図14、図31および図32を参照しながら
説明する。なお、第1、第2、第3、第4、第5、第
6、第7、第8、第9、第10、第11、第12および
第13実施例と同一部分は同一番号とし、詳細な説明は
省略する。
(Embodiment 15) Next, a fifteenth embodiment of the present invention will be described with reference to FIGS. 14, 31 and 32. FIG. The same parts as those in the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, and thirteenth embodiments have the same numbers, Detailed description is omitted.

【0148】図31は本実施例の空気調和装置の制御ブ
ロック図であり、室内の設定温度を記憶し出力する第1
の記憶手段19と、室内ユニット9に設けられ室内温度
を検出する第1の温度検出手段20と、第1の記憶手段
19による検出値と第1の温度検出手段20による検出
値との差を演算する第1の演算手段21と、この第1の
演算手段21による演算結果より温水流量調整手段29
の開度を演算する第4の演算手段33と、この第4の演
算手段33による演算結果より温水流量調整手段29の
開度を制御する第3の制御手段34とを備えた構成とな
っている。
FIG. 31 is a control block diagram of the air conditioner of the present embodiment.
Storage means 19, a first temperature detection means 20 provided in the indoor unit 9 for detecting an indoor temperature, and a difference between a value detected by the first storage means 19 and a value detected by the first temperature detection means 20. A first calculating means 21 for calculating, and a hot water flow rate adjusting means 29 based on a calculation result by the first calculating means 21.
And a third control means 34 for controlling the degree of opening of the hot water flow rate adjusting means 29 based on the result of calculation by the fourth calculating means 33. I have.

【0149】上記構成において図32を参照しながら運
転動作を説明する。図32は本発明の第15実施例の空
気調和装置の制御フローチャートであり、その流れに沿
って詳細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 32 is a control flowchart of the air conditioner of the fifteenth embodiment of the present invention, and details will be described along the flow.

【0150】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、この演算結果ΔTが正の場合は加熱能
力が不足しているということなので、温水流量調整手段
29の開度増減量ΔRhを第4の演算手段33により図
14のように演算し、この演算結果から温水流量調整手
段29の開度を第3の制御手段34により増大させる。
一方、第1の演算手段21による演算結果であるΔTが
負の場合は加熱能力が過多であるということなので、温
水流量調整手段29の開度増減量ΔRhを第4の演算手
段33により図14のように演算し、この演算結果から
温水流量調整手段29の開度を第3の制御手段34によ
り減少させる。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2.
When the calculation result ΔT is positive, it means that the heating capacity is insufficient. Therefore, the opening / closing amount ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. Then, the opening degree of the hot water flow rate adjusting means 29 is increased by the third control means 34 based on the calculation result.
On the other hand, if ΔT, which is the result of the calculation by the first calculating means 21, is negative, it means that the heating capacity is excessive, and the fourth calculating means 33 determines the amount of increase / decrease ΔRh of the hot water flow rate adjusting means 29 as shown in FIG. The opening degree of the hot water flow rate adjusting means 29 is reduced by the third control means 34 based on the calculation result.

【0151】このように本発明によれば、第1の記憶手
段19によって記憶した設定温度Tmと第1の温度検出
手段20より検出した室内温度Tsとの温度差ΔTを演
算し、この温度差ΔTにあわせて加熱能力が増減できる
ように温水流量調整手段29の開度Rhを増減させるこ
とができるので、室内温度の変化を抑制し除湿運転を行
なうことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated, and this temperature difference is calculated. Since the opening Rh of the hot water flow rate adjusting means 29 can be increased or decreased so that the heating capacity can be increased or decreased in accordance with ΔT, a change in the room temperature can be suppressed and the dehumidifying operation can be performed.

【0152】(実施例16)次に本発明の第16実施例
について、図14、図17、図33および図34を参照
しながら説明する。なお、第1、第2、第3、第4、第
5、第6、第7、第8、第9、第10、第11、第1
2、第13、第14および第15実施例と同一部分は同
一番号とし、詳細な説明は省略する。
(Embodiment 16) Next, a sixteenth embodiment of the present invention will be described with reference to FIG. 14, FIG. 17, FIG. 33 and FIG. The first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and first
The same parts as those in the second, thirteenth, fourteenth, and fifteenth embodiments have the same reference numerals, and a detailed description thereof will be omitted.

【0153】図33は本実施例の空気調和装置の制御ブ
ロック図であり、温水流量調整手段29の開度を判定す
る第4の判定手段35と、この第4の判定手段35によ
る判定結果より温水搬送手段28の回転数を演算する第
5の演算手段36と、この第5の演算手段36による演
算結果より温水搬送手段28の回転数を制御する第4の
制御手段37とを備えた構成となっている。
FIG. 33 is a control block diagram of the air conditioner of this embodiment. The fourth judgment means 35 for judging the degree of opening of the hot water flow rate adjusting means 29 and the judgment result by the fourth judgment means 35 are shown. A configuration including fifth calculating means 36 for calculating the number of rotations of the hot water conveying means 28, and fourth control means 37 for controlling the number of rotations of the hot water conveying means 28 based on the calculation result by the fifth calculating means 36. It has become.

【0154】上記構成において図34を参照しながら運
転動作を説明する。図34は本発明の第16実施例の空
気調和装置の制御フローチャートであり、その流れに沿
って詳細を説明する。
The operation of the above configuration will be described with reference to FIG. FIG. 34 is a control flowchart of the air conditioner of the sixteenth embodiment of the present invention, and details will be described along the flow.

【0155】第1の記憶手段19によって記憶した設定
温度Tmと第1の温度検出手段20より検出した室内温
度Tsとの温度差ΔT=Tm−Tsを第1の演算手段2
1により演算し、この演算結果ΔTが正の場合は加熱能
力が不足しているということなので、第4の判定手段3
5により温水流量調整手段29の開度Rhが最大である
かを判定し、温水流量調整手段29の開度Rhが最大で
ある場合はさらに温水循環量を増やすように温水搬送手
段28の回転数増減量ΔNhを第5の演算手段36によ
り図17のように演算し、この演算結果から温水搬送手
段28の回転数Nhを第4の制御手段37により増大さ
せ、冷媒流量調整手段29の開度Rhが最大でない場合
は温水流量調整手段29の開度増減量ΔRhを第4の演
算手段33により図14のように演算し、この演算結果
から温水流量調整手段29の開度Rhを第3の制御手段
34により増大させる。一方、第1の演算手段21によ
る演算結果であるΔTが負である場合は、加熱能力が過
多であるということなので、水流量調整手段29の開度
増減量ΔRhを第4の演算手段33により図14のよう
に演算し、この演算結果から温水流量調整手段29の開
度Rhを第3の制御手段34により減少させる。
The temperature difference ΔT = Tm−Ts between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated by the first calculation means 2
1, if the calculation result ΔT is positive, it means that the heating capacity is insufficient.
5 is used to determine whether the opening Rh of the hot water flow rate adjusting means 29 is the maximum. If the opening degree Rh of the hot water flow rate adjusting means 29 is the maximum, the rotation speed of the hot water conveying means 28 is increased so as to further increase the hot water circulation amount. The increase / decrease amount ΔNh is calculated by the fifth calculating means 36 as shown in FIG. 17, and from this calculation result, the rotation speed Nh of the hot water transport means 28 is increased by the fourth control means 37 and the opening degree of the refrigerant flow rate adjusting means 29 is increased. If Rh is not the maximum, the opening / closing amount ΔRh of the hot water flow rate adjusting means 29 is calculated by the fourth calculating means 33 as shown in FIG. It is increased by the control means 34. On the other hand, if ΔT, which is the result of calculation by the first calculating means 21, is negative, it means that the heating capacity is excessive, and the fourth calculating means 33 determines the amount of increase / decrease ΔRh of the water flow rate adjusting means 29. The calculation is performed as shown in FIG. 14, and the opening degree Rh of the hot water flow rate adjusting means 29 is reduced by the third control means 34 based on the calculation result.

【0156】このように本発明によれば、第1の記憶手
段19によって記憶した設定温度Tmと第1の温度検出
手段20より検出した室内温度Tsとの温度差ΔTを演
算し、この温度差ΔTにあわせて加熱能力が増減できる
ように温水流量調整手段29の開度Rh、及び、温水搬
送手段28の回転数Nhを増減させることができるの
で、室内温度の変化を高精度で抑制し除湿運転を行なう
ことができる。
As described above, according to the present invention, the temperature difference ΔT between the set temperature Tm stored by the first storage means 19 and the room temperature Ts detected by the first temperature detection means 20 is calculated, and this temperature difference is calculated. Since the opening Rh of the hot water flow rate adjusting means 29 and the rotation speed Nh of the hot water conveying means 28 can be increased or decreased so that the heating capacity can be increased or decreased in accordance with ΔT, the change in the room temperature can be suppressed with high accuracy and the dehumidification can be performed. Driving can be performed.

【0157】(実施例17)次に本発明の第17実施例
について、図35を参照しながら説明する。なお、第
1、第2、第3、第4、第5、第6、第7、第8、第
9、第10、第11、第12、第13、第14、第15
および第16実施例と同一部分は同一番号とし、詳細な
説明は省略する。
(Embodiment 17) Next, a seventeenth embodiment of the present invention will be described with reference to FIG. The first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth, fourteenth, and fifteenth
The same parts as those of the sixteenth embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0158】図35は、2つの室内熱交換器8a、8b
と、2つの室内温水熱交換器57a、57bと、2つの
第1の絞り手段5a、5bと、2つの温水流量調整弁2
9a、29bとを備えた構成とした空気調和装置であ
る。
FIG. 35 shows two indoor heat exchangers 8a and 8b.
, Two indoor hot water heat exchangers 57a, 57b, two first throttle means 5a, 5b, and two hot water flow control valves 2.
9a, 29b.

【0159】上記のように構成された空気調和装置にお
いて、室内ユニット9aが冷房運転を行い、室内ユニッ
ト9bが暖房運転を行う場合、まず冷房運転を行なう室
内ユニット9aに備えられた室内温水熱交換器57aと
接続されている温水流量調整手段29aは全閉し、暖房
運転を行なう室内ユニット9bに備えられた室内熱交換
器8bと接続されている第1の絞り手段5bは全閉し、
四方弁3は実線で示す回路に切り替わる。このような状
態で、圧縮機101から吐出された高温高圧冷媒は、四
方弁3を通過し室外熱交換器4へと流入し、室外熱交換
器4において外気と熱交換を行い凝縮する。このように
室外熱交換器4において熱交換を行った後に、冷媒は、
冷房運転を行なう室内熱交換器8aと接続された第1の
絞り手段5aを通過し、この第1の絞り手段5aを通過
する際に低温低圧の冷媒となり室内熱交換器8aに流入
し、室内熱交換器8aにおいて室内空気の熱を吸熱する
ことで室内を冷房する。このように室内熱交換器8aに
おいて熱交換を行った後に冷媒は、四方弁3を通過し、
圧縮機101へ再び流入し、上記動作を繰り返す。
In the air conditioner configured as described above, when the indoor unit 9a performs a cooling operation and the indoor unit 9b performs a heating operation, first, the indoor hot water heat exchange provided in the indoor unit 9a that performs the cooling operation is performed. The hot water flow rate adjusting means 29a connected to the heater 57a is fully closed, and the first throttle means 5b connected to the indoor heat exchanger 8b provided in the indoor unit 9b performing the heating operation is fully closed,
The four-way valve 3 switches to the circuit shown by the solid line. In such a state, the high-temperature and high-pressure refrigerant discharged from the compressor 101 passes through the four-way valve 3 and flows into the outdoor heat exchanger 4, where the outdoor heat exchanger 4 exchanges heat with the outside air and condenses. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant is
After passing through the first throttle means 5a connected to the indoor heat exchanger 8a performing the cooling operation, when passing through the first throttle means 5a, it becomes a low-temperature and low-pressure refrigerant and flows into the indoor heat exchanger 8a. The room is cooled by absorbing the heat of the room air in the heat exchanger 8a. After performing the heat exchange in the indoor heat exchanger 8a in this manner, the refrigerant passes through the four-way valve 3,
It flows into the compressor 101 again, and the above operation is repeated.

【0160】一方、温水搬送手段28により吐出された
熱機関113の熱を吸熱し、高温となった冷却水は暖房
運転を行なう室内温水熱交換器57bと接続された温水
流量調整手段29bを通過し、室内温水熱交換器57b
へと流入し、室内温水熱交換器57bにおいて室内空気
と熱交換を行い放熱することで室内を暖房する。室内温
水熱交換器57bで熱交換をおこなった温水は、熱機関
113へと再び流入し上記動作を繰り返す。
On the other hand, the heat of the heat engine 113 discharged by the hot water conveying means 28 is absorbed, and the high-temperature cooling water passes through the hot water flow rate adjusting means 29b connected to the indoor hot water heat exchanger 57b for performing the heating operation. And the indoor hot water heat exchanger 57b
To heat the room by exchanging heat with room air in the room hot water heat exchanger 57b to radiate heat. The hot water that has exchanged heat in the indoor hot water heat exchanger 57b flows into the heat engine 113 again and repeats the above operation.

【0161】また、室内ユニット9aが暖房運転を行い
室内ユニット9bが冷房運転を行なう場合は、温水流量
調整手段29bは全閉し、第1の絞り手段5aは全閉と
なり上記と同様に運転される。
When the indoor unit 9a performs the heating operation and the indoor unit 9b performs the cooling operation, the hot water flow rate adjusting means 29b is fully closed and the first throttle means 5a is fully closed, and the operation is performed in the same manner as described above. You.

【0162】室内ユニット9a、9bともに冷房運転を
行なう場合、温水流量調整手段29a、29bは全閉と
なり、熱機関113の熱を吸熱し高温となった冷却水は
室内温水熱交換器57a、57bへは流入せず、冷却用
熱交換器30へ流入し、冷却用熱交換器30において放
熱し冷却され熱機関113へ再び流入し上記動作を繰り
返す。そして、四方弁3は実線で示される回路に切り替
わり、次に圧縮機101は熱機関113により駆動する
発電機112により供給される電力あるいは商用電力に
より駆動し、圧縮機101から吐出された高温高圧の冷
媒は四方弁3を通過し、室外熱交換器4に流入し、室外
熱交換器4において外気と熱交換を行い放熱することに
より凝縮する。このように室外熱交換器4で熱交換を行
った後に、冷媒は、第1の絞り手段5a、5bを通過
し、第1の絞り手段5a、5bを通過する際に低温低圧
の冷媒へと変化し、室内熱交換器8a、8bに流入す
る。室内熱交換器8a、8bに流入した冷媒は室内熱交
換器8a、8bにおいて、室内空気と熱交換を行い吸熱
することで室内を冷房することとなる。室内熱交換器8
a、8bにおいて熱交換を行った後に冷媒は、四方弁3
を通過し、圧縮機101へと再び吸入され上記動作を繰
り返す。
When both the indoor units 9a and 9b perform the cooling operation, the hot water flow rate adjusting means 29a and 29b are fully closed, the heat of the heat engine 113 is absorbed, and the high-temperature cooling water is supplied to the indoor hot water heat exchangers 57a and 57b. Does not flow into the heat exchanger 30, but flows into the cooling heat exchanger 30, radiates heat in the cooling heat exchanger 30, is cooled, flows again into the heat engine 113, and repeats the above operation. Then, the four-way valve 3 switches to the circuit shown by the solid line, and then the compressor 101 is driven by the electric power or the commercial power supplied by the generator 112 driven by the heat engine 113, and the high-temperature and high-pressure discharged from the compressor 101 Passes through the four-way valve 3, flows into the outdoor heat exchanger 4, exchanges heat with the outside air in the outdoor heat exchanger 4, and condenses by radiating heat. After performing the heat exchange in the outdoor heat exchanger 4 in this manner, the refrigerant passes through the first throttle means 5a and 5b, and when passing through the first throttle means 5a and 5b, turns into a low-temperature low-pressure refrigerant. And then flows into the indoor heat exchangers 8a and 8b. The refrigerant that has flowed into the indoor heat exchangers 8a and 8b exchanges heat with indoor air in the indoor heat exchangers 8a and 8b to absorb heat, thereby cooling the room. Indoor heat exchanger 8
a, after the heat exchange in 8b, the refrigerant
And is sucked into the compressor 101 again to repeat the above operation.

【0163】また、室内ユニット9a、9bともに暖房
運転を行なう場合で、通常の暖房運転もしくは低負荷時
に暖房運転を行う場合、圧縮機101は停止状態にあ
り、温水搬送手段28により吐出された熱機関113の
熱を吸熱し高温となった冷却水は温水流量調整手段29
a、29bを通過し、室内温水熱交換器57a、57b
へと流入し、室内温水熱交換器57a、57bにおいて
室内空気と熱交換を行い放熱することで室内を暖房す
る。室内温水熱交換器57a、57bで熱交換をおこな
った後に温水は、熱機関113へと再び流入し、上記動
作を繰り返す。
In the case where the indoor units 9a and 9b perform the heating operation, and when the heating operation is performed in the normal heating operation or when the load is low, the compressor 101 is in the stopped state and the heat discharged by the hot water conveying means 28 is stopped. The cooling water that has become high temperature by absorbing the heat of the engine 113 is supplied to the hot water flow rate adjusting means 29.
a, 29b, and passes through the indoor hot water heat exchangers 57a, 57b.
To heat the room by exchanging heat with room air in the room hot water heat exchangers 57a and 57b to radiate heat. After performing the heat exchange in the indoor hot water heat exchangers 57a and 57b, the hot water flows into the heat engine 113 again, and the above operation is repeated.

【0164】次に、寒冷地等、低温時もしくは高負荷時
に暖房運転を行なう場合、まず、四方弁3は破線で示さ
れる回路に切り替わる。次に圧縮機101は熱機関11
3により駆動する発電機112により供給される電力に
より駆動し、圧縮機101から吐出された高温高圧の冷
媒は四方弁3を通過し、室内熱交換器8a、8bに流入
し、室内空気と熱交換を行い放熱することにより室内を
暖房する。このように室内熱交換器8a、8bにおいて
熱交換を行った後に冷媒は、第1の絞り手段5a、5b
を通過し、この第1の絞り手段5a、5bを通過する際
に低温低圧の冷媒へと変化し、室外熱交換器4に流入す
る。室外熱交換器4に流入した冷媒は室外熱交換器4に
おいて、外気と熱交換を行い吸熱し蒸発しする。室外熱
交換器4において熱交換を行った後に冷媒は、四方弁3
を通過し、圧縮機101へと再び吸入され、上記動作を
切り返す。
Next, when the heating operation is performed at a low temperature or a high load in a cold district or the like, first, the four-way valve 3 is switched to a circuit indicated by a broken line. Next, the compressor 101 is connected to the heat engine 11.
The high-temperature and high-pressure refrigerant discharged from the compressor 101 is driven by the electric power supplied by the generator 112 driven by the compressor 3, and flows through the four-way valve 3, flows into the indoor heat exchangers 8a and 8b, and is cooled by the indoor air and heat. The room is heated by exchanging and radiating heat. After performing the heat exchange in the indoor heat exchangers 8a and 8b in this manner, the refrigerant flows into the first throttle means 5a and 5b.
When passing through the first throttle means 5a, 5b, the refrigerant changes into a low-temperature, low-pressure refrigerant and flows into the outdoor heat exchanger 4. The refrigerant flowing into the outdoor heat exchanger 4 exchanges heat with the outside air in the outdoor heat exchanger 4 to absorb heat and evaporate. After performing heat exchange in the outdoor heat exchanger 4, the refrigerant is supplied to the four-way valve 3.
, And is sucked into the compressor 101 again, and the above operation is repeated.

【0165】上記の暖房運転でも暖房能力が不足してい
る場合は、温水搬送手段28により吐出される、熱機関
113の排熱を吸熱し高温となった冷却水を温水流量調
整手段29a、29bにより適当な流量に調整した後、
室内温水熱交換器57a、57bへと流入させ、ここで
冷却水の持つ排熱を室内熱交換器8a、8bを通過する
空気に放熱させることで空気をさらに暖め、暖房能力を
確保する。このようにして室内温水熱交換器57a、5
7bで熱交換をおこなった冷却水は、熱機関113へと
再び流入し、上記動作を繰り返す。
If the heating capacity is insufficient even in the above-described heating operation, the cooling water discharged by the hot water conveying means 28 and having a high temperature by absorbing the exhaust heat of the heat engine 113 is supplied to the hot water flow adjusting means 29a, 29b. After adjusting to an appropriate flow rate by
The air flows into the indoor hot water heat exchangers 57a and 57b, and the exhaust heat of the cooling water is radiated to the air passing through the indoor heat exchangers 8a and 8b to further warm the air and secure the heating capacity. Thus, the indoor hot water heat exchangers 57a,
The cooling water that has exchanged heat in 7b flows into the heat engine 113 again, and repeats the above operation.

【0166】このように本発明によれば、圧縮機101
を利用したヒートポンプ回路と熱機関113の冷却水の
放熱を利用した暖房回路とを独立させるので、2つの室
内ユニット間において冷房と暖房を同時に運転すること
ができる。
As described above, according to the present invention, the compressor 101
Is independent of the heating circuit using the heat radiation of the cooling water of the heat engine 113, so that cooling and heating can be simultaneously operated between the two indoor units.

【0167】なお、第1の絞り手段5a、5b、室内熱
交換器8a、8b、室内ユニット9a、9b、温水流量
調整手段29a、29b及び、室内温水熱交換器57
a、57bをそれぞれ2つずつ備えた構成としたが、2
つ以上の構成としても同様の作用効果が得られる。
The first throttle means 5a and 5b, the indoor heat exchangers 8a and 8b, the indoor units 9a and 9b, the hot water flow rate adjusting means 29a and 29b, and the indoor hot water heat exchanger 57
a and 57b are provided two each.
The same operation and effect can be obtained with more than one configuration.

【0168】[0168]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、暖房運転時、圧縮機を駆動させることなく
熱機関の排熱を利用して暖房するので、消費電力を小さ
く抑えながらも低能力暖房運転を行うことができるとい
う効果のある空気調和装置を提供できる。
As is clear from the above embodiments, according to the present invention, during heating operation, heating is performed by using the exhaust heat of the heat engine without driving the compressor, so that power consumption can be reduced. It is possible to provide an air conditioner having an effect that a low-capacity heating operation can be performed.

【0169】また、暖房運転時、圧縮機を駆動させるこ
となく熱機関の排熱を利用して室内を暖房することがで
き、かつ冷媒は四方弁を通らずに循環するので、サイク
ルの圧力損失と消費電力を小さく抑えながら、低能力暖
房運転を行うことができるという効果のある空気調和装
置を提供できる。
In the heating operation, the interior of the room can be heated by using the exhaust heat of the heat engine without driving the compressor, and the refrigerant circulates without passing through the four-way valve. Thus, it is possible to provide an air conditioner having an effect of performing a low-capacity heating operation while suppressing power consumption to be small.

【0170】また、通常の暖房運転もしくは低負荷時に
暖房運転を行う場合、圧縮機を駆動させることなく熱機
関の排熱を利用して暖房運転を行ない、また、冷媒が四
方弁及び、室外熱交換器を通過しないため、四方弁及
び、室外熱交換器の圧力損失の影響を受けずに消費電力
を抑えながらも低能力暖房運転を行なうことができると
いう効果のある空気調和装置を提供できる。
When the heating operation is performed in a normal heating operation or at a low load, the heating operation is performed using the exhaust heat of the heat engine without driving the compressor. Since the air conditioner does not pass through the exchanger, it is possible to provide an air conditioner having an effect of performing low-capacity heating operation while suppressing power consumption without being affected by the pressure loss of the four-way valve and the outdoor heat exchanger.

【0171】また、通常の暖房運転もしくは低負荷時に
暖房運転を行う場合、冷媒搬送手段の吸入側冷媒を冷却
し常に液冷媒となるようにするので、冷媒搬送手段の効
率低下を抑制することができるという効果のある空気調
和装置を提供できる。
Further, when the heating operation is performed in a normal heating operation or at a low load, the refrigerant on the suction side of the refrigerant conveying means is cooled so as to be always a liquid refrigerant. An air conditioner having an effect of being able to be provided can be provided.

【0172】また、ターボエンジンの吸気側空気を冷媒
と熱交換させ冷媒の蒸発熱を利用して冷却することによ
り、ターボエンジンの吸気側空気の比重量を増加させる
ことにより、ターボエンジンの効率を向上することがで
きるという効果のある空気調和装置を提供できる。
Further, the efficiency of the turbo engine is increased by increasing the specific weight of the air on the intake side of the turbo engine by exchanging heat with the refrigerant on the air on the intake side of the turbo engine and cooling by utilizing the evaporation heat of the refrigerant. An air conditioner having an effect of being able to be improved can be provided.

【0173】また、熱機関の排熱利用による暖房回路と
通常のヒートポンプとしての冷房回路とを第1の流路切
替、第2の流路切替手段、第5の流路切替手段、第6の
流路切替手段の切り替えにより独立させるので、2つの
室内ユニット間において冷房と暖房を同時に運転するこ
とができるという効果のある空気調和装置を提供でき
る。
Further, the heating circuit using the exhaust heat of the heat engine and the cooling circuit as the ordinary heat pump are switched between the first flow path switching means, the second flow path switching means, the fifth flow path switching means, and the sixth flow path switching means. Since the air conditioner is made independent by switching the flow path switching means, it is possible to provide an air conditioner having an effect that cooling and heating can be simultaneously operated between two indoor units.

【0174】また、第1の記憶手段よって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を演算し、この温度差にあわせて暖房能力が増減で
きるように、第1の絞り手段の絞り開度および冷媒搬送
手段の回転数を増減させることができるので、適確に室
内の設定温度による負荷に応じた暖房運転を行うことが
できるという効果のある空気調和装置を提供できる。
Also, the temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with this temperature difference. Since the opening degree of the throttle means and the number of revolutions of the refrigerant conveying means can be increased or decreased, an air conditioner having the effect of being able to perform a heating operation properly according to the load based on the set temperature in the room. Can be provided.

【0175】また、第1の記憶手段よって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を演算し、この温度差にあわせて暖房能力が増減で
きるように、第1の絞り手段の絞り開度、冷媒搬送手段
の回転数および温水流量調整手段の開度を増減させるこ
とができるので、適確に室内の設定温度による負荷に応
じた暖房運転を行うことができるという効果のある空気
調和装置を提供できる。
Further, a temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with the temperature difference. Since the opening degree of the throttle means, the rotation speed of the refrigerant conveying means, and the opening degree of the hot water flow rate adjusting means can be increased or decreased, the heating operation can be accurately performed according to the load based on the set temperature in the room. An air conditioner having such an effect can be provided.

【0176】また、第1の記憶手段よって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を演算し、この温度差にあわせて暖房能力が増減で
きるように、第1の絞り手段の絞り開度、冷媒搬送手段
の回転数、温水流量調整手段の開度および温水搬送手段
の回転数を増減させることができるので、適確に室内の
設定温度による負荷に応じた暖房運転を行うことができ
るという効果のある空気調和装置を提供できる。
Further, a temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with the temperature difference. 1, the opening degree of the throttle means, the rotation speed of the refrigerant conveying means, the opening degree of the hot water flow rate adjusting means, and the rotation speed of the hot water conveying means can be increased or decreased. An air conditioner having an effect of performing a heating operation can be provided.

【0177】また、第1の記憶手段よって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を演算し、この温度差にあわせて暖房能力が増減で
きるように、第1の絞り手段の絞り開度、冷媒搬送手段
の回転数、温水流量調整手段の開度、温水搬送手段の回
転数および熱機関の回転数を増減させることができるの
で、適確に室内の設定温度による負荷に応じた暖房運転
を行うことができるという効果のある空気調和装置を提
供できる。
Further, a temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with the temperature difference. (1) Since it is possible to increase or decrease the throttle opening degree of the throttle means, the rotation speed of the refrigerant transfer means, the opening degree of the hot water flow rate adjustment means, the rotation speed of the hot water transfer means, and the rotation speed of the heat engine, the indoor setting can be accurately performed. An air conditioner having an effect of performing a heating operation according to a load depending on temperature can be provided.

【0178】また、第1の記憶手段よって記憶した設定
温度と第1の温度検出手段より検出した室内温度との温
度差を演算し、この温度差にあわせて暖房能力が増減で
きるように、第1の絞り手段の絞り開度、冷媒搬送手段
の回転数、温水流量調整手段の開度、温水搬送手段の回
転数、熱機関の回転数および圧縮機の回転数を増減させ
ることができるので、適確に室内の設定温度による負荷
に応じた暖房運転を行うことができるという効果のある
空気調和装置を提供できる。
Further, a temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the heating capacity can be increased or decreased in accordance with the temperature difference. 1, the opening degree of the throttle means, the rotation speed of the refrigerant transfer means, the opening degree of the hot water flow rate adjustment means, the rotation speed of the hot water transfer means, the rotation speed of the heat engine, and the rotation speed of the compressor can be increased or decreased. It is possible to provide an air conditioner having an effect that a heating operation can be appropriately performed according to a load based on a set temperature in a room.

【0179】また、第8の演算手段により計算される冷
媒搬送手段に流れ込む冷媒の飽和温度と第2の温度検出
手段により検出されるの差を演算して得られる冷媒の過
冷却度と、第3の温度検出手段により検出される冷却冷
媒の温度と被冷却冷媒の温度との温度差を判定して、冷
媒の過冷却度であるが正になるように第2の絞り手段の
絞り開度、圧縮機の回転数および冷媒搬送手段の回転数
を増減させることができるので、冷媒搬送手段の効率低
下を防ぐことができるという効果のある空気調和装置を
提供できる。
The supercooling degree of the refrigerant obtained by calculating the difference between the saturation temperature of the refrigerant flowing into the refrigerant conveying means calculated by the eighth calculating means and the temperature detected by the second temperature detecting means, The temperature difference between the temperature of the cooling refrigerant detected by the temperature detecting means and the temperature of the refrigerant to be cooled is determined, and the degree of supercooling of the refrigerant is determined to be positive, but the degree of opening of the second restricting means is positive. Since the number of revolutions of the compressor and the number of revolutions of the refrigerant conveying means can be increased or decreased, it is possible to provide an air conditioner having an effect of preventing a decrease in the efficiency of the refrigerant conveying means.

【0180】また、通常の暖房運転もしくは低負荷時に
暖房運転を行う場合、圧縮機を駆動させることなく熱機
関の排熱を利用して暖房運転を行ない、また、冷媒搬送
手段の駆動動力を補助動力手段により熱機関の排気を利
用して補助することで駆動負荷を低減するので、冷媒搬
送手段の消費電力を抑えることができるという効果のあ
る空気調和装置を提供できる。
When the heating operation is performed in a normal heating operation or at a low load, the heating operation is performed by using the exhaust heat of the heat engine without driving the compressor, and the driving power of the refrigerant conveying means is assisted. Since the driving load is reduced by using the exhaust of the heat engine by the power means to assist, it is possible to provide an air conditioner having an effect that the power consumption of the refrigerant conveying means can be suppressed.

【0181】また、ヒートポンプの蒸発器としての室内
熱交換器により吸熱および除湿された室内空気を、熱機
関の冷却回路中としての室外温水熱交換器における温水
の放熱により加熱することができるので、室温を低下さ
せることなく除湿運転を行なうことができるという効果
のある空気調和装置を提供できる。
Further, the indoor air absorbed and dehumidified by the indoor heat exchanger as the evaporator of the heat pump can be heated by the heat radiation of the hot water in the outdoor hot water heat exchanger as the cooling circuit of the heat engine. An air conditioner having an effect that a dehumidifying operation can be performed without lowering the room temperature can be provided.

【0182】また、第1の記憶手段によって記憶した設
定温度と第1の温度検出手段より検出した室内温度との
温度差を演算し、この温度差にあわせて加熱能力が増減
できるように温水流量調整手段の開度を増減させること
ができるので、室内温度の変化を抑制し除湿運転を行な
うことができるという効果のある空気調和装置を提供で
きる。
The temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the flow rate of the hot water is increased or decreased so that the heating capacity can be increased or decreased in accordance with the temperature difference. Since the opening degree of the adjusting means can be increased or decreased, it is possible to provide an air conditioner having an effect of suppressing a change in room temperature and performing a dehumidifying operation.

【0183】また、第1の記憶手段によって記憶した設
定温度と第1の温度検出手段より検出した室内温度との
温度差を演算し、この温度差にあわせて加熱能力が増減
できるように温水流量調整手段の開度、及び、温水搬送
手段の回転数を増減させることができるので、室内温度
の変化を高精度で抑制し除湿運転を行なうことができる
という効果のある空気調和装置を提供できる。
Further, a temperature difference between the set temperature stored by the first storage means and the room temperature detected by the first temperature detection means is calculated, and the flow rate of the hot water is increased or decreased so as to increase or decrease the heating capacity in accordance with the temperature difference. Since the degree of opening of the adjusting means and the number of rotations of the hot water conveying means can be increased or decreased, it is possible to provide an air conditioner having an effect of suppressing a change in room temperature with high accuracy and performing a dehumidifying operation.

【0184】また、圧縮機を利用したヒートポンプ回路
と熱機関の冷却水の放熱を利用した暖房回路とを独立さ
せるので、2つの室内ユニット間において冷房と暖房を
同時に運転することができるという効果のある空気調和
装置を提供できる。
Further, since the heat pump circuit using the compressor and the heating circuit using the heat radiation of the cooling water of the heat engine are made independent, cooling and heating can be simultaneously operated between the two indoor units. An air conditioner can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の空気調和装置の冷凍サイク
ル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to Embodiment 1 of the present invention.

【図2】本発明の実施例2の空気調和装置の冷凍サイク
ル図
FIG. 2 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.

【図3】本発明の実施例3の空気調和装置の冷凍サイク
ル図
FIG. 3 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 3 of the present invention.

【図4】本発明の実施例4の空気調和装置の冷凍サイク
ル図
FIG. 4 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 4 of the present invention.

【図5】本発明の実施例5の空気調和装置の冷凍サイク
ル図
FIG. 5 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 5 of the present invention.

【図6】本発明の実施例6の空気調和装置の冷凍サイク
ル図
FIG. 6 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 6 of the present invention.

【図7】本発明の実施例7の空気調和装置の制御ブロッ
ク図
FIG. 7 is a control block diagram of an air conditioner according to a seventh embodiment of the present invention.

【図8】同空気調和装置の制御フローチャートFIG. 8 is a control flowchart of the air conditioner.

【図9】設定温度と室内温度の差に対する第1の絞り手
段の開度増減量を表したグラフ
FIG. 9 is a graph showing the amount of increase / decrease of the opening degree of the first throttle means with respect to the difference between the set temperature and the room temperature.

【図10】設定温度と室内温度の差に対する冷媒搬送手
段の回転数増減量を表したグラフ
FIG. 10 is a graph showing the amount of increase / decrease in the number of revolutions of the refrigerant conveying means with respect to the difference between the set temperature and the room temperature.

【図11】本発明の実施例8の空気調和装置の冷凍サイ
クル図
FIG. 11 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 8 of the present invention.

【図12】同空気調和装置の制御ブロック図FIG. 12 is a control block diagram of the air conditioner.

【図13】同空気調和装置の制御フローチャートFIG. 13 is a control flowchart of the air conditioner.

【図14】設定温度と室内温度の差に対する温水流量調
整手段の開度増減量を表したグラフ
FIG. 14 is a graph showing the amount of increase or decrease in the opening degree of the hot water flow rate adjusting means with respect to the difference between the set temperature and the room temperature.

【図15】本発明の実施例9の空気調和装置の制御ブロ
ック図
FIG. 15 is a control block diagram of an air conditioner according to a ninth embodiment of the present invention.

【図16】同空気調和装置の制御フローチャートFIG. 16 is a control flowchart of the air conditioner.

【図17】設定温度と室内温度の差に対する温水搬送手
段の回転数増減量を表したグラフ
FIG. 17 is a graph showing an increase / decrease in the number of revolutions of the hot water conveying means with respect to a difference between a set temperature and a room temperature.

【図18】本発明の実施例10の空気調和装置の制御ブ
ロック図
FIG. 18 is a control block diagram of an air conditioner according to Embodiment 10 of the present invention.

【図19】同空気調和装置の制御フローチャートFIG. 19 is a control flowchart of the air conditioner.

【図20】設定温度と室内温度の差に対する熱機関の回
転数増減量を表したグラフ
FIG. 20 is a graph showing an increase / decrease in the number of revolutions of a heat engine with respect to a difference between a set temperature and a room temperature.

【図21】本発明の実施例11の空気調和装置の制御ブ
ロック図
FIG. 21 is a control block diagram of an air conditioner according to Embodiment 11 of the present invention.

【図22】同空気調和装置の制御フローチャートFIG. 22 is a control flowchart of the air conditioner.

【図23】設定温度と室内温度の差に対する圧縮機の回
転数増減量を表したグラフ
FIG. 23 is a graph showing an increase / decrease in the number of revolutions of a compressor with respect to a difference between a set temperature and a room temperature.

【図24】本発明の実施例12の空気調和装置の制御ブ
ロック図
FIG. 24 is a control block diagram of an air conditioner according to Embodiment 12 of the present invention.

【図25】同空気調和装置の制御フローチャートFIG. 25 is a control flowchart of the air conditioner.

【図26】冷却冷媒と被冷却冷媒の温度差に対する第2
の絞り手段の開度増減量を表したグラフ
FIG. 26 is a graph showing a second relationship between the temperature difference between the cooling refrigerant and the refrigerant to be cooled;
Graph showing the amount of increase / decrease in the opening degree of the throttle means

【図27】冷却冷媒と被冷却冷媒の温度差に対する圧縮
機の回転数増減量を表したグラフ
FIG. 27 is a graph showing an increase / decrease in the number of revolutions of the compressor with respect to a temperature difference between the cooling refrigerant and the refrigerant to be cooled;

【図28】冷却冷媒と被冷却冷媒の温度差に対する冷媒
搬送手段の回転数増減量を表したグラフ
FIG. 28 is a graph showing the amount of increase or decrease in the number of revolutions of the refrigerant conveying means with respect to the temperature difference between the cooling refrigerant and the refrigerant to be cooled.

【図29】本発明の実施例13の空気調和装置の冷凍サ
イクル図
FIG. 29 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 13 of the present invention.

【図30】本発明の実施例14の空気調和装置の冷凍サ
イクル図
FIG. 30 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 14 of the present invention.

【図31】本発明の実施例15の空気調和装置の制御ブ
ロック図
FIG. 31 is a control block diagram of an air conditioner according to Embodiment 15 of the present invention.

【図32】同空気調和装置の制御フローチャートFIG. 32 is a control flowchart of the air conditioner.

【図33】本発明の実施例16の空気調和装置の制御ブ
ロック図
FIG. 33 is a control block diagram of an air conditioner according to Embodiment 16 of the present invention.

【図34】同空気調和装置の制御フローチャートFIG. 34 is a control flowchart of the air conditioner.

【図35】本発明の実施例17の空気調和装置の冷凍サ
イクル図
FIG. 35 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 17 of the present invention.

【図36】従来の空気調和装置の冷凍サイクル図FIG. 36 is a refrigeration cycle diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 第1の流路切替手段 2 第2の流路切替手段 3 四方弁 4 室外熱交換器 5 第1の絞り手段 5a 第1の絞り手段 5b 第1の絞り手段 6 冷媒搬送手段 7 室外ユニット 8 室内熱交換器 8a 室内熱交換器 8b 室内熱交換器 9 室内ユニット 10 室外温水熱交換器 11 第3の流路切替手段 12 第4の流路切替手段 13 冷媒間熱交換器 14 第2の絞り手段 15 ターボエンジン 16 吸気冷却熱交換器 17 第5の流路切替手段 17a 第5の流路切替手段 17b 第5の流路切替手段 18 第6の流路切替手段 18a 第6の流路切替手段 18b 第6の流路切替手段 19 第1の記憶手段 20 第1の温度検出手段 21 第1の演算手段 22 第1の判定手段 23 第2の判定手段 24 第2の演算手段 25 第1の制御手段 26 第3の演算手段 27 第2の制御手段 28 温水搬送手段 29 温水流量調整手段 29a 温水流量調整手段 29b 温水流量調整手段 30 冷却用熱交換器 31 送風手段 32 第3の判定手段 33 第4の演算手段 34 第3の制御手段 35 第4の判定手段 36 第5の演算手段 37 第4の制御手段 38 第5の判定手段 39 第6の演算手段 40 第5の制御手段 41 第6の判定手段 42 第7の演算手段 43 第6の制御手段 44 第2の温度検出手段 45 第1の圧力検出手段 46 第3の温度検出手段 47 第8の演算手段 48 第9の演算手段 49 第7の判定手段 50 第10の演算手段 51 第8の判定手段 52 第9の判定手段 53 第10の判定手段 54 第11の判定手段 55 第7の制御手段 56 補助動力手段 57 室内温水熱交換器 57a 室内温水熱交換器 57b 室内温水熱交換器 101 圧縮機 112 発電機 113 熱機関 DESCRIPTION OF SYMBOLS 1 1st flow-path switching means 2 2nd flow-path switching means 3 Four-way valve 4 Outdoor heat exchanger 5 1st throttling means 5a 1st throttling means 5b 1st throttling means 6 Refrigerant conveyance means 7 Outdoor unit 8 Indoor heat exchanger 8a Indoor heat exchanger 8b Indoor heat exchanger 9 Indoor unit 10 Outdoor hot water heat exchanger 11 Third flow switching means 12 Fourth flow switching means 13 Inter-refrigerant heat exchanger 14 Second throttle Means 15 Turbo engine 16 Intake cooling heat exchanger 17 Fifth flow switching means 17a Fifth flow switching means 17b Fifth flow switching means 18 Sixth flow switching means 18a Sixth flow switching means 18b Sixth flow switching means 19 First storage means 20 First temperature detecting means 21 First calculating means 22 First determining means 23 Second determining means 24 Second calculating means 25 First control Means 26 Third Performance Calculation means 27 Second control means 28 Hot water transport means 29 Hot water flow rate adjustment means 29a Hot water flow rate adjustment means 29b Hot water flow rate adjustment means 30 Cooling heat exchanger 31 Blowing means 32 Third determination means 33 Fourth calculation means 34 Third control means 35 Fourth determination means 36 Fifth calculation means 37 Fourth control means 38 Fifth determination means 39 Sixth calculation means 40 Fifth control means 41 Sixth determination means 42 Seventh Calculation means 43 Sixth control means 44 Second temperature detection means 45 First pressure detection means 46 Third temperature detection means 47 Eighth calculation means 48 Ninth calculation means 49 Seventh determination means 50 Tenth Calculation means 51 Eighth determination means 52 Ninth determination means 53 Tenth determination means 54 Eleventh determination means 55 Seventh control means 56 Auxiliary power means 57 Indoor hot water heat exchanger 5 7a Indoor hot water heat exchanger 57b Indoor hot water heat exchanger 101 Compressor 112 Generator 113 Heat engine

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機を使わずに、排熱回収したフロン
系冷媒を冷媒搬送手段を用いて循環させることにより室
内を暖房することのできる空気調和装置。
1. An air conditioner capable of heating a room by circulating a CFC-based refrigerant having recovered exhaust heat using a refrigerant conveying means without using a compressor.
【請求項2】 冷却水によって冷却される冷却水回路を
備えた熱機関と、この熱機関により駆動される発電機
と、冷媒を圧縮する圧縮機と、この圧縮機の吐出側に配
管接続する第1の流路切替手段と、前記圧縮機の吸入側
に配管接続する第2の流路切替手段と、前記第1の流路
切替手段及び第2の流路切替手段の一端に配管接続され
る四方弁と、この四方弁の一端に配管接続される室外熱
交換器と、この室外熱交換器の他端に配管接続される第
1の絞り手段と、前記第1の流路切替手段の他端と第2
の流路切替手段の他端との間に配管接続される冷媒搬送
手段とを備えてなる室外ユニットと、一端を前記四方弁
に配管接続し他端を前記第1の絞り手段に配管接続する
室内熱交換器を備えてなる室内ユニットとから構成さ
れ、前記冷媒搬送手段の吐出側の冷媒と前記熱機関の冷
却水とを熱交換させる室外温水熱交換器を設けた構成と
することにより、前記圧縮機を駆動せずとも前記熱機関
の排熱を利用して室内を暖房することのできる請求項1
記載の空気調和装置。
2. A heat engine having a cooling water circuit cooled by cooling water, a generator driven by the heat engine, a compressor for compressing a refrigerant, and piping connected to a discharge side of the compressor. A first flow switching means, a second flow switching means connected to the suction side of the compressor by piping, and a pipe connected to one end of the first flow switching means and one end of the second flow switching means. A four-way valve, an outdoor heat exchanger connected to one end of the four-way valve by piping, a first throttle unit connected to the other end of the outdoor heat exchanger by piping, and a first flow switching unit. The other end and the second
An outdoor unit comprising a refrigerant conveying means connected to the other end of the flow path switching means by piping, one end connected to the four-way valve by piping, and the other end connected to the first throttle means by piping. An indoor unit including an indoor heat exchanger, and an outdoor hot water heat exchanger for exchanging heat between the refrigerant on the discharge side of the refrigerant conveying means and the cooling water of the heat engine, 2. A room can be heated by utilizing exhaust heat of the heat engine without driving the compressor.
The air conditioner according to any one of the preceding claims.
【請求項3】 室外温水熱交換器を冷媒搬送手段の吐出
側に配し、第1の流路切替手段を四方弁と室内熱交換器
との間に配し、第2の流路切替手段を前記四方弁と室外
熱交換器との間に配し、前記室外温水熱交換器と前記冷
媒搬送手段を前記第1の流路切替手段の他端と前記第2
の流路切替手段の他端との間に設けた構成にすることに
より、暖房時に冷媒が前記四方弁を通すことなく前記熱
機関の排熱を利用して室内を暖房することのできる請求
項1または2記載の空気調和装置。
3. An outdoor hot water heat exchanger is disposed on the discharge side of the refrigerant conveying means, a first flow path switching means is disposed between the four-way valve and the indoor heat exchanger, and a second flow path switching means is provided. Is disposed between the four-way valve and the outdoor heat exchanger, and the outdoor hot water heat exchanger and the refrigerant conveying means are connected to the other end of the first flow path switching means and the second
The configuration provided between the other end of the flow path switching means and the refrigerant can heat the room using the exhaust heat of the heat engine without passing the refrigerant through the four-way valve during heating. 3. The air conditioner according to 1 or 2.
【請求項4】 室外温水熱交換器を冷媒搬送手段の吐出
側に配し、第1の流路切替手段を四方弁と室内熱交換器
との間に配し、第2の流路切替手段を室外熱交換器と第
1の絞り手段との間に配し、前記室外温水熱交換器と前
記冷媒搬送手段を前記第1の流路切替手段の他端と前記
第2の流路切替手段の他端との間に設けた構成にするこ
とにより、暖房時に冷媒が前記四方弁並びに前記室外熱
交換器を通らずとも前記熱機関の排熱を利用して室内を
暖房することのできる請求項1または2記載の空気調和
装置。
4. An outdoor hot water heat exchanger is disposed on the discharge side of the refrigerant conveying means, a first flow path switching means is disposed between the four-way valve and the indoor heat exchanger, and a second flow path switching means is provided. Is disposed between the outdoor heat exchanger and the first throttle means, and the outdoor hot water heat exchanger and the refrigerant transfer means are connected to the other end of the first flow path switching means and the second flow path switching means. By using a configuration provided between the heat exchanger and the other end of the heat engine, it is possible to heat the room using the exhaust heat of the heat engine without passing the refrigerant through the four-way valve and the outdoor heat exchanger during heating. Item 3. The air conditioner according to item 1 or 2.
【請求項5】 室外熱交換器と第2の流路切替手段との
間に第3の流路切替手段を備え、四方弁と第1の流路切
替手段との間に第4の流路切替手段を備え、前記第2の
流路切替手段と冷媒搬送手段との間を流れる冷媒と、前
記第3の流路切替手段と前記第4の流路切替手段との間
を流れる冷媒とを熱交換させる冷媒間熱交換器を備え、
この冷媒間熱交換器と前記第3の流路切替手段との間に
第2の絞り手段とを設けた構成にすることにより、暖房
時に前記冷媒搬送手段の吸入側冷媒を冷却して冷媒搬送
手段の効率低下を防ぐことのできる請求項1、2または
4記載の空気調和装置。
5. A method according to claim 5, further comprising a third flow path switching means between the outdoor heat exchanger and the second flow path switching means, and a fourth flow path between the four-way valve and the first flow path switching means. A refrigerant flowing between the second flow path switching means and the refrigerant conveying means, and a refrigerant flowing between the third flow path switching means and the fourth flow path switching means. Equipped with an inter-refrigerant heat exchanger for heat exchange,
By providing the second throttle means between the inter-refrigerant heat exchanger and the third flow path switching means, the refrigerant on the suction side of the refrigerant transfer means is cooled during heating to transfer the refrigerant. 5. The air conditioner according to claim 1, wherein the efficiency of the means is prevented from being reduced.
【請求項6】 熱機関としてターボエンジンを備え、こ
のターボエンジンの吸気側空気と、第3の流路切替手段
と第4の流路切替手段との間を流れる冷媒とを熱交換さ
せる吸気冷却熱交換器を設けた構成にすることにより、
ターボエンジンの吸気側空気を冷却してターボエンジン
の効率を向上することのできる請求項1または5記載の
空気調和装置。
6. A turbo engine as a heat engine, and intake air cooling for exchanging heat between air on the intake side of the turbo engine and refrigerant flowing between the third flow path switching means and the fourth flow path switching means. By adopting a configuration with a heat exchanger,
The air conditioner according to claim 1, wherein the air on the intake side of the turbo engine is cooled to improve the efficiency of the turbo engine.
【請求項7】 複数の第1の絞り手段と複数の室内熱交
換器を備え、前記複数の第1の絞り手段と第2の流路切
替手段との間に複数の第5の流路切替手段を備え、前記
複数の室内熱交換器と第1の流路切替手段との間に第6
の流路切替手段を備え、室外熱交換器と前記第2の流路
切替手段との間の配管を複数の前記第5の流路切替手段
に分岐接続し、かつ前記第1の流路切替手段と四方弁と
の間の配管を複数の前記第6の流路切替手段に分岐接続
させる構成にすることにより、複数の室内ユニット間に
おいて冷房と暖房を同時に運転することのできる請求項
1、2または4記載の空気調和装置。
7. A plurality of fifth flow path switching means comprising a plurality of first throttle means and a plurality of indoor heat exchangers, wherein a plurality of fifth flow path switching means are provided between said plurality of first throttling means and second flow path switching means. Means between the plurality of indoor heat exchangers and the first flow path switching means.
And a pipe between the outdoor heat exchanger and the second flow path switching means is branched and connected to a plurality of the fifth flow path switching means, and the first flow path switching means is provided. The cooling and heating can be simultaneously operated between a plurality of indoor units by making a configuration in which a pipe between the means and the four-way valve is branched and connected to the plurality of sixth flow path switching means. 5. The air conditioner according to 2 or 4.
【請求項8】 設定温度と室内温度の温度差にあわせて
暖房能力が増減できるよう適確に室内の負荷に応じた暖
房運転を行う制御手段を備えた請求項1、2、3、4、
5、6または7記載の空気調和装置。
8. A control means for performing a heating operation appropriately in accordance with a load in a room so that a heating capacity can be increased or decreased in accordance with a temperature difference between a set temperature and a room temperature.
The air conditioner according to 5, 6, or 7.
【請求項9】 室内の設定温度を記憶し出力する第1の
記憶手段と、室内ユニットに設けられ室内温度を検出す
る第1の温度検出手段と、前記第1の記憶手段による検
出値と前記第1の温度検出手段による検出値との差を演
算する第1の演算手段と、この第1の演算手段による演
算結果を判定する第1の判定手段と、この第1の判定手
段による判定結果より第1の絞り手段の絞り開度を判定
する第2の判定手段と、この第2の判定手段による判定
結果より第1の絞り手段の絞り開度を演算する第2の演
算手段と、この第2の演算手段による演算結果より前記
第1の絞り手段の絞り開度を制御する第1の制御手段
と、前記第2の判定手段による判定結果より冷媒搬送手
段の回転数を演算する第3の演算手段と、この第3の演
算手段による演算結果より前記冷媒搬送手段の回転数を
制御する第2の制御手段とを備えた、請求項1、2、
3、4、5、6、7または8記載の空気調和装置。
9. A first storage means for storing and outputting an indoor set temperature, a first temperature detection means provided in an indoor unit for detecting an indoor temperature, a value detected by the first storage means, and First calculating means for calculating a difference from a value detected by the first temperature detecting means, first determining means for determining a result of the calculation by the first calculating means, and a determination result by the first determining means A second judging means for judging the degree of opening of the first restricting means, a second calculating means for calculating the degree of opening of the first restricting means from the result of the judgment by the second judging means, First control means for controlling the degree of throttle opening of the first throttle means on the basis of the result of calculation by the second calculation means; and third control means for calculating the rotational speed of the refrigerant transport means from the result of determination by the second determination means. Calculation means and the calculation result by the third calculation means A second control unit for controlling the number of revolutions of the refrigerant conveying unit.
The air conditioner according to 3, 4, 5, 6, 7, or 8.
【請求項10】 熱機関の冷却水回路に温水流量調整手
段と、温水搬送手段と、温水用熱交換器と、冷却用熱交
換器と、この冷却用熱交換器に送風する送風手段とを備
え、第2の判定手段による判定結果より冷媒搬送手段の
回転数を判定する第3の判定手段と、この第3の判定手
段による判定結果より前記温水流量調整手段の開度を演
算する第4の演算手段と、この第4の演算手段による演
算結果より温水流量調整手段の開度を制御する第3の制
御手段とを備えた、請求項1、2、3、4、5、6、
7、8または9記載の空気調和装置。
10. A cooling water circuit of a heat engine, comprising: a hot water flow rate adjusting means, a hot water conveying means, a hot water heat exchanger, a cooling heat exchanger, and a blowing means for blowing air to the cooling heat exchanger. A third judging means for judging the rotation speed of the refrigerant conveying means from the judgment result by the second judging means, and a fourth judging means for calculating an opening of the hot water flow rate adjusting means from the judgment result by the third judging means. And a third control means for controlling an opening degree of the hot water flow rate adjusting means based on a calculation result by the fourth calculation means.
10. The air conditioner according to 7, 8, or 9.
【請求項11】 第3の判定手段による判定結果より温
水流量調整手段の開度を判定する第4の判定手段と、こ
の第4の判定手段による判定結果より温水搬送手段の回
転数を演算する第5の演算手段と、この第5の演算手段
による演算結果より前記温水搬送手段の回転数を制御す
る第4の制御手段とを備えた、請求項1、2、3、4、
5、6、7、8、9または10記載の空気調和装置。
11. A fourth judging means for judging the degree of opening of the hot water flow rate adjusting means based on the judgment result by the third judging means, and calculating the rotation speed of the hot water conveying means from the judgment result by the fourth judging means. 5. A device according to claim 1, further comprising: fifth calculating means, and fourth control means for controlling the number of revolutions of said hot water conveying means based on a result of calculation by said fifth calculating means.
The air conditioner according to 5, 6, 7, 8, 9 or 10.
【請求項12】 第4の判定手段による判定結果より温
水搬送手段の回転数を判定する第5の判定手段と、この
第5の判定手段による判定結果より熱機関の回転数を演
算する第6の演算手段と、この第6の演算手段による演
算結果より前記熱機関の回転数を制御する第5の制御手
段とを備えた、請求項1、2、3、4、5、6、7、
8、9、10または11記載の空気調和装置。
12. A fifth judging means for judging the rotation speed of the hot water conveying means from the judgment result by the fourth judging means, and a sixth judging means for calculating the rotation speed of the heat engine from the judgment result by the fifth judging means. And a fifth control means for controlling the number of revolutions of the heat engine based on a result of the calculation by the sixth calculation means.
The air conditioner according to 8, 9, 10 or 11.
【請求項13】 第5の判定手段による判定結果より熱
機関の回転数を判定する第6の判定手段と、この第6の
判定手段による判定結果より圧縮機の回転数を演算する
第7の演算手段と、この第7の演算手段による演算結果
より前記圧縮機の回転数を制御する第6の制御手段とを
備えた、請求項1、2、3、4、5、6、7、8、9、
10、11または12記載の空気調和装置。
13. A sixth determining means for determining the rotational speed of the heat engine from the determination result by the fifth determining means, and a seventh calculating means for calculating the rotational speed of the compressor from the determination result by the sixth determining means. 9. The computer according to claim 1, further comprising: a calculating means, and sixth control means for controlling a rotation speed of said compressor based on a result of calculation by said seventh calculating means. , 9,
13. The air conditioner according to 10, 11, or 12.
【請求項14】 第2の流路切替手段と冷媒間熱交換器
との間に冷媒温度を検出する第2の温度検出手段と冷媒
圧力を検出する第1の圧力検出手段を備え、第2の絞り
手段と前記冷媒間熱交換器との間に冷媒温度を検出する
第3の温度検出手段とを備え、前記第1の圧力検出手段
による検出結果より冷媒の飽和温度を演算する第8の演
算手段と、この第8の演算手段による演算結果と前記第
2の温度検出手段による検出結果の差を演算する第9の
演算手段と、この第9の演算手段による演算結果より冷
媒の状態を判定する第7の判定手段と、この第7の判定
手段による判定結果より前記第3の温度検出手段による
検出結果と前記第2の温度検出手段による検出結果との
差を演算する第10の演算手段と、この第10の演算手
段による演算結果より冷媒間の温度差を判定する第8の
判定手段と、この第8の判定手段による判定結果より圧
縮機の回転数を判定する第9の判定手段と、この第9の
判定手段による判定結果より前記第2の絞り手段の開度
を判定する第10の判定手段と、この第10の判定手段
による判定結果より前記第2の絞り手段の開度を演算す
る第11の演算手段と、この第11の演算手段による演
算結果より前記第2の絞り手段の開度を制御する第7の
制御手段とを備えた、請求項1、5、6、8記載の空気
調和装置。
14. A second temperature detecting means for detecting a refrigerant temperature and a first pressure detecting means for detecting a refrigerant pressure are provided between the second flow path switching means and the inter-refrigerant heat exchanger. A third temperature detecting means for detecting a refrigerant temperature between the throttle means and the inter-refrigerant heat exchanger, and an eighth calculating means for calculating a saturation temperature of the refrigerant from a detection result by the first pressure detecting means. Calculating means, a ninth calculating means for calculating a difference between a calculation result by the eighth calculating means and a detection result by the second temperature detecting means, and a state of the refrigerant based on a calculation result by the ninth calculating means. A seventh judging means for judging, and a tenth calculation for calculating a difference between the detection result by the third temperature detecting means and the detection result by the second temperature detecting means based on the judgment result by the seventh judging means. Means and the calculation result by the tenth calculation means. Determining means for determining the temperature difference between the refrigerants, ninth determining means for determining the rotational speed of the compressor based on the determination result by the eighth determining means, and determination results by the ninth determining means. A tenth determining means for determining the opening degree of the second throttle means, an eleventh calculating means for calculating the opening degree of the second throttle means from the determination result by the tenth determining means, 9. The air conditioner according to claim 1, further comprising: seventh control means for controlling an opening degree of said second throttle means based on a calculation result by an eleventh calculation means.
【請求項15】 冷媒搬送手段に、熱機関より排出され
る排気を利用して動力を得る補助動力手段を備え、冷媒
搬送手段の消費電力を抑えることのできる請求項1、
2、3、4、5、6、7、8、9、10、11、12、
13または14記載の空気調和装置。
15. The refrigerant conveying means is provided with an auxiliary power means for obtaining power using exhaust gas discharged from the heat engine, whereby power consumption of the refrigerant conveying means can be suppressed.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
15. The air conditioner according to 13 or 14.
【請求項16】 冷却水回路に温水流量調整手段と、温
水搬送手段装置と、温水用熱交換器と、冷却用熱交換器
と、この冷却用熱交換器に送風する送風手段とを備えた
熱機関と、前記熱機関により駆動される発電機と、冷媒
を圧縮する圧縮機と、この圧縮機の吐出側と吸入側に配
管接続する四方弁と、この四方弁の一端に配管接続され
る室外熱交換器と、この室外熱交換器の他端に配管接続
される第1の絞り手段とを備えてなる室外ユニットと、
一端を前記四方弁に配管接続し他端を前記第1の絞り手
段に配管接続する室内熱交換器と、前記温水搬送手段か
ら搬送される冷却水の流れる室内温水熱交換器とを備え
てなる室内ユニットとから構成され、除湿運転時に、前
記室内熱交換器により除湿冷却された空気を前記熱機関
の排熱を利用した前記室内温水熱交換器で加熱すること
により、室温の低下なくして室内を除湿することのでき
る空気調和装置。
16. The cooling water circuit includes a hot water flow rate adjusting means, a hot water conveying means device, a hot water heat exchanger, a cooling heat exchanger, and a blowing means for blowing air to the cooling heat exchanger. A heat engine, a generator driven by the heat engine, a compressor for compressing a refrigerant, a four-way valve connected to a discharge side and a suction side of the compressor, and a pipe connected to one end of the four-way valve. An outdoor unit comprising: an outdoor heat exchanger; and first throttle means connected to the other end of the outdoor heat exchanger by piping.
An indoor heat exchanger having one end connected to the four-way valve and the other end connected to the first throttle means, and an indoor hot water heat exchanger through which cooling water conveyed from the hot water conveyance means flows. An indoor unit is configured to heat the air dehumidified and cooled by the indoor heat exchanger with the indoor hot water heat exchanger using exhaust heat of the heat engine during the dehumidifying operation, thereby reducing the room temperature without lowering the room temperature. Air conditioner that can dehumidify air.
【請求項17】 室内の設定温度を記憶し出力する第1
の記憶手段と、室内ユニットに設けられ、室内温度を検
出する第1の温度検出手段と、前記第1の記憶手段によ
る検出値と前記第1の温度検出手段による検出値との差
を演算する第1の演算手段と、この第1の演算手段によ
る演算結果より温水流量調整手段の開度を演算する第4
の演算手段と、この第4の演算手段による演算結果より
温水流量調整手段の開度を制御する第3の制御手段とを
備えた、請求項8または16記載の空気調和装置。
17. A first system for storing and outputting a set temperature in a room.
A first temperature detecting means provided in the indoor unit for detecting an indoor temperature, and calculating a difference between a value detected by the first storing means and a value detected by the first temperature detecting means. A first calculating means for calculating an opening degree of the hot water flow rate adjusting means from a result of the calculation by the first calculating means;
17. The air conditioner according to claim 8, further comprising: a calculating unit configured to calculate an opening degree of the hot water flow rate adjusting unit based on a calculation result obtained by the fourth calculating unit.
【請求項18】 温水流量調整手段の開度を判定する第
4の判定手段と、この第4の判定手段による判定結果よ
り温水搬送手段の回転数を演算する第5の演算手段と、
この第5の演算手段による演算結果より前記温水搬送手
段の回転数を制御する第4の制御手段とを備えた、請求
項8、16または17記載の空気調和装置。
18. A fourth determining means for determining an opening of the hot water flow rate adjusting means, a fifth calculating means for calculating a rotation speed of the hot water conveying means from a result of the determination by the fourth determining means,
18. The air conditioner according to claim 8, further comprising: fourth control means for controlling the number of revolutions of the hot water transport means based on a calculation result by the fifth calculation means.
【請求項19】 複数の室内熱交換器と、複数の室内温
水熱交換器と、複数の第1の絞り手段と、複数の温水流
量調整弁とを備えた構成にすることにより、複数の室内
ユニット間において冷房と暖房を同時に運転することの
できる請求項16、17、または18記載の空気調和装
置。
19. A configuration comprising a plurality of indoor heat exchangers, a plurality of indoor hot water heat exchangers, a plurality of first throttling means, and a plurality of hot water flow control valves, thereby providing a plurality of indoor heat exchangers. 19. The air conditioner according to claim 16, 17 or 18, wherein cooling and heating can be simultaneously operated between units.
JP8337882A 1996-12-18 1996-12-18 Air conditioner Pending JPH10185349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8337882A JPH10185349A (en) 1996-12-18 1996-12-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8337882A JPH10185349A (en) 1996-12-18 1996-12-18 Air conditioner

Publications (1)

Publication Number Publication Date
JPH10185349A true JPH10185349A (en) 1998-07-14

Family

ID=18312889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8337882A Pending JPH10185349A (en) 1996-12-18 1996-12-18 Air conditioner

Country Status (1)

Country Link
JP (1) JPH10185349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056944A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003227409A (en) * 2002-02-06 2003-08-15 Daikin Ind Ltd Co-generation system
JP2011185571A (en) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd Heat pump system
KR20160074227A (en) * 2014-12-18 2016-06-28 한국과학기술연구원 Cooling and heating system
EP3770531A1 (en) * 2019-07-25 2021-01-27 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056944A (en) * 2001-08-20 2003-02-26 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003227409A (en) * 2002-02-06 2003-08-15 Daikin Ind Ltd Co-generation system
JP2011185571A (en) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd Heat pump system
KR20160074227A (en) * 2014-12-18 2016-06-28 한국과학기술연구원 Cooling and heating system
EP3770531A1 (en) * 2019-07-25 2021-01-27 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP4771721B2 (en) Air conditioner
EP2233864B1 (en) Air-conditioning and hot water complex system
JPH0799297B2 (en) Air conditioner
JPH05264133A (en) Air conditioner
JP2009228979A (en) Air conditioner
CN113007831B (en) Three-pipe multi-online hot water system and control method thereof
JP2005299935A (en) Air conditioner
JP2008170015A (en) Refrigeration cycle device with warm water container
JP2007051841A (en) Refrigeration cycle device
JPH10166847A (en) Air conditioner for vehicle
JPH10185349A (en) Air conditioner
JP2020192965A (en) Heat exchange system
KR200412598Y1 (en) Heat pump system for having function of hot water supply
JP2003004332A (en) Multiple gas heat pump type air conditioner
CN216114369U (en) Air conditioner system
CN213778228U (en) Heat pump system and air conditioning equipment
JP4074422B2 (en) Air conditioner and its control method
CN110641242B (en) Defrosting control method and device for heat pump air conditioner of electric automobile and computer readable storage medium
CN108709336B (en) Heat pump system and air conditioner
JP2003136946A (en) Air-conditioner device for vehicle
JP2523534B2 (en) Air conditioner
JP3871207B2 (en) Refrigeration system combining absorption and compression
JP2003004330A (en) Exhaust heat recovery air conditioner
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
KR20140063930A (en) An engine-driven heat pump system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302